
Citation: Evangelista, L.; Fiz, F.;

Laudicella, R.; Bianconi, F.; Castello,

A.; Guglielmo, P.; Liberini, V.; Manco,

L.; Frantellizzi, V.; Giordano, A.; et al.

PET Radiomics and Response to

Immunotherapy in Lung Cancer: A

Systematic Review of the Literature.

Cancers 2023, 15, 3258. https://

doi.org/10.3390/cancers15123258

Received: 9 May 2023

Revised: 12 June 2023

Accepted: 19 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

PET Radiomics and Response to Immunotherapy in Lung
Cancer: A Systematic Review of the Literature
Laura Evangelista 1,2,* , Francesco Fiz 3,4 , Riccardo Laudicella 5 , Francesco Bianconi 6 , Angelo Castello 7,
Priscilla Guglielmo 8, Virginia Liberini 9 , Luigi Manco 10 , Viviana Frantellizzi 11 , Alessia Giordano 12,
Luca Urso 13 , Stefano Panareo 14 , Barbara Palumbo 15 and Luca Filippi 16

1 Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4,
20072 Pieve Emanuele, Italy

2 IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
3 Nuclear Medicine Department, E.O. “Ospedali Galliera”, 16128 Genoa, Italy; francesco.fiz@galliera.it or

francesco.fiz@med.uni-tuebingen.de
4 Nuclear Medicine Department and Clinical Molecular Imaging, University Hospital,

72076 Tübingen, Germany
5 Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo,

90100 Palermo, Italy; riclaudi@hotmail.it
6 Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 06125 Perugia, Italy;

francesco.bianconi@unipg.it
7 Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;

angelo.castello@policlinico.mi.it
8 Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;

priscilla.guglielmo@iov.veneto.it
9 Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; v.liberini@gmail.com
10 Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy; luigi.manco@ausl.fe.it
11 Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome,

00161 Rome, Italy; viviana.frantellizzi@uniroma1.it
12 Nuclear Medicine Unit, IRCCS CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;

alessia.giordano@crob.it
13 Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;

luca.urso@unife.it
14 Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena,

41124 Modena, Italy; panareo.stefano@aou.mo.it
15 Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi

di Perugia, 06125 Perugia, Italy; barbara.palumbo@unipg.it
16 Nuclear Medicine Section, Santa Maria Goretti Hospital, 04100 Latina, Italy; lucfil@hotmail.com
* Correspondence: laura.evangelista@hunimed.eu; Tel.: +39-02-8224-6103

Simple Summary: The present review was performed in order to provide a comprehensive overview
of the existing literature concerning the applications of positron emission tomography (PET) radiomics
in lung cancer patients candidates or those currently undergoing immunotherapy. Fifteen papers were
included, thirteen were qualified as using conventional radiomics approaches, and two used deep
learning radiomics. Different settings were analyzed, from the utility of radiomics as an additional
tool for predicting the expression of PD-L1 or the tumor microenvironment, to the utility of artificial
intelligence in evaluating the response to immunotherapy. Although radiomics seems promising in
these fields, too limited data are now available. Indeed, the first limitation is the low amount of data,
heterogeneity in the provided information, the still limited experience and also the small amount
of expertise in this field. Therefore, radiomics is still far from to be considered for daily routine
clinical practice, although some additional efforts are required for the next future, mainly in patients
scheduled or undergoing immunotherapy.

Abstract: The aim of this review is to provide a comprehensive overview of the existing literature
concerning the applications of positron emission tomography (PET) radiomics in lung cancer patient
candidates or those undergoing immunotherapy. Materials and Methods: A systematic review was
conducted on databases and web sources. English-language original articles were considered. The
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title and abstract were independently reviewed to evaluate study inclusion. Duplicate, out-of-topic,
and review papers, or editorials, articles, and letters to editors were excluded. For each study, the
radiomics analysis was assessed based on the radiomics quality score (RQS 2.0). The review was
registered on the PROSPERO database with the number CRD42023402302. Results: Fifteen papers
were included, thirteen were qualified as using conventional radiomics approaches, and two used
deep learning radiomics. The content of each study was different; indeed, seven papers investigated
the potential ability of radiomics to predict PD-L1 expression and tumor microenvironment before
starting immunotherapy. Moreover, two evaluated the prediction of response, and four investigated
the utility of radiomics to predict the response to immunotherapy. Finally, two papers investigated
the prediction of adverse events due to immunotherapy. Conclusions: Radiomics is promising for the
evaluation of TME and for the prediction of response to immunotherapy, but some limitations should
be overcome.

Keywords: immunotherapy; lung cancer; PET; response to therapy; PD-L1

1. Introduction

Lung cancer (LC) is the leading cause of cancer-related death worldwide and repre-
sents a serious threat for public health [1] despite advances in diagnosis and therapy [2,3].
Surgical resection is the standard of care for LC patients at stages I and II, and for many
years, platinum-based chemotherapy has represented a mainstay for the management of
patients with extensive disease [4]. Recently, the therapeutic landscape has been thoroughly
changed by the implementation of immune-checkpoint inhibitors (ICIs).

In metastatic non-small cell lung cancer (NSCLC) harboring driver mutations (e.g., EGFR,
ALK, or ROS1), targeted therapies are usually preferred over other approaches since
they have been found effective and to have tolerable toxicity. Nevertheless, even in the
absence of driver mutations, ICIs should be considered, alone or in combination with
chemotherapy, as a valuable option [4]. In 2015, a phase III comparative study showed that
nivolumab, a monoclonal antibody directed towards PD-1, provided a significant benefit
in terms of prolonged overall survival (OS), with respect to docetaxel, in squamous and
non-squamous NSCLC submitted to immunotherapy as a second-line regimen [5]. These
initially encouraging results were further confirmed in subsequent clinical trials, leading
to the implementation of ICIs for the management of patients with advanced NSCLC [6].
However, it has to be underlined that only 50% of LC patients will show a response to
immunotherapy [7]. Furthermore, immune-related adverse events (irAEs), namely the side
effects of ICIs treatment potentially occurring in any organ or system with a wide spectrum
of severity, affect up to 76% of the patients under immunotherapy and can represent an
important cause of treatment discontinuation [8]. From this perspective, there is an unmet
need for laboratory and imaging biomarkers suitable for identifying LC patients who are
more likely to benefit from ICIs.

Positron emission tomography/computed tomography (PET/CT) with fluorine-18-
fluorodeoxyglucose ([18F]FDG) has a well-established role in staging and response assess-
ment in many oncological conditions [9]. As concerns patients’ prognostic stratification
before immunotherapy, [18F]FDG PET/CT has been applied with interesting prelimi-
nary results since some PET-derived parameters, such as whole-body metabolic tumor
volume (wbMTV) and total lesion glycolysis (wbTLG), were found to be predictors of
response [10,11].

In recent years, radiomics, an emerging discipline based on the quantitative analysis of
imaging data, has been gaining ever-increasing attention for its capability through machine
learning analysis to generate predictive models [12]. The main scope of radiomics is to
extract from medical images the quantitative data (i.e., features) that are undetectable
to the human eye and are able to be reproduced, interpreted, and correlated with some
clinical endpoints (e.g., response to therapy, treatment failure, survival, etc.). In this regard,
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pre-clinical and clinical studies suggest the potential of PET radiomics for the prediction of
immunotherapy response [13–15].

The aim of the present systematic review is to provide a comprehensive overview of the
existing literature concerning the applications of PET radiomics in LC patients candidates
or undergoing ICIs and to outline the most relevant issues emerging from data analysis,
delineating potential next steps for its widespread implementation in clinical practice.

2. Materials and Methods
2.1. Research Strategy and Study Selection

A systematic review was conducted in accordance with the preferred reporting items
for systematic reviews guidelines (PRISMA) by R.L., L.U., and P.G. [16]. The authors ran
queries to retrieve prospective or retrospective studies on the use of radiomics application
on PET images of immunotherapy as applied to lung cases on databases and web sources
(i.e., PubMed, Google Scholar, and Scopus). The search was carried out on 12th March 2023,
using the multiple queries reported here: “(lung cancer OR NSCLC) AND (immune check-
point inhibitors OR immunotherapy OR ICI) AND (radiomics OR features) AND pet NOT
review”, “pet AND (radiomic OR radiomics OR texture) AND lung AND immunotherapy”,
“pet AND (radiomics OR texture) AND lung AND ICI”, “pet AND (artificial intelligence OR
deep learning) AND lung AND immunotherapy”, “pet AND (radiomic OR deep learning)
AND lung”. English-language original articles were considered. The review was registered
on the PROSPERO database with the number CRD42023402302.

The title and abstract were independently reviewed by three authors (P.G., L.E., and
L.F.) to evaluate study inclusion. Full articles were retrieved when the abstract was consid-
ered relevant. Duplicate, out-of-topic, and review papers or editorial articles and letters to
editors were excluded.

2.2. Radiomics Methodology and Study Quality

Radiomics approaches were divided into two groups: the conventional ones (also
referred to as “hand-crafted”) and those based on deep learning [17]. Conventional ra-
diomics involved the delineation of the region of interest (ROI) (which can be manual,
semi-automated, or fully automated) and the subsequent extraction of a set of pre-defined
parameters such as first-order statistics, shape, and texture features [18]. The features
are eventually fed to some classification and/or regression model to produce predictions
about the clinical endpoint investigated. By contrast, deep learning radiomics makes use of
computational architectures (convolutional neural networks—CNNs) in which the features
are no longer defined a priori but learned from the data. In this scheme, the detailed lesion
delineation is not strictly necessary, as this step is replaced by approximate localization,
which is generally achieved by defining a fixed-shape (typically square) bounding box
around the suspicious area. Furthermore, CNNs have internal classification blocks (fully
connected layers), which makes external classifiers unnecessary.

For each study, the radiomics analysis was assessed based on the radiomics quality
score (RQS 2.0 https://www.radiomics.world/rqs2 (accessed on 1 April 2023)) introduced
by Lambin and colleagues in 2017 [19] to specifically evaluate the quality of reporting in
the radiomics context. RQS 2.0 consists of 36 checkpoints that reward or penalize radiomics
studies to encourage best scientific practices. For a robust calculation, RQS 2.0 was assessed
by a multidisciplinary panel of three raters, respectively, namely one nuclear medicine
physician (F.F.), one medical physicist (L.M.), and one engineer (F.B.), all with at least
5 years of experience in radiomics. After a preliminary training session to calibrate the
methodology and the scoring system, each rater read, assessed, and scored the papers
independently. Once this step was completed, the evaluation panel reconvened for a final
joint session in which a consensus score was assigned to each paper.

https://www.radiomics.world/rqs2
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3. Results
3.1. Radiomics Assessment

In total, 15 papers were selected (Table 1).
In Figure 1, we report the PRISMA statement, while the RQS v.2 is reported in Table 2.
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Table 1. Main characteristics of the selected studies.

Author, Ref Year of Pub. Design Sample Size Histology Type of ICIs Histopathology
Correlation Software Model

External
Validation

Cohort

Outcome
Measures

Relevant Radiomics
Indexes RQS

Jiang et al. [20] 2019 R 399
NSCLC (SCC
and adenocar-

cinoma)

Atezolizumab and
Nivolumab Yes ITK V. 3.6.1

Logistic
regression and
random forest

Na PD-L1
expression

Shape, IQR, GLCM_
JointAverage, median,

NGTDM_contrast
22 (33.3%)

Polverari et al.
[21] 2020 R 57 Mixed

histologies Mixed Yes LifeX Univariate
analysis Na

PD-L1
expression;
progression

status

Coarseness, GLZLM_
ZLNU, kurtosis, skewness,

GLZLM_
LZE,

GLRLM_RP/SRE/HGRE,
GLCM_Homogeneity

13 (19.7%)

Mu et al. [22] 2020 R/P 146 (R), 48 (P)
NSCLC (123
ADC and 71

SCC)
N/S Yes In-house

software

Logistic
regression and

Cox
multivariate
regression

Na
Durable

clinical benefit,
PFS, and OS

P/R radiomics signatures 28 (42.4%)

Mu et al. [23] 2020 R/P 146 (R), 48 (P)
NSCLC (123
ADC and 71

SCC)
Multiple Na In-house

software

Multivariable
regression
analysis

Na
Immune-

related adverse
events

Radiomic signature (KLD_
SZLGE and KLD_

SRLGE)

26
(39.39%)

Park et al. [24] 2020 R 29 NSCLC (ADC)

Pembrolizumab
(10),

Nivolumab (18),
Atezolizumab (1)

Yes LifeX v 4 Deep learning Yes

Cytolytic
activity; tumor
response, PFS,

and OS

N/S 16
(26.23%) *

Valentinuzzi
et al. [25] 2020 P 30

NSCLC (17
ADC, 8 SCC,
and 5 other)

Pembrolizumab Na In-house
software

Univariate
analysis and

Cox regression
model

Na OS GLRLM_
SRE 22 (33.3%)

Li et al. [26] 2021 R 255
NSCLC (SCC
and adenocar-

cinoma)
N/S Yes LifeX v 7 Logistic

regression Na

PD-L1
expression
(>1% and

>50%)

N/S (12 and 3 feature for
>1% and >50%,

respectively)
20 (30.3%)

Mu et al. [27] 2021 R 210
NSCLC (109
ADC and 66

SCC)

N/S (anti PD-1 and
anti PD-L1) N MatLab 2020.a

Uni/multivariable
regression
analysis

Yes

Cachexia;
durable

clinical benefit,
PFS, and OS

Radiomic signature
(SRHGE and LZLGE)

26
(39.39%)

Mu et al. [28] 2021 R/P 648 (R), 49 (P)
NSCLC (531

ADC and 166
SCC)

N/S Y ITK

Small residual
convolutional

network
(SResCNN)

Yes

PD-L1
expression;

durable
clinical benefit,

PFS, and OS

N/S 26 (42.6%)

Zhou et al. [29] 2021 R 103 28 SCC and 75
other N/S Y LifeX v 5.1

Univariate
analysis and

logistic
regression

Na
PD-L1 and

CD8
expression

GLRLM_
LRHGE, GLZLM_

SZE, SUVmax,
NGLDM_Contrast

23
(34.85%)
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Table 1. Cont.

Author, Ref Year of Pub. Design Sample Size Histology Type of ICIs Histopathology
Correlation Software Model

External
Validation

Cohort

Outcome
Measures

Relevant Radiomics
Indexes RQS

Tankyevych
et al. [30] 2022 R 83 Mixed

histologies Mixed Y PyRadiomics Multivariate
model Na

Survival,
progression,
and durable

clinical benefit

Skewness, median,
NGTDM_Complexity,

GLCM_Autocorrelation
and GLCM_imc1

25 (37.9%)

Tong et al. [31] 2022 R 221 NSCLC (N/S) N/S Y ITK V. 3.8

Clinical-
radiomics

models;
machine
learning

Na CD-8
expression

GLCM_
IMC1, GLSZM_

SZLGE, GLTDM_
LGE, histogram energy,

GLTDM_Entropy

24
(36.36%)

Cui et al. [32] 2022 P 29 NSCLC (mixed
histologies) Toripalimab Y PyRadiomics Logistic

regression Na
Pathological

response of the
primary

Delta SUV-indices; EOT
SUV indices; EOT
MTV/TLG, EOT

uniformity, and EOT
GLDM_

LDHGLE

21
(31.82%)

Wang et al.
[33] 2022 P 30

NSCLC (16
ADC, 12 SCC,
and 2 other)

None ** Y N/S Univariate
analysis Yes

Heterogeneity
and immune

infiltrate
Entropy 16

(24.24%)

Zhao et al. [34] 2023 R 334
NSCLC (163

ADC, 59 SCC,
and 112 other)

Pembrolizumab Y LifeX v 7

Univariate
analysis and

logistic
regression

Na PD-L1
expression GLRLM_RP 20

(30.30%)

Na, not available; * deep-learning-specific scoring was used; ** the correlation with the immune infiltrate suggests that dynamic analysis might be used to evaluate treatment with
ICI; ADC, adenocarcinoma; CD-8, cluster of differentiation 8; EOT, end of treatment; GLCM, gray-level co-occurrence matrix; GLDM_LDHGLE, gray-level-dependence matrix_large
dependence high gray-level emphasis; GLRLM_RP/SRE/HGRE, grey-level run length matrix_run percentage/short-run emphasis/high gray-level run emphasis; GLSZM, gray-level
size-zone matrix; GLTDM, gray-level total displacement matrix; GLZLM, gray-level zone-length matrix; IMC1, informational measure of correlation 1; IQR, interquartile range;
KLD_SZLGE/SRLGE, Kullback–Leibler divergence_short-zone gray-level emphasis/short-run low gray-level emphasis; LGE, low gray-level emphasis; LRHGE, long-run high gray-level
emphasis; LZE, long-zone emphasis; LZLGE, long-zone low gray-level emphasis; MTV, metabolic tumor volume; N, no; NGTDM, neighborhood grey tone difference matrix; N/S,
not specified; NSCLC, non-small cell lung carcinoma; OS, overall survival; P, prospective; PD-L1, programmed death-ligand 1; PFS, progression-free survival; R, retrospective; RQS,
radiomic quality score; SCC, squamous cell carcinoma; SRHGE, short-run high gray-level emphasis; SUVmax, maximum standardized uptake value; SZE, short-zone emphasis; SZLGE,
short-zone low gray-level emphasis; TLG, total lesion glycolysis; Y, yes; ZLNU, zone-length nonuniformity.
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Table 2. Radiomics quality score (v 2.0) of the included studies.

Authors (PMID)
Rater

F.B. F.F. L.M. Consensus

Jiang et al. [20] 22 22 22 22

Polverari et al. [21] 13 13 15 13

Mu et al. [30] 23 26 26 28

Mu et al. [23] 24 25 23 26

Park et al. [24] * 14 16 15 16

Valentinuzzi et al. [25] 26 27 27 22

Li et al. [26] 20 20 20 20

Mu et al. [27] 27 25 25 26

Mu et al. [28] * 27 27 26 26

Zhou et al. [29] 20 24 20 23

Tankyevych et al. [30] 24 25 23 25

Tong et al. [31] 33 21 30 24

Cui et al. [32] 21 21 21 21

Wang et al. [33] 23 18 18 16

Zhao et al. [35] 27 22 22 20
* deep learning analysis.

Of the 15 included papers, 13 were qualified as using conventional radiomics ap-
proaches and 2 as using deep learning radiomics [24,28].

Within the conventional radiomics group, semi-automated segmentation was the
most common approach to ROI identification (10 studies), followed by manual delineation
(three). Multiple-ROI identification with the assessment of feature robustness to inter-
observer variability was carried out in 4 studies out of 15. The total number of features
initially extracted from each ROI ranged from 6 [25] to 3488 [20]; the most common features
were PET semi-quantitative parameters, first-order statistics, and texture features. Feature
selection was performed in the majority of the studies either through one single method or
a combination of them. The least absolute shrinkage and selection operator (LASSO) was
the most popular approach for this task (nine studies), followed by redundancy analysis via
Pearson’s correlation coefficient (five). Multivariate logistic regression was the preferred
model for endpoint prediction (six studies); other approaches were weighted linear models
(three) and random forest classification (two).

The two papers investigating deep learning were based, respectively, on a two-
dimensional small residual convolutional network (SresCNN [27]) and a three-dimensional
CNN [25]. Specifically, in [36], the input to the network was a series of planar boxes from
consecutive slices clipped around the ROI, whereas in [24], it was a cube-shaped volume
around the inspected lesion. Data augmentation was used in both papers.

3.2. Baseline PET for the Prediction of Biomarker Expression

PD-L1 expression status and tumor mutational burden are considered both valuable
predictive factors in NSCLC-patient candidates of ICIs. Nevertheless, a variable number
of patients cannot benefit from ICIs, independently of PD-L1 score, via an unknown
mechanism [36], thus requiring the identification of additional predictive parameters. In
this context, the rising role of radiomics could contribute to identifying novel biomarkers
useful for the correct identification of patients who will most likely benefit from ICIs.

Several papers have investigated the potential role of radiomics to predict PD-L1 ex-
pression status in NSCLC patients before starting ICI treatment [20,26,28,35]. Jian et al. [20]
extracted radiomics features from the [18F]FDG PET/CT of 399 NSCLC patients. After
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reduction with the LASSO algorithm, three predictive models were developed based on
features from CT alone, PET alone, and PET/CT-combined images. For PD-L1 evaluated by
using the SP142 kit, the AUCs for predicting PD-L1 > 1% vs. PD-L1 > 50% were 0.97 vs. 0.80,
0.61 vs. 0.65, and 0.97 vs. 0.77, respectively, for CT alone, PET alone, and PET/CT-combined
images. On the other hand, for PD-L1 evaluated with 28-8 kit, AUC was 0.86, 0.62, and 0.85
for predicting PD-L1 > 1% and 0.91, 0.75, and 0.88 for predicting PD-L1 > 50%, respectively,
for CT alone, PET alone, and PET/CT-combined images.

Li et al. [26] proposed a combined model between radiomics features extracted from
[18F]-FDG PET/CT and clinicopathologic variables (i.e., age, gender, tumor location, histol-
ogy type and grade, carcinoembryonic antigen level, smoking history, and Ki-67). Overall,
255 patients were enrolled and divided into training (n = 170) and validation groups
(n = 85). Eighteen out of eighty radiomics features (six from CT and twelve from PET) were
useful for predicting PD-L1 > 1%, and seven (four from CT and three from PET) for PD-L1
> 50%. The combined model for the prediction of PD-L1 > 1% showed an AUC score of
0.757 (95% CI: 0.699–0.808), whereas for the prediction of PD-L1 > 50%, the AUC was 0.814
(95% CI: 0.761–0.860).

Similarly, Zhao et al. [35] built and validated a radiomics model, a clinical model, and
their combination for predicting PD-L1 expression status (if ≥ 1%) in NSCLC patients.
After the LASSO algorithm and 10-fold cross-validation, two optimal radiomics features
(Gray-level run-length matrix (GLRLM)_Run percentage (RP) and Shape_Sphericity) were
selected. The AUC values of the combined model were significantly higher than those of
the clinical model both in the training (0.718 vs. 0.638, p = 0.004) and validation group
(0.769 vs. 0.640, p = 0.007), while there were no significant differences between the combined
and radiomics models in both the training and validation cohorts. Hence, based on the
combined model, an individualized nomogram was developed, showing good consistency
between the predictive probability and the actual predicted probability in the training
group (χ2 = 1.463, p = 0.481) and the validation group (χ2 = 1.563 p = 0.458), with no
significant differences between different PET/CT scanners.

Moreover, in a recent study, Mu et al. [28] investigated the potential role of a deeply
learned score (DLS) for predicting PD-L1 expression status in 697 NSCLC patients. The
results were satisfying, with an AUC ≥ 0.82 for discriminating PD-L1-positive (if ≥ 1%)
vs. -negative patients. Interestingly, DLS-paired immunohistochemistry derived the PD-L1
status for predicting progression-free survival (PFS) and OS.

The characterization of the tumor microenvironment (TME), including tumor-infiltrating
lymphocytes (TILs) CD3+ and CD8+, represents another independent biomarker, even
though the heterogeneity between primary tumor and metastatic lesions as well as the
difficulty of biopsy in some patients makes its use unsatisfactory for monitoring the efficacy
of ICIs [34,37]. Two studies explored the potential role of radiomics to predict the com-
position of TME [24,31]. Park et al. [24] developed a deep learning model to estimate the
TME in lung adenocarcinoma using data from the [18F]FDG PET/CT and RNA sequencing
of 93 patients. The cytolytic activity score (CytAct) was used as an indirect biomarker
for TME, as it represents CD8+ T-cell activity, and it is easy to calculate. The model was
validated in two independent cohorts (n = 43 and n = 16, respectively) and showed a
positive correlation with the CytAct of RNA sequencing from both (rho = 0.32 and 0.47,
respectively). On the other hand, in the ICI cohort, the predicted CytAct was inversely
correlated with tumor size after ICI treatment (rho = −0.54). In addition, a higher minimum
predicted CytAct was also associated with prolonged PFS and OS (HR 0.25, p = 0.001 and
HR 0.18, p = 0.004, respectively).

More recently, Tong et al. [31] applied a machine learning model to evaluate the
TME phenotype combining [18F]FDG PET/CT data and clinical characteristics of NSCLC
patients from Daping Hospital (DPH) and The Cancer Imaging Archive (TCIA). First, the
Delong test demonstrated that the PET/CT model outperformed the CT alone model to
predict the CD8 expression. Later, PET/CT radiomics clinical model, integrating significant
clinical features with Rad score, was able to predict TME status in NSCLC (training AUC of
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0.932 and testing AUC of 0.920), showing better performance compared to the clinical and
radiomics models separately (AUC = 0.932 vs. 0.868 vs. 0.907, respectively). In addition, the
radiomics clinical combined model was also applied in the TCIA cohort for predicting the
TME phenotype. Based on the combined model, patients were classified into two predicted
CD8 groups (high vs. low). The first group showed a significantly higher immune score
and more activated immune pathways than the second group, implicating better response
when treated with ICI.

3.3. The Prediction of Response to Immunotherapy

Radiomics could contribute both to predicting the response to immunotherapy and
identifying therapy-responsive patients accurately and early: from the clinical point of
view, each additional month of ineffective therapy can be crucial for metastatic NSCLC
patients and costly for public health.

Thus far, the radiomics potentialities from baseline PET as predictive parameters
have been tested by two authors [21,28]. Mu et al. [28] published one of the first studies
investigating the predictive role of radiomics in NSCLC patients treated with ICI. The
authors extracted radiomics features from baseline CT, PET, and PET/CT-fused images
and found that characteristics related to heterogeneity (i.e., short-run low gray emphasis or
short-zone emphasis) could reliably predict durable benefit from ICI treatment (AUC of
0.86 for training, 0.83 for retrospective, and 0.81 for prospective test cohorts). Nevertheless,
the main limitation of this study was the lack of PD-L1 expression data for many enrolled
patients, hindering a direct comparison of the authors’ model with the PD-L1 status.
Polverari et al. [21] found that NSCLC patients with elevated TLG, volume, and high tumor
heterogeneity in asymmetry (i.e., skewness) and kurtosis were more likely to experience
disease progression during ICI treatment, although the lack of a robust validation cohort
represents the main limitation of this study.

Radiomics features from serial PET/CT scans before, during, or after ICIs were as-
sessed by three authors [25,30,32]. In 2020, Valentinuzzi et al. [25] created a [18F]FDG PET
radiomics signature (iRADIOMICS) consisting of the most promising radiomics features
extracted by the [18F]-FDG images and able to predict the response of metastatic NSCLC
(stage IV) to pembrolizumab compared to the clinical standards (PD-L1 immunohisto-
chemistry and iRECIST). Thirty patients receiving pembrolizumab were scanned with
[18F]FDG PET/CT at baseline and months 1 and 4. Response to therapy was defined
as OS > 14.9 months. iRADIOMICS (baseline), iRECIST (months 1 and 4), and PD-L1
(baseline) signatures were constructed using univariate or multivariate logistic regression
analyses. At baseline PET, none of the standard volume-based features (volume and SU-
Vmax) were able to discriminate responders from non-responders. On the contrary, the
predictive power of the baseline iRADIOMICS signature was higher than the PD-L1 signa-
ture (AUC of 0.81 vs. 0.60) and comparable to month 1 and month 4 iRECIST signatures
(AUC of 0.79 and 0.81, respectively), allowing earlier identification of the response by at
least one month. To further validate the predictive ability of all models, the accuracy of pre-
dictions was calculated using 5-fold cross-validation. Multivariate baseline iRADIOMICS
was found to be superior to the current standards (PD-L1 and iRECIST signatures). Both
conventional parameters and radiomics features extracted from the month 1 and month 4
PET/CT images were not significantly different between responders and non-responders,
with the only exception of the volume of the lesion after 1 month from the start of ICIs
(p = 0.035, AUC = 0.75 (0.55–0.95)). Despite these promising data, authors analyzed only
primary tumors yet neglected lymph nodes (LN) and distant metastases (DM).

Tankyevych et al. [30] retrospectively evaluated 83 patients with locally advanced
or metastatic NSCLC treated with immunotherapy. They aimed to assess the ability of
radiomics features from baseline (PET/CT0) and both early (PET/CT1 = 6–8 weeks after
the initiation of therapy) and late (PET/CT2 = 3 months after the initiation of therapy)
follow-up [18F]FDG PET/CT scans as well as their evolution (delta radiomics) to predict
durable clinical benefit (DCB), progression (according to PERCIST at the first restaging and
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iPERCIST and RECIST1.1 after 3 months of treatment), response to therapy, PFS, and OS.
Seven multivariate models with different combinations of clinical and radiomics parameters
(CP, PET, CT, PET-CP, CT-CP, and PET-CT-CP) were trained on a subset of patients (75%)
using different radiomics software. At baseline (PET/CT0), SUVs, MTV, and TLG were
not able to significantly discriminate between patients with a progression of disease or
DCB or survival; differently, several radiomics and delta radiomics parameters predicted
the outcome with better performance than clinical and conventional PET parameters
(AUC > 0.8), with slightly better performance of the parameters extracted from baseline
(PET/CT0) and at month 2 (PET/CT1) PET/CT than the delta radiomics parameters.
Overall, PET and CT parameters extracted from PET/CT1 were greater predictors than
those at baseline. Furthermore, several multivariate models performed well, especially
with the radiomics data extracted from PET/CT0 imaging, for both progression prediction
(AUC of 1 and 0.96) and DCB (AUC of 0.85 and 0.83 with the PET-CT-CP model).

Recently, Cui et al. [32] performed a prospective study on 30 stage III NSCLC patients
(without brain metastasis according to MRI) who received [18F]FDG PET/CT baseline
(13 patients) and preoperative scans (29 patients) three weeks after the completion of
neoadjuvant treatment (toripalimab + chemotherapy). Lung lesions were delineated by
three different nuclear medicine physicians. A total of 6 conventional PET parameters,
102 radiomics features (using the Python package Pyradiomics), and delta features were
included in the analysis. The radiological and metabolic responses, in terms of complete
pathological response (CPR), were assessed by iRECIST and iPERCIST, respectively; the
major pathological response (MPR) was evaluated in the surgical specimen. Twenty patients
achieved MPR, and sixteen of them achieved CPR. For delta PET features, the distribution
of five SUV statistics features (SUVmax, SUVpeak, SULmax, SULpeak, and TLG) and
one radiomics feature (Delta-original-GLDMDependenceNonUniformity—Delta-GLDM-
DN) significantly differed both in CPR and non-CPR, MPR, and non-MPR subgroups.
No significant correlation between either the radiological or the pathological response or
among PD-L1, driver gene status, and baseline PET features was found. At univariate
analysis, five SUV parameters and two radiomics features were significantly associated with
pathological response, while at the multivariate analysis, SUVmax, SUVpeak, SULpeak,
and End-GLDM-LDHGLE were independently associated with CPR. Moreover, SUVpeak
and SULpeak performed better than SUVmax and SULmax for MPR prediction. Despite
the absence of external validation and the scarce cohort, this study appears remarkable
for the homogeneous nature of the evaluated sample and the comprehensive number of
PET and clinical data evaluated. Again, the data from the baseline PET resulted as less
informative than those obtained from preoperative PET (post-immunotherapy PET), which
might provide additional valuable information on the TME and heterogeneity needed to
differentiate residual tumor cells and influential immune cells [33].

3.4. The Prediction of Adverse Events Correlated with Immunotherapy by [18F]FDG PET/CT
and Radiomics

Mu and colleagues [22] evaluated the role of radiomics analysis in predicting the
occurrence of irAEs in 146 patients with histologically confirmed advanced-stage (IIIB
and IV) NSCLC who underwent [18F]FDG PET/CT 6 months before treatment initiation.
Radiomics features extracted from baseline PET, CT, and PET/CT-fusion images were
used to generate a radiomics score (RS) to quantify the patient risk for developing irSAE.
Indeed, a nomogram model to predict irSAE was developed. The authors found that the
radiomics nomogram, incorporating the RS, type of immune checkpoint blockade, and
dosing schedule, was able to predict irSAE with an AUC of 0.92 (CI: 0.86, 0.99) and 0.88 (CI:
0.78, 0.97) in the training test and in prospective validation cohorts, respectively.

In another study [27], the same group applied radiomics analysis on [18F]FDG PET/CT
images in 175 patients with NSCLC (stage IIIB and IV) to specifically predict the risk of
cachexia, a syndrome that induces progressive functional impairment accounting for
20% of cancer-related deaths [38] and promotes primary resistance to ICI. The authors
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evaluated the durable clinical benefit (DCB; PFS > 6 months) following ICI considering
PFS and OS as main endpoints. As a result, the RS was significantly different between
cachexic and non-cachexic patients in the training cohort (p < 0.001), which was validated
in the test cohort (p = 0.003) and external test cohort (p = 0.04). The RS predicted the
risk of cachexia with AUCs ≥ 0.74 in the training, test, and external test cohorts. PFS
and OS were significantly shorter among patients with higher radiomics-based cachexia
probability in all three cohorts. Furthermore, the RS identified patients with DCB reaching
AUCs ≥ 0.66 in all three cohorts. In addition, the authors observed that body mass index
(BMI), Eastern Clinical Oncology Group (ECOG), distant metastasis, and RS were significant
and independent predictors of cachexia.

4. Discussion
4.1. Clinical Assessment

As has emerged from the present systematic review, few data are now available about
the utility of radiomics in NSCLC candidates or those currently undergoing immunotherapy.
Indeed, only 15 papers were selected, and the content for each of them was highly variable.

Some papers discussed the utility of radiomics or deep learning analysis to predict the
expression of PD-L1 or to evaluate the TME, with controversial results. Indeed, only one
study performed by using deep learning analysis demonstrated an increase in the AUC for
the prediction of PD-L1 expression as compared to the standard current criteria.

Moreover, only two papers aimed to predict the response to immunotherapy by using
radiomics. However, it is important to have in mind that the complexity of the available
treatment landscape and effects on tumor biology may introduce additional challenges
and limitations in data analysis and interpretation, which should be acknowledged and
addressed in the study design and reporting.

Finally, some efforts have been made for understanding if radiomics can overcome
some criticisms in the evaluation of response to immunotherapy. Again, few data are
now available, and in two reports, the authors agreed that rather than baseline PET/CT,
radiomics analysis from the first scan after the start of immunotherapy or before surgery
can be helpful in predicting the success of the therapy.

4.2. Radiomics Evaluation

Previous works have suggested that deep learning may achieve better performance
than conventional radiomics at the cost, however, of interpretability issues [39,40]. Notably,
most of the studies considered in this review (13 out of 15) were based on conventional
radiomics and only two on deep learning. This is partly the consequence of deep learn-
ing being relatively newer and more complex than conventional radiomics. In addition,
whereas significant work has been done towards the standardization of image biomarkers
in conventional radiomics [23,41], we cannot affirm the same for deep learning. We should
also consider that conventional radiomics is possibly more affordable than deep learning
in terms of computational resources and data availability and that the former can rely on
user-friendly standalone packages (e.g., LIFEx) that do not require high-end coding skills.

4.3. Limitations

One critical point of all the selected studies is that none of them attempted comparing
radiomics vs. deep learning in terms of prediction accuracy, interpretability, and/or
robustness. Likewise, no studies addressed the possibility of combining the two ap-
proaches. Finally, the lack of data sharing, including images, clinical meta-data, and/or
code/algorithms, is a limitation that should be addressed in future research.

Independently of their main methodology, all the included studies in this review
achieved a low RQS: indeed, none scored above 50%, and most of them averaged around
one-third of the available points. The “top-tier” papers were all published by the same
group [23,27,38,42], which developed and applied a method to investigate various outcomes
of NSCLC patients treated with immunotherapy. The quality issue of radiomics research is
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well known and has been reported in past reviews [43,44]. Namely, the scores reflect the
way RQS is structured, rewarding mainly the prospective studies, as well as the presence of
multiple training and validation cohorts. Moreover, many of the RQS checkpoints are tied
to a series of procedures related to textural data harmonization and statistical optimization,
which were sparsely implemented by the considered studies. Finally, one key point is the
level of automation provided by the presented radiomics technique: to obtain the highest
score, the method should be able to provide a prediction for the chosen outcome reliably
and without human intervention [45]. The presented radiomics analyses are still far from
such a lofty goal, even though some of them could be further developed past their current
automation level. In general, the requirements of the RQS are stringent; moreover, the
second version of the test bench added further requirements and statistical fine-tuning to
the score composition. Indeed, striving for data harmonization, statistical integrity, and
external validation could be the only way to progress radiomics. In our opinion, three key
points should be addressed when developing radiomics research studies. First, multi-center
prospective studies should be preferred since they ensure data homogeneity and foster
higher external reproducibility of the studies. In this setting, long-term thinking and the
allocation of resources should be favored: large, well-planned prospective studies with
multiple external validations could provide the most valuable data. The second version of
RQS added the international nature of a multi-center study as a further checkpoint, which
is a very important issue since the characteristics of the subjects can vary significantly
across populations. The scoring is, in fact, affected by the study design (whether it is
single-, multi-, or international multi-center) and whether the training dataset comes from
different centers as well as the existence of prospective—ideally multi-center—validation
arms. Secondly, the key radiomics characteristics in predicting a specific outcome should
be identified and their relationship with their biological counterparts investigated [46].
Radiomics “signatures”, while producing an easy-to-read scoring system, offer no insight
into the reasons that cause radiomics to be effective in a particular clinical task. Moreover,
their results can be hard to reproduce [47,48]. Identifying the key variables (such as entropy,
homogeneity, and second-order parameters) could allow linking these characteristics to
specific clinical features (e.g., vascularization and tumor response) and even predict the
effectiveness of a target therapy in specific cases [29].

4.4. Future Perspectives

In the evaluation of TME, an interesting role for radiomics analysis of [18F]FDG PET
images could be the assessment of the so called “T-cell exhaustion” phenomenon, which
occurs when antigens persist in tumors, and CD8+ T cells exhibit the progressive loss of
effector functions and high expression of inhibitory receptors such as PD-1, TIM-3, and
many others [49,50], which dampen effector immunity and cause poor responsiveness
to ICI therapy. Exhausted T cells have been reported to exhibit metabolic insufficiency,
with suppressed glycolysis and restricted glucose uptake [51,52]. It might be assumed that
metabolic characteristics of T-cell exhaustion might be reflected by the radiomic features of
[18F]FDG-PET images, as already demonstrated by Zhang et al. [14] in a tumor-bearing
mice model of lung cancer.

Furthermore, the opportunity to create models that will couple radiomics to more
holistic factors such as demographic information (e.g., gender, age, ethnic origin, and
geographical location), personal habits (e.g., smoking and occupational exposure), pre-
existent clinical conditions (e.g., diabetes, obesity, and COPD), genetic features (e.g., family
history, gene expression, and genetic alterations), and tumor biology (e.g., histopathology,
immunohistochemistry analysis, and marker expression) will be useful in reducing the
selection and imaging performance bias.

In the future, the identified key radiomics features could be parametrized and shown to
the clinician as a functional visual map, which could be overlaid on the standard imaging [1].
Such a tool would be pivotal to ensure the transition of radiomics to the clinical setting,
with multidisciplinary tools that could be read by all actors participating in the patients’
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treatment process, such as radiologists, surgeons, radiation oncologists, nuclear medicine
physicians, and medical physicists. Such a path could replicate the success of functional
imaging achieved by PET in the latest decades.

5. Conclusions

In conclusion, radiomics is promising for the evaluation of TME and for the prediction
of response to immunotherapy, but some limitations should be overcome. First of all,
the study design should be made by using a specific methodology or criteria. Second,
prospective studies are required in order to overcome heterogeneity. Finally, the inclusion in
clinical practice of a simple tool able to adequately analyze images has become mandatory
for its larger use. Prospective and well-designed studies, by including a large population,
are also mandatory.
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