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Abstract Bidirectional Generative Adversarial Networks (BiGANs) and Cy-
cle Generative Adversarial Networks (CycleGANSs) are two emerging Machine
Learning (ML) models that, up to now, have been used as generative models,
i.e., to generate output data sampled from a target probability distribution.
However, these models are also equipped with encoding modules, which, after
weakly-supervised training, could be, in principle, exploited for the extraction
of hidden features from the input data. At the present time, how these ex-
tracted features could be effectively exploited for classification tasks is still
an unexplored field. Hence, motivated by this consideration, in this paper, we
develop and numerically test the performance of a novel inference engine that
relies on the exploitation of BIGAN and CycleGAN-learned hidden features for
the detection of COVID-19 disease from other lung diseases in Computer To-
mography (CT) scans. In this respect, the main contributions of the paper are
twofold. First, we develop a Kernel Density Estimation (KDE)-based inference
method, which, in the training phase, leverages the hidden features extracted
by BiGANs and CycleGANs for estimating the (a priori unknown) Proba-
bility Density Function (PDF) of the CT scans of COVID-19 patients, and,
then, in the inference phase, uses it as a target COVID-PDF for the detection
of COVID diseases. As a second major contribution, we numerically evalu-
ate and compare the classification accuracies of the implemented BiGAN and
CycleGAN models against the ones of some state-of-the-art methods, which
rely on the unsupervised training of Convolutional Auto Encoders (CAEs) for
attaining feature extraction. The performance comparisons are carried out by
considering a spectrum of different training loss functions and distance metrics.
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The obtained classification accuracies of the proposed CycleGAN-based (resp.,
BiGAN-based) models outperform the corresponding ones of the considered
benchmark CAE-based models of about 16% (resp., 14%).

Keywords COVID-19 detection - Hidden feature extraction - BiGAN -
CycleGAN - CAE - Unsupervised-vs.-weakly supervised learning - Complexity-
vs.-accuracy comparisons.

1 Introduction

The chest Computed Tomography (CT) scan is generally regarded as beneficial
in diagnosing COVID-19 diseases and is especially useful when it is used in
tandem with clinical examinations [1-5]. Due to the effective use of Deep
Learning (DL) in computer vision and biomedical domains, researchers have
explored the efficiency of DL-based methods to recognize COVID-19 from
lung CT scans. The current DL approaches can be categorized as supervised,
unsupervised, or weakly supervised methods.

1.1 Supervised learning approaches

A large number of research papers adopt supervised learning methods for the
reliable detection of COVID-19 diseases [6-16] [17-20]. However, due to the
lack of publicly available CTs on COVID-19 patients, researchers have been
triggered to consider this deficiency, especially at the beginning of the spread of
COVID-19. For instance, the authors of [21-30] adopt transfer learning meth-
ods to address the lack of large-sized data sets. In [31], the authors utilize
GoogleNet and ResNet for supervised COVID-19 classification. The authors
of [32] propose a statistical method to address issues, like as huge compu-
tational complexity and large datasets required by deep networks. In [33] a
segmented CT scan is used as the input of a random forest classifier approach.
The authors of [21] used an inception network on CT scans, but the result-
ing classification accuracy was below average. In [34] the authors propose a
contrast enhancement scheme for CT scans, followed by a pre-trained VGG16
and AlexNet classification, reporting good accuracy.

However, the accuracy performance of supervised-trained models typically
crashes when CT scans are used in the test phase that belong to unseen classes
(that is, classes of test data which are not present in the training data sets).
In principle, this loss of robustness suffered by supervised DL models may
be effectively by-passed by resorting to unsupervised or weakly-supervised
DL models, which are trained only on data sets of the COVID-19 class. So
doing, it expected that an unsupervised /weakly supervised trained model may
differentiate the COVID-19 class (i.e., the target class) from any other type of
unseen chest images (i.e., the novelties) in a reliable way.
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1.2 Unsupervised learning approaches

Autoencoders (AEs) have been employed in [35-40]. Specifically, the work
in [37] focuses on a two-stage learning method and a triple classification
task. The authors train their AE model on classes of COVID-19, pneumo-
nia, and normal cases separately. After obtaining the hidden feature vectors
of all classes, a feature classifier is trained. The authors of [38] build up a
robust statistical target histogram by exploiting the feature representations,
which are generated by an unsupervised-trained Denoising Convolutional AE
(DCAE). The proposed method estimates the statistical distance between un-
known and target histograms to classify the images according to suitably set
decision thresholds. The DCAE proposed in [36] is trained on COVID-19,
pneumonia, and a few other types of chest X-rays. Then, the hidden feature
vector of a test image is compared to the features of the selected training data
sets. The so trained AE exhibits good test performance. However, unlike our
work, this approach relies on training the considered model over each decision
class and, then, does not guarantee to instances of unseen class.

1.2.1 Generative Adversarial Networks (GANs)-based approaches

Motivated by the aformentioned considerations, we are interested in deep gen-
erative models, because learning COVID-19 patterns can be viewed as learn-
ing the distribution of the available training data. According to a recent tax-
onomy in medical image classification [41], we adopt the weakly supervised
terminology for indicating the exploitation of two sets of unpaired images. Be-
ing unsupervised /weakly supervised models, Deep Generative Models (DGMs)
aim to unveil meaningful patterns in raw data. DGMs enable the approxima-
tion of statistical data distributions through density estimation. Deep Neural
Networks (DNNs) are based only on point estimates and make deterministic
predictions by using suitable feature vectors. Most works on DNNs do not pay
much attention to the complexity of these models. On the other hand, prob-
abilistic models typically rely on statistical hypothesis tests, which are more
simple to implement through the computation of suitable distances in the la-
tent space [42]. The actual capability of GANs to generate data makes them
attractive for anomaly detection under two perspectives [43]. First, GANs can
potentially help to generate hard-to-acquire anomalous data points. Second,
they can be used to learn the distribution of data for normal operating con-
ditions and, then, can be exploited as anomaly or outlier detectors [44]. A
conditional GAN-based model, called CovidGAN, is proposed in [45], which
generates synthetic chest X-ray images to augment the available training set.
The authors of [46] develop a Dense GAN and a multi-layer attention-based
segmentation method for the generation of higher quality images. GANs are
also utilized in [47], in order to generate X-rays data sets from 307 images
of four different types. The method employed in [48] utilizes Auxiliary Clas-
sifier Generative Adversarial Network (AC-GAN) to generate COVID-19 CT
scans. Then, the authors of [48] compare their approach against competing DL
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models using transfer learning. The authors of [49] introduce a Mean Teacher
plus Transfer GAN (MTT-GAN) model, in order to generate COVID-19 chest
X-ray images of high quality. Inception-Augmentation GAN (IAGAN), a semi-
supervised GAN-based augmentation method, is introduced in [50], in order to
improve the detection capability of pneumonia and COVID-19 in chest X-ray
images. The authors of [51] present the QulNet model to classify the COVID-
19-infected patients by using X-ray images. In [52] an Enhanced Super Res-
olution GAN (ESRGAN) is used in order to improve the CT scan quality,
before feeding it to a Siamese Capsule network. Additionally, in [53] MESR-
GAN+ is derived by implementing a connected nonlinear mapping between
noise-contaminated low-resolution input images and deblurred and denoised
HR images using the building blocks of GAN. A summarizing overview of the
main literature on GAN-based models for COVID-19 detection is provided in
Table 1.

Table 1: Synoptic view of recent work on GAN-based COVID-19 detection.

Ref. Approach Goal Training class

CovidGAN X-ray synthetic augmentation ~ COVID

GAN +Transfer learning ~ X-ray synthetic augmentation =~ Normal4+COVID+Pneumonia

[45]

[47]

[46] Dense GAN+ U-Net Enhancing the quality of CT COVID

[54] Convolutional GAN X-ray synthetic augmentation ~ Normal+COVID+Pneumonia
[48] AC-GAN CT synthetic augmentation COVID

[49] MTT-GAN X-ray synthetic augmentation =~ COVID

[50] IAGAN X-ray synthetic augmentation =~ COVID

[51] GAN X-ray synthetic augmentation ~ Normal4+COVID+Pneumonia
[52] Siamese-CapsNet Image resolution enhancement ~COVID+NON-COVID

[53] GAN Image resolution enhancement ~COVID+NON-COVID

This contribution BiGAN & CycleGAN CT Classification COVID

Overall, differently from the proposed work, all these approaches do not
exploit the use of an additional encoder (BiGAN) or a second generator (Cy-
cleGAN) that, ideally, learn to invert the mapping performed by the first
generator. We argue that a trained BiGAN encoder and a pair of genera-
tors/discriminators, respectively, could provide useful feature representation
for related tasks of scan classification. Although the increased computational
cost with respect to a standard GAN architecture, we can expect that, by
considering the performance-vs.-complexity tradeoff, the proposed method can
represent a promising approach for the robust classification of the COVID-19
disease from unlabeled CT scans.
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1.3 Paper contributions and roadmap

Motivated by the performed review, in this contribution, we aim at exploiting
how and at which extend the hidden features learned by weakly-supervised
BiGAN [55] and CycleGAN [56] models could be effectively exploited for ro-
bust classification of COVID-19 diseases from unlabelled CT scans. In fact,
both BiGAN and CycleGAN allow to efficiently extract meaningful features
of the target class from the encoded vector, which can be successfully used
to construct a statistical representation suitable to detect scans of COVID-19
patients from the others. Specifically, the main contributions of this paper are
the following ones:

. we exploit the Kernel Density Estimation (KDE) approach for deploy-
ing an inference method that utilizes the hidden features generated dur-
ing the weakly-supervised training of BiGANs and CycleGANs for esti-
mating the underlying PDF of CT scans of COVID-19 patients, namely
the target COVID-PDF. Afterwards, in the test phase, the trained Bi-
GAN/CycleGAN encoder is used for extracting the hidden features from
the corresponding COVID/Non-COVID CT test scan, and, then, the dis-
tance among the target COVID-PDF and the corresponding PDF of the
hidden features extracted from each test image is used for binary classifi-
cation. For this purpose, a suitably designed binary detector is employed,
which is equipped with a tunable decision threshold;

. we numerically evaluate the sensitivity of the achieved accuracies, test
times and training times of the implemented BiGANs and CycleGANs
on the employed training loss functions and inter-PDF distance metrics.
The tested loss training functions are the Cross-Entropy (CE), Least-
Squares (LS) and Wasserstein (W) ones, while the Euclidean, Kullback -
Leibler (KL) divergence, Correlation and Jensen-Shannon (JS) divergence
are tested as inter-PDF' distance metrics;

. the training of the BiIGAN and CycleGAN models is, by design, of weakly-
supervised type. Hence, as a final contribution, we compare the attained Bi-
GAN and CycleGAN performance against the corresponding ones of some
recently published methods [38] and [57], which exploit the encoders of
unsupervised trained CAEs as feature extractors. At this regard, we an-
ticipate that the implemented CycleGAN model achieves the highest test
accuracy, while the tested CAE models attain the lowest test and training
times. The corresponding accuracies, test times and training times of the
implemented BiGAN models fall somewhat in the middle.

To the best of our knowledge, the exploitation of a KDE estimation of the
target COVID-PDF from the feature encoded by the BiIGAN and CycleGAN
for the classification of COVID/Non-COVID CT scans is novel and not yet
investigated in current literature.

The rest of the paper is organized as follows. In Section 2, we describe, at
first, the employed training/test data sets, the implemented BiGAN and Cy-
cleGAN models and the related training loss functions. Afterwards, we present
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the proposed KDE-based method for test inference. Section 3 is devoted to the
presentation of the obtained numerical results and related performance com-
parisons. Finally, the conclusive Section 4 summarizes the main results of the
paper and highlights some possible hints for future research.

2 Material and solving method

This section describes the used data sets and the implemented BiGAN and
CycleGAN-based architectures for feature extraction, together with the com-
panion PDF-based approach pursued for binary classification of the test im-
ages.

2.1 Training and testing data sets

We selected 1000 COVID-19 CT scans related to 500 (anonymous) patients
from several multiple open-access data sets [58], in order to generate the train-
ing data set. However, before training, a pre-processing step has been carried
out, in which the borders of all CT scans have been cropped and all the
grey-scale images have been resized to 100 x 100 pixels, in order to achieve a
suitable processing complexity-vs.-image resolution trade-off. Finally, the per-
pixel mean of each image has been evaluated and subtracted. In the sequel, we
will indicate as y (resp. Y) an input COVID-19 training image (resp., the set
of the COVID-19 training images). For illustrative purposes, Fig. la reports
four examples of COVID-19 training images. Since the considered CAE models
require unsupervised learning, only the set Y is utilized for their training. How-
ever, for both BIGAN and CycleGAN models that rely on weakly-supervised
learning [55,56], a second set X composed by 1000 input features (also referred
to as latent feature maps) has been generated for their training. Specifically,
according to [55], each training input feature € X has been generated by
randomly sampling (in an independent and identically distributed way) from
a continuous probability density function, which is evenly distributed over the
interval [—100,100]. The random procedure adopted for generating the train-
ing features assures that the elements of the resulting training sets X and
Y are unpaired, as required by the weakly-supervised training of BiIGAN and
CycleGAN models [55,56]. At this regard, we anticipate also that, although, in
our tests, the feature maps {Z} extracted by each model have the same size of
the corresponding input feature maps {x}, nevertheless, their size varies from
model to model (see the 6th column of Table 8). For illustrative purposes,
Fig. 1b reports two feature maps extracted from the implemented BiGAN and
CycleGAN models.

Finally, we point out that CT scans for testing have been randomly sam-
pled from two data sets [58,59], which embrace: (i) 500 CT slices of COVID-19
images (different from those used for the training); and, (ii) 500 additional
CT scans, which cover normal cases, pneumonia cases and three types of lung
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cancer (namely, adenocarcinoma, large-cell carcinoma and squamous-cell car-
cinoma).

Fig. 1: (a) Four representative samples of lung CT scans from the training
sets of size (100 x 100). (b) Representative samples of lung CT feature maps
extracted by the implemented BiGANs and CycleGAN.

2.2 The considered encoder-equipped GAN models

In order to perform classification based on the compressed versions of images
(feature representations), BiGANs and CycleGANs are of interest, because
they allow to efficiently extract the encoded features of the target class. In the
following, we shortly present the implemented models.

2.2.1 Cross-entropy BiGANs for feature extraction

BiGANSs offer a framework for weakly-supervised feature learning. A BiGAN
includes a GAN’s generator G, and an encoder £, which maps input data
y € Y (ie,, COVID-19 images, in our framework) to feature representa-
tions &€ = & [43]. The BiGAN discriminator, D, discriminates not only in
the data space (i.e., y-vs.-G (x)), but jointly in the latent and data spaces
(ie., {y, € (y)}-vs.-{x,G (z)}) versus (G(z); z), where the latent component
is either an encoder output: £(y) or a generator input: x (see Fig. 2).

The BiGAN encoder, £, aims to learn to invert the mapping performed
by the generator G [55]. Neither module can directly communicate with the
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zeX G(z)

Concatenator

Input feature {z,G (z)} Fake data

Fake data

True data

{v,€

(y)} True data

yeyY z=E(y)
_— e COncatenator

Input data Extracted feature

T=E(y)

Fig. 2: Implemented training scheme of BiGAN [55] for feature extraction. x:
input feature; y: input data; X: feature space; Y: data space; G: Generator;
&: Encoder; D: Discriminator; Z: predicted and extracted feature.

other; the encoder cannot see the generator outputs and the generator cannot
see the encoder outputs.

The final goal of both encoder and generator is to fool the BIGAN dis-
criminator, D [55]. For this purpose, the BiGAN encoder learns to predict
features & from input data y. Since previous work on BiGAN proved that the
extracted features capture semantic attributes of the input data, we argue
that a trained BiGAN encoder could provide useful feature representation for
related semantic tasks. Towards this end, the BiGAN negative-log-likelihood
training objective is defined as follows (see [55] for major details):

r(r;li? max V(D,E,G) =Eyp, Eppe(.|y) [log D(z,y)]

log D(y,€(y))
+ Ew,\,pl, Eywp(;(.|1:) [1 - lOg D(.’I}, y)]

log(1-D(G(2),))

(1)

While BiGANS retain many properties of GANs, they also guarantee that
G and & are each other’s inverse at the global optimum. BiGAN training is
carried out by using an optimizer for training the parameters 0, D, 0g, and 05 of
modules D, G and &, respectively. Training consists of performing one or more
steps in the positive gradient direction to update the discriminator parameters
0p. A step in the negative gradient direction is, then, performed, in order to
update the encoder and generator parameters 05 and HG In the following
sections, we refer to the BIGAN trained according to Eq. (1) as Cross-Entropy
BiGAN (CE-BiGAN). The architecture of the actually implemented BiGAN
is detailed in Table 2. In our tests, the size of the extracted latent vector & (y)
in Fig. 2 is set to 1024. All the activation functions are leaky ReLUs with
slope of 0.1, barring the last layer of the generator, in which the Hyperbolic
Tangent activation function is used (see Table 2).
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Table 2: The implemented BiGAN architecture. Conv: Convolution; ConvTr:
Transposed Convolution; BN: Batch Normalization; LR: Leaky ReLU; DR:

Dropout.

(a) Generator

(b) Encoder

Noise 1024 x 1 Conv+BN+LR 100 x 100 x 1
Dense+BN-+LR 80000 x 1 Conv+BN+LR 100 x 100 x 256
Reshape 25 x 25 x 128 Conv+BN+LR 50 x 50 x 128
ConvTr+BN+LR 50 x 50 x 128 Conv+BN+LR 50 x 50 x 128
ConvTr+BN+LR 50 x 50 x 128 Conv+BN+LR 25 x 25 x 128
ConvTr+BN+LR 100 x 100 x 256 Flatten 80000 x 1
ConvTr+BN+Tanh 100 x 100 x 1 Dense+BN+LR 1024 x 1
(c) Discriminator
Inputl 100 x 100 x 1
Conv+LR+DR 100 x 100 x 256
Conv+LR+DR 50 x 50 x 128
Conv+LR+DR 25 x 25 x 128
Conv+LR+DR 25 X 25 x 128
Flatten 80000 x 1
Input2 1024 x 1
Dense+DR 512 x 1
Dense 512 x 1
Output 512 x 1
Concatenate Flatten 4+ Output
Dense+DR 1024 x 1
CE-BiGAN  Dense+Sigmoid 1
W-BiGAN Dense+Linear 1
LS-BiGAN Dense+Linear 1

2.2.2 Least-Squares BiGANs for feature extraction

Least-Squares Generative Adversarial Networks (LSGANs) adopt the least
squares loss function for training [60]. The authors of [60] point out two ad-
vantages of LSGANs over standard CE-GANs. First, LSGANs are capable
of generating images of higher-quality than CE-GANs. Second, LSGANSs also
exhibit more stable performance during the learning process. In fact, since a
CE-GAN discriminator typically adopts the sigmoid cross-entropy loss func-
tion, when the generator is updated, vanishing gradient may happen for sam-
ples on the correct side of the decision boundary, which are still far from the
real data [60]. LSGANSs attempt to bypass this problem by using the following
Least Squares-based training loss function:

min Vsaan(G) 2 %Em,m [(D(G (z),2) — 0)2] :
o Vesoan(D,€) 2 5 { By, (D€ (1) — ) @

+Eany, |(D(G (@), 2) = 1)’ |
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where a and b are the labels for true data and fakes, while ¢ indicates the
value that G wants D to believe for fake data [60]. As suggested in [60], in
our test, we set a = ¢ = 1, and b = 0 where 0-1 is binary labelling scheme
used for fake-true data. We apply the loss function of Eq. (2) together with
the linear activation function in the last layer of the discriminator of Fig. 2.
The architecture of the implemented BiGAN is still the one of Table 2.

2.2.8 Wasserstein BiGANs for feature extraction

Wasserstein GANs (WGANS) [61] generate loss functions with better charac-
teristics than the cross-entropy original GANs by using the Wasserstein dis-
tance. For this purpose, the authors of [61] impose weight clipping by requir-
ing that the discriminator (called critic in their paper) falls in the 1-Lipschitz
space. Accordingly, the loss function of a Wasserstein BiGAN (W-BiGAN) is
defined as in [61]:
1 1

Lw-pican = 77 > Dy,Ew)) - i D(G(z), ), 3)

Y~py T~Px

where M > 1is the number of terms in each summation. Ad pointed out in [62],
the r.h.s. of (3) provides, indeed, a reasonable good computable approximation
of the actual Wasserstein distance. Unlike the original BIGAN where D isa 0/1
classifier estimating the a posteriori probability that its input is a true data,
in the Wasserstein BIGAN (W-BiGAN), D is a regressor, which estimates the
trueness score of its input. In terms of implementation, the scalar output of
D in the original BIGAN uses the sigmoid nonlinearity, while that of the W-
BiGAN is linear. The Wasserstein loss in Eq. (3) is the difference of the trueness
scores of true and fake samples. D is trained to maximize this difference, while
G is trained to minimize it. D wants that its output: D(y,&(y) is higher
for true samples y than for the generated fake samples: D(G(z),x), while
G aims at the opposite. Due to the interactions between weight constraints
and cost function, WGAN optimization process may result in either vanishing
or exploding gradients if the clipping threshold calibration is not suitably
tuned [62]. After several validation trials, we set the weight clipping value
to 0.01 and normalize the norm of error gradient vector to 10. The same
architecture of BiGAN of Table 2 is utilized under the training loss function
in Eq. (3), with the linear activation function in the last layer of the W-BiGAN
discriminator.

2.2.4 CycleGANs for feature extraction

An input image that is transformed by a CycleGAN [56] can retain fine details,
so to closely reproduce the structure of the input image. CycleGAN explores
the unpaired style transfer paradigm, in which the model attempts to learn
stylistic differences between sources and targets without explicitly pairing in-
put to output [63]. As sketched in Fig. 3, a CycleGAN has two generators, G
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and £, such that G : X — Y and £ : Y — X. Ideally, G and & should be the
inverse of each other, so to implement one-to-one bijection. The authors of [50]
train simultaneously both the generators G and £ under both adversarial and
cycle consistency losses, so to encourage £(G(z)) = = and G(E(y)) = y. A
CycleGAN is typically equipped with two discriminators Dg and Dg which
are paired to the corresponding generators G and &, respectively. In [56], it
is argued that a pair of generators/discriminators could learn the best possi-
ble translation from the source domain Y (or X) to the target domain X (or
Y'). The overall cycle consistency loss Ly ensures that the reconstruction of
the original input from the generated output is as close as possible, and it is
defined as in [50]:

Loye(G,E) = Evnp, [|E(G(2)) = zlly + Eynp, 1G(EY)) =yl (4)

———————————————————————————————————

Input feature Fake data
True data
Fake feature
Input data

True feature
Generated
feature

Extracted feature
z=E(y)

__________________________________

Fig. 3: Implemented scheme of CycleGAN for feature extraction. x: Input
feature; y: Input data; &: Generated and extracted feature; y: Generated data;
X: Feature space; Y: Data space; G: Generator; £: Encoder; D¢g: Generator’s
discriminator; D¢: Encoder’s discriminator.

Afterwards, the overall objective of a CycleGAN is a weighted sum of the
adversarial losses: Laani and Lganz and the cycle consistency loss Lcyc, and,
then, it reads as in:

Lceyeecan(G, €, Dg, De) £ Laan1(G, Dg) + Loana(E, Dg) + A Loy (G, E) .

()

In our tests, A = 0.1 and the Wasserstein loss function is employed to

implement both the adversarial losses Lgani and Lganz in Eq. (5). The im-

plemented CycleGAN is sketched in Fig. 3. In this regard, we stress that we

use it for feature extraction (see Fig. 3). The size of the extracted features is
reported in the 6th column of Table 8.
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2.3 The pursued KDE-based inference approach

In order to estimate the Probability Density Function (PDF) of the extracted
hidden features, generated by (previously described) GAN-based models, the
first step is to choose among parametric-vs.-non-parametric methods. Due to
the fact that we have no a priori information about the actual shape of the
PDF and we want to avoid bias effects, we choose a non-parametric estimate.
For this purpose, we select the Kernel Density Estimation (KDE) method due
to its efficiency and expected performance [64]. To describe the KDE, we first
illustrate it for the simple case of a univariate PDF. Hence, let us consider
a set of n real numbers: z; for i = 1,...,n, drawn from a (hidden) Random
Variable (RV) X, which posses an unknown PDF, fx (x), to be estimated.
Hence, the KDE estimate f, (z) of f, (z) is defined as:

P2 1Yk (1), )

The constant « is a normalization factor, which guarantees that the area under
the curve fx (z),z € R, is unit valued. The kernel function, K (.), is used as an
interpolating function to build the PDF estimate. Although different kernels
can be used, according to [64], we consider the Gaussian one, i.e., K(z) = e
The parameter h in Eq. (6) is the kernel bandwidth, which is used to set the
width of the kernel. It controls the size of the receptive field of the kernel.
Since our inference method is based on the evaluation of the distances between
actual and target PDFs, we have numerically ascertained that the impact of
h is minor. Hence, we set the bandwidth to the unit.

The target COVID-PDF is evaluated by applying Eq. (6) to the average
of all the extracted feature vectors obtained by the encoders of the considered
architectures for all the training images.

2.4 Exploiting hidden features for test classification

After training on COVID-19 through the BiGANs and CycleGAN, we evaluate
the proposed classification method. Using the procedure shown in Fig. 4, we
classify each test image. To this end, we only deal with the encoders of BIGANs
and the first generator’s encoder of CycleGAN. In order to accomplish this,
each COVID-19 test image is fed to the trained encoder and its corresponding
hidden feature vector is extracted. After computing the PDF of the test feature
vector through KDE, the distance d between the target and test PDFs is
evaluated and given as input to a binary threshold detector (see the lost block
of Fig. 4). This last generates the final COVID/non-COVID decision on the
corresponding input image.
Fig. 5 shows two examples of attained target and test PDFs.
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Fig. 4: Proposed inference mechanism for binary classification of test images.
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Fig. 5: Instances of target and test PDFs.

Used distance metrics: The target COVID-PDF and the test PDF are com-
pared by using a suitable distance in the latent space. In order to formally
introduce the considered inter-PDF distances, let P and ) be two equal-size

probability column vectors and let: M2 (ﬁ + Q) /2 be the corresponding

mean distribution vector. Hence, the considered Euclidean, KL, Correlation
and Jensen-Shannon distances are formally defined in Table 6, where p; (resp.
¢;) indicates the i-th entry of P (resp. Q) and the T superscript means vector
transposition.

Setting of the decision threshold: The decision threshold for each considered
distance is set by evaluating the PDFs of all training images. Then, we nu-
merically calculate the distance between the target COVID-PDF and each
training image PDF, and set the threshold TH to the obtained maximum
distance value. So doing, the attained value of the threshold is automatically
tuned to the statistical properties of both the underlying target PDF and used
distance metric. In this regard, we anticipate that, in our tests of Section 3,
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Table 3: Considered inter-PDF distances.

Considered metric distance Formula
Euclidean Hﬁ — QHZ
Kullback-Leibler divergence > pilog (q—z)
- =NT /o =
Correlation 1-— EP;P) ( ;Q:)
[(7-2)[, [(a-9)],
Jensen-Shannon \/KL(}SHM);KL(QHM)

the (numerically evaluated) values of the tuned decision thresholds typically
range from 0.06 to 0.6.

3 Comparative numerical results and discussion

The main goal of this section is twofold. First, after describing the experi-
mental setup and the adopted performance indexes, we discuss the sensitivity
of the training and test performance of the implemented BiGAN and Cycle-
GAN models on the considered training loss functions and inter-PDF distance
metrics. Second, we present the accuracy-vs.-test time-vs.-training time per-
formance of the implemented BiGAN and CycleGAN models, and, then, com-
pare them against the corresponding ones of the CAE-based models recently
presented in [38] and [57].

3.1 Considered performance metrics

The considered performance metrics for the carried out binary classification
tasks are based on the True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) assignments. The meaning of these outcomes
are detailed in Table 4. They can be represented in a compact form as the four
elements of the resulting confusion matrix [65].

The main performance metrics can be derived by a combination of these
items [65]. In the following sections, we consider accuracy, recall, precision, F1-
score, Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)
as affiliated performance indexes. Formal definitions of these indexes are given
in Table 5.
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Table 4: Main outcomes in binary classification.

Taxonomy Description

True Positive (TP) COVID-19 image classified as COVID-19

True Negative (TN)  Non-COVID-19 image classified as non-COVID-19
False Positive (FP) Non-COVID-19 image classified as COVID-19
False Negative (FN) COVID-19 image classified as non-COVID-19

Table 5: Performance metrics for binary classification [65].

Performance index Formula

Recall TP/(TP+ FN)

Precision TP/(TP + FP)

F-score 2TP/(2TP + FP + FN)

Accuracy (TP+TN)/(TP+FN+FP+TN)

3.2 Experimental setup

All the numerical tests have been carried out on a PC equipped with: (i) an
AMD Ryzen 9 5900X 12-Core 3.7 GHz processor; (ii) two GeForce RTX 3080
graphics cards; and, (iii) 128 GB RAM.

The iterative solving algorithm used for the training of the implemented
CE-BiGAN, LS-BiGAN and LS-CycleGAN models is Adam [66], while the
W-BiGAN is trained by using the RMSprop solver with clipping threshold set
to 0.01 [61]. The hyper-parameters of all implemented solvers have been opti-
mized through validation trials and their main optimized values are reported
in Table 6. Mini-batches of size of 16 have been utilized for model training
under all implemented solvers.

Table 6: Implemented solvers for the optimization and related hyper-parameter
tuning. LR: Learning Rate; WclipV: Weight clip Value; GelipN: Gradient clip
Norm.

Model Solver LR B1 WeclipV  GeclipN
CE-BiGAN Adam 10-% 0.1 — —
W-BiGAN RMSprop 1075 0.01 10
LS-BiGAN Adam 10=% 0.1 — 10

LS-CycleGAN  Adam 10—*  0.35 — —
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3.3 Comparison of the simulated training loss curves

According to [55,60,61], a training iteration of each implemented BiGAN and
CycleGAN model embraces m > 1 gradient-based steps for the optimization of
the underlying Discriminators, which are followed by a single step for the op-
timization of the corresponding Generators. We have numerically ascertained
that, in our framework, m = 1 (resp., m = 5) is suitable for the training of
the CE-BiGAN, LS-BiGAN and LS-CycleGAN models (resp., for the training
of the W-BiGAN model).

The attained loss curves are reported in Fig. 6. Regarding the BiGAN
model, a comparative examination of the training curves of Figs. 6a-6¢ points
out that the Wasserstein (resp., Cross-Entropy) loss function gives rise to the
most (resp., less) stable behaviour during the overall training phase, with the
behaviour of the Least-Squares loss function falling somewhat in the middle.
This conclusion is also supported by the following additional two remarks.
First, a comparative view of the entries in the second column of Table 11
unveils that the number of training iterations needed for achieving the con-
vergence is the highest (resp., the lowest) one for the CE-BiGAN (resp., the
W-BiGAN), with the ranking of the LS-BiGAN still falling in the middle.
In detail, as it could be expected, the two discriminator losses of Fig. Gc
nearly overlap, so that the resulting generator loss fluctuates around zero and
asymptotically vanishes. Second, the results reported in Table 7 show that,
under each checked distance metric, the corresponding test accuracy of the
W-BiGAN is the highest one, although the relative gaps with respect to the
competing CE-BiGAN and LS-BiGAN models are not so impressive. However,
we have numerically ascertained that, at least under the considered training
dataset, the Least-Squares loss function gives rise to the most stable behaviour
in the training phase of the implemented CycleGAN (see the plots of Fig. 6d).
So, in the following sections, we directly focus on the LS-CycleGAN model.

3.4 Performance robustness with respect to the distance metrics

The impact of the considered distance metrics on the performance indexes of
Table 5 in the test phase may be evaluated through a comparative view of the
entries of Table 7. In this regard, three main conclusions may be drawn. First,
the test performance of all models is quite robust with respect to the choice
of the distance metric used for implementing the classifier of Fig. 4. Specif-
ically, the resulting accuracy gaps over the full spectrum of checked model-
vs.-distance settings are, indeed, limited up to 5.7%. Second, the accuracies of
the CE-BiGAN and LS-BiGAN (resp., W-BiGAN and LS-CycleGAN) mod-
els attain their corresponding maxima under the Correlation (resp., Jensen-
Shannon) distance metric. Third, the highest test accuracy is obtained by the
LS-CycleGAN model combined with the Jensen-Shannon distance.

The numerically evaluated distance spectra between the test and target
COVID PDFs of the checked models under their corresponding best distance
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Fig. 6: Training loss curves of the considered approaches.
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Inter-PDF Correlation distances under CE-BiGAN
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Fig. 7: Correlation distances between test-PDFs and COVID-PDF of CE-
BiGAN; Threshold: TH = 0.06.
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Fig. 8: Correlation distances between test-PDFs and COVID-PDF under the
LS-BiGAN model; Threshold: TH = 0.08.

metrics are drawn in Figs. 7-10, while the associated confusion matrices are
reported in Fig. 11.

The reported distance spectra corroborate the conclusion that the gaps
between the accuracy performance of the best checked models are, indeed,
limited, with a slight superiority of the LS-CycleGAN model combined with
the Jensen-Shannon distance (see Fig. 11).

This conclusion is further supported by the ROC curves of Fig. 12 and
the associated AUC values (see the legend of Fig. 12). These curves confirm,
indeed, that the LS-CycleGAN model combined with the Jensen-Shannon dis-
tance metric (resp., the LS-BiGAN model combined with the Correlation dis-
tance metric) attain the highest (resp., lowest) AUC value of 0.992 (resp.,
0.977).
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Inter-PDF Jensen-Shannon distances under W-BiGAN
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Fig. 9: Jensen-Shannon distances between test-PDFs and COVID-PDF under
the W-BiGAN model; Threshold: TH = 0.585.
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Fig. 10: Jensen-Shannon distances between test-PDFs and COVID-PDF under
the LS-CycleGAN model; Threshold: TH = 0.07.

3.5 Unsupervised-vs.-weakly supervised models: comparative performance

By design, all the considered BIGAN and CycleGAN models require Weakly-
Supervised (WS) training (see Section 2.1). Hence, it could be of interest com-
pare their implementation complexity-vs.-training time-vs.- test time-vs.-test
accuracy trade-offs against the corresponding ones of the companion models
in [38,57], which have been recently developed in literature for COVID-19
detection/classification. Like the considered BiGANs and CycleGANs, even
the models developed in [38,57] rely on suitably extracted hidden features for
performing distance-based classification. However, unlike the here considered
GAN-based models, both the models developed in [38,57] exploit the encoders
of UnSupervised (US)-trained Denoising CAEs (DCAEs) to extract suitable
hidden features from COVID-19 input images. Shortly, the extracted hidden
features are utilized in [38] for building up suitable target and test histograms,
while they are used in [57] for estimating the underlying test and target PDFs.
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Table 7: Model performance under different distance metrics.

Model Distance Accuracy Precision Recall Fl-score Test CTs
CE-BiGAN
Euclidean 0.9760 0.9760 0.9765 0.9760 1000
Correlation 0.9770 0.9770 0.9778 0.9770 1000
KL divergence 0.9740 0.9740 0.9746 0.9740 1000
Jensen—Shannon  0.9720 0.9720 0.9728 0.9720 1000
LS-BiGAN
Euclidean 0.9490 0.9490 0.9492 0.9490 1000
Correlation 0.9640 0.9630 0.9653 0.9630 1000
KL divergence 0.9560 0.9560 0.9567  0.9560 1000
Jensen—Shannon  0.9300 0.9300 0.9314 0.9299 1000
W-BiGAN
Euclidean 0.9770 0.9780 0.9781 0.9780 1000
Correlation 0.9770 0.9770 0.0772 0.9770 1000
KL divergence 0.9770 0.9770 0.9772 0.9770 1000
Jensen—Shannon  0.9780 0.9780 0.9788 0.9780 1000
LS-CycleGAN
Euclidean 0.9760 0.9760 0.9766 0.9760 1000
Correlation 0.9700 0.9700 0.9711 0.9700 1000
KL divergence 0.9860 0.9860 0.9863 0.9870 1000
Jensen—Shannon  0.9870 0.9870 0.9873 0.9870 1000

Hereinafter, we refer to the model in [38] (resp., [57]) as the Histogram-Based
DCAE (HB-DCAE) (resp., Probability density-Based CAE (PB-CAE)).

The middle columns of Table 8 allow us to compare the main operating
settings of the considered WS/US models in terms of sizes of the used input
images, numbers of utilized training and test images and sizes of the extracted
feature maps. A comparative description of their interior architectures and
numbers of trainable parameters (i.e., model sizes) is presented in Table 10,
where the x2 factors account for the fact that a CycleGAN is composed, by
design, of two generator and two discriminator nets (see Fig. 2).

The corresponding performance of the tested models is measured through
numerical evaluation of the resulting test accuracies (see the last column of
Table 8), together with the number of required training iterations and associ-
ated training and test times (see Table 11). In order to guarantee fair accuracy
comparisons, the same number (i.e., 1000) of training and test images is uti-
lized in all tests (see the 4th and 5th columns of Table 8). Furthermore, in
order to carry out fair comparisons among the evaluated training times, the
following exit condition has been applied in all performed training simulations:
the training phase of a model is stopped when the best training accuracy over
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Table 8: Implemented unsupervised and weakly-supervised models for COVID-
19 detection. HB-DCAE: Histogram-Based DCAE [38]; PB-CAE: PDF-Based
CAE [57]; US: Un-Supervised; WS: Weakly-Supervised; TRIM: Number of
TRaining IMages; TSIM: Number of TeSt IMages.

Model Model Size of the #TRIM  #TSIM  Size of the Resulting best
Training input images extract features test accuracy
HB-DCAE Us 200 x 300 1000 1000 50 X 75 x 64 0.8270
PB-CAE Us 200 x 300 1000 1000 128 x 1 0.7610
CE-BiGAN WS 100 x 100 1000 1000 1024 x 1 0.9770
‘W-BiGAN WS 100 x 100 1000 1000 1024 x 1 0.9780
LS-BiGAN WS 100 x 100 1000 1000 1024 x 1 0.9640
LS-CycleGAN WS 100 x 100 1000 1000 25 X 25 x 256 0.9870

a window of 30 consecutive iterations improves less than 0.1% compared to
the corresponding best training accuracy attained over the previous iteration
window.

Finally, Table 9 shows some comparisons with other state-of-the-art ap-
proaches in the case of supervised COVID/Non-COVID classification, using
the same dataset. Specifically, we provide comparisons with famous CNN mod-
els such as AlexNet [34], VGG16 [34], ResNet50 [17], and CovidNet-CT [58].
In addition, we also consider the MERSGAN+ proposed in [52, 53], which
combines a modified enhanced super-resolution GAN with a Siamese capsule
network, the Random Forest approach proposed in [33] for large-scale screen-
ing, and the Al-based system exploiting U-Net architectures introduced in [18].

Table 9: Performance evaluation metrics related to some comparisons with
other state-of-the-art approaches using the same dataset.

Reference Model Accuracy Precision Recall F1l-score
[34] AlexNet 0.9060 0.9060 0.9209 0.9052
[34] VGG16 0.9140 0.9140 0.9266 0.9134
[17] ResNet50 0.9245 0.9245 0.9359 0.9302
[58] CovidNet-CT 0.9790 0.9790 0.9714 0.9752
[52,53] MERSGAN+ 0.9765 0.9820 0.9840 0.9830
[33] Random Forest 0.9004 0.8917 0.9025 0.8971
[18] Al-system 0.9656 0.9020 0.9710 0.9352

An examination of Table 9 shows that the proposed BiGAN approaches
generally outperform the most common supervised classification methods, al-
though the CovidNet-CT [58] and MERSGAN+ [52] ones obtain similar re-
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sults. On the other hand, the proposed CycleGAN always outperform all the
state-of-the-art approaches.

Overall, the results shown in Table 9 compared to those of Table 8 demon-
strate the effectiveness of the proposed methods, since, although these are
weakly-supervised approaches, they are able to perform the same or better
than the supervised ones.

3.6 Performance-vs.-computational complexity tradeoff

Fig. 13 provides a compact synoptic view of the implementation complexity-
vs.-training time-vs.-test time-vs.-accuracy tradeoffs attained by the tested
US/WS models. Specifically, in Fig. 13, the diameters of the disk-shaped mark-
ers are proportional to the corresponding model sizes (i.e., the number of
trainable parameters reported in Table 10).

An examination of Fig. 13 leads to the following insights about the relative
merits of the compared models. In term of test accuracy, the GAN-based
models, although present a not negligible training time, outperform the CAE-
based ones, with the accuracy of the most performing GAN model (e.g., the
LS-CycleGAN one) that is larger than the accuracy of the most performing
CAE model (e.g., the HB-DCAE one) of about 16.1% (see also the last column
of Table 8). Furthermore, due to their larger learning capability, the GAN-
based models are capable to operate on input images whose sizes are smaller
than the ones required by the CAE-based models (see the 3rd column of Table
8). We have numerically ascertained that these results are mainly dictated by
the US-vs.-WS nature of the tested DL models.

Table 10: Details and number of trainable parameters of the considered model
architectures. BN: Batch-Normalization; Conv: Convolution; ConvTr: Trans-
posed Convolution.

BiGANSs CycleGAN HB-DCAE [38] PB-CAE [57]
Generator
Conv+BN - 21424 (x2) - -
ConvTr+BN 4+4 343 (x2) - -
Dense 1 3 (x2) - -

Trainable parameters 82,753,665 35,264,003 (x2) - -

Discriminator

Conv + BN 440 6+6 (x2) - -

Dense 4 - - -

Trainable parameters 83,826,561 6,960,321 (x2) - -

Encoder
Conv+BN 4+4 3+3 342 342
Dense 1 - - 1
Trainable parameters 82,515,072 374,016 376,640 31,096,768
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Fig. 13: (a) Per-model training time versus test accuracy. (b) Per-model test
time versus test accuracy.

However, in term of training times, opposite conclusions take place. In
fact, as a direct consequence of the major sizes of the GAN-based models
compared to the corresponding ones of the CAE-based models, both the num-
ber of training iterations and the resulting training times of the implemented
BiGAN and CycleGAN models are larger than the corresponding ones of the
HB-DCAE and PB-CAE ones. Specifically, the training time of the ‘fastest-
to-train” GAN-based model (e.g., the LS-CycleGAN) is larger than the one of
the ‘fastest-to-train’ CAE model (e.g., the HB-DCAE) of about 18.5 times.

Finally, a similar conclusion holds for the corresponding test times. Specifi-
cally, the per-image test times of the ‘fastest-to-test” GAN-based models (e.g.,
the Bi-GAN models) are larger than the one of the ‘fastest-to-test’ CAE model
(e.g., the PB-CAE) of about 80 times (see the last column of Table 11). At
this regard, we have numerically ascertained that the achieved test times are
mainly dictated by the sizes of the extracted features. This is also the reason
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Table 11: Training/Test times of the considered models.

Model Number of Per-iteration Per-image
training iterations  Time (s) test Time (s)
CE-BiGAN 115000 0.7 0.79
W-BiGAN 70000 1.08 0.80
LS-BiGAN 140000 0.9 0.79
LS-CycleGAN 7000 2.23 14.38
HB-DCAE 3125 0.27 0.05
PB-CAE 6250 0.306 0.01

why the test time of the LS-CycleGAN is larger than the ones of the BIGAN
models (see Fig. 13Dh).

Overall, by considering the complexity-vs.-training time-vs.-test time-vs.-
accuracy tradeoff, we can argue that the proposed method can represent a
promising approach for the robust classification of the COVID-19 disease from
unlabeled CT scans.

4 Conclusion and hints for future research

In this paper, we developed a KDE-based inference method, which leverages
the hidden features extracted by BiGANs and CycleGANs for estimating, in
the training phase, the (a priori unknown) PDF of the CT scans of COVID-19
patients (that is, the target COVID-PDF). Afterwards, in the test phase, the
distance (in the latent space) between the PDF of each test CT scan and the
target COVID-PDF is evaluated, and, then, a tunable binary detector is imple-
mented for generating the COVID/Non-COVID final decisions. We have nu-
merically checked the implementation complexity-vs.-performance trade-offs
attained by the designed BiGAN and CycleGAN models under several settings
of training loss functions and distance metrics for test classification. In order
to better corroborate the obtained numerical results, we have also checked the
corresponding implementation complexity-vs.-performance trade-offs of some
state-of-the-art competing models, which utilize the encoders of unsupervised-
trained CAEs as feature extractors. The comparative analysis of the obtained
numerical results supports the final conclusions that: i) the test accuracies of
the proposed CycleGAN-based (resp., BIGAN-based) models outperform the
corresponding ones of the benchmark CAE-based models of about 16% (resp.,
14%); while, ii) the average training times of the tested CAE-based models
are lower than the ones of the developed Cycle/BiGAN-based models of about
18-19 times.

The presented results open, indeed, the doors to five main research di-
rections regarding the utilization of Cycle/Bi-GAN-based engines for image
classification.

First, recovery of hyperspectral images (i.e., images composed by a num-
ber of inter-depending multispectral spatial slices) is an ill-posed (typically,
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nonconvex) constrained inverse problem, in which high-resolution multiband
images must be recovered from their low-resolution (i.e., mixed and/or noise-
affected) counterparts [67]. Recently, in [67,68], supervised-trained CNN-based
methods have been developed for unmixing and classification of hyperspec-
tral images. Hence, developing effective Cycle/BiGAN-based models for the
weakly-supervised recovery/classification of hyperspectral images may be a
first research topic of potential interest.

Second, in [68], supervised-trained Graph Convolutional Networks (GCNs)
(i.e., CNNs capable to operate on input data described by assigned adjacency
graphs) have been designed for hyperspectral image classification. Motivated
by the good performance reported in [68], we believe that an interesting re-
search topic could concern the design of BIGAN and CycleGAN models that
are capable to operate over graph-structured input data, in which long-range
spatial dependence is captured by suitable adjacency matrices.

The recent contribution [69] proposes a CNN-based architecture for the
joint extraction and fusion of features from multi-modal input data (i.e., het-
erogeneous input data that refer to a same object/scene to be classified). The
design of novel BIGAN and CycleGAN architectures for multi-modal learning
could be a third research line of potential interest.

A further hint for future research arises from the consideration that hyper-
spectral images are typically represented as data cubes with spatial-spectral
information, in which non-negligible inter-data correlation is typically present
along the spectral axis. To suitably exploit this correlation, the recent contribu-
tion in [70] proposes a new supervised-trained transformer-based DNN model
(referred to as SpectralFormer) for the reliable classification of hyperspectral
images. Hence, an interesting topic could concern the exploitation of BiGANs
and CyCleGANSs for the design of transformer-based DNN architectures that
rely on weakly-supervised training for image classification.

Finally, a potential drawback of the developed BiGAN and CycleGAN
models is that their training times are quite long (i.e., more than 18 times
larger than the corresponding ones of the tested CAE-based models). Hence,
how to exploit Cloud/Fog-based [71,72] virtualized [73] and (possibly) multi-
antenna [74,75] computing architectures for the parallel and distributed train-
ing of heavy BiGAN/CycleGAN models in interference-affected broadband
wireless domains [76,77] could be a final research topic of potential interest.
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