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ABSTRACT
Mining human-brain networks to discover patterns that can be used

to discriminate between healthy individuals and patients affected by

some neurological disorder, is a fundamental task in neuroscience.

Learning simple and interpretable models is as important as mere

classification accuracy. In this paper we introduce a novel approach

for classifying brain networks based on extracting contrast sub-
graphs, i.e., a set of vertices whose induced subgraphs are dense

in one class of graphs and sparse in the other. We formally define

the problem and present an algorithmic solution for extracting

contrast subgraphs. We then apply our method to a brain-network

dataset consisting of children affected by Autism Spectrum Dis-

order and children Typically Developed. Our analysis confirms

the interestingness of the discovered patterns, which match back-

ground knowledge in the neuroscience literature. Further analysis

on other classification tasks confirm the simplicity, soundness, and

high explainability of our proposal, which also exhibits superior

classification accuracy, to more complex state-of-the-art methods.
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1 INTRODUCTION
The development of magnetic resonance imaging (MRI) techniques

has paved the way to connectomics [32], i.e., modeling the brain

as a network, allowing to tackle interesting neuroscience research

questions as graph-analysis problems [6].

A connectome is a map describing neural connections between

brain regions of interest (ROIs), either by observing anatomic fiber

density (structural connectome), or by computing pairwise correla-

tions between time series of activity associated to ROIs (functional

connectome). The latter approach, known as functional magnetic

resonance imaging (fMRI), exploits the link between neural activity

and blood flow and oxygenation, to associate a time series to each

ROI. A brain network can then be defined by creating a link be-

tween two ROIs that exhibit co-activation, i.e., strong correlation in
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Figure 1: Example of real-world contrast subgraphs ex-
tracted from a brain-network dataset consisting of 49 chil-
dren affected by Autism Spectrum Disorder (class ASD) and
52 Typically Developed (class TD) children. Top-left: the con-
trast subgraph TD-ASD. Bottom-left: the contrast subgraph
ASD-TD. On the right, scatter plot showing for each individ-
ual the number of edges present in the subgraph induced by
the contrast subgraph TD-ASD (x-axis) and by the contrast
subgraph ASD-TD (y-axis). Details are given in Section 1.2
and Section 5.

their time series. An important problem in this domain is to identify

connection patterns that might be associated to specific cognitive

phenotypes or mental dysfunctions [10]. Given fMRI scans of pa-

tients affected by a mental disorder and scans of healthy individuals,

the goal is to discover patterns in the corresponding connectomes

that explain differences in the brain mechanism of the two groups.

Identifying such patterns might provide important insight of the

disorder and hint strategies to improve the condition of patients.

This task can be seen as a graph classification problem [25, 38, 42].

We are given two groups of individuals, a condition group A and a

control group B. Each individual is represented by a brain network,

i.e., a graph Gi = (V , Ei ), where each graph is defined over the

same setV of vertices (corresponding to the brain ROIs). The set of

edges Ei represents the connections, either structural of functional,
between the ROIs observed Gi . The goal is to infer a model that,

given an unseen graph Gn = (V , En ), predicts whether it belongs
to class A or B.

Literature on graph classification is mostly based on kernel meth-

ods [31], graph embeddings [1, 16, 27], and deep learning [22, 39, 43].

The bulk of these methods for graph classification (with few excep-

tions discussed in Section 2), however, is not well-suited for the

task of classification in brain networks, for the following reasons.
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Node-identity awareness: existing approaches are designed

to find structural similarities among the input graphs, with-

out taking into consideration the correspondence of nodes
among the different networks, i.e., the fact that a specific

vertex id corresponds to the same brain ROI in all the input

networks. Not in every application domain it is possible to

identify corresponding nodes among different graphs. If such

a property holds, however, it is crucial to take it into account

— just ignoring it represents a fatal loss of information.

Black-box effect: the inferred models are complex and diffi-

cult to understand and to explain why a certain prediction is

made. In this specific application domain, the simplicity and
explainability of the models are of uttermost importance. In
fact, the neuroscientist needs to understand which are the

ROIs and their interactions that best discriminate between

patients and healthy individuals.

High number of parameters: a third important limitation is

the very high number of parameters that need to be fine

tuned, making the existing approaches too complex to be

adopted by non-experts, especially in application domains

where the number of examples is inherently small
1
and over-

fitting can be hard to avoid.

1.1 Our proposal and contributions
We propose a simple and elegant, yet effective model, based on

extracting contrast subgraph, i.e., a set of vertices whose induced
subgraph is dense in the graphs of classA and sparse in the graphs

of class B. Our model is extremely simple, it has only one parame-

ter (governing the complexity of the model), and it has excellent

interpretability. Although it is not the main assessment criteria,

our model also exhibits very good classification accuracy in several

different brain-classification tasks, outperforming more complex

models which have several parameters and long training time.

Our main contributions can be summarized as follows:

• We introduce a novel problem aimed at extracting contrast

subgraphs from two classes of graphs, defined on the same

set of vertices (Section 3). We study the complexity of the

problem and propose algorithmic solutions (Section 4).

• We apply our method to a brain-network dataset consisting

of children affected by Autism Spectrum Disorder and chil-

dren Typically Developed (Section 5). The analysis of this

dataset confirms the interestingness, simplicity and high ex-

plainability of the patterns extracted by our methods, which

match domain knowledge in the neuroscience literature.

• We further assess the classification performance of our

method by comparing it against state-of-the-art methods,

on several brain-classification tasks. The results show that

our method, despite its simplicity, outperforms those more

complex methods.

We next provide a preview of the type of patterns that our ap-

proach can extract from a real-world dataset.

1
Each data point requires an individual undergoing through a scan, which is an

expensive operation.

1.2 A preview of the results
A preview of the type of structures and classification capabilities of

our method is presented in Figure 1. The data are obtained from the

Autism Brain Imagine Data Exchange (ABIDE) project [9]; more

details about data are provided in Section 5. The specific dataset con-

tains 101 brain networks: 49 patients affected by Autism Spectrum
Disorder (class ASD) and 52 Typically Developed (class TD) individ-
uals. Each individual is represented by an undirected unweighted

graph defined over 116 vertices, each corresponding to a ROI.

On the top-left of Figure 1 we illustrate the contrast subgraph

TD-ASD (the subgraph that maximizes the difference between the

number of edges in the class TDwith respect to the samemeasure for

class ASD); on the bottom-left we illustrate the contrast subgraph

ASD-TD. Vertex size represents the importance of the vertex in

discriminating the two classes. Additionally, the figure depicts the

edges whose discrimination capability is above a given threshold.
2

By inspecting the two subgraphs, we can observe an evident

complementarity: TD-ASD involves mainly connections between

cerebellum, prefrontal cortex, posterior parietal cortex, inferior

and middle temporal gyri, while ASD-TD only exhibits connections

between striatum and limbic cortex. These first-sight findings are

consistent with recent literature [19, 24]. Furthermore, the scatter

plot on the right-hand side of Figure 1 reports for each individual (or

graph) in the dataset, the number of edges present in the contrast

subgraph TD-ASD (x-axis) and in the contrast subgraph ASD-TD (y-
axis). We can see that these very simple and explainable measures,

already provide a good separability of the two classes. For instance,

the horizontal dotted line represents the following rule:

If an individual exhibits more than 62 edges among the 15
vertices of the contrast subgraph ASD-TD, then there are high
chances that the individual is affected by ASD.

The diagonal dotted line corresponds to another simple rule:

If the number of edges induced by the contrast subgraph ASD-
TD is smaller than half of the number of edges induced by the
contrast subgraph TD-ASD, then there are high chances that
the individual is not affected by ASD.

Simple rules like these are self-explainable and easily communi-

cable to the neuroscientists for further investigation.

2 RELATEDWORK
Graph classification. Graph classification, i.e., the task of build-

ing a model able to predict the target class for unseen graphs accu-

rately, is receiving increasing attention as witnessed by the many

approaches proposed in the last few years in the literature.

Shervashidze et al. [31], propose a graph kernel based on the

Weisfeiler-Lehman test of graph isomorphism. Narayanan et al. [27]

propose graph2vec, a method that considers rooted subgraphs as

the components that define a specific graph and performs an em-

bedding under this assumption. Adhikari et al. [1] propose sub2vec,
whose aim is to learn subgraph embeddings, preserving structural

and neighborhood properties. In our experimental comparison in

2
As we explain in the next section, a contrast subgraph is defined exclusively by a set

of vertices. However, in these illustrations we also highlight the most relevant edges.
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Section 5 we compare the classification accuracy obtained by our

method against state-of-the-art baselines [1, 27, 31]. As previously

discussed, these methods are not node-identity aware: they do not

take into consideration the correspondence of nodes in the different

networks. Not in every application domain it is possible to identify

corresponding nodes among different graphs, but in application

domains (such as brain network classification) in which this is pos-

sible, not taking it in consideration is an important limitation. To

the best of our knowledge, the only unsupervised embedding for

networks with node identity awareness was proposed by Gutierrez

et al. [16]: we also compare with this method in our experiments.

If the task of graph classification is something that arose recently,

application of it to the domain of brain networks is a growing line

of research (see [10] for a comprehensive survey). Recently several

researchers [25, 26, 38] have proposed the use of deep learning ar-

chitectures for the same problem we tackle in this paper, i.e., brain

networks classification. However, these methods suffer from the

black-box curse as they have very little interpretability. Moreover,

they have very high number of parameters that need to be fine

tuned and long training time. A recent work by Yan et al. [42],

still based on neural networks, also focuses on explainability. Their

proposed architecture has a node-grouping layer before the convo-

lutional layer: it is claimed that such node-grouping layer might

provide insight in the most predictive brain subnetworks w.r.t. the

classification task at hand. Direct comparisonwith [42] is not doable

as their pipeline starts directly from the timeseries associated to

the ROIs, and early on splits the computation in two tracks: the

positive and the negative correlation track. Instead, the input to the

problem studied in this paper, is simply two groups of graphs.

Contrast and dense subgraphs. Contrast, sometimes called dis-

criminative, subgraphs have been approached in the graph mining

literature mostly as a frequent subgraph mining task [18, 33, 34, 41]:

in this context the discriminative structure is a typically small motif

which is defined over node-labelled graphs (e.g., a triangle h-h-o),
that appears frequently in one set of graphs but infrequently in

another set of graphs. Frequent subgraph discovery usually requires

to enumerate all the subgraphs satisfying the search criteria, and

it is more appropriate for applications in bioinformatics or chem-

informatics dealing with large databases of proteins, molecules or

chemical compounds. Counting frequency requires to solve many

subgraph isomorphism instances, and as such it is computation-

ally challenging. This part of the literature is rather far from the

problem studied in this paper, as our structure of interest is a set of

vertices whose induced subgraph is dense in a class of graphs and

sparse in another: we do not have any notion of frequency, nor we

require node-labels, nor need to solve subgraph isomorphism.

Closer to our work is, instead, the literature on dense-subgraph

discovery [14]. Among the many notions of density studied in the

literature, the most popular one is the average-degree density, as the
problem of extracting the subgraph maximizing such density (com-

monly referred to as the densest subgraph) is solvable in polynomial

time [15] and admits a linear time
1

2
-approximation algorithm [2].

As discussed in Section 4 an alternative notion of dense subgraph

is that of optimal quasi-clique introduced by Tsourakakis et al. [36],

which has been shown to return denser subgraphs and with smaller

diameter than the so-called densest subgraph.

Several recent works have dealt with the problem of extracting

dense subgraphs from a set of multiple graphs sharing the same

vertex set [5, 12, 17, 29, 40], however none of these deal with ex-

tracting contrast or discriminative subgraphs. The work probably

most related to ours is due to Yang et al. [44], which study the

density contrast subgraph, i.e., the set of vertices whose maximize

the difference between the density of its induced subgraphs in two

input graphs GA
and GB

. The work of Yang et al. [44] differs from

ours as they adopt, as measure of density, the average degree [15]
and graph affinity [8]. They show that their problem is equivalent to

the densest subgraph problem with negative edges, which is shown

to be NP-hard and hard to approximate. In our work, instead of

adopting the densest subgraph definition — as done by Yang et

al. [44] — which normalizes by the size of the subgraph S , we follow
Tsourakakis et al. [36] and we balance the total edge weight with

the term α
( |S |
2

)
. The parameter α also allows us to control the size

of the extracted contrast subgraphs. Finally, Yang et al. [44] do not

consider the case in which the input is constituted by many graphs

in two classes and its potential application in graph classification.

3 PROBLEM STATEMENT
Notation.We consider a datasetD of observations, where the i-th
observation corresponds to a graph Gi = (V , Ei ). Without loss of

generality we assume that all observation graphs are defined over

the same set of vertices V ,
3
i.e., brain regions of interest, while the

edge set Ei represents connections between vertices in the obser-

vation graph Gi . For sake of simplicity of presentation we consider

each Gi to be unweighted, even if the model can straightforwardly

deal with weighted input graphs. The dataset D is divided in two

groups: the condition group A = {GA
1
, . . . ,GA

rA } and the control
group B = {GB

1
, . . . ,GB

rB }.

We aggregate the information in the groups A and B in two

summary graphs GA = (V ,wA ) and GB = (V ,wB), respectively.
The summary graphs GA and GB are undirected and weighted

graphs, defined over the same set of vertices V as the original

observation graphs, while wA,wB : V × V → R+ are weight

functions assigning a value to each pair of vertices and summarizing

the edges of the observation graphs in the groups A and B.

In one particular instantiation, given two vertices u and v in V ,

we definewA (u,v) to be the fraction of graphs GA
i ∈ A in which

u is incident to v , that is,

wA (u,v) =
1

rA

���GA
i ∈ A s.t. (u,v) ∈ EAi

��� , (1)

and similarly forwB . Note that according to this weighting function
wA (u,v) ∈ [0, 1] with wA (u,v) = 0 denoting the case in which

there is no relationship (i.e., no edge) between u and v in GA .

Alternative definitions of the weight functions wA and wB are

possible. For instance, if the input graphs are all weighted, with

wA
i (u,v) denoting the weight of the edge (u,v) inGA

i , then we can

define:

wA (u,v) =
1

rA

∑
GA
i ∈A

wA
i (u,v).

3
When the observation graphs have different set of vertices, we can consider that they

are defined on the union of all vertex sets.
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Figure 2: Run-through example of two input graphsGA and
GB . Please refer to Example 1, 2, 3, and 4 for different defi-
nitions of contrast subgraphs.

As another example, one could require the summary graph itself

to be binary, i.e.,wA (u,v) ∈ {0, 1}, for instance by considering if

the number of edges present in the observation graphs is larger

than a given threshold.

Given a subset of vertices S ⊆ V , we consider the subgraph

induced by S in the summary graphs GA and GB . We define

eA (S) =
∑

u ,v ∈S
wA (u,v)

the sum of edge weights in the subgraph of GA induced by the

vertex set S . In the case of summary graphs with binary weights, the

quantity eA (S) corresponds to the number of edges in the subgraph

induced by S in the summary graph GA . Analogous definitions

apply to GB .

Problem definition. The basic definition of the contrast subgraph

problem requires to find a subset of vertices whose induced sub-

graph is dense in a summary graph GA and sparse in summary

graph GB .

Problem 1 (Contrast subgraph). Given two sets of observation
graphs, i.e., the condition group A = {GA

1
, . . . ,GA

rA } and the con-
trol group B = {GB

1
, . . . ,GB

rB }, and corresponding summary graphs
GA = (V ,wA ) andGB = (V ,wB), we seek to find a subset of vertices
S∗ ⊆ V that maximizes the contrast-subgraph objective

δ (S) = eA (S) − eB(S) − α

(
|S |

2

)
=

∑
u ,v ∈S

(
wA (u,v) −wB(u,v) − α

)
,

where α ∈ R+ is a user-defined parameter.

The last term of the objective, i.e., −α
( |S |
2

)
, is a regularization

term penalizing solutions of large size: the larger the value of α ,
the smaller is the optimal contrast subgraph. Note that, to avoid

the naïve solution, S∗ = ∅, we have to ensure that

0 < α < max

u ,v ∈V

(
wA (u,v) −wB(u,v)

)
,

otherwise we would encounter the case in which every pair of

vertices is detrimental for the objective function.

Example 1. Figure 2 provides an example of two summary graphs
GA andGB . In this example we assume that the summary graphs are
unweighted, i.e., the edge weight function is binary. For α = 0.8 the
contrast subgraph distinguishing GA from GB is given by the set of
vertices S3 = {1, 2, 4}. In particular, S3 forms a clique in GA and an

independent set inGB . The contribution of each edge to the objective
function is 1 − 0 − 0.8 = 0.2, giving a total value for the objective
δ (S3) = 0.6. Note that the set S4 = {1, 2, 4, 5} is a larger clique in
GA , but it induces an edge inGB . In this case, the contribution to the
solution S4 is 0.2 for all 5 edges appearing only in GA , and −0.8 for
the edge appearing in both GA and GB , giving a total value for the
objective δ (S4) = 0.2.

Example 2. In the example of Figure 2, with α = 0.5, the contrast
subgraph distinguishing GA from GB is given by the set of vertices
S5 = {1, 2, 4, 5, 6}. In this case, the contribution in the objective of
each edge appearing only toGA (there are 7) is 1−0−0.5 = 0.5, while
an edge appearing in both graphs (there is only one edge) contributes
−0.5, and the same for an edge that does not appear in none graph
(there are 2 edges). Finally, an edge appearing only inGB (there are no
such edge in the subgraph induced by S5) would contribute −1.5. Thus,
the total value of the objective is δ (S5) = 2. Note that S4 = {1, 2, 4, 5}
achieves the same score.

The last two examples show the function of the parameter α ,
which is that of governing the complexity of the extracted patterns.

As any other parameter governing the complexity of a model, the

“best” value of α might depend on the specific input dataset, as

well as on trading-off different requirements of the analyst: for

instance, when explainability is important, a smaller contrast sub-

graph (larger α ) might be desirable, but if it is too small might end

up being not interesting.

So far we have asked to find the contrast subgraph that distin-

guishesGA fromGB . Note, however, that our objective function is

not symmetric with respect toGA andGB . Thus, one can consider

the same problem for finding the contrast subgraph that distin-

guishes GB from GA . Indeed, in our experiments in Section 5 we

always consider both contrast subgraphs.

Example 3. In the example of Figure 2, with α = 0.8, the optimal
contrast subgraph that distinguishes GB from GA is a single edge
appearing inGB and not inGA . Thus, any of the following sets is an
optimal solution: {1, 8}, {1, 3} or {2, 3}.

Symmetric variant. In some cases the analyst may want to find a

subgraph having the largest absolute difference, in terms of edge

weights, between GA and GB , disregarding on whether the larger

weights are on one side or the other. To address this case, we con-

sider a symmetric variant of Problem 1.

Problem 2 (Symmetric contrast subgraph). Given two sets of
observation graphs, i.e., the condition groupA = {GA

1
, . . . ,GA

rA } and
the control group B = {GB

1
, . . . ,GB

rB }, and corresponding summary
graphs GA = (V ,wA ) and GB = (V ,wB), we seek to find a subset
of vertices S∗ ⊆ V that maximizes the contrast-subgraph objective

σ (S) =
∑

u ,v ∈S

(���wA (u,v) −wB(u,v)��� − α ) ,
where α ∈ R+ is a user-defined parameter.

Example 4. In Figure 2 the optimal symmetric contrast subgraph
(Problem 2), for α = 0.5, is {1, 2, 3, 5}. This vertex set induces a clique
in the union of the two summary graphs, such that each edge belongs
only to either GA or GB , so that every pair of vertices produces a
positive contribution to the objective function of Problem 2.
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4 COMPLEXITY AND ALGORITHMS
To tackle the problem of extracting a dense subgraph from a given

unweighted graph, Tsourakakis et al. [36] introduce the notion of

edge-surplus fα (S) for a subgraph induced by a set of vertices S ⊆ V ,

which they defined as follows

fα (S) =

{
0, S = ∅;

д(e[S]) − αh(|S |), otherwise,
(2)

where e[S] denotes the number of edges in the induced subgraph,

α > 0 is a fixed penalty parameter and д and h are two strictly-

increasing functions. The rationale behind the definition of edge

surplus is to counterbalance two opposite forces: the term д(e[S])
favors subgraphs with many edges, whereas the term αh(|S |) pe-
nalizes large subgraphs. They propose the problem of extracting

the subgraph with maximum edge surplus as a general class of

dense-subgraphs problems.

Tsourakakis et al. [36] then focus on a specific instance of the

general problem, i.e., д(x) = x and h(x) =
(x
2

)
, which they dub as

OptimalQuasi-Cliqe (OQC) problem. They propose an approxi-

mation algorithm for the OQC problem, which was later shown to

be NP-hard in [35].

More recently, Cadena et al. [7] extend the OQC setting, and

consider extracting dense subgraphs in streaming signed networks
for event detection. They generalize OQC to weighted graphs and

edge-dependent penalty parameter α :

Problem 3 (Generalized optimal qasi-cliqe (GOQC) [7]).

Given a graph G = (V , E), and functions w(u,v) and α(u,v), for
each pair of vertices u,v ∈ V , find a subset of vertices S ⊆ V that
maximizes

f (S) =
∑

u ,v ∈S
w(u,v) − α(u,v).

Cadena et al. prove that Problem 3 is NP-complete and NP-hard
to approximate within a factor O(|V |1/2−ϵ ) [7, Theorem 1]. Then

they develop an algorithm using a semidefinite-programming (SDP)

based rounding to produce a solution, which is then refined by the

local-search procedure of Tsourakakis et al. [36]. Their algorithm

provides a O(logn) approximation guarantee, although in practice

the approximation is shown to be much better.

We next show that, although defined in a totally different setting

(event detection in a single, streaming, signed network), we can

fruitfully make use of the algorithm developed by Cadena et al.

to solve the contrast subgraph problems we defined in the previ-

ous section. Next proposition provides the mapping between our

problems and the GOQC problem.

Proposition 1. Problems 1 and 2 can be mapped to Problem 3.

Proof. The mapping is given by setting α(u,v) = α and

w(u,v) =

{
wA (u,v) −wB(u,v) (Problem 1)

|wA (u,v) −wB(u,v)|, (Problem 2)

for each pair of vertices u,v ∈ V . �

Based on this proposition, the algorithms that we use for our

problems are reported in details in Appendix A.1.

Table 1: Datasets used in the experiments.

Dataset Description TD ASD

Children Age ≤ 9 52 49

Adolescents Age in [15, 20] 121 116

EyesClosed Eyes closed during scanning 158 136

Male Male individuals 418 420

5 EXPERIMENTS
The aim of our experimental evaluation is to show how contrast

subgraphs can be exploited profitably for finding discriminative

patterns between two groups of brain networks. In particular, our

goal is to answer the following questions:

(1) Can the contrast-subgraph approach be used to identify

structural differences between two groups of brain-networks,

which are not easy to detect through standard analysis?

(2) Are the discovered contrast subgraphs interpretable?

(3) Are the results obtained with the contrast-subgraph ap-

proach consistent with the neuroscience literature?

(4) Does the approach achieve good performance for the classi-

fication tasks considered?

fMRI and the brain network. We start by providing some back-

ground on fMRI and brain networks. The analysis reported in this

section are based on resting-state functional MRI (rs-fMRI) data.

The rs-fMRI is a technique whose aim is to measure brain activity

in the absence of any underlying controlled experimental para-

digm, exploiting the link between neural activity and blood flow

and oxygenation. When a neuron activates, the blood flow in the

corresponding regions increases, and as a result, oxygen-rich blood

displaces oxygen-depleted blood. Such a variation is measured as

a signal, dubbed BOLD (blood-oxygen-level dependent), and it is

what really influences the final magnetic resonance signal. Biswal

et al. [4] were the first to demonstrate temporal coherence between

several blood fluctuation in the primary sensor motor cortices and,

along with several corroborating results, prompted researchers to

think of the brain as a network, where nodes represent regions and

edges represent functional connectivity measured by correlation.

Since the quantity of signals detected by any MRI is huge, there is

usually a process of aggregating voxels, so as to reduce the data

dimensionality. Furthermore, since such signals are heavily subject

to noise caused by different confounding factors, a plethora of pre-

processing strategies, either from the signal-processing side (e.g.,

filtering, signal correction, etc.) or from the network-analysis side

(e.g., thresholding) have been proposed. We refer the interested

reader to the comprehensive survey of Lang et al. [21].

Data source. For our experimental evaluation we use a publicly-

available dataset
4
released by the Autism Brain Imagine Data Ex-

change (ABIDE) project [9]. The dataset contains neuroimaging

data of 1112 different patients, 573 Typically Developed (TD) and
539 suffering from Autism Spectrum Disorder (ASD).

To extract the data used in this work, we have followed the pre-

processing strategy denoted as DPARSF,
5
followed by Band-Pass

Filtering and Global Signal Regression. To parcellate the brain we

4
http://preprocessed-connectomes-project.org/abide/index.html

5
http://preprocessed-connectomes-project.org/abide/dparsf.html
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Figure 3: Weighted degree of the 116 nodes (ROIs) in GTD

(left) and GASD (right). The weighted degree of each vertex
is almost identical in the two summary graphs, not revealing
any structural difference between the two classes.

adopt the AAL atlas [37], which divides the brain into 116 ROIs.

The final result of our pre-processing, for a single patient, is a set of

116 time series (each one associated to a ROI) of length 145. In order

to obtain the brain connectome we compute the pairwise Pearson

correlation between the time series of each pair of ROIs, producing

a 116×116 correlation matrix. Finally, we use a threshold t , whose
value is set equal to the 80-th percentile of the distribution of cor-

relation values, and we draw an edge for each pair (u,v) having
correlation larger than t ; these choices are typical in the literature,

see for example the works of Lord et al. [23] and Rubinov et al. [30].

The end result of our data processing is an undirected unweighted
graph for each patient.

It should be noted that fMRI data, in addition to capturing the

status of an individual, are influenced by other phenotypic informa-

tion, which for our purposes would result to confounding factors

with respect to our target variable, i.e., the status TD and ASD. As
an effort to mitigate the intrinsic variance and in accordance with

neuroscience literature, we create four different datasets by select-

ing individuals who share some common characteristics, such as

age, gender, or the condition during the scan, e.g., eyes closed.

More information about the four selected datasets, and the sizes

of the two target classes, is reported in Table 1. We remind that in

all the datasets the classes of the observations are TD and ASD, the
name we use to identify each dataset is the common phenotypic

features shared by the observations. Children contains only individ-

uals whose age is at most 9 years. Adolescents contains individuals
whose age is between 15 and 20 years. EyesClosed contains indi-

viduals who performed their fMRI with eyes closed. Finally, Male
contains only male individuals. For all our datasets we consider

only individuals for whom there are no missing observations in the

time series, and we apply the pre-processing described above. As a

result, each individual is represented by an undirected unweighted

graph with |V | = 116 vertices.

5.1 Characterization
In this section we characterize the type of information produced by

the approach of contrast subgraphs, focusing on the Children dataset.
A preview of a contrast subgraph for this dataset was already given

in Figure 1 (Section 1.2).

The first natural question we consider is whether the contrast

subgraphs capture some simple, first-level information, which
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Figure 4: Adjacencymatrix ofGTD−ASD. Elements of thema-
trix are colored according wTD-wASD. Nodes are ordered by
their id in the AAL atlas.

might characterize the two different classes. To answer this ques-

tion, we check the two summary graphs GTD
and GASD

, produced

according to Equation (1). These are two weighted graphs, where

edge weights take values in the interval [0, 1], representing the

fraction of individuals in the class who exhibit the edge.

In Figure 3 we report, for each of the 116 ROIs, their (weighted)

degree in GTD
and GASD

. The degrees of the nodes in a network

is a key feature. If there was some evident structural difference

between GTD
and GASD

, we would expect to see different with

respect to the degrees of their nodes in the two graphs. Instead, in

Figure 3 we can observe very similar degrees for all ROIs in both

summary graphs. In other words, we are not able to identify a few

nodes that are “important” in GTD
and not in GASD

, or vice versa.

We thus move our attention to the edge weights in the difference
graph GTD−ASD = (V ,wTD − wASD), looking for patterns that

are distinct in one network or the other. The adjacency matrix

of GTD−ASD
is reported in Figure 4.

6
It is particularly interesting

to check whether in this adjacency matrix there are regions with

a predominant color. Such regions could be either single cells or

rows/columns, and they can be either dark red or dark blue. In

the case of single cells, such dark regions would represent a single

edge showing a large weight difference between the two classes. In

the case of rows/columns, such dark regions would represent ROIs

with a tendency to be hyper/hypo-connected in a specific class.

However, we observe that none such pattern appears. Instead, the

whole matrix is represented with light-colored cells (i.e., values are

very close to 0), exhibiting very weak structural difference between

the two classes.

Contrast subgraph (Problem 1). Despite the apparent lack of

structural differences between the two classes, we have seen al-

ready in Section 1.2 (Figure 1) an example of a contrast subgraph,

which provides simple discrimination rules between the two classes,

6
We do not show adjacency matrix of GASD−TD since it would be equal to the one

in Figure 4 with opposite signs.
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Figure 5: Contrast subgraphs from the Children dataset (ob-
tained with a larger value of α w.r.t Figure 1). Top left: TD-
ASD contrast subgraph. Bottom left: ASD-TD contrast sub-
graph. Size of nodes and thickness of edges are respectively
proportional to their degree and weight in the difference
graph. Edges shown are the ones whose weight is greater
than 0.1. On the right, scatter plot showing for each individ-
ual the number of edges present in the subgraph induced by
the contrast subgraph TD-ASD (x-axis) and by the contrast
subgraph ASD-TD (y-axis).

TD and ASD. Another example, obtained using a larger value of α
and thus yielding a smaller solution, is reported in Figure 5. In

this setting the contrast subgraph TD-ASD (top left) contains only 7

nodes, while the contrast subgraph ASD-TD (bottom left) contains

only 6 nodes. As in Figure 1, the size of a node in the contrast sub-

graph TD-ASD (respectively, ASD-TD) is proportional to its weighted

degree in the difference graph GTD−ASD
(respectively, GASD−TD

).

An induced edge (u,v) is depicted in the figure of the contrast sub-

graph TD-ASD only if wTD −wASD(u,v) ≥ 0.1 (and similarly for

ASD-TD). Inspection of the data points in Figure 5 motivates us to

derive a simple rule:

If the number of edges induced by the contrast subgraph ASD-
TD is smaller than the number of edges induced by the contrast
subgraph TD-ASD, then there are high chances that the indi-
vidual is affected by ASD.

Khan et al. [19] have discovered high connectivity between cere-

bellum and prefrontal cortex, posterior parietal cortex, inferior and

middle temporal gyri, as a fingerprint distinguishing TD children

from children with ASD. These findings are consistent with the

contrast subgraph TD-ASD in Figure 1. Di Martino et al. [24] have

discovered hyper-connectivity in ASD children between the regions

of striatum and the limbic cortex, which is consistent with the

contrast subgraph ASD-TD in Figure 1.

Furthermore, by inspecting Figure 5 we are able to discover

another insight: the ubiquitous presence of ROIs belonging to the

left hemisphere in the contrast subgraph TD-ASD. This observation,
again, is coherent with neuroscience findings: the effect of some
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Figure 6: Example of contrast subgraphs from the Children
dataset according to Problem 2. Top left: sagittal view. Bot-
tom left: axial view. Thickness of edges is proportional to
the absolute value of their weight in the difference graph.
Blue edges represent the ones that have positive weight in
GTD−ASD, orange ones in GASD−TD. Edges shown are the
ones whose weight in absolute value is greater than 0.1.
Such formulation of the problem highlights again that pre-
frontal cortex and posterior parietal cortex are regions of
hyper-connectivity in TD patients, but also that at the same
time such regions shows hyper-connectivity with medial
prefrontal cortex in ASD patients, and hypo-connectivity in
TD ones. Such contemporaneity is caught by the maximiza-
tion of specularity that Problem2operates, instead of taking
into account difference.

neural function being specialized in only one side of the brain is

called left/right lateralization of the brain. For example, when it

comes to the task of speech production, it has been shown that

most humans exhibit a left lateralization of the brain, however, it

has been reported that ASD patients show significantly reduced left

lateralization in speech-production-related ROIs [11, 20, 28], such as

inferior frontal gyrus, inferior parietal lobule, and superior temporal

gyrus, which mostly appear also in the solution we provide.

Symmetric contrast subgraph (Problem 2). In the case of the

symmetric problem definition, we extract a single contrast sub-

graph for the two classes. An example is shown in Figure 6: blue

edges show edges with positive weight in GTD−ASD
, and orange

edges show edges with positive weight in GASD−TD
. There are

seven ROIs involved in this solution: five of those already appeared

in the contrast subgraphs TD-ASD, previously shown in Figure 1

and Figure 5. All these five ROIs belong either to prefrontal cortex

or to posterior parietal cortex, which confirms that such ROIs are

discriminative for the two classes. The solution is completed by

right middle frontal gyrus and superior frontal gyrus medial. This

finding is coherent with the results of Gilbert et al. [13] who pro-

vide evidence that the medial prefrontal cortex has an anomalous

behavior in ASD patients during several tasks.
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Given that in this formulation of the problem there is a single

contrast subgraph S for the two classes, to produce features to

classify a patientGi we compute the L1 norm between the subgraph

induced by S inGi and the subgraph induced by S inG
TD

andGASD
,

respectively. The results are shown in the scatter plot of Figure 6

(right), where we show each graphGi with value ∥Gi [S]−G
TD[S]∥1

on the x-axis and value ∥Gi [S] − G
ASD[S]∥1 on the y-axis Here,

G[S] denotes the subgraph induced by S in G . Also in this case, we

can see a very good separability defined by the diagonal.

5.2 Classification
We evaluate the effectiveness of contrast subgraphs in classifying

brain networks according to the target classes TD and ASD. We

compare with four baselines: graph2vec [27], sub2vec [1], WL-Kern
[31], and Embs [16]. All baselines provide a feature map, which we

use for the classification task. Details about the implementation and

parameter tuning of these methods are reported in Appendix A.2.

For our method, we use the same features as in Figure 5 (we refer

to this approach as CS-P1) and Figure 6 (we refer to this approach

as CS-P2): under both settings our method uses only two features.

We employ the SVM-based classification process of Narayanan et

al. [27]. We randomly split the data into 80/20 training/test subsets.

Using the training set and 5-fold cross validation we select the best

hyperparameters for the classifier. We then apply the best classifier

to the test set. We repeat this process 5 times for each method.

We report the average accuracy for all the classification experi-

ments in Table 2. We can observe the overall good performance of

our method in all these tasks. Moreover, a number of observations

can be drawn:

Only two features: used as a proof of concept, our method

was tested employing only two features derived by contrast

subgraphs. In more complex classification tasks, however,

one can consider additional features from different contrast

subgraphs so as to improve the classification accuracy.

A single parameter: our method has only one parameter to

tune, i.e., α , while the other methods (with the exception of

WL-Kern) require tuning of many parameters.

Run-time efficiency: extracting the contrast subgraphs from
this type of brain connectome datasets always take less than

30 seconds, while the other methods (with the exception of

WL-Kern) have longer running times.

Explainability: in the pipeline we presented, our method uses

only two simple features, instead of embedded features or

convoluted kernels. These features enable simple descrip-

tion in form of rule, as well as visualization, of the decision

boundary discriminating between the two classes.

Figures 7 and 8 reports the decision boundaries for CS-P1 and
CS-P2 (respectively).

6 CONCLUSIONS AND FUTUREWORK
Learning models that are able to discriminate brains of patients

affected by a mental disorder from those of healthy individuals,

is attracting a lot of interest. However, often the accuracy of the

models is a predominant goal over its interpretability, which is

instead a key requirement in neuroscience.

Table 2: Results of the experiments performed over the
datasets described in Table 1. Each value represents the av-
erage accuracy, along with its relative standard deviation.

Children Adolescents EyesClosed Male

CS-P1 0.86 ± 0.07 0.72 ± 0.07 0.71 ± 0.03 0.63 ± 0.01

CS-P2 0.86 ± 0.04 0.71 ± 0.04 0.72 ± 0.08 0.65 ± 0.03
graph2vec 0.72 ± 0.13 0.65 ± 0.05 0.60 ± 0.04 0.56 ± 0.02

sub2vec 0.66 ± 0.01 0.59 ± 0.04 0.60 ± 0.01 0.57 ± 0.01

WL-Kern 0.52 ± 0 0.52 ± 0 0.54 ± 0 0.50 ± 0

Embs 0.70 ± 0.12 0.58 ± 0.03 0.59 ± 0.04 0.57 ± 0.03
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Figure 7: Decision boundaries for CS-P1. Top Children (left),
Adolescents (right). Bottom EyesClosed (left), Male (right).
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Figure 8: Decision boundaries for CS-P2. Top Children (left),
Adolescents (right). Bottom EyesClosed (left), Male (right).

In this paper we approach the task of brain-network classification

with a two-fold goal: to achieve good accuracy, but most impor-

tantly, to identify discriminant brain patterns that lead a model to

classify an individual. The framework we propose, based on the

notion of contrast subgraph, satisfies both of these conditions. It out-

performs several state-of-the-art competitors and returns some very

intuitive explanations, which can be shared with experts from the

neuroscience field. Moreover, contrast subgraphs are exceptionally

easy to compute, both in terms of runtime and memory.

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

3315



Future work. In this first work we focus on Autism Spectrum

Disorder mostly because of the wide availability of public datasets.

However, the proposed approach can be applied in several other

contexts and different types of mental disorders. To push forward

this research direction, we have created an ongoing collaboration

with neuroscientists. We are currently working with the domain

experts to create datasets with patients affected by Bipolar Disorder

and by Schizophrenia.

On the algorithmic side, we plan to investigate the extraction

of the top-k contrast subgraphs, following an approach similar

to that of Balalau et al. [3] for densest subgraphs. Exploiting the

information given by multiple contrast subgraphs, could help both

to improve the classification performances, and to detect further

interesting patterns that may not appear in the single solution.
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A REPRODUCIBILITY
A.1 Pseudocode
We provide pseudocodes of the algorithms used for computing con-

trast subgraphs, according to Section 4. In particular, Algorithm 1

solves Problem 1, Algorithm 2 solves Problem 2, Algorithm 3 dis-

plays the algorithm DENSDP by Cadena et al. [7] based on the

semi-definite programming (SDP) routine, while Algorithm 4 de-

scribes the local-search routine by Tsourakakis et al. [36], which

refines the solution produced by the SDP method.

All our code and datasets are made available at:

https://github.com/tlancian/contrast-subgraph

Algorithms 1 and 2 simply apply Proposition 1 in order to map

Problem 1 and 2 (respectively) to Problem 3, and then invoke Algo-

rithm 3 over the difference graph GA−B and with the α function

taking constantly the α parameter of our problems.

The subroutine dubbed SDP in Algorithm 3, corresponds to the

following semi-definite programming:

max

(u ,z)∈E

∑
(u ,z)∈E

w(u, z)
(
1 + vuv0 + vzv0 + vuvz

4

)
−∑

u ,z∈V ,u,z
α(u, z)

(
1 + vuv0 + vzv0 + vuvz

4

)
s.t.

vTu · vu = 1

v0, vu ∈ Rn+1.

The function fα (·) in Algorithm 4 corresponds to the notion of

edge-surplus, mentioned in Section 4, Equation (2), by Tsourakakis

et al. [36].

Algorithm 1 Contrast Subgraph (Problem 1)

Input: A = {GA
1
, . . . ,GA

rA }; B = {G
B
1
, . . . ,GB

rB }; α ∈ R+
Output: S∗ ⊆ V , i.e., the solution to Problem 1

1: for all (u,v) ∈ V ×V do
2: wA (u,v) ← 1

rA

��GA
i ∈ A s.t. (u,v) ∈ EAi

��
{Eq.(1)}

3: wB(u,v) ← 1

rB

��GB
i ∈ B s.t. (u,v) ∈ EBi

��
4: GA−B ← (V ,wA −wB) {Prop. 1}
5: S∗ ← DENSDP(GA−B , α(·) = α ) {Alg.3}

Algorithm 2 Symmetric Contrast Subgraph (Problem 2)

Input: A = {GA
1
, . . . ,GA

rA }; B = {G
B
1
, . . . ,GB

rB }; α ∈ R+
Output: S∗ ⊆ V , i.e., the solution to Problem 2

1: for all (u,v) ∈ V ×V do
2: wA (u,v) ← 1

rA

��GA
i ∈ A s.t. (u,v) ∈ EAi

��
{Eq.(1)}

3: wB(u,v) ← 1

rB

��GB
i ∈ B s.t. (u,v) ∈ EBi

��
4: GA−B ← (V , |wA −wB |) {Prop. 1}
5: S∗ ← DENSDP(GA−B , α(·) = α ) {Alg.3}

Algorithm 3 DENSDP [7]

Input: Weighted graph G = (V ,w); function α : V ×V → R+
Output: S∗ ⊆ V , i.e., the solution to Problem 3

1: V ← SDP(G,α), whereV = {v0} ∪ {vu | u ∈ V }
2: Sample r from N ∼ (0( |V |+1), I( |V |+1)×( |V |+1))
3: T ←

√
4 log |V |

4: for u ∈ V do
5: zu ← (vu · r)/T
6: if |zu | > 1 then yu ← zu/|zu | else yu ← zu

7: xu ←

{
1, with probability

1+yu
2

−1 with probability
1−yu
2

8: S ′ ← {u | xu = 1}

9: S ←LocalSearch(G ′ = (S ′,w),α = α(·)) {Alg.(4)}

Algorithm 4 LocalSearch [36]

Input: Weighted graph G = (V ,w), α ∈ R+, maximum number of

iterations TMAX
Output: S∗ ⊆ V
1: S ← {v}, where v is chosen uniformly at random

2: b1 ← TRUE, t ← 1

3: while b1 and t ≤ TMAX do
4: b2 ←TRUE

5: while b2 do
6: if ∃u ∈ V \ S s.t. fα (S ∪ {u}) ≥ fα (S) then
7: S ← S ∪ {u}
8: else
9: b2 ← FALSE

10: if ∃u ∈ S s.t. fα (S \ {u}) ≥ fα (S) then
11: S ← S \ {u}
12: else
13: b1 ← FALSE

14: t ← t + 1
15: S∗ ← argmaxŜ ∈{S ,V \S } fα (Ŝ)

A.2 Competitors and parameters tuning
In this section we provide further details of the experimental setup

we described in Section 5.2.

Embeddings. In order to obtain embeddings for the baseline meth-

ods, we followed different strategies. graph2vec [27] and Embs [16]
provide directly embeddings for a given set of networks. sub2vec
[1] provides an embedding for a set of subgraphs in a single net-

work, therefore we employed the strategy of Adhikari et al [1], and

consider any brain network to be a specific subgraph of a single net-

work made by the union of all these subgraphs. Regarding WL-Kern
[31], we employed the feature map it produces for computing sub-

sequently the kernel matrix.

Code source and parameters. We next provide links to source

code of all the algorithms compared, together with the parameter

settings used in the experiments. The ones not mentioned in this

section, have been left to their default value in their respective

sources.We have approached to the parameter tuning, taking values

around the default value set by the respective authors. For every

algorithms listed here, we have performed the experiment for any

possible combination of this parameters, retaining only the one
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that led to the best results, in term of average accuracy over 5

experiments.

CS-P1
Source: https://github.com/tlancian/contrast-subgraph

Parameters tuned:

• α for TD-ASD : {70, 75, 80, 85, 90, 93, 95, 97}

• α for ASD-TD : {70, 75, 80, 85, 90, 93, 95, 97}

Best Parameters:

Children Adolescents EyesClosed Male

α for TD-ASD 70 95 75 75

α for ASD-TD 80 70 75 70

In addition, we report that the α values used to produce Figure 1

are the same that resulted to be the best results for Children. The
ones for Figure 5 are respectively 90 and 93.

CS-P2
Source: https://github.com/tlancian/contrast-subgraph

Parameters tuned:

• α : {70, 75, 80, 85, 90, 93, 95, 97}

Best Parameters:

Children Adolescents EyesClosed Male

α 70 75 70 70

In addition, we report that the α used to produce Figure 6 is the

same that resulted to be the best results for Children.

graph2vec [27]
Source: https://github.com/MLDroid/graph2vec_tf

Parameters tuned:

• Batch Size: {64, 128, 256, 512}

• Epochs: {100}

• Embedding Size: {256, 512, 1024, 2048}

• Negative Samples: {10, 20, 30, 40}

• Height WL Kernel: {3, 4, 5}

Best Parameters:

Children Adolescents EyesClosed Male

Batch Size 256 256 64 128

Embedding Size 256 2048 512 1024

Negative Samples 30 30 30 20

Height WL Kernel 3 3 3 3

sub2vec [1]
Source: https://goo.gl/Ef4q8g

Parameters tuned:

• Property: {Neighborhood, Structural}

• Walk Length: {100000, 150000, 200000}

• Embedding Size: {128, 256, 512}

• Model: {DBON, DM}

• Training Iterations: {10, 20}

Best Parameters:

Children Adolescents EyesClosed Male

Property S S S S

Walk Length 100000 150000 150000 150000

Embedding Size 512 128 128 128

Model DM DM DBON DBON

Training Iterations 10 20 20 20

Embs [16]
Source: https://github.com/leoguti85/GraphEmbs

Parameters tuned:

• Epochs: {100, 300, 500}

• Batch Size: {64, 128, 256}

• Embedding Size: {128, 256, 512, 1024}

• Noise: {0.3, 0.5}

Best Parameters:

Children Adolescents EyesClosed Male

Epochs 500 500 300 100

Batch Size 64 128 256 256

Embedding Size 1024 1024 1024 1024

Noise 0.5 0.3 0.5 0.3

WL-Kern [31]
Source: http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL

Parameters tuned:

• h : {1, 2, 3, 4, 5}

Best Parameters:

Children Adolescents EyesClosed Male

h 3 3 3 3
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