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Abstract: Patients with mild cognitive impairment due to Alzheimer’s disease (ADMCI)
typically show abnormally high delta (<4 Hz) and low alpha (8–12 Hz) rhythms mea-
sured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we
hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients
than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated
with the diagnostic cerebrospinal fluid (CSF) amyloid–tau biomarkers in ADMCI patients.
An international database provided clinical–demographic–rsEEG datasets for cognitively
unimpaired older (Healthy; N = 45), ADMCI (N = 70), and noADMCI (N = 45) participants.
The rsEEG rhythms spanned individual delta, theta, and alpha frequency bands. The
eLORETA freeware estimated cortical rsEEG sources. Posterior rsEEG alpha source activi-
ties were reduced in the ADMCI group compared not only to the Healthy group but also to
the noADMCI group (p < 0.001). Negative associations between the CSF phospho-tau and
total tau levels and posterior rsEEG alpha source activities were observed in the ADMCI
group (p < 0.001), whereas those with CSF amyloid beta 42 levels were marginal. These re-
sults suggest that neurophysiological brain neural oscillatory synchronization mechanisms
regulating cortical arousal and vigilance through rsEEG alpha rhythms are mainly affected
by brain tauopathy in ADMCI patients.

Keywords: mild cognitive impairment due to Alzheimer’s disease (ADMCI); resting-state
electroencephalographic (EEG) rhythms; cerebrospinal fluid (CSF) biomarkers; exact
low-resolution brain electromagnetic source tomography (eLORETA)

1. Introduction
The National Institute on Aging and Alzheimer’s Association has introduced a frame-

work for the neurobiological diagnosis of Alzheimer’s disease (AD) in both research and
clinical settings [1,2]. This framework prioritizes the diagnosis of AD through in vivo
biomarkers indicative of brain amyloidosis (“A”), tauopathy (“T”), and neurodegeneration
(“N”) [1,2]. In this regard, amyloidosis and tauopathy can be detected in vivo through
cerebrospinal fluid (CSF) analysis or positron emission tomography (PET), while neurode-
generation is assessed through structural MRI or fluorodeoxyglucose PET (FDG-PET).

Notably, these biomarker-driven characterizations encompass the entire spectrum of
cognitive decline in clinical Alzheimer’s disease, ranging from subjective cognitive com-
plaints to overt dementia, with the intermediate stage of mild cognitive impairment (MCI)
positioned in between. Clinically, MCI is described as a syndrome characterized by signif-
icant cognitive impairment that does not interfere with the activities of daily living [3,4].
The prevalence of MCI in individuals aged 60 years and older varies widely, from 6.7% to
25.2% [4,5], and an MCI diagnosis is a risk factor for progression to dementia, particularly
due to Alzheimer’s disease [6]. According to the joint guidelines of the National Institute on
Aging and the Alzheimer’s Association (NIA-AA) [7], a clinical diagnosis of MCI requires
evidence of a cognitive decline reported by the patient, an informant, or a clinician; objec-
tive impairment in one or more cognitive domains; and the preservation of independence
in functional abilities. Subtypes of MCI have also been identified, with a focus on memory
impairment, the most frequently affected cognitive domain. This has led to a taxonomy of
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four subtypes, amnesic MCI and non-amnesic MCI, each further classified as single-domain
or multi-domain based on the number of cognitive domains affected [8]. Given its high
prevalence and the risk of progression to various neurodegenerative conditions [8], the
identification of reliable biomarkers for MCI remains a critical area of clinical research.

Furthermore, the current framework model of AD does not address how AD-related
neuropathology and neurodegeneration influence the oscillatory neurophysiological tha-
lamocortical mechanisms that regulate cortical arousal and quiet vigilance, which are
often disrupted in AD [9,10]. These mechanisms facilitate the integration of postsynaptic
potentials in cortical pyramidal neurons, which generate detectable alterations in the elec-
tromagnetic fields measured at the scalp level during wakefulness [11]. The measurement
of these fields provides insight into ongoing scalp-recorded electroencephalographic (EEG)
rhythms during resting-state eyes-closed conditions. Compared to cognitively unimpaired
older (Healthy) individuals, AD patients with amnesic mild cognitive impairment (ADMCI)
and dementia (ADD) exhibit abnormality in resting-state eyes-closed EEG (rsEEG) rhythms
at delta (<4 Hz), theta (4–7 Hz) and alpha (8–13 Hz) frequency ranges [12–14].

Several investigations carried out by our international PDWAVES Consortium
(www.pdwaves.eu; last accessed on October 2024) have successfully demonstrated that
alterations in rsEEG rhythms are associated with various neuropsychological, molecular,
neuroanatomical, and pathophysiological markers in ADD and ADMCI patients [13,14].

An unresolved question pertains to the relationship between the rsEEG measures used
by our Consortium and brain amyloidosis and tauopathy in AD patients. Such a relation-
ship is expected based on recent studies showing a relationship between biomarkers of brain
amyloidosis and tauopathy and rsEEG biomarkers in ADD and ADMCI patients [15–22].
Noteworthy findings showed that increased CSF amyloid-beta 42 (Aβ42) levels correlated
with decreased temporal rsEEG theta activity in ADD and increased global rsEEG alpha
and beta power in both ADMCI and ADD patients. Furthermore, elevated CSF tau levels
and higher p-tau/Aβ42 ratios were linked to increased global rsEEG theta and decreased
alpha power. Finally, higher CSF Aβ42 levels were associated with increased global rsEEG
delta activity in ADMCI patients, and negative associations were observed between the CSF
p-tau/Aβ42 ratio and global rsEEG alpha activity. The variability in these findings may
be attributable to the utilization of fixed frequency bands and methodological limitations,
such as not accounting for head volume conduction effects [13].

In this retrospective study, we aimed to explore the relationship between the CSF
p-tau/Aβ42 biomarkers typically used for the in vivo diagnosis of AD according to the
NIA-AA Framework for AD diagnosis through biomarkers [1,2] and the topography and
individual frequency bands of rsEEG rhythms in ADMCI patients compared to those
with MCI not attributed to AD (noADMCI). Our Consortium’s experimental procedures
enhanced the spatial resolution of rsEEG activity by estimating regional cortical source
activity. Additionally, we utilized individually tailored frequency bands to account for
the varying degrees of rsEEG slowing in ADMCI and noADMCI patients [23,24]. We
hypothesized that rsEEG abnormalities would be more pronounced in ADMCI patients
compared to noADMCI patients and that these abnormalities would correlate with CSF
p-tau and Aβ42 biomarkers in the ADMCI group.

2. Results
2.1. Clinical, Genetic, and CSF Amyloid–Tau in noADMCI and ADMCI Groups

Table 1 summarizes the clinical (i.e., GDS, CDR, and HIS), genetic (i.e., APOE geno-
typing), and CSF amyloid–tau (i.e., Aβ42, t-tau, p-tau, and Aβ42/p-tau) markers in the
noADMCI and ADMCI groups, together with the results of the statistical analyses com-
puted to evaluate the presence or absence of statistically significant differences between

www.pdwaves.eu
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these two groups regarding each clinical (T-test), genetic (Fisher test), and CSF amyloid–tau
(T-test) variable. As expected, significant differences were found for the APOE genotyping
(p < 0.00001) and the three CSF amyloid–tau markers (p < 0.00001). On the contrary, no
statistically significant differences in the clinical markers were found (p > 0.05).

Table 1. Mean values (±SE) of the clinical (i.e., Geriatric Depression Scale, Clinical Dementia Rating,
and Hachinski Ischemic Score), genetic (i.e., Apolipoprotein E genotyping, APOE), and amyloid–tau
cerebrospinal fluid (i.e., beta-amyloid 1–42, Aβ 42; protein tau, t-tau; a phosphorylated form of
protein tau, p-tau) data as the results of their statistical comparisons (p < 0.05) in the noADMCI
(N = 45) and ADMCI (N = 70) groups. The statistically significant results are reported in bold. In line
with the inclusion criteria, all noADMCI and ADMCI patients had a CDR score of 0.5, a GDS score
of ≤ 5, and an HIS score of ≤4. Legend: noADMCI = patients with mild cognitive impairment not
due to Alzheimer’s disease; ADMCI = patients with mild cognitive impairment due to Alzheimer’s
disease; n.s. = not significant (p > 0.05); SE = standard error of the mean.

Clinical, Genetic (APOE), and Cerebrospinal Fluid (CSF) Amyloid–Tau Markers
in noADMCI and ADMCI Groups

noADMCI ADMCI Statistical
Analyses

Clinical markers

Geriatric depression scale
(GDS) 2.5 ± 0.3 2.7 ± 0.3 T-test: p = n.s.

Clinical dementia rating
(CDR) 0.5 ± 0.0 0.5 ± 0.0 T-test: p = n.s.

Hachinski ischemic score
(HIS) 1.0 ± 0.1 0.8 ± 0.1 T-test: p = n.s.

Genetic marker

APOE4 (%) 4.4% 75.7% Fisher test:
p < 0.00001

Cerebrospinal fluid
markers

Aβ42 (pg/mL) 940 ± 36 498 ± 16 T-test: p < 0.00001

p-tau (pg/mL) 49 ± 2 86 ± 4 T-test: p < 0.00001

t-tau (pg/mL) 312 ± 24 642 ± 48 T-test: p < 0.00001

Table 2 reports (1) the mean values (±standard error of the mean, SE) of the following
neuropsychological tests in the noADMCI and ADMCI groups: Logical Memory Test (im-
mediate and delayed recall), Rey Auditory Verbal Learning Test (immediate and delayed
recall), Trail Making Test part B-A, Verbal Fluency for letters, Verbal Fluency for category, clock
drawing, and clock copy; (2) the cut-off scores of the above-mentioned neuropsychological
tests; and (3) the results of the presence or absence of statistically significant differences (T-test;
log−10 transformed data) between the noADMCI and ADMCI groups for the neuropsycho-
logical tests. The statistical threshold was set at p < 0.005 (i.e., 9 neuropsychological tests,
p < 0.05/9 = 0.005) to obtain the Bonferroni correction at p < 0.05 and consider the inflating ef-
fects of repetitive univariate tests. No statistically significant differences were found (p > 0.005).
Furthermore, a worsening in the Logical Memory Test (immediate recall, p = 0.03; delayed
recall, p = 0.04) and Rey Auditory Verbal Learning Test (immediate recall, p = 0.02; delayed
recall, p = 0.05) was found in the ADMCI group as compared to the noADMCI group using
an explorative statistical threshold of p < 0.05 uncorrected.
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Table 2. Mean values (±SE) of the neuropsychological scores (i.e., Logical Memory Test immediate
recall, Logical Memory Test delayed recall, Rey Auditory Verbal Learning Test immediate recall,
Rey Auditory Verbal Learning Test delayed recall, Trail Making Test Part B-A, Verbal Fluency for
letters, Verbal Fluency for category, clock drawing, and clock copy) as well as the results of their
statistical comparisons (T-test on log−10 transformed data; p < 0.05 corrected) in the noADMCI
(N = 45) and ADMCI (N = 70) groups. Values at p < 0.05 are reported in bold. The cut-off scores
of the neuropsychological tests are also reported. In line with the inclusion criteria, all noADMCI
and ADMCI patients had Logical Memory Test scores of 1.5 standard deviations (SDs) below the
mean adjusted for age. Legend: noADMCI = patients with mild cognitive impairment not due to
Alzheimer’s disease; ADMCI = patients with mild cognitive impairment due to Alzheimer’s disease;
RAVLT = Rey Auditory Verbal Learning Test; n.s. = not significant (p > 0.05); SE = standard error of
the mean.

Neuropsychological Scores in the noADMCI and ADMCI Groups

noADMCI ADMCI

Cut-Off of
Abnormality

Mean ± SE
(% Subjects With
Abnormal Score)

Mean ± SE
(% Subjects with
Abnormal Score)

T-Test
p-Value

Logical
Memory Test

immediate
recall

<13 10.1 ± 1.4
71.1%

7.2 ± 0.5
91.0% p = 0.03

Logical
Memory Test
delayed recall

<12 6.2 ± 1.3
88.8%

4.6 ± 0.4
95.5% p = 0.04

RAVLT
immediate

recall
<28.53 32.3 ± 1.6

44.4%
29.0 ± 1.2

50% p = 0.02

RAVLT
delayed recall <4.69 4.7 ± 1.3

51.1%
3.7 ± 0.4

68.6% p = 0.05

Trail Making
Test B-A ≥187 126.5 ± 8.2

28.4%
137.2 ± 12.1

27.0% p = n.s.

Letter fluency <17 27.5 ± 2.1
21.4%

32.2 ± 1.4
8.6% p = n.s.

Letter category <25 30.8 ± 2.1
31.8%

31.7 ± 1.2
30.9% p = n.s.

Clock drawing >3 3.6 ±1.3
57.1%

3.8 ± 0.2
67.1% p = n.s.

Clock copy >3 4.6 ± 0.1
87.1%

4.5 ± 0.1
93.0% p = n.s.

2.2. The rsEEG Source Activities in Healthy, noADMCI, and ADMCI Groups

The mean TF was 5.5 Hz (±0.2 SE) in the Healthy group, 5.5 Hz (±0.2 SE) in the
noADMCI group, and 5.3 Hz (±0.1 SE) in the ADMCI group. Furthermore, the mean IAF
was 9.2 Hz (±0.1 SE) in the Healthy group, 9.1 Hz (±0.2 SE) in the noADMCI group, and
8.8 Hz (±0.1 SE) in the ADMCI group. Two ANOVAs (p < 0.05) were performed to evaluate
the presence or absence of statistically significant differences between the three groups
regarding TF and IAF. No statistically significant differences were found (p > 0.05).

Figure 1 shows the mean values (± standard error of the mean, SE; log−10 trans-
formed values) of rsEEG source activities (i.e., regional normalized eLORETA current
densities) relative to a statistically significant ANOVA interaction effect (F = 6.0; p < 0.0001)
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among the factors Group (Healthy, noADMCI, and ADMCI), Band (delta, theta, alpha 1,
alpha 2, alpha 3, beta 1, beta 2, and gamma), and ROI (frontal, central, parietal, occipital,
and temporal).
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Figure 1. Regional normalized exact low-resolution brain electromagnetic source tomography
(eLORETA) solutions (mean across subjects, log−10 transformed) modeling cortical sources of
resting-state electroencephalographic (rsEEG) rhythms relative to a statistical ANOVA interaction
effect (F = 6.0; p < 0.0001) among the factors Group (Healthy, noADMCI, and ADMCI), Band (delta,
theta, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma), and Region of Interest, ROI (frontal,
central, parietal, occipital, and temporal). This ANOVA design used the mentioned eLORETA solu-
tions as a dependent variable. Legend: Healthy = normal older seniors; noADMCI = patients with
mild cognitive impairment not due to Alzheimer’s disease; ADMCI = patients with mild cognitive
impairment due to Alzheimer’s disease; the black boxes indicate the cortical regions and frequency
bands in which the eLORETA solutions statistically presented a significant difference between the
three groups (p < 0.05 corrected = p < 0.0004).

The Duncan planned post hoc (p < 0.05, Bonferroni correction for 8 frequency
bands X 5 ROIs, p < 0.05/40 = 0.00125) testing showed that the discriminant pat-
tern Healthy > noADMCI > ADMCI was fitted by the parietal, occipital, and temporal
(p < 0.00001) rsEEG alpha 2 source activities (p < 0.00001), as well as the parietal and
temporal rsEEG alpha 3 source activities (p < 0.00001).

Furthermore, the Duncan planned post hoc (p < 0.00125) also showed the following
effects: (1) the discriminant pattern Healthy > noADMCI and ADMCI was fitted by the
central rsEEG alpha 2 and alpha 3 source activities (p < 0.00001); (2) the discriminant
pattern Healthy, noADMCI > ADMCI was fitted by the occipital rsEEG alpha 3 source
activities (p < 0.000005); (3) the discriminant pattern Healthy, noADMCI < ADMCI was
fitted by the fontal rsEEG theta source activities (p < 0.0001); (4) the discriminant pattern
Healthy < noADMCI, ADMCI was fitted by the parietal and occipital rsEEG delta source
activities (p < 0.000001), as well as the occipital rsEEG theta source activities (p < 0.0001);
and (5) the discriminant pattern Healthy < ADMCI was fitted by the central and temporal
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rsEEG delta source activities (p < 0.00001), as well as the central and parietal rsEEG theta
source activities (p < 0.0001).

The findings mentioned above were not due to outliers from those individual regional
normalized eLORETA current densities modeling rsEEG source activities (log−10 transformed),
as shown by the Grubbs’ test with an arbitrary threshold of p > 0.001.

2.3. Associations Between CSF Amyloid–Tau Markers and rsEEG Source Activities in noADMCI
and ADMCI Participants

General linear models assessed the association between three CSF amyloid–tau mark-
ers as predictors (i.e., CSF Aβ42, t-tau, and p-tau—log−10 transformed values) and five
rsEEG source activities as dependent variables in the noADMCI, ADMCI, and extended
MCI (i.e., ADMCI+noADMCI) groups. The rsEEG source activities were those showing
statistically significant differences between the Healthy, noADMCI, and ADMCI groups
(i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, parietal alpha 3, and temporal
alpha 3 source activities; log−10 transformed values; see Table 3). A conservative statistical
threshold at p < 0.0033 (i.e., Bonferroni correction at p < 0.05 for 2 CSF amyloid–tau markers
X 5 rsEEG source activities, p < 0.05/15 = 0.0033) was set to consider the inflating effects of
repetitive univariate tests.

Table 3. Results of general linear models (GLMs) assessing the association between CSF amyloid–
tau markers (i.e., CSF Aβ42, t-tau, and p-tau levels; predictors) and rsEEG source activities in the
noADMCI, ADMCI, and extended MCI (ADMCI+noADMCI) groups. The rsEEG markers were those
showing statistically significant differences between the Healthy, noADMCI, and ADMCI groups
(i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, parietal alpha 3, and temporal alpha 3
source activities estimated by eLORETA current densities from rsEEG rhythms; dependent variables).
Standardized beta, t, and p values are reported for each GLM. Values at p < 0.05 are reported in
bold. Legend: noADMCI = patients with mild cognitive impairment not due to Alzheimer’s disease;
ADMCI = patients with mild cognitive impairment due to Alzheimer’s disease; CSF = cerebrospinal
fluid; Aβ42 = beta-amyloid 1–42; t-tau= protein tau; p-tau = phosphorylated form of protein tau;
rsEEG = resting-state electroencephalographic.

Group Predictor:
CSF Marker

Dependent Variable:
rsEEG Source Marker

Standardized
β

t p

ADMCI

p-tau

Parietal alpha 2 −0.367 −3.25 0.002

Occipital alpha 2 −0.399 −3.58 0.001

Temporal alpha 2 −0.284 −2.45 0.01

Parietal alpha 3 −0.345 −3.03 0.003

Temporal alpha 3 −0.197 −1.65 0.1

t-tau

Parietal alpha 2 −0.329 −2.87 0.005

Occipital alpha 2 −0.298 −2.58 0.01

Temporal alpha 2 −0.246 −2.09 0.04

Parietal alpha 3 −0.332 −2.90 0.005

Temporal alpha 3 −0.201 −1.69 0.1

Aβ42

Parietal alpha 2 −0.207 −1.75 0.1

Occipital alpha 2 −0.164 −1.37 0.2

Temporal alpha 2 −0.081 −0.65 0.5

Parietal alpha 3 −0.157 −1.31 0.2

Temporal alpha 3 −0.048 −0.40 0.7
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Table 3. Cont.

Group Predictor:
CSF Marker

Dependent Variable:
rsEEG Source Marker

Standardized
β

t p

noADMCI

p-tau

Parietal alpha 2 −0.069 −0.46 0.6

Occipital alpha 2 −0.084 −0.55 0.6

Temporal alpha 2 −0.092 −0.60 0.5

Parietal alpha 3 −0.069 −0.45 0.6

Temporal alpha 3 −0.119 −0.78 0.4

t-tau

Parietal alpha 2 −0.083 −0.54 0.5

Occipital alpha 2 −0.107 −0.70 0.5

Temporal alpha 2 −0.118 −0.77 0.4

Parietal alpha 3 −0.071 −0.47 0.6

Temporal alpha 3 −0.130 −0.86 0.4

Aβ42

Parietal alpha 2 0.362 2.55 0.01

Occipital alpha 2 0.219 1.47 0.1

Temporal alpha 2 0.126 0.83 0.4

Parietal alpha 3 0.436 3.17 0.003

Temporal alpha 3 0.175 1.16 0.2

MCI
(ADMCI+

noADMCI)

p-tau

Parietal alpha 2 −0.351 −3.98 0.001

Occipital alpha 2 −0.387 −4.46 0.001

Temporal alpha 2 −0.286 −3.17 0.002

Parietal alpha 3 −0.351 −3.99 0.001

Temporal alpha 3 −0.267 −2.94 0.004

t-tau

Parietal alpha 2 −0.323 −3.62 0.001

Occipital alpha 2 −0.327 −3.67 0.001

Temporal alpha 2 −0.265 −2.92 0.004

Parietal alpha 3 −0.333 −3.75 0.001

Temporal alpha 3 −0.266 −2.94 0.004

Aβ42

Parietal alpha 2 0.167 1.80 0.1

Occipital alpha 2 0.164 1.77 0.1

Temporal alpha 2 0.129 1.38 0.2

Parietal alpha 3 0.224 2.45 0.01

Temporal alpha 3 0.183 1.98 0.05

In the ADMCI group, there were statistically significant negative associations be-
tween the CSF p-tau levels and the following rsEEG variables: the parietal rsEEG alpha 2
(β = −0.367, t = −3.25, p = 0.002), occipital rsEEG alpha 2 (β = −0.399, t = −3.58, p = 0.001),
and parietal rsEEG alpha 3 (β = −0.345, t = −3.03, p = 0.003) source activities using the
conservative statistical threshold of p < 0.05 corrected (p < 0.0033). Using an explorative
statistical threshold of p < 0.05 uncorrected, the following associations were found: (1) a
negative association between the CSF p-tau levels and the temporal rsEEG alpha 2 source
activities (β = −0.284, t = −2.45, p = 0.01); and (2) negative associations between the CSF
t-tau levels and the rsEEG parietal alpha 2 (β = −0.329, t = −2.87, p = 0.005), occipital
alpha 2 (β = −0.298, t = −2.58, p = 0.01), temporal alpha 2 (β = −0.246, t = −2.09, p = 0.04),
and parietal alpha 3 (β = −0.332, t = −2.90, p = 0.005) source activities. The greater the
p-tau or CSF t-tau levels (increasing the probability of being positive to the diagnostic CSF
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biomarkers for AD), the lower the rsEEG alpha source activities. Figures 2 and 3 show the
scatterplots of those negative associations, showing the strict relationships between brain
tauopathy and posterior rsEEG alpha rhythms in ADMCI patients.
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Figure 2. Scatterplots showing the associations between CSF p-tau levels and rsEEG alpha source ac-
tivities (i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, and parietal alpha 3) in the ADMCI pa-
tients (each circle corresponds to a patient). General linear models (GLMs) evaluated the hypothesis of
an association between the CSF and rsEEG variables (p < 0.05). Legend: CSF p-tau = phosphorylated
form of tau in cerebrospinal fluid; rsEEG = resting-state electroencephalographic; ADMCI = patients
with mild cognitive impairment due to Alzheimer’s disease. Dots represent individual data points,
where each dot shows the values of two variables. The solid red line (line of best fit) is a line drawn
through the dots to show the overall trend or relationship between the variables, indicating whether
the correlation is positive, negative, or absent. The dotted red lines (Confidence lines) indicate the
range where we expect the true values to fall with the 95% level of confidence.
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In the noADMCI group, there was a statistically significant positive association 
between the CSF Aβ42 levels and the parietal rsEEG alpha 3 source activities (β = 0.436, t 
= 3.03, p = 0.003) using the conservative statistical threshold of p  <  0.05 corrected (p < 
0.0033). Using an explorative statistical threshold of p  <  0.05 uncorrected, a positive 
association between the CSF Aβ42 levels and the parietal rsEEG alpha 2 source activities 
was also found (β = 0.362, t = 2.55, p = 0.01). The lower the CSF Aβ42 levels (increasing the 
probability of being positive to the diagnostic CSF biomarkers for AD), the lower the 
rsEEG alpha source activities. Figure 4 shows the scatterplots of those positive 

Figure 3. Scatterplots showing the associations between CSF t-tau levels and rsEEG alpha source
activities (i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, and parietal alpha 3) in the ADMCI
patients (each circle corresponds to a patient). General linear models (GLMs) evaluated the hypothesis
of an association between these variables (p < 0.05). Legend: CSF t-tau = tau in cerebrospinal fluid;
rsEEG = resting-state electroencephalographic; ADMCI = patients with mild cognitive impairment
due to Alzheimer’s disease. Dots represent individual data points, where each dot shows the values
of two variables. The solid red line (line of best fit) is a line drawn through the dots to show the
overall trend or relationship between the variables, indicating whether the correlation is positive,
negative, or absent. The dotted red lines (Confidence lines) indicate the range where we expect the
true values to fall with the 95% level of confidence.

In the noADMCI group, there was a statistically significant positive association be-
tween the CSF Aβ42 levels and the parietal rsEEG alpha 3 source activities (β = 0.436,
t = 3.03, p = 0.003) using the conservative statistical threshold of p < 0.05 corrected
(p < 0.0033). Using an explorative statistical threshold of p < 0.05 uncorrected, a positive
association between the CSF Aβ42 levels and the parietal rsEEG alpha 2 source activities
was also found (β = 0.362, t = 2.55, p = 0.01). The lower the CSF Aβ42 levels (increasing
the probability of being positive to the diagnostic CSF biomarkers for AD), the lower the
rsEEG alpha source activities. Figure 4 shows the scatterplots of those positive associations,
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showing a marginal relationship between brain amyloidosis and posterior rsEEG alpha
rhythms in noADMCI patients.
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Figure 4. Scatterplots showing the associations between CSF Aβ42 levels and rsEEG alpha source
activities (i.e., parietal alpha 2 and parietal alpha 3) in the noADMCI patients (each circle corre-
sponds to a patient). General linear models (GLMs) evaluated the hypothesis of an association
between these variables (p < 0.05). Legend: CSF Aβ42 = beta-amyloid 1–42 in cerebrospinal fluid;
rsEEG = resting-state electroencephalographic; noADMCI = patients with mild cognitive impairment
not due to Alzheimer’s disease. Dots represent individual data points, where each dot shows the
values of two variables. The solid red line (line of best fit) is a line drawn through the dots to show
the overall trend or relationship between the variables, indicating whether the correlation is positive,
negative, or absent. The dotted red lines (Confidence lines) indicate the range where we expect the
true values to fall with the 95% level of confidence.

In the extended MCI (i.e., ADMCI+noADMCI) group, there were statistically signifi-
cant negative associations between the CSF p-tau levels and the parietal alpha 2 (β = −0.351,
t = −3.98, p = 0.001), occipital alpha 2 (β = −0.387, t = −4.46, p = 0.001), temporal alpha 2
(β = −0.286, t = −3.17, p = 0.002), and parietal alpha 3 (β = −0.351, t = −3.99, p = 0.001)
source activities estimated from the rsEEG activity using the conservative statistical thresh-
old of p < 0.05 corrected (p < 0.0033). Along the same line, statistically significant negative
associations between the CSF t-tau levels and the parietal rsEEG alpha 2 (β = −0.323,
t = −3.62, p = 0.001), occipital alpha 2 (β = −0.327, t = −3.67, p = 0.001), and parietal alpha 3
(β = −0.333, t = −3.75, p = 0.001) source activities were found. The higher the CSF p-tau or
t-tau levels (increasing the probability of being positive to the diagnostic CSF biomarkers
for AD), the lower the rsEEG alpha source activities.

Using an explorative statistical threshold of p < 0.05 uncorrected, the following
negative associations were also found in the extended MCI (i.e., ADMCI+noADMCI) group.
There was a negative association between the CSF p-tau levels and the temporal rsEEG
alpha 3 source activities (β = −0.267, t = −2.94, p = 0.004). Furthermore, there were negative
associations between the CSF t-tau levels and the temporal rsEEG alpha 2 (β = −0.265,
t = −2.92, p = 0.004) and alpha 3 (β = −0.266, t = −2.94, p = 0.004) source activities. Again,
the greater the CSF p-tau or t-tau levels (increasing the probability of being positive to the
diagnostic CSF biomarkers for AD), the lower the rsEEG alpha source activities.
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Figures 5 and 6 show the scatterplots of those negative associations, showing the
strict relationships between the brain tauopathy and posterior rsEEG alpha rhythms in the
extended MCI group.

Using an explorative statistical threshold of p < 0.05 uncorrected, there were positive
associations between the CSF Aβ42 levels and the parietal rsEEG alpha 3 (β = 0.224, t = 2.45,
p = 0.01) and the temporal rsEEG alpha 3 (β = 0.183, t = 1.98, p = 0.05) source activities in the
extended MCI (i.e., ADMCI+noADMCI) group. The lower the CSF Aβ42 levels (increasing
the probability of being positive to the diagnostic CSF biomarkers for AD), the lower the
rsEEG alpha source activities. Figure 7 shows the scatterplots of those positive associations,
showing a marginal relationship between brain amyloidosis and posterior rsEEG alpha
rhythms in the extended MCI group.
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Figure 5. Scatterplots showing the associations between CSF p-tau levels and rsEEG alpha source
activities (i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, parietal alpha 3, and temporal
alpha 3) in the extended MCI (i.e., ADMCI+noADMCI) group (each circle corresponds to a patient).
General linear models (GLMs) evaluated the hypothesis of an association between these variables
(p < 0.05). Legend: CSF p-tau = phosphorylated form of tau in cerebrospinal fluid; rsEEG = resting-
state electroencephalographic; ADMCI = patients with mild cognitive impairment due to Alzheimer’s
disease; noADMCI = patients with mild cognitive impairment not due to Alzheimer’s disease. Dots
represent individual data points, where each dot shows the values of two variables. The solid red line
(line of best fit) is a line drawn through the dots to show the overall trend or relationship between
the variables, indicating whether the correlation is positive, negative, or absent. The dotted red
lines (Confidence lines) indicate the range where we expect the true values to fall with the 95% level
of confidence.
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Using an explorative statistical threshold of p  <  0.05 uncorrected, there were positive 
associations between the CSF Aβ42 levels and the parietal rsEEG alpha 3 (β = 0.224, t = 
2.45, p = 0.01) and the temporal rsEEG alpha 3 (β = 0.183, t = 1.98, p = 0.05) source activities 
in the extended MCI (i.e., ADMCI+noADMCI) group. The lower the CSF Aβ42 levels 
(increasing the probability of being positive to the diagnostic CSF biomarkers for AD), the 
lower the rsEEG alpha source activities. Figure 7 shows the scatterplots of those positive 
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Figure 6. Scatterplots showing the associations between the CSF t-tau levels and the rsEEG alpha
source activities (i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2, parietal alpha 3, and
temporal alpha 3) in the extended MCI (i.e., ADMCI+noADMCI) group (each circle corresponds
to a patient). General linear models (GLMs) evaluated the hypothesis of an association between
these variables (p < 0.05). Legend: CSF t-tau = tau in cerebrospinal fluid; rsEEG = resting-state
electroencephalographic; ADMCI = patients with mild cognitive impairment due to Alzheimer’s
disease; noADMCI = patients with mild cognitive impairment not due to Alzheimer’s disease. Dots
represent individual data points, where each dot shows the values of two variables. The solid red line
(line of best fit) is a line drawn through the dots to show the overall trend or relationship between
the variables, indicating whether the correlation is positive, negative, or absent. The dotted red
lines (Confidence lines) indicate the range where we expect the true values to fall with the 95% level
of confidence.

The findings mentioned above were not due to cerebrovascular lesions as shown by
general linear models that used MRI-measured WM hypo-intensity as a covariate to assess
the association between the three CSF amyloid–tau markers as predictors (i.e., CSF Aβ42,
t-tau, and p-tau-log−10 transformed values) and the five relevant rsEEG alpha source
activities as dependent variables (i.e., parietal alpha 2, occipital alpha 2, temporal alpha 2,
parietal alpha 3, and temporal alpha 3 source activities; log−10 transformed values) in
the ADMCI group. The statistical details of these results are reported in Table 4. Of note,
no statistically significant difference (Mann–Whitney test, p > 0.05) was found in WM
hypo-intensity between the noADMCI and ADMCI groups.

The findings mentioned above were also not due to outliers from those individual
CSF amyloid–tau levels (log−10 transformed) and regional normalized eLORETA current
densities (log−10 transformed) modeling rsEEG source activities, as shown by the Grubbs’
test with an arbitrary threshold of p > 0.001.
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Figure 7. Scatterplots showing the associations between CSF Aβ42 level and rsEEG alpha source
activities (i.e., parietal alpha 3 and temporal alpha 3) in the extended MCI (i.e., ADMCI+noADMCI)
group (each circle corresponds to a patient). General linear models (GLMs) evaluated the hypothesis
of an association between these variables (p < 0.05). Legend: CSF Aβ42 = beta-amyloid 1–42 in
cerebrospinal fluid; rsEEG = resting-state electroencephalographic; ADMCI = patients with mild cog-
nitive impairment due to Alzheimer’s disease; noADMCI = patients with mild cognitive impairment
not due to Alzheimer’s disease. Dots represent individual data points, where each dot shows the
values of two variables. The solid red line (line of best fit) is a line drawn through the dots to show
the overall trend or relationship between the variables, indicating whether the correlation is positive,
negative, or absent. The dotted red lines (Confidence lines) indicate the range where we expect the
true values to fall with the 95% level of confidence.

Table 4. Results of general linear models (GLMs) assessing the association between CSF tau markers
(i.e., CSF t-tau and p-tau; predictors) and rsEEG source activities in the ADMC group. The white
matter (WM) hypo-intensity from T1-weighted magnetic resonance imaging was used as a covariate
reflecting subcortical WM cerebrovascular lesions. The rsEEG markers were those showing statisti-
cally significant differences between the Healthy, noADMCI, and ADMCI groups (i.e., parietal alpha 2,
occipital alpha 2, temporal alpha 2, parietal alpha 3, and temporal alpha 3 source activities estimated
by eLORETA current densities from rsEEG rhythms; dependent variables). Standardized beta, t, and
p values are reported for each GLM. Values at p < 0.05 are reported in bold. Legend: ADMCI = patients
with mild cognitive impairment due to Alzheimer’s disease; CSF = cerebrospinal fluid; t-tau= protein
tau; p-tau = phosphorylated form of protein tau; rsEEG = resting-state electroencephalographic.

Group Predictor:
CSF Marker

Dependent Variable:
rsEEG Source Marker

Standardized
β

t p

ADMCI

p-tau

Parietal alpha 2 −0.334 −2.94 0.004

Occipital alpha 2 −0.358 −3.22 0.002

Temporal alpha 2 −0.254 −2.65 0.03

Parietal alpha 3 −0.323 −2.78 0.007

Temporal alpha 3 −0.173 −1.43 0.2

t-tau

Parietal alpha 2 −0.314 −2.78 0.007

Occipital alpha 2 −0.279 −2.48 0.01

Temporal alpha 2 −0.235 −2.00 0.05

Parietal alpha 3 −0.325 −2.81 0.006

Temporal alpha 3 −0.173 −1.43 0.2

Aβ42

Parietal alpha 2 −0.176 −1.49 0.1

Occipital alpha 2 −0.123 −1.05 0.3

Temporal alpha 2 −0.049 −0.40 0.7

Parietal alpha 3 −0.132 −1.1 0.3

Temporal alpha 3 −0.121 −0.50 0.6
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2.4. Control Analysis of the Structural MRI Markers in the noADMCI and ADMCI Groups

Table 5 reports the mean values (± SE) of the following structural MRI markers in
the noADMCI group and in the ADMCI group: normalized total GM volume, normalized
total WM volume, normalized hippocampus volume, normalized amygdala volume, mean
cortical thickness, parietal cortical thickness, temporal cortical thickness, precuneus cortical
thickness, and cuneus cortical thickness. Furthermore, Table 5 reports the results of the
presence or absence of statistically significant differences (T-test; log−10 transformed data)
between the noADMCI and ADMCI groups for the structural MRI markers mentioned
above. The conservative statistical threshold was set at p < 0.0055 (i.e., Bonferroni correction
at p < 0.05 for 9 statistical comparisons, p < 0.05/9 = 0.0055) to consider the inflating effects
of repetitive univariate tests. The results are reported in the following. Parietal (p = 0.0002)
and precuneus (p = 0.0008) cortical thicknesses were significantly lower in the ADMCI
group than in the noADMCI group. Furthermore, using an explorative statistical threshold
of p < 0.05 uncorrected, the mean cortical thickness (p = 0.02), temporal cortical thickness
(p = 0.01), and normalized hippocampus volume (p = 0.02) were lower in the ADMCI group
as compared to the noADMCI group.

Table 5. Mean values (±SE) of structural MRI markers (i.e., normalized total gray matter volume, nor-
malized total white matter volume, normalized hippocampus volume, normalized amygdala volume,
mean cortical thickness, parietal cortical thickness, temporal cortical thickness, precuneus cortical
thickness, and cuneus cortical thickness) in the noADMCI (N = 45) and ADMCI (N = 70) groups. The
results of the statistical comparisons of those markers between the two groups are reported (T-test
on log−10 transformed data; p < 0.05 corrected). The statistically significant results are reported
in bold. The volumes were normalized with reference to the total intracranial volume. Legend:
MRI = magnetic resonance imaging; noADMCI = patients with mild cognitive impairment not due to
Alzheimer’s disease; ADMCI = patients with mild cognitive impairment due to Alzheimer’s disease;
n.s. = not significant (p > 0.05); SE = standard error of the mean.

MRI Markers in noADMCI and ADMCI Groups
noADMCI ADMCI T-Test

Normalized global gray
matter volume 0.292 ± 0.006 SE 0.291 ± 0.003 SE p = n.s.

Normalized global
white matter volume 0.382 ± 0.006 SE 0.385 ± 0.004 SE p = n.s.

Normalized
hippocampus volume 0.0049 ± 0.0002 SE 0.0045 ± 0.0001 SE p = 0.02

Normalized amygdala
volume 0.0019 ± 0.0001 SE 0.0018 ± 0.0001 SE p = n.s.

Mean cortical thickness 4.67 ± 0.04 SE 4.54 ± 0.03 SE p = 0.02
Parietal cortical

thickness 8.73 ± 0.10 SE 8.27 ± 0.07 SE p = 0.0002

Temporal cortical
thickness 10.77 ± 0.12 SE 10.34 ± 0.10 SE p = 0.01

Precuneus cortical
thickness 4.43 ± 0.05 SE 4.20 ± 0.04 SE p = 0.0008

Cuneus cortical
thickness 3.52 ± 0.04 SE 3.44 ± 0.03 SE p = n.s.

The findings mentioned above were not due to outliers from those individual MRI
marker values (log−10 transformed), as shown by the Grubbs’ test with an arbitrary
threshold of p > 0.001.
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2.5. Control Analysis on Associations Between Structural MRI and CSF Aβ42, t-Tau, and p-Tau in
noADMCI and ADMCI Participants

For control purposes, general linear models were used to assess the association be-
tween the three CSF amyloid–tau markers as predictors (i.e., CSF Aβ42, t-tau, and p-tau
levels—log−10 transformed values) and the two MRI markers showing the statistically
significant differences between the noADMCI and ADMCI groups. This analysis was
performed in the ADMCI and noADMCI groups considered separately and in the ex-
tended MCI (i.e., ADMCI+noADMCI) group. A conservative statistical threshold was set
at p < 0.00833 (i.e., Bonferroni correction at p < 0.05 for 3 CSF amyloid–tau markers X 2
MRI markers activities, p < 0.05/6 = 0.00833) to consider the inflating effects of repetitive
univariate tests. The results are reported in Table 6.

Table 6. Results of general linear models (GLMs) assessing in the noADMCI, ADMCI, and MCI
(i.e., ADMCI+noADMCI) groups the association between the CSF amyloid–tau markers (i.e., CSF
Aβ42, t-tau, and p-tau levels; predictors) and the structural MRI markers that differed between the
noADMCI and ADMCI groups (i.e., parietal cortical thickness and precuneus cortical thickness;
dependent variables). Standardized beta, t, and p values are reported for each GLM. Values at p < 0.05
are reported in bold. Legend: noADMCI = patients with mild cognitive impairment not due to
Alzheimer’s disease; ADMCI = patients with mild cognitive impairment due to Alzheimer’s disease;
thk = cortical thickness; CSF = cerebrospinal fluid; Aβ42 = beta-amyloid 1–42; t-tau= protein tau;
p-tau = phosphorylated form of protein tau; MRI = magnetic resonance imaging.

Group Predictor:
CSF Marker

Dependent Variable:
Structural MRI

Marker
B Standard-

ized t p

ADMCI

p-tau Parietal cortical thk 0.031 0.25 0.8
Precuneus cortical thk 0.021 0.17 0.8

t-tau Parietal cortical thk −0.098 −0.78 0.4
Precuneus cortical thk −0.162 −1.31 0.2

Aβ
Parietal cortical thk 0.263 2.17 0.03

Precuneus cortical thk 0.232 1.89 0.06

noADMCI

p-tau Parietal cortical thk −0.194 −1.22 0.2
Precuneus cortical thk −0.216 −1.36 0.2

t-tau Parietal cortical thk −0.146 −0.92 0.4
Precuneus cortical thk −0.177 −1.11 0.3

Aβ
Parietal cortical thk 0.285 1.83 0.07

Precuneus cortical thk 0.310 2.01 0.06

MCI
(ADMCI+

noADMCI)

p-tau Parietal cortical thk −0.241 −2.52 0.01
Precuneus cortical thk −0.233 −2.43 0.01

t-tau Parietal cortical thk −0.293 −3.11 0.002
Precuneus cortical thk −0.316 −3.38 0.001

Aβ
Parietal cortical thk 0.428 4.81 0.001

Precuneus cortical thk 0.402 4.45 0.001

In the noADMCI and ADMCI groups considered separately, no statistically significant
association between the CSF amyloid–tau levels and the structural MRI markers was found
using a statistical threshold of p < 0.05 corrected (p < 0.00833). Using an explorative
statistical threshold of p < 0.05 uncorrected, a positive association between CSF Aβ42
levels and the parietal cortical thickness was found in the ADMCI group (β = 0.263,
t = 2.17, p = 0.03). The lower the CSF Aβ42 levels (increasing the probability of positivity to
AD-related diagnostic biomarkers for AD), the smaller the cortical thickness.
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In the extended MCI (i.e., ADMCI+noADMCI) group, there were statistically sig-
nificant negative associations between the CSF t-tau levels and the parietal (β = −0.293,
t = −3.11, p = 0.002) and precuneus (β = −0.316, t = −3.38, p = 0.001) cortical thicknesses
using a statistical threshold of p < 0.05 corrected (p < 0.00833). The higher the CSF t-tau
levels (increasing the probability of positivity to AD-related diagnostic biomarkers for AD),
the lower the cortical thickness. Furthermore, there were statistically significant positive
associations between CSF Aβ42 levels and the parietal (β = 0.428, t = 4.81, p = 0.001) and
precuneus (β = 0.402, t = 4.45, p = 0.001) cortical thicknesses. The lower the CSF Aβ42 levels
(increasing the probability of positivity to AD-related diagnostic biomarkers for AD), the
smaller the cortical thickness.

Using an explorative statistical threshold of p < 0.05 uncorrected, negative associations
between the CSF p-tau levels and the parietal (β = −0.241, t = −2.52, p = 0.01) and precuneus
(β = −0.233, t = −2.43, p = 0.01) cortical thicknesses were also found. The higher the CSF
p-tau levels (increasing the probability of positivity to AD-related diagnostic biomarkers
for AD), the smaller the cortical thickness.

The findings mentioned above were not due to outliers from those individual CSF
amyloid–tau levels (log−10 transformed) and regional normalized eLORETA current
densities (log−10 transformed), as shown by the Grubbs’ test with an arbitrary threshold
of p > 0.001.

2.6. Control Analysis of Associations Between Structural MRI and rsEEG Markers in noADMCI
and ADMCI Participants

For control purposes, general linear models assessed the association between relevant
structural MRI and rsEEG markers in the noADMCI, ADMCI, and extended MCI (i.e.,
ADMCI+noADMCI) groups. These markers were those showing statistically significant
differences between the Healthy, noADMCI, and ADMCI groups in the above statistical
comparisons. Specifically, we used parietal and precuneus cortical thicknesses (log−10
transformed values) as structural MRI markers, and parietal alpha 2, occipital alpha 2,
temporal alpha 2, parietal alpha 3, and temporal alpha 3 source activities derived the
rsEEG rhythms (log−10 transformed values). A conservative statistical threshold was set
at p < 0= 0.005 (i.e., Bonferroni correction at p < 0.05 for 2 MRI neurodegeneration markers
X 5 rsEEG source activities, p < 0.05/10 = 0.005) to consider the inflating effects of repetitive
univariate tests. The results are reported in Table 7.

In the noADMCI and ADMCI groups considered separately, no statistically signif-
icant association between the structural MRI and rsEEG markers was found using the
conservative statistical threshold of p < 0.05 corrected (p < 0.005).

Using an explorative statistical threshold of p < 0.05 uncorrected, we found positive
associations between the parietal cortical thicknesses and the following rsEEG markers in
the noADMCI group: the temporal alpha 2 (β = 0.317, t = 2.10, p = 0.04), parietal alpha 3
(β = 0.335, t = 2.19, p = 0.03), and temporal alpha 3 (β = 0.326, t = 2.13, p = 0.04) source
activities. There were also positive associations between the precuneus cortical thicknesses
and the following rsEEG markers: the temporal alpha 2 (β = 0.345, t = 2.27, p = 0.03),
parietal alpha 3 (β = 0.326, t = 2.13, p = 0.04), and temporal alpha 3 (β = 0.333, t = 2.18,
p = 0.03) source activities. The smaller the cortical thickness, the lower the rsEEG alpha
source activities.
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Table 7. Results of general linear models (GLMs) assessing in the noADMCI, ADMCI, and MCI
(ADMCI+noADMCI) groups the association between the structural MRI markers that differed be-
tween the noADMCI and ADMCI groups (i.e., parietal and precuneus cortical thicknesses; predictors)
and rsEEG source activities that differed among the Healthy, noADMCI, and ADMCI groups (i.e.,
parietal alpha 2, occipital alpha 2, temporal alpha 2, parietal alpha 3, and temporal alpha 3 source
activities estimated from rsEEG rhythms by eLORETA current densities; dependent variables). Stan-
dardized beta, t, and p values are reported for each GLM. Values at p < 0.05 are reported in bold.
Legend: noADMCI = patients with mild cognitive impairment not due to Alzheimer’s disease;
ADMCI = patients with mild cognitive impairment due to Alzheimer’s disease; CSF = cerebrospinal
fluid; Aβ42 = beta-amyloid 1–42; t-tau= protein tau; p-tau = phosphorylated form of protein tau;
rsEEG = resting-state electroencephalographic; MRI = magnetic resonance imaging.

Group Predictor:
MRI Marker

Dependent Variable:
rsEEG Marker

B Standard-
ized t p

MCI

Parietal
cortical thk

Parietal alpha 2 0.265 0.81 0.4
Occipital alpha 2 −0.122 −0.9 0.3
Temporal alpha 2 0.044 0.35 0.7

Parietal alpha 3 0.153
3 1.23 0.2

Temporal alpha 3 0.050 0.40 0.7

Precuneus
cortical thk

Parietal alpha 2 0.115 0.93 0.3
Occipital alpha 2 −0.088 −0.71 0.5
Temporal alpha 2 0.050 0.40 0.7
Parietal alpha 3 0.152 1.22 0.2

Temporal alpha 3 0.063 0.50 0.6

noADMCI

Parietal
cortical thk

Parietal alpha 2 0.263 1.68 0.1
Occipital alpha 2 0.255 1.63 0.1
Temporal alpha 2 0.317 2.10 0.04
Parietal alpha 3 0.335 2.19 0.03

Temporal alpha 3 0.326 2.13 0.04

Precuneus
cortical thk

Parietal alpha 2 0.287 1.85 0.07
Occipital alpha 2 0.272 1.74 0.1
Temporal alpha 2 0.345 2.27 0.03
Parietal alpha 3 0.326 2.13 0.04

Temporal alpha 3 0.333 2.18 0.03

MCI
(ADMCI+

noADMCI)

Parietal
cortical thk

Parietal alpha 2 0.213 2.21 0.02
Occipital alpha 2 0.081 0.83 0.4
Temporal alpha 2 0.181 1.86 0.1
Parietal alpha 3 0.275 2.90 0.005

Temporal alpha 3 0.197 2.10 0.04

Precuneus
cortical thk

Parietal alpha 2 0.223 2.32 0.02
Occipital alpha 2 0.098 1.00 0.3
Temporal alpha 2 0.188 1.95 0.06
Parietal alpha 3 0.265 2.70 0.006

Temporal alpha 3 0.201 2.10 0.04

In the extended MCI (i.e., ADMCI+noADMCI) group, a statistically significant positive
association (β = 0.275, t = 2.9, p = 0.005) between the parietal cortical thicknesses and the
parietal rsEEG alpha 3 source activities was found using a statistical threshold of p < 0.05
corrected (p < 0.005). Using an explorative statistical threshold of p < 0.05 uncorrected,
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there were positive associations between the parietal cortical thicknesses and the parietal
rsEEG alpha 2 (β = 0.213, t = 2.21, p = 0.02) and the temporal rsEEG alpha 3 (β = 0.197, t = 2.1,
p = 0.04) source activities. There were also positive associations between the precuneus
cortical thicknesses and the following rsEEG markers: parietal alpha 2 (β = 0.223, t = 2.32,
p = 0.02), parietal alpha 3 (β = 0.265, t = 2.7, p = 0.006), and temporal alpha 3 (β = 0.201,
t = 2.1, p = 0.04) source activities. The smaller the cortical thickness, the lower the rsEEG
alpha source activities.

The findings mentioned above were not due to outliers from those individual MRI
markers (log−10 transformed) and rsEEG source activities estimated by regional normal-
ized eLORETA current densities (log−10 transformed), as shown by the Grubbs’ test with
an arbitrary threshold of p > 0.001.

3. Discussion
In this exploratory study, we tested whether the abnormalities of cortical source activi-

ties of rsEEG delta, theta, and alpha rhythms, possibly underpinning the quiet vigilance
dysregulation, may be greater in ADMCI patients than in noADMCI patients and may be
associated with diagnostic CSF Aβ42 and p-tau biomarkers in the ADMCI patients at the
individual level. Those biofluid biomarkers are typically used for the in vivo diagnosis of
AD according to the NIA-AA Framework for AD diagnosis through biomarkers [1,2].

The results showed that rsEEG alpha source activities in the parietal, temporal, and
occipital regions were significantly reduced in the ADMCI group compared to both the
Healthy control group and the matched MCI group not due to AD (noADMCI), the neuro-
biological AD diagnosis being determined by the standard diagnostic CSF Aβ42 and p-tau
biomarkers of the NIA-AA Framework in the use of biomarkers in AD [1,2]. Additionally,
cortical atrophy in the parietal, temporal, and precuneus regions was more pronounced
in the ADMCI group than in the noADMCI group. These findings corroborate previous
evidence from our international Consortium, which employed the same methodology.
Specifically, rsEEG alpha source activities in posterior cortical regions (parietal, temporal,
and occipital) using individualized alpha frequency banding were particularly associated
with AD, even in its prodromal stage of amnestic MCI, compared to other neurodegenera-
tive diseases [23,24].

As novel results of the present study, there was a negative association between the
CSF p-tau and t-tau levels and the posterior rsEEG alpha (but not delta–theta) source
activities across the ADMCI individuals and all MCI (i.e., ADMCI+noADMCI) individuals
enrolled in the present study. In contrast, only a marginal positive association between the
CSF Aβ42 levels and the posterior rsEEG alpha source activities was observed across the
noADMCI individuals and all MCI (i.e., ADMCI+noADMCI) individuals. These results
indicate that in the prodromal stages of Alzheimer’s disease (ADMCI), abnormalities
in posterior rsEEG alpha rhythms are more closely associated with brain tauopathy and
neurodegeneration than with amyloidosis, based on current CSF diagnostic biomarkers and
a relatively small sample size. This finding highlights the stronger relationship between
brain tauopathy and rsEEG alpha rhythms compared to previous studies that linked
both amyloid and tau biomarkers in the brain to abnormalities across various rsEEG
rhythms, from delta to beta bands, in ADD and ADMCI patients [15–22]. Specifically,
earlier studies showed a significant association between CSF Aβ42 levels and rsEEG
markers, such as temporal theta rhythms in ADD patients [18] and global delta, alpha, and
beta rhythms in ADMCI and ADD patients [17,20]. They also demonstrated a strong link
between CSF t-tau, p-tau, and the p-tau/Aβ42 ratio with global rsEEG theta and alpha
rhythms [15,19,20,22]. Considering these findings alongside the current results, we propose
that the use of our rsEEG methodology (involving source topography and individual alpha
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frequencies) may help to reduce the variability in the observed effects of AD neuropathology
on the topography of rsEEG delta, theta, and alpha rhythms, particularly during the
prodromal stages of AD [13].

3.1. A Neurophysiological Model of Posterior rsEEG Alpha Rhythms in Humans a Century After
Hans Berger Discovered Human EEG

Hans Berger discovered human rsEEG activity in a 17-year-old boy at his Psychiatric
Clinic in Jena, Germany, on 6 July 1924. He used a bipolar montage of two electrodes
into a skull breach. In 1929, Berger published his first article showing rsEEG traces and
emphasized the presence of rsEEG alpha and beta rhythms [25].

A century later, posterior rsEEG alpha rhythms in healthy adults are widely recognized
as reflecting the regulation of the neuromodulatory subcortical ascending systems involved
in cortical arousal and vigilance during quiet wakefulness [11,26]. In support of this,
previous studies have demonstrated a reduction in the amplitude of posterior rsEEG
alpha rhythms following sleep deprivation [27], and a negative correlation between alpha
rhythm amplitude and skin conductance levels reflecting autonomic arousal [28]. In
another study, a brief transcranial vagal nerve stimulation in healthy adults (relative to
sham stimulations) caused transient pupil dilation and attenuation of occipital rsEEG
alpha rhythms, consistent with the known effects of such a stimulation on the nucleus
tractus solitaris in the brainstem and, consequently, the locus coeruleus nucleus, a part of
the subcortical arousal system [29,30]. Moreover, inhibiting the occipital cortex through
transcranial static magnetic field stimulations led to a localized increase in the rsEEG alpha
rhythms that signify cortical inhibition and a reduction in visual search performance during
a separate session [31]. Furthermore, short transcranial magnetic stimulations on the dorsal
premotor cortex produced less responses, evidenced by a blood oxygen level-dependent
(BOLD) signal, observed in a resting-state functional MRI (rsfMRI) across the bilateral
cortico-subcortical (striatum–thalamus) motor systems, when released during periods
of ample rsEEG alpha rhythms [32]. Finally, a positive association between rsEEG alpha
rhythms and the BOLD activity in the thalamus, along with a primarily negative association
with BOLD activity in the visual and attentional posterior cerebral area, has been observed
during quiet wakefulness [33–36]. These findings collectively support a neurophysiological
model in which rsEEG alpha rhythms reflect cortical inhibition predominantly driven by
thalamocortical signaling, thereby modulating cortical arousal and vigilance/consciousness
level in humans.

In this context, the present results in prodromal AD patients unveil an association
between AD-related tau neuropathology, parietal cortical neurodegeneration, and the
neurophysiological oscillatory mechanisms generating parietal and occipital rsEEG alpha
rhythms. Considering the low spatial resolution of the present EEG approach, we can only
speculate about the localization of the EEG effects and the clinical implications related to
such an association.

The brain is affected by various slow, gradual, morphological changes during physio-
logical aging, including cerebral atrophy, alterations in gray and white matter, volume loss,
ventricular enlargement, and widening of the sulci [37]. While the volume of the frontal
and temporal lobes decreases, the occipital and parietal lobes show negligible age-related
changes in volume [38]. In contrast, AD and related neurodegenerative diseases induce
relatively fast and progressive changes in encephalic structures and the related neural
networks, even before the disease’s clinical manifestations. They include early atrophy and
gray matter (GM) loss in the subcortical neuromodulatory ascending systems regulating
cerebral arousal and vigilance [39] and changes in the hippocampus, medial temporal lobe,
and parietal lobe [40–42].
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In AD-related posterior cortical atrophy, patients experience difficulties in driving,
recognizing objects in pictures, and other visual deficits in relation to dysfunctions in
the parietal and occipital areas and ascending cholinergic systems, which regulate visual
and visuospatial–somatomotor information processing [40–42]. In the parietal cortex, the
main targets of AD-related neuropathology and neurodegeneration are the precuneus
and regions around the lateral temporoparietal junctions [43–45]. Among them, the pre-
cuneus is considered an important posterior node of the default mode network that pro-
cesses somatic milieu, self-reflection conscious processes (comprising mind wandering),
episodic/autobiographical memory retrieval, and switches to bottom-up sensory informa-
tion processing [46–48].

In the above framework, the present evidence of abnormalities in CSF tauopathy,
parietal cortical volume, and parietal rsEEG alpha source activity in ADMCI patients lends
support to the idea of a substantial inhibitory/excitatory imbalance in the parietal and
occipital cortical areas and vigilance regulation in prodromal AD. Along this speculative
line, a transcranial magnetic stimulation over the precuneus in ADD patients induced
locally enhanced EEG-evoked responses, suggesting local cortical hyperexcitability [49].
There was also a lack of the propagation of those responses in relation to abnormalities
in the functional connectivity within the default mode network, as revealed by functional
MRI measurements [49]. Furthermore, an effective transcranial magnetic stimulation at
20 Hz over the precuneus for 24 weeks was safe and slowed down cognitive and functional
decline in ADD patients [50]. Another study is in progress to evaluate the safety, feasibility,
and clinical effects of transcranial electric stimulation at 40 Hz over the precuneus for
8 weeks at ADD patients’ homes [51].

3.2. A Tentative Model Linking Neurobiology and Clinical Neurophysiology in Prodromal
AD Stages

At the present stage, we can only speculate on the clinical neurophysiological model
explaining the present finding of a remarkable relationship between brain tauopathy
as revealed by CSF diagnostic biomarkers and posterior rsEEG alpha rhythms in the
prodromal AD stage of amnesic MCI.

Tau protein plays several roles at the level of axon microtubules and synapsis. It can
intracellularly accumulate in the brain neurons of AD patients as neurofibrillary tangles and
may propagate through the brain in a prion-like manner in relation to neuronal activity [52].
Therefore, it may pathophysiologically interfere with neuromodulatory subcortical systems
in AD patients and induce abnormalities in cortical neural arousal, as revealed by posterior
rsEEG alpha rhythms [39].

Along this speculative line, previous studies showed that tau-related degeneration
within neuromodulatory subcortical systems can be found in AD patients at earlier disease
stages, even before observable memory deficits and volumetric cortical atrophy (for a recent
review, see [39]). In the disease course, such a degeneration may also have a major role in
the derangement of those systems and the induction of significant behavioral and cognitive
deficits [39]. Among its pathophysiological actions, previous studies showed neuroinflam-
mation and interferences with synaptic neurotransmission, the temporal synchronization
of cortical neural activity and connectivity, and the cortical excitatory/inhibitory balance
as reflected in the generation of brain rhythms [39,53,54]. Other studies reported that tau
protein spreads and the related hypometabolism in the brain from PET data were associ-
ated with abnormal resting-state magnetoencephalographic (rsMEG) activity, including a
reduced power in posterior alpha rhythms measured in ADD patients [55,56]. Furthermore,
neurofibrillary tangle density was evaluated in an autopsy examination of ADD patients
at a post-mortem neuropathological examination, and its measurement was predicted by
abnormal rsMEG alpha (but not delta–theta) rhythms [57]. Finally, brain tau deposition
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from PET data was associated with a computational measurement reflecting abnormally
increased cortical neural excitation in ADD patients, which conceptually fit with a reduction
in posterior rsEEG alpha rhythms [11,58].

Notably, the present findings in the ADMCI and the extended group of MCI patients
with and without AD neuropathology patients showed a more significant association
between posterior rsEEG alpha rhythms and CSF tau levels when compared to CSF aβ42/40
levels. The marginal association between the posterior rsEEG alpha rhythms and CSF
aβ42/40 levels may be due to the relatively low number of ADMCI patients and the well-
known more frontal distribution of cortical amyloidosis at the earlier stages of AD. Future
research with combined amyPET and rsEEG recordings should further investigate this
speculative explanation.

3.3. Methodological Remarks

In this exploratory study, clinical and rsEEG datasets were obtained from several
clinical units, not all of which underwent a preliminary rigorous phase of standardizing
operating procedures for data collection in a prospective clinical trial.

The current study employed the 10–20 montage system, utilizing 19 scalp electrodes
for rsEEG recordings. This electrode configuration is considered appropriate for exploratory
retrospective rsEEG studies involving ADMCI/noADMCI patients, especially when using
source estimation techniques at a low spatial resolution [13]. Due to this limitation, the cor-
tical sources of rsEEG rhythms were estimated within broad cortical regions of interest (i.e.,
cortical lobes) instead of a fine source localization. Additionally, we applied the eLORETA
source estimation method, which is particularly effective for modeling spatially widespread
cortical source activations, thanks to its smoothing regulation procedures [59–61]. While
an eLORETA source estimation using rsEEG recordings from 30 scalp electrodes can yield
informative preliminary results, future studies should use high-resolution EEG techniques
with 64–256 scalp electrodes to reach a high spatial resolution in the rsEEG source estima-
tion [62,63].

The present methodological choice also allowed us to compare the current results
with those of our previous studies following the same methodology in patients with MCI
due to not only AD but also Parkinson’s and Lewy body diseases [23,24]. It essentially
probes the local cortical synchronization/desynchronization of the activity of large cortical
neural populations at delta, theta, and alpha frequencies. The study results showed that
AD-related tau neuropathology significantly affects such activity in ADMCI patients at the
low spatial resolution allowed by the general methodology and encourages the modeling
of the underlying functional cortical connectivity in future studies using EEG recordings
with a higher number of scalp electrodes (>30 electrodes).

Finally, the experimental design did not include external stimuli and cognitive–motor
demands to provide behavioral measures of vigilance to be correlated with the EEG data.
At this early research stage, these demands were not included to avoid interferences with
the scope of the resting-state condition (e.g., induce spontaneous EEG activity).

4. Materials and Methods
4.1. Participants

The datasets for the present study were obtained from the international PharmaCog
and PDWAVES Consortium (www.pdwaves.eu) archives. They included records from
demographic-matched groups (i.e., the groups had the same mean values of age, gender,
and sex ratio) consisting of 70 ADMCI, 45 noADMCI, and 45 Healthy participants, all of
whom underwent rsEEG recordings under the eyes-closed condition. Participants were
recruited from various clinical centers, including the Sapienza University of Rome (Italy),

www.pdwaves.eu
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Institute for Research and Evidence-based Care (IRCCS) “Fatebenefratelli” of Brescia (Italy),
IRCCS SDN of Naples (Italy), IRCCS Oasi Maria SS of Troina (Italy), IRCCS Ospedale
Policlinico San Martino and DINOGMI (University of Genova, Italy), Hospital San Raf-
faele of Cassino (Italy), Hospital of Perugia (Italy), Hospital of Chieti (Italy), IRCCS San
Raffaele Pisana of Rome (Italy), Medipol University of Istanbul (Turkey), and Dokuz Eylül
University of Izmir (Turkey).

Table 8 provides a summary of the relevant demographic (i.e., age, sex, and education)
and clinical (i.e., MMSE score) characteristics of the Healthy, noADMCI, and ADMCI
groups, along with the results of the statistical analyses computed to determinate the
presence or absence of statistically significant differences between these groups in terms of
age (ANOVA), sex (Freeman–Halton test), education (ANOVA), and MMSE score (Kruskal–
Wallis test). As anticipated, significant differences in MMSE scores were observed between
the Healthy group and both the noADMCI and ADMCI groups (H = 39.1, p < 0.0001),
with the Healthy group showing higher scores (p < 0.00001). In contrast, there were no
statistically significant differences in age, sex, and education among the three groups
(p > 0.05).

Table 8. Mean values (±SE) of the demographic and clinical data, as well as the results of their
statistical comparisons (p < 0.05), in the groups of cognitively normal older adults (Healthy, N = 45)
and patients with mild cognitive impairment not due and due to Alzheimer’s disease (noADMCI,
N = 45; ADMCI, N = 70). Legend: M/F = males/females; MMSE = Mini-Mental State Evaluation;
n.s. = not significant (p > 0.05); SE = standard error of the mean.

Demographic and Clinical Data in Healthy, noADMCI, and ADMCI Groups

Healthy noADMCI ADMCI Statistical
Analysis

N 45 45 70 -
Age

(mean
years ± SE)

68.6 ± 1.0 69.6 ± 1.2 70.0 ± 0.7 ANOVA:
p = n.s.

Sex
(M/F) 20/25 18/27 32/38 Freeman–Halton:

P = n.s.
Education

(mean
years ± SE)

11.0 ± 0.6 10.0 ± 0.6 11.0 ± 0.5 ANOVA:
p = n.s.

MMSE
(mean

score ± SE)
27.6 ± 0.2 25.7 ± 0.4 25.2 ± 0.2

ANOVA
Kruskal–Wallis

test:
H = 39.1,

p < 0.0001

The study received approval from a local institutional ethics committee (see Table
S1 in Supplementary Materials, Ethical approval statement for details of the name of the
local institutional ethics committee and the approval code of each unit). All procedures
were carried out with informed consent obtained openly from each participant or their
caregiver, adhering to the ethical guidelines of the World Medical Association (Declaration
of Helsinki) and the standards set by the local institutional review boards.

4.2. Diagnostic Criteria

The clinical inclusion criteria for both ADMCI and noADMCI participants were as
follows: (1) age range of 55 to 90 years; (2) self-reported memory concerns by the participant;
(3) Mini-Mental State Examination (MMSE) score of 24 or higher; (4) Clinical Dementia
Rating (CDR) score of 0.5 [64]; (5) Logical Memory Test [65] performance of 1.5 standard
deviations (SDs) below the age-adjusted mean, indicating cognitive impairment that does
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not significantly affect functional independence in daily activities; (6) Geriatric Depression
Scale (15-item GDS) score of 5 or lower [66]; (7) Modified Hachinski Ischemia score of 4 or
lower [67]; (8) at least 5 years of education; and (9) diagnosis of single- or multi-domain
MCI. Notably, individuals with a history of major depressive episodes or a prior diagnosis
of major depressive disorder or other significant psychopathologies were excluded based
on their self-reports during an initial clinical interview conducted by a licensed clinical
psychologist to evaluate current and past mental health issues.

The clinical exclusion criteria for both ADMCI and noADMCI groups included the fol-
lowing: (1) mixed dementia; (2) chronic use of neuroleptics, narcotics, analgesics, sedatives,
or hypnotics (e.g., benzodiazepines); (3) ongoing participation in a clinical trial involving
disease-modifying drugs; (4) diagnosis of major psychiatric disorders (i.e., depression, etc.)
or neurological illness not related to cognitive deficits; (5) diagnosis of epilepsy or report of
seizures or epileptiform EEG activity in the past; and (6) use of antiepileptics.

The clinical status of ADMCI was determined based on positivity to CSF core AD
markers, as reported below, associated with a compatible neurodegeneration pattern at
structural MRI or FDG-PET [7]. All noADMCI subjects, conversely, were CSF-negative.

Both ADMCI and noADMCI participants underwent a comprehensive cognitive
assessment, which included the following: (1) global cognitive function was assessed using
the Mini-Mental State Examination (MMSE) score [68]; (2) episodic memory was evaluated
with immediate and delayed recall tasks of the Logical Memory and the Rey Auditory
Verbal Learning Test [65,69]; (3) executive functions and attention were assessed using the
Trail Making Test (TMT) parts A and B [70]; (4) language abilities were measured using
the 1 min Verbal Fluency Test for letters and categories [71]; and (4) planning abilities and
visuospatial skills were evaluated with the Clock Drawing and Copy Test [72].

Healthy participants underwent cognitive screening, including MMSE and Geriatric
Depression Scale, as well as physical and neurological examinations to rule out subjective
memory complaints, cognitive deficits, and mood disorders. Exclusion criteria for healthy
controls were (1) past or present neurological or psychiatric disorders, (2) depressive
symptoms identified by a Geriatric Depression Scale (15-item version) score higher than 5,
(3) chronic use of psychoactive drugs, and (4) presence of significant chronic systemic
illnesses such as diabetes mellitus.

4.3. Cerebrospinal Fluid (CSF) Diagnostic Biomarkers

CSF diagnostic biomarkers for AD were assessed in all ADMCI and noADMCI partici-
pants. The CSF samples were preprocessed, frozen, and stored following the Alzheimer’s
Association Quality Control Program for CSF biomarkers [73]. Levels of amyloid beta 1–42
(i.e., Aβ42), total tau (i.e., t-tau), and phosphorylated tau at residue 181 (i.e., p-tau) were
measured using dedicated single-parameter colorimetric enzyme-linked immunosorbent
assay (ELISA) kits (Innogenetics, Ghent, Belgium). Assays were performed in parallel
from a single frozen aliquot of CSF, according to the manufacturer’s instructions, with each
sample being tested in duplicate. A sigmoidal standard curve was created to quantify the
light absorbance (pg mL−1). All ADMCI participants in this study were “positive” to the
CSF Aβ42/p-tau biomarker, with a threshold defined in a previous investigation of our
Workgroup [74]. In that investigation, the positivity cut-off for the CSF Aβ42/p-tau ratio
was 15.2 for APOE4 carriers and 8.9 for non-carriers. Accordingly, in this study, all ADMCI
participants with APOE4 status had a CSF Aβ42/p-tau lower than 15.2, whereas those
without APOE4 had a ratio below 8.9.
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4.4. Magnetic Resonance Imaging (MRI)

MRI scans were conducted for both ADMCI and noADMCI participants with dif-
ferent MRI systems (Siemens, GE, and Philips) using different fields (1.5 and 3T). The
MRI protocol included anatomical scans using T1-weighted imaging. The MRI protocols
were standardized, and optimization of the pipelines was carried out. Each session in-
cluded multiple acquisitions using only vendor-provided sequences, such as anatomical
T2*, anatomical FLAIR, resting-state fMRI, B0 map, DTI, and two anatomical T1 scans,
all performed without repositioning the subject. The total mean acquisition time was
approximately 40 min. The DTI scan was always the final acquisition, regardless of the MRI
site. MRI data were formatted according to Brain Imaging Data Structure (BIDS) standards
to ensure consistency and compatibility. Default geometric distortion correction settings
were used for each scanner. Multi-channel coil images were reconstructed by summing
squares across channels. When supported by the MRI system, images were saved without
additional filtering to avoid introducing variability in smoothing across scanners. The 3T
data included 81% of ADMCI and 87% of noADMCI patients, with a statistical analysis
showing no significant differences. The acquired MRI data were anonymized according
to international standards to ensure the protection of sensitive biomedical information.
The analysis was centrally conducted by the research group at the Sapienza University
of Rome, and each piece of data underwent visual inspection for quality assurance (i.e.,
visible artifacts including head motion, wrap-around, radio frequency interference, and
signal intensity or contrast inhomogeneities) before further analyses.

Volumetric and cortical thickness MRI markers were obtained using the following
approach. T1-weighted images were averaged within each session, and anatomical scans
were subsequently processed using FreeSurfer (Dale, 1999) to automatically generate
estimates of cortical thickness and subcortical volume for each participant [75–77] in
predefined regions of interest (ROIs). Our study focused on a subset of MRI markers
relevant to neurodegenerative diseases. These MRI markers included the following: (1) total
gray matter (GM) and white matter (WM) volumes, normalized to total intracranial volume;
(2) total cortical thickness; (3) hippocampus and amygdala volumes, normalized to the total
intracranial volume; and (4) thickness measurements of specific cortical regions, including
the parietal cortex, temporal cortex, precuneus, and cuneus. Segmentation results were
visually inspected before proceeding with volume and thickness analyses, and no manual
adjustment was made.

For subcortical white matter, FreeSurfer identified hypodense areas by detecting
regions of lower intensity within the segmented white matter. These areas can be indicative
of cerebrovascular lesions, such as small vessel disease, or chronic ischemia, like T2-
weighted image white matter hyperintensities in clinical contexts [78]. The software v6.0
computes the volume or spatial extent of these hypodense regions and integrates these
data into an index or measure of cerebrovascular damage. The subcortical white matter
hypodensity measure was to evaluate the control hypothesis of a greater cerebrovascular
burden in the noADMCI group than in the ADMCI group by the Mann–Whitney test
(p < 0.05). Furthermore, it was used as a covariate for investigating the association between
rsEEG source activities and CSF diagnostic biomarkers in the ADMCI group.

4.5. rsEEG Recordings

The rsEEG recordings were conducted using local routine professional digital EEG
systems licensed for clinical applications. The following digital EEG systems were used:
BrainAmp 32-Channel DC System (Brain Product GmbH, Gilching, Germany), Waveguard
caps (ANT Neuro, Hengelo, The Netherlands), EB Neuro-BE LIGHT (EB Neuro, Florence,
Italy), Galileo NT Line—EB Neuro (EB Neuro, Italy), and EB Neuro-Sirius BB (EB Neuro,
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Italy). rsEEG recordings were performed in all participants using at least 19 scalp explor-
ing electrodes (i.e., 19, 32, or 64 channels), placed according to the 10–20 system. The
selected electrode montage included the 19 scalp monopolar channels placed following
the 10–20 System (i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,
O1, and O2). All rsEEG recordings were performed in the morning to minimize potential
variations due to circadian rhythms. Standard instructions for the resting-state condition
emphasized staying awake, psychophysically relaxed with mind wandering, and following
the experimenter’s requests to keep the eyes closed and open during the rsEEG recording.
The experiments checked the participant’s behavioral state during the EEG recordings and
annotated eventual deviations and alarms.

A common electrode montage of 19 scalp exploring electrodes, placed according to
the 10–20 system (i.e., O1, O2, P3, Pz, P4, T3, T5, T4, T6, C3, Cz, C4, F7, F3, Fz, F4, F8,
Fp1, and Fp2), characterized the EEG data recordings in all clinical units and was used
for the data analysis. The reference electrode was typically placed between Fz and Cz of
the 10–20 system, and the ground electrode was in the posterior midline. To minimize
the influence of the different placement of the reference electrodes, all EEG data were
re-referenced to the common average for the data analysis.

Electrooculographic (EOG) activity with a standard bipolar montage was also recorded
to monitor and control eye movements and blinking. As minimum standards in all clin-
ical units, the electrophysiological data allowed a bandpass filtering of 0.3–70 Hz and a
sampling rate of 256 Hz.

4.6. Preliminary rsEEG Data Analysis

The rsEEG data were centrally analyzed by experts at the Sapienza University of
Rome, who were blinded to the participant’s diagnosis. The recorded rsEEG data were
exported in either European data format (.edf) or EEGLAB set (.set) files and subsequently
processed offline using the EEGLAB toolbox [79] (version eeglab14_1_2b) running in
MATLAB software (Mathworks, Natick, MA, USA; version: R2014b).

For preprocessing, the rsEEG data were segmented into 2 s epochs (i.e., 5 min of
data corresponded to 150 epochs of 2 s each) and subjected to offline analysis. A three-
step procedure was implemented to detect and remove the following items: (1) recording
channels (electrodes) showing prolonged artifactual rsEEG activity due to bad electric
contacts or other reasons; (2) rsEEG epochs containing artifacts from channels that generally
had good signals; and (3) intrinsic components of the rsEEG epochs affected by artifacts.

The initial step involved a visual examination of rsEEG activity by two independent
experimenters from a panel of four experts (i.e., C.D.P, R.L., S.L., and G.N.) to identify
electrodes with irreparable artifacts, typically removing no more than three per participant.
If a clinical unit used a digital EEG system with more than 19 exploring electrodes, the
removed electrodes were substituted with the nearest non-selected ones. These additional
electrodes, along with artifact-free ones, were used to interpolate data at the locations of
the removed electrodes, ensuring all participants had artifact-free EEG data.

In the second step, the same experimenters visually reviewed the rsEEG epochs to
identify and eliminate those contaminated by muscular, ocular, or head movements or
non-physiological artifacts. Muscle tension artifacts were detected by examining power
density spectra, revealing unusually high values in the 30 to 70 Hz range, which deviated
from the typical decline in power density.

The third step involved applying an independent component analysis (ICA) using
the EEGLAB toolbox to remove components representing residual artifacts, including eye
movements, involuntary head motions, neck and shoulder muscle tension, and electrocar-
diographic activity [80,81]. Fewer than 3 ICA components were removed from each dataset,
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which were reconstructed with the remaining artifact-free ICA components. To ensure data
integrity, the presumed artifact-free rsEEG epochs underwent a visual double check by the
independent experimenters, confirming their inclusion or exclusion.

To harmonize the data, the artifact-free EEG recordings for the common 19 electrodes
underwent digital frequency-band passing at 0.1–45 Hz. When necessary, the data were
down-sampled to ensure a uniform sampling rate of 256 Hz across all artifact-free rsEEG
datasets. Additionally, the EEG data were re-referenced to the common average reference.

After these procedures, the artifact-free epochs maintained a similar proportion (over
75%) of the total rsEEG activity recorded across all participants (i.e., ADMCI, noADMCI,
and Healthy).

4.7. Spectral Analysis of the rsEEG Epochs

The standard digital Fast Fourier Transform (FFT) analysis, using the Welch technique
with a Hanning window and no phase shift, was applied to compute the power density
of the artifact-free rsEEG epochs recorded at all 19 scalp electrodes, with a frequency
resolution of 0.5 Hz.

The rsEEG frequency bands of interest were defined using specific frequency land-
marks: the transition frequency (TF) and the individual alpha frequency (IAF). In the
(eyes-closed) rsEEG power density spectrum, the TF was defined as the minimum rsEEG
power density between 3 and 8 Hz, while the IAF peak was defined as the maximum power
density peak between 6 and 14 Hz. Both TF and IAF were calculated for each participant.

Based on these landmarks, individual delta, theta, and alpha bands were estimated as
follows: delta from TF −4 Hz to TF −2 Hz, theta from TF −2 Hz to TF, low alpha (alpha 1
and alpha 2) from TF to IAF, and high-frequency alpha (or alpha 3) from IAF to IAF + 2 Hz.
Specifically, individual alpha 1s ranged from the TF to the midpoint of the TF-IAF range,
while alpha 2 extended from that midpoint to the IAF peak. The remaining bands were
defined based on standard fixed frequency ranges from reference rsEEG studies [74,82–85]:
beta 1 from 14 to 20 Hz, beta 2 from 20 to 30 Hz, and gamma from 30 to 40 Hz.

4.8. Estimation of rsEEG Source Activation

We used the freeware tool exact LORETA (eLORETA) to linearly estimate the cortical
source activity generating scalp-recorded rsEEG rhythms [59]. The present eLORETA
implementation uses a head volume conductor model comprising the scalp, skull, and
cerebral cortex. The electrodes can be virtually positioned in the scalp compartment to
provide EEG data for source estimation [59]. The cortical model is based on the Montreal
Neurological Institute (MNI152 template), allowing the solution of the EEG inverse problem
and estimation of “neural” current density values at any cortical voxel within the model.

To estimate EEG cortical source activities (i.e., eLORETA solutions), we used spectral
power density data from the 19 scalp electrodes. This process occurs within the electrical
cortical source space, which includes 6239 voxels with a 5 mm resolution, limited to the
cortical gray matter of the head volume conductor model. Each voxel contains an equivalent
current dipole representing the mean ionic currents from local populations of cortical
pyramidal neurons. The eLORETA package provides Talairach coordinates, lobe, and
Brodmann area (BA) for each voxel.

Normalization of the eLORETA solutions was performed by averaging across all
frequency bins (0.5 to 45 Hz) and the 6239 voxels to obtain the eLORETA “mean” solution.
We then computed the ratio between each original eLORETA solution at a specific frequency
bin/voxel to the eLORETA mean solution, resulting in a normalized eLORETA.

Given the low spatial resolution of our EEG methodology (i.e., 19 scalp electrodes),
we conducted a regional analysis of the eLORETA solutions. This involved collapsing the
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eLORETA solutions within frontal (BAs 8, 9, 10, 11, 44, 45, 46, and 47), central (BAs 1, 2, 3,
4, and 6), parietal (BAs 5, 7, 30, 39, 40, and 43), occipital (BAs 17, 18, and 19), and temporal
(BAs 20, 21, 22, 37, 38, 41, and 42) macro-regions (ROIs).

For the present eLORETA cortical source estimation, a frequency resolution of 0.5 Hz
was used.

4.9. Main Statistical Analysis of rsEEG Source Activities

Two main statistical analyses were conducted to test the two working study hypotheses.
The first statistical analysis was conducted using the commercial software STATISTICA

10 (StatSoft Inc., 2300 E 14th St Tulsa OK Oklahoma, United States 74104, www.statsoft.com)
to test the first working hypothesis that the rsEEG source activities may differ among
the ADMCI, noADMCI, and Healthy groups. An ANOVA was performed, with rsEEG
source activities (i.e., regional normalized eLORETA solutions) as a dependent variable
(p < 0.05). The ANOVAs included the factors Group (Healthy, noADMCI, and ADMCI),
Band (delta, theta, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma), and ROI (frontal,
central, parietal, occipital, and temporal). Post hoc comparisons were conducted using the
Duncan test (p < 0.05, Bonferroni corrected). Confirmation of the first working hypothesis
required two criteria: (1) a statistically significant ANOVA interaction involving the Group
factor (p < 0.05) and (2) a post hoc Duncan test revealing statistically significant (p < 0.05,
Bonferroni corrected) differences in the rsEEG source activities between the three groups
(Healthy ̸= noADMCI ̸= ADMCI).

The second statistical analysis was conducted using the freeware tool Jamovi Version
2.3 (www.jamovi.org) to test the second working hypothesis that the rsEEG source activi-
ties may be associated with the CSF amyloid–tau markers in the ADMCI and noADMCI
patients. For the ADMCI, noADMCI, and extended MCI (i.e., ADMCI+noADMCI) groups,
several general linear models (p < 0.05, Bonferroni corrected) were implemented, namely
one model for each rsEEG showing significant differences between the ADMCI and
noADMCI groups in the above statistical analysis and CSF markers as predictors (i.e.,
CSF Aβ42, t-tau, and p-tau).

The potential impact of rsEEG marker outliers on the statistical results was evaluated
using the iterative (leave-one-out) Grubbs’ test to detect outliers. The null hypothesis of
non-outlier status was tested at a threshold of p > 0.001 to remove individual values with a
high probability of being outliers.

4.10. Control Statistical Analysis of MRI Markers

Three control statistical analyses were conducted to test the two control study hypotheses.
The first control statistical analysis was conducted using the commercial software

STATISTICA 10 to test the first control hypothesis that the MRI neurodegeneration markers
may differ between the ADMCI and noADMCI groups. Several T-tests were performed
(p < 0.05, Bonferroni corrected) using various MRI markers as dependent variables: normal-
ized total GM volume, normalized total WM volume, normalized hippocampus volume,
normalized amygdala volume, mean cortical thickness, parietal cortical thickness, temporal
cortical thickness, precuneus cortical thickness, and cuneus cortical thickness.

The second control statistical analysis was conducted using the freeware tool Jamovi
Version 2.3 to test whether MRI neurodegeneration markers may be associated with CSF
amyloid–tau markers in the ADMCI and noADMCI patients. For the ADMCI, noADMCI,
and extended MCI (i.e., ADMCI+noADMCI) groups, several general linear models (p < 0.05,
Bonferroni corrected) were implemented, namely one model for each MRI marker showing
statistically significant differences between the noADMCI and ADMCI groups in the above
statistical analysis and with CSF markers as predictors (i.e., CSF Aβ42, t-tau, and p-tau).

www.statsoft.com
www.jamovi.org
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Finally, the third control statistical analysis was conducted using the freeware tool
Jamovi Version 2.3 to test whether rsEEG source activities may be associated with the
structural MRI markers of neurodegeneration in ADMCI and noADMCI patients. For the
ADMCI, noADMCI, and extended MCI (i.e., ADMCI+noADMCI) groups, several general
linear models (p < 0.05, Bonferroni corrected) were implemented, namely one model for
each rsEEG marker showing statistically significant differences between the ADMCI and
noADMCI groups as dependent variables, and with the MRI markers showing statistically
significant differences between the ADMCI and noADMCI groups as predictors.

5. Conclusions
This exploratory study investigated (1) whether posterior rsEEG rhythm abnormalities

may be more pronounced in ADMCI patients than in noADMCI patients with the same
level of amnesic deficits and (2) the potential link between these rhythms and AD-related
neuropathology and neurodegeneration in ADMCI patients. The results suggest that
neurophysiological brain neural oscillatory synchronization mechanisms underpinning the
generation of posterior rsEEG alpha rhythms may be more abnormal in ADMCI patients
than in noADMCI patients. This abnormality may be related to brain tauopathy and parietal
cortical neurodegeneration. Furthermore, it may explain, at least in part, dysfunctions in
the regulation of cortical neural arousal and vigilance/conscious level in quiet wakefulness.

The study results motivate future cross-validation, with prospective, multicentric
rsEEG studies in ADMCI patients with a higher number of electrodes aimed to provide
further evidence in favor of the inclusion of rsEEG (pathophysiological—“P”) biomarkers
in the revised A-T-N Framework of biomarkers for the assessment of AD stages [1]. These
biomarkers may enrich the Precision Medicine of AD, as it is well-known that many AD pa-
tients claim disturbances in vigilance/conscious level regulation (e.g., subjective cognitive
impairment, “mental fog,” and sleepiness during daytime), often without receiving any
specific treatment [29]. In this application, they may also be used in association with blood
biomarkers of AD neuropathology in participants at the preclinical stage of subjective
cognitive deficits, carefully taking into account the possible gender effects [86].
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