
General Graphs are Easier than Bipartite Graphs:
Tight Bounds for Secretary Matching

TOMER EZRA, Sapienza University of Rome

MICHAL FELDMAN, Tel Aviv University and Microsoft Research

NICK GRAVIN, ITCS, Shanghai University of Finance and Economics

ZHIHAO GAVIN TANG, ITCS, Shanghai University of Finance and Economics

Online algorithms for secretary matching in bipartite weighted graphs have been studied extensively in recent

years. We generalize this study to secretary matching in general weighted graphs, for both vertex and edge

arrival models.

Under vertex arrival, vertices arrive online in a uniformly random order; upon the arrival of a vertex 𝑣 ,

the weights of edges from 𝑣 to all previously arriving vertices are revealed, and the algorithm decides which

of these edges, if any, to include in the matching. We provide a tight 5/12-competitive algorithm for this

setting. Interestingly, it outperforms the best possible algorithm for secretary matching in bipartite graphs

with 1-sided arrival, which cannot be better than 1/𝑒-competitive.

Under edge arrival, edges arrive online in a uniformly random order; upon the arrival of an edge 𝑒 , its

weight is revealed, and the algorithm decides whether to include it in the matching or not. For this setting we

provide a 1/4-competitive algorithm, which improves upon the state of the art bound.

CCS Concepts: • Theory of computation� Algorithmic game theory; Computational pricing and
auctions.

Additional Key Words and Phrases: Secretary problem; Online matching

ACM Reference Format:
Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. 2022. General Graphs are Easier than

Bipartite Graphs: Tight Bounds for Secretary Matching. In Proceedings of the 23rd ACM Conference on Economics
and Computation (EC ’22), July 11–15, 2022, Boulder, CO, USA. ACM, New York, NY, USA, 30 pages. https:

//doi.org/10.1145/3490486.3538290

1 INTRODUCTION
A common tension in market scenarios, faced repeatedly by individuals and firms, is choosing the

right timing to commit to a decision. This tension arises when one chooses their life-long partner,

makes a reservation in Airbnb, accepts a job offer, or any other scenario where a decision should

be made in the present, without knowing whether or to what extent a better option would arrive

in the future.

The most basic mathematical model of such scenarios has been studied in the mathematical

literature of optimal stopping theory. In a stopping problem, there are 𝑛 rounds, and a sequence of 𝑛

values𝑤1, . . . ,𝑤𝑛 that are unknown from the outset. In every round 𝑡 , the value𝑤𝑡 is revealed, and

the decision maker makes an irrevocable decision whether to select𝑤𝑡 , in which case the process

ends with value 𝑤𝑡 , or continue to the next round (unless it’s round 𝑛), in which case the value

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’22, July 11–15, 2022, Boulder, CO, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9150-4/22/07. . . $15.00

https://doi.org/10.1145/3490486.3538290

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1148

https://doi.org/10.1145/3490486.3538290
https://doi.org/10.1145/3490486.3538290
https://doi.org/10.1145/3490486.3538290
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490486.3538290&domain=pdf&date_stamp=2022-07-13

𝑤𝑡 is lost forever and the process continues to round 𝑡 + 1. The goal is to maximize the obtained

value. The competitive ratio of an algorithm ALG is the minimum ratio between the expected value

obtained by ALG and the globally maximal value, over all value sequences w = (𝑤1, . . . ,𝑤𝑛).
One can verify that not much can be done if the process is entirely adversarial. Two alternative

models of stochastic variants have been studied extensively in the literature, and become to be

known as the secretary problem [14, 16] and the prophet inequality [35, 36]. In the secretary problem,

the value sequence w is arbitrary, but the values are assumed to arrive in a uniformly random

order. The secretary problem is known to admit a competitive ratio of 1/𝑒 , and this is the best

possible ratio [8]. In the prophet setting, every value𝑤𝑡 is drawn (independently) from a probability

distribution that is known from the outset. The prophet problem is known to admit a competitive

ratio of 1/2, and this is the best possible ratio [35, 36, 45].

A natural question arises: do these results extend to more complex stochastic optimization

problems? This problem received a lot of attention in recent years in combinatorial structures

such as uniform matroids [21, 33], graphical matroids [34], general matroids [4, 32], intersection

of matroids [32], matching in graphs [9, 18, 31, 34], and general downward-closed feasibility

constraints [44].

Of particular interest to this paper is the extension to matching problems in weighted graphs,

where the goal is to select a matching of maximum weight. Matching problems have been of great

interest in the last decade, partly due to their high applicability to Internet markets [39], such as

online ad auctions, ridesharing platforms, online labor markets, and exchange markets for pairwise

kidney exchange.

Two most commonly studied mathematical models of online matching are edge arrival and
vertex arrival models. The edge arrival model, in which elements for selection arrive one by one, is

perhaps the most natural model in the context of classic secretary and prophet settings (see, e.g.,

[34] on graphical matroids). On the other hand, the vertex arrival model (vertices arrive one by one,

each vertex along with its incident edges to all previous vertices) is extremely natural in matching

applications, as the arriving entities often correspond to the vertices. In fact, vast majority of the

models in online matching literature are variants of the vertex arrival: including the seminal online

matching model of the 1-sided vertex arrival in bipartite graphs [30], and vertex arrival in general

graphs [15, 47].

Online matching with 1-sided vertex arrival. [34] introduced the following 1-sided bipartite

matching setting, modeled as an onlinematching problem in aweighted bipartite graph𝐺 = (𝐿, 𝑅;𝐸).
A pool of jobs are available in the market (associated with vertices in 𝑅). Potential employees

(associated with vertices in 𝐿) arrive one by one, in a random order. Upon the arrival of a potential

employee her value for every job is revealed (the weights on the corresponding edges), and the

algorithm should either match the employee to one of the available jobs or leave her unmatched.

The goal is to maximize the total value of the matching in the market. The special case where there

is a single job coincides with the classic secretary problem, thus the 1/𝑒 is the limit of what can be

achieved. But the decision making process under the matching scenario is much more complex,

as the algorithm should decide not only whether or not to match it, but also to whom, among all

available jobs. [34] showed a 1/8-competitive algorithm for this setting, and [31] improved it to a

tight 1/𝑒-competitive algorithm, which settled the problem of 1-sided bipartite matching.

The analogous 1-sided bipartite matching setting in the prophet model
1
has been studied by [12].

Here too, the 1/2 guarantee from the classic prophet setting extends to the more complex 1-sided

bipartite matching.

1
In prophet setting, the algorithm has stochastic information about the weights of the edges, but the arrival order is the

worst-case, i.e., it is chosen by an adversary.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1149

Online matching with general vertex arrival. The underlying structure of 1-sided bipartite match-

ing is quite restricted, and does not capture more dynamic scenarios, where vertices from both

sides of the market arrive dynamically, e.g., passengers and drivers, items and buyers, jobs and

employees. Moreover, some scenarios cannot be captured by a bipartite graph at all, e.g., exchange

markets for pairwise kidney exchange, or a pool of students who should be paired into roommates.

Such scenarios are best captured by matching in a general graph, where upon the arrival of a vertex

𝑣 , the weights on edges 𝑢𝑣 are revealed, for all previously arriving vertices 𝑢. The prophet version

of this scenario has been studied by [9], who showed that the guarantee of 1/2 extends even to this

general matching setting.

That is, in the prophet model, the guarantee of 1/2 obtained for the simplest setting extends

all the way to matching in general graphs. It is only natural to ask whether the same extension

holds in the secretary setting as well. This question leads to our main theorem, which reveals a

new constant in the realm of secretary problems.

MainTheorem: Secretarymatching in general graphswith vertex arrival admits a 5/12-competitive

algorithm. Moreover, 5/12 is tight.

This result might seem confusing at a first glance, or even contradictory. Indeed, 5/12 is strictly

greater than 1/𝑒 . Doesn’t the 1/𝑒 upper bound, which holds in the classic secretary problem and

the 1-sided bipartite matching, hold in this supposedly more general setting of matching in general
graphs? The answer is that the upper bound of 1/𝑒 does not apply in our setting. In contrast to

1-sided bipartite matching, which encodes the classic secretary setting as a special case (with

a single vertex on the static side), this instance does not impose a 1/𝑒 barrier in our setting. In

particular, by the time the lonely vertex arrives in a random arrival order, half of its neighbors

have already arrived (in expectation), leading to a competitive ratio of at least 1/2, breaking the
1/𝑒 barrier2.

For this reason, the proof of our tight upper bound requires a few new ideas and a non trivial

construction which uses different techniques than the prior literature on secretary problem.

Remark: For the ordinal setting (i.e., if the algorithm is based only on pairwise comparisons of

edges without observing associated numerical values) our result implies a competitive ratio of
5

24
.

Online matching with edge arrival. We now turn to online matching with edge arrival. In this

model, the edges arrive one by one. Upon the arrival of an edge, its weight is revealed, and if both

its endpoints are available, the algorithm makes an irrevocable decision whether to include it in

the matching. This model has been studied in both the prophet and secretaries model, but unlike

the vertex arrival model, no tight bounds are known. For prophet setting, the competitive ratio is

known to lie between 0.337 and 3/7 [9, 19, 41]. For secretary, [31] have established a competitive

ratio of 1/(2𝑒), by a reduction from edge arrival to vertex arrival in hypergraphs. The upper bound

of 1/𝑒 from the classic secretary setting applies here. Our second result further improves this bound.

Theorem: Secretary matching in general graphs with edge arrival admits a 1/4-competitive

algorithm.

The design and analysis of our algorithm for edge arrival carry over to the more general online

bipartite hypergraph secretary matching problem (with suitable adjustments). Algorithm 3 in

Appendix B gives a competitive ratio of 1/𝑑 𝑑
𝑑−1 , where 𝑑 + 1 equals the maximum size of the

hyperedges. This improves (by a constant factor) upon the previous lower bound of
1

𝑒𝑑
[31].

2
In fact, for this particular example, one can easily show a competitive ratio strictly better than 1/2.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1150

Secretary Prophet

Vertex

arrival

1-sided

bipartite

LB ≥ 1/𝑒 [31] ≥ 1/2 [12]

UB ≤ 1/𝑒 [8] ≤ 1/2 [35, 36]

General

graphs

LB ≥ 5/12 [Theorem 3.1] ≥ 1/2 [9]

UB ≤ 5/12 [Theorem 4.1] ≤ 1/2 [35, 36]

Edge

arrival

LB

≥ 1/(2𝑒) [31]
≥ 1/4 [Theorem 5.2]

≥ 0.337 [9]

UB ≤ 1/𝑒 [8] ≤ 3/7 [41]

Table 1. Our results and previous results. UB and LB refer to upper and lower bounds, respectively.

1.1 Our Techniques
Vertex arrival: lower bound (positive result). At a very high level, our algorithm follows the

standard explore & exploit approach for secretary problems, which is used essentially by all studies

on secretary settings. More specifically, our algorithm resembles the one from [31] for matching

with 1-sided vertex arrival. The algorithm begins with an exploration phase, where no matches are

made. Then, in the exploitation phase, it finds at each step the optimum matching over the set of

vertices that already arrived, and matches the latest vertex to its partner in the optimal matching

whenever possible. Our algorithm differs from the one used in [31] in two ways: (i) it uses a longer

exploration phase (1/2 instead of 1/𝑒 of the vertices), (ii), it ensures that the latest vertex always
has a partner in the optimal matching computed on the graph induced by the vertices that have

arrived (in particular, we treat differently the cases of odd and even number of vertices).

The key feature of our analysis is a precise accounting of the probability that a given vertex is

matched at every step of the algorithm. This accounting turns out to be more challenging in our

general vertex arrival model than under 1-sided vertex arrival [31]. Specifically, while in 1-sided

arrival it is sufficient to establish an upper bound on the matching probability of vertices in the

offline side, in general graphs every vertex can be either actively matched (i.e., matched upon its

arrival) or passively matched (i.e., chosen as a partner of a vertex that arrives later), and there are

non-monotone dependencies between matching probabilities of the vertices. That is, the event

that a given vertex is matched may be either positively or negatively correlated with the event

that another vertex is matched, depending on the set of vertices that have already arrived. For this

reason, an upper bound on the probability of matching is insufficient, and we have to calculate

the precise probability that a vertex is matched in every step of the algorithm. To this end, our

algorithm ensures that the optimum matching is a perfect matching in every step of the algorithm

by omitting a random vertex in odd rounds.

The same high level analysis approach is also pertinent in the cousin prophet inequality setting.

Specifically, the Online Contention Resolution Schemes (OCRS) for matching in general graphs in

a prophet setting [9] ensures that each vertex is matched to its realized partner with a constant

probability (that does not depend on the vertex identity or its arrival time).

However, the accounting in the secretary setting is more complex: the probability of matching

the 𝑡-th vertex depends on its arrival time 𝑡 (but not on the identity of the vertex). This still results

in a constant matching probability of every vertex due to the random arrival order, but leaves us

with a much richer space of possible policies. Indeed, one can potentially condition the probability

of matching a vertex to its (current) partner on the arrival time 𝑡 . Algorithm 1 is derived as the

solution to the respective optimization problem. Interestingly, it does not condition the matching

probability on 𝑡 (unlike our edge-arrival algorithm, see below) and achieves a tight competitive

ratio of 5/12.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1151

We remark that the optimization problem is quite subtle compared to the simple constant

probability policy used in the prophet setting from [9].

Vertex arrival: tight upper bound (negative result). It is known (see, e.g., [17]), but already quite

non-trivial to establish, that there is a 1/𝑒 upper bound for the game of googol— the cardinal version
of the classical secretary problem — where the algorithm observes a random sequence of arbitrarily

large numbers and wishes to maximize the probability of stopping at the maximum number among

them. In general, proving upper bounds for cardinal variants of the secretary problem is notoriously

difficult. For example, only recently, Correa, Dütting, Fischer, and Schewior [5] provided a rather

complex proof, based on the infinite version of Ramsey’s theorem, that the best competitive ratio

for prophet secretary with unknown i.i.d. priors is 1/𝑒 .
Establishing a tight upper bound in our problem is particularly challenging. First, it is cardinal.

Second, it has a complex combinatorial structure (rather than choosing a single element, it should

choose a set of edges that forms a matching). Finally, the objective is to maximize the expected

value of the selected matching rather than the probability of picking the maximum element.

Despite these difficulties, we managed to construct an instance of the secretary matching problem

such that: (i) any 𝛼-competitive online algorithm for the cardinal setting can be converted into an

𝛼-competitive algorithm in the ordinal setting (in a cardinal setting, the online algorithm observes

only pairwise comparisons between edges and the objective is to maximize the probability of

selecting the maximum valued edge), and (ii) no online algorithm in the ordinal setting can give a

better competitive ratio than 5/12.

Note that (i) can only be achieved for a special family of instances, and it is not a priori clear

that such a reduction can yield a tight upper bound. After identifying the right family of instances,

our proof follows the high level structure of [5] (e.g., we also use the infinite version of Ramsey’s

theorem), but it requires several adjustments due to the more complex combinatorial nature of our

matching problem. The derivation of (ii) requires substantial and subtle analysis. We first prove

that a certain family of online algorithms in the ordinal setting is optimal for the given instance,

and then find the algorithm that obtains the best possible competitive ratio within this family.

Edge arrival. [9] considered the prophet matching problem with edge arrival, and proposed an

OCRS algorithm for the problem. The idea in the OCRS approach is to ensure that the probability

of matching a realized edge 𝑢𝑣 is a constant fraction 𝛼 of the probability that 𝑢𝑣 is in the optimum

matching. On the one hand, it is desired to have 𝛼 as large as possible. On the other hand, the

event that both vertices 𝑢 and 𝑣 are not yet matched upon the arrival of the edge 𝑢𝑣 should have

a sufficiently high probability. Following a simple union bound argument, setting 𝛼 = 1/3 was

sufficient for the matching prophet setting.

We take a similar approach with respect to secretary matching; namely, we control the probability

of selecting the last arriving edge at time 𝑡 , given that it appears in the current optimal matching.

However, unlike the simple solution of [9], we cannot simply set this probability to be a constant,

since the edges arriving earlier generally have a higher chance to be in the current optimal matching.

Instead, we set these probabilities (𝛼𝑡) |𝐸 |𝑡=1
to be dependent on the time 𝑡 , and obtain a recurrence

relation on (𝛼𝑡) |𝐸 |𝑡=1
that ensures that upon the arrival of an edge 𝑢𝑣 , both ends of the edge are

available with a sufficiently high probability. Given a sequence (𝛼𝑡) |𝐸 |𝑡=1
, one can derive a good

estimate on the competitive ratio of the corresponding online algorithm. We solve the resulting

constrained optimization problem and obtain the sequence of (𝛼𝑡) |𝐸 |𝑡=1
specified in Algorithm 2.

Interestingly, despite the conceptual simplicity of Algorithm 2, it is unclear how to implement it in

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1152

polynomial time
3
. Thus, our result for edge arrival is information theoretic. Obtaining a poly-time

algorithm with the same ratio remains an open problem.

In conclusion, our results for both vertex and edge arrival establish a close connection between

secretary and prophet settings, and demonstrate that tools like OCRS that prove useful in prophet

settings (e.g., [9]) can be used to improve the state of the art results for secretary settings. In

particular, the tight result for prophet matching translates (with suitable adjustments) into a tight

result for secretary matching in the vertex arrival model. This is in contrast to previous general-

purpose results [7] connecting Contention Resolution Schemes and secretary problems, which

suffered certain constant factor losses in the transition from one setting to another.

1.2 Related work
The 1-sided secretary matching problem studied by [34] can be considered as a generalization of

the matroid secretary problem on transversal matroids
4
, which was first introduced by [4].

They designed constant competitive algorithms for graphs with bounded degrees, and [6]

generalized this result to arbitrary graphs. These results affirmatively answer the famous matroid

secretary conjecture by [4] for transversal matroids. Whether Ω(1)-competitive algorithms exist

for the secretary problem on general matroids remains an intriguing question. Currently, the best

known ratio is Ω(1/log log rank) [37] and [13].

The 1/𝑒-competitive algorithm by [31] for 1-sided secretary matching is further extended to a

truthful mechanism that attains the same competitive ratio by [43]. [34] also studied the secretary

matching on hypergraphs and proposed Ω(1/𝑑2)-competitive algorithms for 𝑑-hypergraphs5. This

result is improved to Ω(1/𝑑)-competitive by [31].

Another line of work considers the secretary problem in the ordinal setting. That is, the algorithm

is restricted to do pairwise comparisons between elements, without knowing the exact values of

their weights. [22] designed constant competitive algorithms for several families of constraints,

including matching, packing LPs and independent set with bounded local independence number.

Specifically, they studied the same vertex-arrival model for general graphs as our model and

designed an
𝑒+1
12𝑒

-competitive algorithm that only uses ordinal information. [46] studied the ordinal

matroid secretary problem and achieved improved competitive ratios for transversal matroids,

matching matroids, laminar matroids, etc.

The unweighted version and the vertex-weighted version of the 1-sided secretary matching

problem (i.e., random arrival) have also been studied in the online algorithm literature. For the un-

weighted version when all edges have unit weight, [29] and [38] proved that the Ranking algorithm

is 0.696-competitive. For the vertex-weighted version when each offline vertex is associated with

a weight and all its incident edges have the same weight, [25] and [28] generalized the Ranking

algorithm and achieved a competitive ratio of 0.663.

The general vertex arrival model adopted in this paper was first introduced by [47] in the online

matching literature, where the focus is to select maximum size matching under adversarial vertex

arrivals. This model is a natural generalization of the 1-sided online bipartite matching model

by [30]. [47] designed a 0.526-competitive algorithm for the fractional version of the problem.

[15] proposed a 1/2 + Ω(1)-competitive algorithm for the integral version of the problem. They

also proved that no algorithm has a competitive ratio larger than 1/2 in the edge arrival setting.

Motivated by online ride-sharing, there has been a growing interest in online matching in the past

3
The difficulty is that in order to estimate the probability that two given vertices 𝑢 and 𝑣 are both available upon the arrival

of the edge 𝑢𝑣, we need to understand the decisions of the online algorithm for different subsets of arrived edges.

4
More specifically, any 𝛼-competitive algorithm for 1-sided secretary matching can be translated into an 𝛼-competitive

algorithm for transversal matroids.

5
A 𝑑-hypergraph is a hypergraph such that all its hyperedges have size at most 𝑑 .

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1153

few years and other extensions of the 1-sided online bipartite matching model have been studied,

including fully online matching [23, 24, 26] and edge-weighted online windowed matching [3]. The

1-sided online bipartite matching has also been extended to the vertex-weighted version [1], the

edge-weighted version [10, 11], and the AdWords problem [27, 40].

The matching prophet problem with edge arrivals is first studied by [32] under the more general

framework of matroid intersections. Their analysis gives a
1

6
-competitive algorithm for bipartite

graphs. [19] explicitly studied the bipartite matching setting and designed a threshold-based
1

3
-

competitive algorithm. They also showed an upper bound of
4

9
. The upper bound was improved to

3

7
, and the

1

3
lower bound was extended to 1/(𝑝 + 1)-competitive ratio for 𝑝-dimensional matching

in [2]. [9] designed an improved 0.337-competitive algorithm for general graphs.

For an intersection of twomatroids with random arrival, [20] gives a randomized online algorithm

that gives a better competitive ratio than 1/2. Bipartite matching secretary with (unweighted) edge

arrival is a special case of this setting.

2 MODEL AND PRELIMINARIES
The setting is presented by a graph𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of 𝑛 vertices. Each edge 𝑒 = 𝑢𝑣 ∈ 𝐸
has weight𝑤𝑒 ∈ R and the vector𝑤 ∈ R |𝐸 | contains the weights of all edges. Given a subset of the

vertices𝑇 ⊆ 𝑉 , we denote by𝐺 (𝑇) the subgraph induced by𝑇 . Similarly, given a subset of the edges

𝐸′ ⊆ 𝐸, we denote by 𝐺 (𝐸′) the graph induced by 𝐸′. We consider two arrival models: (i) vertex

arrival, and (ii) edge arrival, where the arriving elements are the vertices and edges, respectively.

In both models, upon the arrival of an element, a matching decision should be made immediately

and irrevocably, and the goal is to maximize the total weight of the resulting match.

A matching ` is a subset of 𝐸, where every vertex is matched to at most a single other vertex. We

will also write ` (𝑣) for the vertex matched with 𝑣 in the matching `. That is, if 𝑢𝑣 ∈ ` then ` (𝑣) = 𝑢

and ` (𝑢) = 𝑣 . We denote by𝑤 (`) def

==
∑

𝑒∈` 𝑤𝑒 the total weight of matching `. In addition, given a

subset of the vertices 𝑇 ⊆ 𝑉 and a matching `, write ` |𝑇 = {𝑢𝑣 ∈ ` |𝑣,𝑢 ∈ 𝑇 } for the matching `

restricted to vertices in 𝑇 . For a weight function 𝑤 , we write `∗ (𝑤) for the maximum weighted

matching under𝑤 .

Vertex arrival. Under vertex arrival model, the vertices arrive in a uniformly random order. We

rename the vertices 𝑣1, . . . , 𝑣𝑛 according to their arrival order, so that 𝑣𝑡 is the vertex that arrives at

time 𝑡 . We denote by 𝑉𝑡 = {𝑣1, . . . , 𝑣𝑡 } the set of vertices that arrived up to time 𝑡 , and by 𝐺 (𝑉𝑡)
the graph induced by 𝑉𝑡 . Upon the arrival of vertex 𝑣𝑡 , the weight𝑤𝑣𝑡 𝑣𝑗 is revealed for all vertices

𝑣 𝑗 ∈ 𝑉𝑡−1. Consequently, 𝑣𝑡 can either be matched to some available vertex 𝑣 𝑗 ∈ 𝑉𝑡−1 (in which

case 𝑣𝑡 and 𝑣 𝑗 are marked as unavailable) or left unmatched (in which case 𝑣𝑡 remains available for

future matches). We assume that the number of vertices 𝑛 is known.

Without loss of generality, we may assume that𝐺 is a complete graph: we simply add 0-weight

edges for the missing edges. Thus we may assume that for every 𝑉 ′ ⊆ 𝑉 such that |𝑉 ′ | is even, the
maximum weighted matching of 𝐺 (𝑉 ′) matches all vertices of 𝐺 (𝑉 ′).

Edge arrival. Under edge arrival model, the edges arrive in a uniformly random order. We rename

the edges 𝑒1, . . . , 𝑒𝑚 according to their arrival order, so that 𝑒𝑡 is the edge that arrives at time 𝑡 .

We denote by 𝐸𝑡 = {𝑒1, . . . , 𝑒𝑡 } the set of edges that arrived up to time 𝑡 , and by 𝐺 (𝐸𝑡) the graph
induced by 𝐸𝑡 . Upon the arrival of edge 𝑒𝑡 = 𝑢𝑣 , its weight 𝑤𝑒𝑡 is revealed. If both 𝑢 and 𝑣 are

available, then 𝑒𝑡 can either be matched (in which case 𝑢 and 𝑣 are marked as unavailable) or left

unmatched (in which case𝑢 and 𝑣 remain available for future matches). We assume that the number

of edges𝑚 is known.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1154

We assume without loss of generality that the maximum weighted matching of 𝐺 (𝑆) for any
𝑆 ⊆ 𝐸 in both vertex and edge arrival model is unique. Indeed, we can perturb the weight of every

edge by adding to it a random number in [0, 𝜖], for a sufficiently small 𝜖 .6

3 SECRETARY MATCHINGWITH VERTEX ARRIVAL: POSITIVE RESULT
In this section, we present an algorithm that gives a competitive ratio of 5/12. The algorithm

ignores the first 𝑘 vertices (exploration phase). Then, in every round 𝑡 , it makes sure that the

number of vertices is even. It does so by removing a random vertex 𝑟𝑡 from 𝑉𝑡−1 when 𝑡 is odd.

The algorithm finds maximum weighted matching `𝑡 in the graph 𝐺 (𝑉𝑡) (𝐺 (𝑉𝑡 \ {𝑣𝑟𝑡 }) if 𝑡 is odd).
Since the matching is complete, 𝑣𝑡 must have a partner `𝑡 (𝑣𝑡) in this matching. If this partner is

available, the algorithm matches 𝑣𝑡 to it. See Algorithm 1.

ALGORITHM 1: 5/12-secretary matching for vertex arrival (for 𝑘 = ⌊𝑛
2
⌋)

1 Let 𝑣1, . . . , 𝑣𝑛 be the vertices in arrival order;

2 𝐴 = 𝑉 , ` = ∅; ⊲ 𝐴 is the set of available vertices, ` is the returned

matching

3 for 𝑡 = 𝑘 + 1 to 𝑛 do
4 Let 𝑉𝑡 = {𝑣1, . . . , 𝑣𝑡 }; ⊲ 𝑉𝑡 is the set of vertices arrived up to time 𝑡

5 if 𝑡 is odd then
6 Select 𝑟𝑡 ∈ {1, . . . 𝑡 − 1} uniformly at random;

7 Set 𝑉 ′𝑡 = 𝑉𝑡 \ {𝑣𝑟𝑡 }; ⊲ delete a random vertex from 𝑣1, . . . , 𝑣𝑡−1

8 else Set 𝑉 ′𝑡 = 𝑉𝑡 ;

9 Let `𝑡 be the maximum weighted matching in 𝐺 (𝑉 ′𝑡);
10 Let 𝑒𝑡

def

== 𝑣𝑡 `𝑡 (𝑣𝑡);
11 if `𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴 then
12 Add 𝑒𝑡 to `; ⊲ add the chosen edge to the matching

13 Remove 𝑣𝑡 and `𝑡 (𝑣𝑡) from 𝐴;

14 return matching `

The following theorem asserts that Algorithm 1 achieves a competitive ratio of
5

12
.

Theorem 3.1. Algorithm 1, with 𝑘 = ⌊𝑛
2
⌋, has a competitive ratio of 5

12
− 𝑂 (1

𝑛
) for matching

secretary with vertex arrival.

Theorem 3.1 essentially shows that one can get a competitive ratio arbitrarily close to
5

12
. To see

this, note that the algorithm can be modified by adding𝑚 auxiliary vertices (at random times) that

are connected to all vertices with zero weight edges, and apply Algorithm 1 on the induced graph.

Thus, the𝑂 (1

𝑛
) term in the theorem can be replaced by𝑂 (1

𝑚
), which can be made arbitrarily small.

The running time of our algorithm is poly(𝑚), i.e., we can achieve
5

12
− Y approximation in time

poly(𝑛, 1

Y
).

6
After the perturbation, for every two different matchings𝑀1, 𝑀2, there exists an edge 𝑒 ∈ 𝑀1Δ𝑀2. Fix the perturbations

of all edges but 𝑒 . There is at most one value for the perturbation of 𝑒 that makes the weights of𝑀1 and𝑀2 equal, which

happens with probability 0. Since the number of different matchings is finite by the union bound the probability that any

two matchings have the same weight is 0.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1155

Proof. In our analysis, the event “matched(𝑢, ≤ 𝑡)” refers to the event that vertex 𝑢 is matched

either before the arrival of 𝑣𝑡 or exactly in round 𝑡 . The following lemma (whose proof is deferred

to Appendix A.1) is used in the proof of Theorem 3.1.

Lemma 3.2. For every 𝑘 ≥ 3, 𝑡 ≥ 𝑘 , every possible realization 𝑉 of 𝑉𝑡 (i.e., 𝑉 ⊆ 𝑉 , |𝑉 | = 𝑡), and
every vertex 𝑢 ∈ 𝑉 , it holds that

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
=

2

3

(
1 − (𝑡 − 3)! · 𝑘!

𝑡 ! · (𝑘 − 3)!

)
. (1)

Given some 𝑡 ≥ 𝑘 + 1, let `𝑡 denote the maximum weighted matching in 𝐺 (𝑉 ′𝑡), and let `∗ be
the maximum weighted matching in 𝐺 . We give a lower bound on the expected weight of the

edge 𝑒𝑡 . Since 𝑒𝑡 is a random edge chosen uniformly at random among the ⌊𝑡/2⌋ edges in `𝑡 , for

every possible realization 𝑉 ′ of 𝑉 ′𝑡 (note that 𝑉 ′ is of size 𝑡 if 𝑡 is even, and of size 𝑡 − 1 if 𝑡 is odd),

it holds that E [𝑤𝑒𝑡] =
E [𝑤 (`𝑡)]
⌊𝑡/2⌋ . Let `∗ |

𝑉 ′
def

== {𝑖 𝑗 ∈ `∗ |𝑖, 𝑗 ∈ 𝑉 ′} be the matching `∗ restricted to

vertices in 𝑉 ′. Since `𝑡 is the maximum matching selected for the set of vertices 𝑉 ′𝑡 , it holds that

E [𝑤 (`𝑡)] ≥ E [𝑤 (`∗ |𝑉 ′𝑡)]. Consider next E [𝑤 (`
∗ |𝑉 ′𝑡)]. The number of edges in 𝑉 ′𝑡 is

(
2⌊ 𝑡

2
⌋

2

)
. Since

all edges are symmetric (by random arrival) and the total number of edges is

(
𝑛
2

)
, it holds that

E [𝑤 (`∗ |𝑉 ′𝑡)] = E [𝑤 (`∗)]
(
2⌊ 𝑡

2
⌋

2

)
/
(
𝑛
2

)
. We get:

E
[
𝑤𝑒𝑡

]
≥ 1

⌊𝑡/2⌋ E
[
𝑤 (`∗ |

𝑉 ′)
]
=

1

⌊𝑡/2⌋ E [𝑤 (`
∗)]

(
2⌊ 𝑡

2
⌋

2

)
/
(
𝑛

2

)
=

4 · ⌊𝑡/2⌋ − 2

𝑛 · (𝑛 − 1) E [𝑤 (`∗)] . (2)

Writing ` for the matching obtained by Algorithm 1, and `∗ for the optimal matching, we get:

E [𝑤 (`)]
E [𝑤 (`∗)] =

1

E [𝑤 (`∗)]

𝑛∑︁
𝑡=𝑘+1

E
[
𝑤𝑒𝑡 · 1[`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡]

]
=

1

E [𝑤 (`∗)]

𝑛∑︁
𝑡=𝑘+1

Pr [`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡] E
[
𝑤𝑒𝑡

]
, (3)

where 𝐴𝑡 denotes the set 𝐴 in the beginning of iteration 𝑡 , and the second equality is derived below.

E
[
𝑤𝑒𝑡 · 1[`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡]

]
(4)

=
∑︁
𝑣𝑡 ,𝑉

′
𝑡

E
[
𝑤𝑒𝑡 · 1[`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡] | 𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
· Pr

[
𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
=

∑︁
𝑣𝑡 ,𝑉

′
𝑡

𝑤𝑒𝑡 · E
[
1[`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡] | 𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
· Pr

[
𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
=

∑︁
𝑣𝑡 ,𝑉

′
𝑡

𝑤𝑒𝑡 · Pr
[
`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡 | 𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
· Pr

[
𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
= Pr [`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡]

∑︁
𝑣𝑡 ,𝑉

′
𝑡

𝑤𝑒𝑡 · Pr
[
𝑣𝑡 = 𝑣𝑡 ,𝑉

′
𝑡 = 𝑉 ′𝑡

]
= Pr [`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴𝑡] · E

[
𝑤𝑒𝑡

]
.

The first and last equalities follow by the law of total probability (taking the randomness over 𝑣𝑡
and𝑉 ′𝑡 , but not over the order of𝑉

′
𝑡 , and the random removed vertex). The second equality is by the

fact that after fixing 𝑣𝑡 = 𝑣𝑡 and 𝑉
′
𝑡 = 𝑉 ′𝑡 , 𝑒𝑡 is also fixed, thus𝑤𝑒𝑡 is a constant. The third equality

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1156

is by substituting the expectation of an indicator variable with the probability of the corresponding

event. The fourth equality is by applying Lemma 3.2 with respect to time 𝑡 − 1.

Applying Lemma 3.2 again, we have that

Pr [`𝑡 (𝑣𝑡) ∈ 𝑉𝑡 ∩𝐴] = 1 − Pr [matched(𝑢, ≤ 𝑡 − 1)] (1)= 1 − 2

3

(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

)
. (5)

Applying Equations (2),(3), and (5), we get

E [𝑤 (`)]
E [𝑤 (`∗)] ≥

1

E [𝑤 (`∗)]

𝑛∑︁
𝑡=𝑘+1

(
1 − 2

3

(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

))
· 4 · ⌊𝑡/2⌋ − 2

𝑛 · (𝑛 − 1) · E [𝑤 (`
∗)]

=

𝑛∑︁
𝑡=𝑘+1

(
1 − 2

3

(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

))
· 4 · ⌊𝑡/2⌋ − 2

𝑛 · (𝑛 − 1) ≥
1

3

+ 𝑘
2

𝑛2
− 4𝑘3

3𝑛3
−𝑂

(
1

𝑛

)
,

where the derivation of the last inequality is deferred to Appendix A.2. The last expression attains

its maximum at 𝑘 = 𝑛
2
, achieving a competitive ratio of

5

12
−𝑂 (1

𝑛
). □

Remark: Algorithm 1 can be modified to a 5/24-competitive algorithm in the ordinal setting.

Observe that the only step in which Algorithm 1 uses the edge weights is for constructing a

maximumweightedmatching `𝑡 in line 9. In the ordinal setting, instead of computing themaxweight

matching (which is not possible, since only pairwise comparisons are available), we greedily add the

edges from largest to smallest. This procedure can be implemented using pairwise comparisons of

edges, and gives at least half of the weight of the max weight matching in𝐺 (𝑉 ′𝑡). Thus, we suffer an
extra factor 2 loss. The rest of the analysis remains intact. The resulting 5/24 ≈ 0.208-competitive

ratio improves upon the
𝑒+1
12𝑒
≈ 0.114 competitive ratio by [22]. In Section 4, we establish a tight

upper bound of 5/12 for the cardinal setting which also applies to the ordinal setting. Closing the

gap between the lower bound of 5/24 and the upper bound of 5/12 remains an open problem.

4 SECRETARY MATCHINGWITH VERTEX ARRIVAL: A TIGHT UPPER BOUND
In this section we establish the following theorem showing that the competitive ratio of

5

12
is tight.

Theorem 4.1. No online algorithm has a competitive ratio better than 5

12
for secretary matching

with vertex arrival.

We first give an overview of our proof approach for showing that the competitive ratio of
5

12
is

tight. The complete proof appears in Section 4.1.

We consider the following family of instances: 𝐺 is a complete graph on 𝑛 vertices, each vertex

𝑣 ∈ 𝑉 (𝐺) has a positive integer value _𝑣 ∈ N, such that _𝑢 ≠ _𝑣 for any 𝑢 ≠ 𝑣 . The weight of each

edge 𝑢𝑣 is 𝑤𝑢𝑣 = 𝑛3(_𝑢+_𝑣)
. Thus, any instance can be specified by a set of values Λ ⊂ N of size

𝑛 = |Λ| on the graph vertices. Let

(N
𝑛

)
denote the set of all subsets of N of size 𝑛.

Our proof proceeds by reducing the following ordinal setting to the cardinal setting:
Ordinal setting. There are 𝑛 vertices, ranked 1 to 𝑛 according to an unknown ranking. The 𝑛

vertices arrive in a random order 𝑣1, . . . , 𝑣𝑛 . At time 𝑡 , the algorithm observes the relative rank of 𝑣𝑡
among 𝑣1, . . . , 𝑣𝑡 , and decides whether to match it to an earlier unmatched vertex. The objective is

to maximize the probability of matching together the top two vertices (ranked 1st and 2nd).

Our reduction to the cardinal setting from the ordinal setting goes through a third setting, termed

the hybrid setting, described as follows:

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1157

Hybrid setting. Every vertex 𝑣 has value _𝑣 , which is observed upon 𝑣 ’s arrival (as in the cardinal

settings), but the objective is to maximize the probability to match together the two highest value

vertices (as in the ordinal setting).

Our reduction proceeds in three main steps (see Figure 1).

Step 1: Reducing the hybrid variant to the cardinal variant. We show (in Lemma 4.2) that for

Λ ∈
(N
𝑛

)
, if ALG(Λ) ≥ 𝛼 ·OPT(Λ) in the cardinal setting, then ALG matches the top two vertices in

Λ with probability 𝛼 −𝑂 (1

𝑛
).

Step 2: Simplifying competitive algorithms for the hybrid setting. We show (in Claims 4.1 and 4.2)

that any 𝛼-competitive algorithm for the hybrid setting can be characterized by a collection of 𝑛 set

functions 𝑓𝑖 :

(N
𝑖

)
→ [0, 1] for each 𝑖 ∈ [𝑛], where for every Λ𝑖 ∈

(N
𝑖

)
, 𝑓𝑖 (Λ𝑖) denotes the probability

that the algorithm matches the top two vertices in Λ𝑖 given that it is possible (i.e., that one of these
vertices arrives at time 𝑖 , and both of them are unmatched).

Step 3: Reducing the ordinal variant to the hybrid variant. For this reduction, we apply the infinite

Ramsey theorem (see Claim 4.3); this is similar to the approach taken by [5]. In particular, we find

an infinite subset of values𝑇 ⊆ N for which the algorithm’s decisions depend only on their ranking,

but not on their numerical values; i.e., every function 𝑓𝑖 is a constant on each Λ𝑖 ∈
(
𝑇
𝑖

)
(up to a

small error Y). Thus, for every set of values Λ ⊂ 𝑇 with |Λ| ≤ 𝑛, ALG uses only information about

the ranking of the values. Theorem 4.3 concludes the reduction, and also reveals useful properties

of the optimal algorithm for the ordinal setting.

Finally, we analyze the ordinal algorithms ALG𝑜
, which can be fully characterized by a vector

®𝑐 ∈ [0, 1]𝑛 , where 𝑐𝑖 is the probability ALG𝑜
matches the top two vertices so far at step 𝑖 , given that

it is possible to match them, and establish an upper bound of 5/12 +𝑂 (1

𝑛
) on its performance.

4.1 Full Analysis
4.1.1 The Ordinal Variant. The ordinal variant of the matching problem is the following:

• A set of 𝑛 vertices are ranked, according to an unknown ranking, from 1st to 𝑛th. The 1st

and 2nd vertices are referred to as the top two vertices.

• The vertices arrive sequentially, in a random order; let 𝑣1, . . . , 𝑣𝑛 denote the vertices in their

arrival order.

• Upon the arrival of vertex 𝑣𝑡 , the algorithm observes the relative rank of 𝑣𝑡 among 𝑣1, . . . , 𝑣𝑡
(its rank is in {1, . . . , 𝑡}), and must decide immediately and irrevocably whether to match it

to an earlier unmatched vertex.

• The objective is to maximize the probability of matching together the top two vertices.

In the remainder of this section, we refer to our original secretary matching setting as the cardinal
setting, and to this variant as the ordinal setting. Note that the two settings differ both in (i) the

assumption about what is observable (a vertex’s weight in the cardinal setting versus its relative

rank in the ordinal setting), and in (ii) the objective function (maximize the expected total weight

in the cardinal setting versus maximize the probability to match the top two vertices in the ordinal

setting). The reduction goes through a third variant, which we refer to as the hybrid setting, which
shares properties with both variants, as will be explained in Section 4.1.2.

An algorithm in the ordinal and hybrid settings is said to be 𝛼-competitive if it matches together

the top two vertices with probability at least 𝛼 .

Ordinal vs. Cardinal Classical Secretary. It is worthwhile to mention that the classical secretary

problem has two variants as well: (i) the ordinal secretary problem, where the algorithm observes

the relative rank of the arriving element, and aims to maximize the probability of selecting the

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1158

best element, and (ii) the cardinal secretary problem, where each element is associated with a

value, which is observed upon arrival, and the algorithm aims to maximize the expectd value of the

selected element.

It is straightforward to see that any algorithm in the ordinal setting preserves its competitive

ratio when applied to the cardinal setting. On the other direction, a folklore result says that the

cardinal setting is not easier than the ordinal one (recall that the best competitive ratios in both

settings is
1

𝑒
). The upper bound for the cardinal setting is nicely explained in the recent work of [5].

Our ordinal and cardinal variants for matching can be viewed as analogs of the cardinal and

ordinal settings in the classic secretary problem. However, the matching setting is more involved in

its combinatorial structure, and the multiple decisions that should be made. Indeed, it is not clear

to us whether it is possible to adapt an algorithm for the ordinal setting to the cardinal matching

setting (like in the classical secretary problem). Nevertheless, we establish a reduction from the

ordinal setting to the cardinal setting.

4.1.2 Reduction: From Ordinal to Cardinal (through Hybrid). We shall focus on the following family

of instances. An instance is described by a complete graph 𝐺 on 𝑛 vertices. Each vertex 𝑣 of the

graph is associated with a value _𝑣 ∈ N, where N is the set of positive integers. The weight of each

edge 𝑢𝑣 is determined by the values of the two endpoints: 𝑤𝑢𝑣 = 𝑛3(𝑖+𝑗)
where 𝑖 = _𝑢, 𝑗 = _𝑣 are

the values of its two endpoints. We assume that _𝑢 ≠ _𝑣 for every two distinct vertices 𝑢, 𝑣 . Thus,

every instance can be specified by a set of values Λ ⊂ N of size 𝑛 = |Λ| on the graph vertices. Let(N
𝑛

)
denote the set of all such subsets Λ and in general

(
𝑇
𝑖

)
denote the set of all subsets Λ ⊂ 𝑇 with

|Λ| = 𝑖 . Suppose the algorithm observes the vertex values directly, rather than the edge weights

(this may only give more power to the algorithm). When clear in the context we refer to 𝑖 𝑗 as the

edge between vertices with values 𝑖 and 𝑗 , and denote the weight of this edge by𝑤𝑖 𝑗 .

The reduction from the ordinal setting to the cardinal setting proceeds in three main steps; an

overview is given in Figure 1. In what follows, we give details for each step.

Fig. 1. An overview of the proof steps.

Step 1: Introducing the hybrid variant, and reducing the hybrid variant to the cardinal variant. The
hybrid variant of the matching problem bridges between the cardinal and ordinal variants. In the

hybrid variant, every vertex 𝑣 is associated with value _𝑣 , which is observed upon 𝑣 ’s arrival (as in

the cardinal settings), but the objective is to maximize the probability to match together the two

vertices with the highest values (similar to the ordinal setting). The following lemma reduces the

hybrid variant of the problem to the cardinal variant.

Lemma 4.2. Let Λ ∈
(N
𝑛

)
. If ALG(Λ) ≥ 𝛼 · OPT(Λ) in the cardinal setting, then ALG matches the

top two vertices in Λ with probability 𝛼 −𝑂 (1

𝑛
).

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1159

Proof. Let 𝑖1, 𝑖2 be the two largest values of Λ. Consider the performance of the algorithm.

ALG(Λ) =
∑︁

{𝑖, 𝑗 }∈(Λ
2
)
Pr [𝑖 𝑗 is selected] ·𝑤𝑖 𝑗 ≤ Pr [𝑖1𝑖2 is selected] ·𝑤𝑖1𝑖2 +

∑︁
{𝑖, 𝑗 }∈(Λ

2
)−{𝑖1,𝑖2 }

𝑤𝑖 𝑗

≤ Pr [𝑖1𝑖2 is selected] ·𝑤𝑖1𝑖2 +
((
𝑛

2

)
− 1

)
·
𝑤𝑖1𝑖2

𝑛3
=

(
Pr [𝑖1𝑖2 is selected] +𝑂

(
1

𝑛

))
·𝑤𝑖1𝑖2 , (6)

where the second inequality follows from the fact that for every 𝑖, 𝑗 ,𝑤𝑖 𝑗 = 𝑛3(𝑖+𝑗) ≤ 𝑛3(𝑖1+𝑖2)−3 =
𝑤𝑖

1
𝑖
2

𝑛3
.

Finally, we have that ALG(Λ) ≥ 𝛼 · OPT(Λ) ≥ 𝛼 · 𝑤𝑖1𝑖2 . Combining this with equation (6)

concludes the proof. □

Lemma 4.2 reduces the hybrid setting to the cardinal setting. As such, it allows to change the

objective in the cardinal setting to the objective in the ordinal setting. Note, however, that changing

only the objective is not sufficient, as the online algorithm in the ordinal setting does not observe

the values of the vertices, rather it observes only the relative ranking among them. In the following

steps we reduce the ordinal variant to the hybrid variant.

Step 2: Simplifying the description of the algorithm for the hybrid variant. We now show that any

𝛼-competitive online algorithm for the hybrid variant admits a simplified description. Claim 4.1

formalizes the (trivial observation) that the algorithm’s decision at each step 𝑡 is simply a binary

decision, and Claim 4.2 shows that this decision is “history independent".

Claim 4.1. Let ALG be any 𝛼-competitive online algorithm in the hybrid setting. Then, there is an
𝛼-competitive algorithm ALG′ (in the hybrid setting) that in every step 𝑡 , may (but not necessarily)
only match the top two vertices up to step 𝑡 .

Proof. If at some step 𝑡 , ALG matches two vertices 𝑢, 𝑣 which are not the top two vertices up to

𝑡 , then ALG′ that in such cases doesn’t match any vertices, and proceeds as ALG thereafter as if 𝑢

and 𝑣 were matched, satisfies ALG′ (Λ) = ALG(Λ) for any set of values Λ. □

Thus, the algorithm’s decision at time 𝑡 is just a choice between (at most) two options: match

the top two vertices so far, or not match them. However, such decision may still be quite complex:

it may be randomized, it may depend on the values of the available vertices, on the arrival order,

or on the previous choices of the algorithm. Our next claim simplifies the algorithm further. It

shows that an optimal online algorithm is history-independent, i.e., the decision depends only on

the vertex values and on whether matching the top two vertices is possible.

Claim 4.2. Given a set of vertex values Λ𝑡 at time 𝑡 , we may assume without loss of generality that
the algorithm’s binary decision depends only on
(1) whether the top two vertices in Λ𝑡 are not matched yet; and
(2) whether the last arriving vertex is one of the top two vertices in Λ𝑡 . 7

Proof. To be formal, let us denote the arrival order of the vertices in Λ𝑡 and prior decisions of

the algorithm as a history 𝐻 (𝑡,Λ𝑡). Consider any optimal online algorithm ALG. We are going to

modify ALG so that it becomes history-independent at time 𝑡 with the same performance guarantee.

Fix the set of values Λ𝑡 . We consider the set DH(𝑡,Λ𝑡) of all histories 𝐻 (𝑡,Λ𝑡) for which
the online algorithm has an option to match the two vertices with the highest values in Λ𝑡 , i.e.,

situations that satisfy both conditions 1 and 2 from the statement of the Claim 4.2. Let us define

7
Interestingly, it does not matter whether the last arriving vertex is the highest or second-highest, only whether it is one of

the top two vertices.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1160

an online algorithm ALG′ that for every observed history 𝐻 (𝑡,Λ𝑡) ∈ DH(𝑡,Λ𝑡) forgets the real
history and instead generates a contrafactual history 𝐻 ′ (𝑡,Λ𝑡) drawn independently at random

from DH(𝑡,Λ𝑡), i.e., we generate a history 𝐻 ′ ∈ DH(𝑡,Λ𝑡) with the probability proportional

to Pr [𝐻 (𝑡,Λ𝑡) = 𝐻 ′ | Λ𝑡]. We keep ALG′ unchanged for any other set of values Λ𝑡 or history

𝐻 ∉ DH(𝑡,Λ𝑡). Starting from time 𝑡 the algorithm ALG′ assumes that the real history was 𝐻 ′

(not 𝐻) and makes all its future decisions according to 𝐻 ′. Note that by Claim 4.1 ALG′ would be

a feasible algorithm. It holds that ALG′ (𝐻 | Λ𝑡) = ALG(𝐻 ′ | Λ𝑡), since all previous decisions of
ALG before time 𝑡 did not affect the two highest value vertices in Λ𝑡 and, therefore, did not affect

the two highest value vertices in Λ. Furthermore, the distribution of the contrafactual histories 𝐻 ′

coincides by construction with the distribution of the actual histories 𝐻 ∈ DH(𝑡,Λ𝑡). Thus the
expected performance of ALG′ is the same as ALG. Note that ALG′ is history independent for the

given set of values Λ𝑡 .

To conclude the proof, we need to apply the above transformation of an optimal algorithm ALG
for every possible set of values Λ𝑡 and every time 𝑡 ∈ [𝑛]. That can be easily done using, e.g., a

backward induction on 𝑛. □

By Claims 4.1 and 4.2 we may restrict our attention to history-independent, binary-decision

online algorithms. Any such algorithm can be characterized by a collection of 𝑛 set functions

𝑓𝑖 :

(N
𝑖

)
→ [0, 1] for each 𝑖 ∈ [𝑛], where for every Λ𝑖 ∈

(N
𝑖

)
, 𝑓𝑖 (Λ𝑖) denotes the probability that

the algorithm matches the top two vertices in Λ𝑖 given that it is possible; i.e., that (i) one of these
vertices arrives at time 𝑖 , and (ii) both of them are unmatched.

Step 3: Reducing the ordinal variant to the hybrid variant. To complete the reduction from the

ordinal setting to the hybrid setting, we use a similar approach to the upper bound proof from [5].

We fix an 𝛼-competitive online algorithm ALG for the hybrid variant, which is represented by a set

of functions 𝑓𝑖 for every 𝑖 ∈ [𝑛].
Our goal is to find an infinite (or sufficiently large) subset 𝑇 ⊆ N of values on which the

algorithm’s decisions do not depend on the actual values of the vertices, i.e., every function 𝑓𝑖 is a

constant on each Λ𝑖 ∈
(
𝑇
𝑖

)
. In this case ALG does not use any information about the actual values

for every set of values Λ ⊂ 𝑇 with |Λ| ≤ 𝑛. That is, we can use ALG in the ordinal setting. We

achieve this goal within an arbitrary small additive error Y, i.e., 𝑓𝑖 (Λ𝑖) = 𝑐𝑖 ±𝑂 (Y) for every 𝑖 ∈ [𝑛],
and every Λ𝑖 ∈

(
𝑇
𝑖

)
.

Claim 4.3. For any collection of set functions 𝑓𝑖 :

(N
𝑖

)
→ [0, 1], 𝑖 ∈ [𝑛] and any Y > 0 there is an

infinite set 𝑇 ⊂ N and constants 𝑐1, . . . , 𝑐𝑛 ∈ [0, 1], s.t. 𝑓𝑖 (Λ𝑖) = 𝑐𝑖 +𝑂 (Y) for all Λ𝑖 ∈
(
𝑇
𝑖

)
, 𝑖 ∈ [𝑛].

Proof. The proof uses the infinite version of Ramsey’s theorem. We find such a set 𝑇 iteratively

for 𝑖 ∈ [𝑘], starting with 𝑘 = 1 and up to 𝑘 = 𝑛. We proceed by induction on 𝑘 . The base of the

induction is the case of 𝑘 = 0, which holds trivially. Suppose, by the induction hypothesis, that

we have an infinite set 𝑇𝑘 ⊂ N and a set of constants 𝑐1, . . . , 𝑐𝑘 such that 𝑓𝑖 (Λ𝑖) = 𝑐𝑖 + 𝑂 (Y) for
all Λ𝑖 ∈

(
𝑇𝑘
𝑖

)
and 𝑖 ∈ [𝑘]. Our goal is to find an infinite subset 𝑇𝑘+1 ⊂ 𝑇𝑘 that satisfies the desired

condition for 𝑓𝑘+1. Consider a complete hyper-graph on the set of vertices 𝑇𝑘 with hyper-edges of

size 𝑘 + 1. Each edge Λ ⊂ 𝑇𝑘 , |Λ| = 𝑘 + 1, is colored in one of 1/Y colors: assign color ⌊𝑓𝑘+1 (Λ)/Y⌋ to
the edge Λ. By the infinite version of Ramsey’s theorem [42], this hyper-graph admits an infinite

monochromatic clique. Let the color of such a clique be𝐶𝑘+1, and let the set of vertices in the clique

be 𝑇𝑘+1 ⊂ 𝑇𝑘 . Set the constant 𝑐𝑘+1 = Y ·𝐶𝑘+1. Then 𝑐𝑘+1 ≤ 𝑓𝑘+1 (Λ) < 𝑐𝑘+1 + Y for any Λ ∈
(𝑇𝑘+1
𝑘+1

)
, i.e.,

𝑓𝑘+1 (Λ) = 𝑐𝑘+1 +𝑂 (Y) for any Λ ⊂ 𝑇𝑘+1, |Λ| = 𝑘 + 1. □

With this, we can conclude the reduction from the ordinal setting to the cardinal setting. As a

bonus, we also reveal useful properties of an optimal algorithm in the ordinal setting.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1161

Theorem 4.3. Let ALG be an 𝛼-competitive online algorithm for the cardinal matching setting.
Then, there is a 𝛼 − 𝑂 (1

𝑛
)-competitive online randomized algorithm ALG𝑜 for the ordinal setting.

Moreover, at every time 𝑡 , ALG𝑜 makes a binary decision on whether to match the two top vertices up
to time 𝑡 , and this decision may only depend on the time 𝑡 and on whether this matching is possible.

Proof. We use Lemma 4.2 to convert ALG into an 𝛼 −𝑂 (1

𝑛
)-competitive algorithm ALGhyb

for

the hybrid setting. By Claims 4.1 and 4.2 we can convert ALGhyb
to ALGhyb

𝑂
which makes decisions

that depend only on the set of values Λ𝑡 at time 𝑡 and the possibility of matching the top two

vertices in Λ𝑡 . Finally, we can choose Y in Claim 4.3 to be Y = 𝑂 (1

𝑛2
) and find a set 𝑇 ⊂ N such

that 𝑓𝑖 (Λ𝑖) = 𝑐𝑖 +𝑂 (Y) for every Λ𝑖 ∈
(
𝑇
𝑖

)
and 𝑖 ∈ [𝑛]. Define the algorithm ALG𝑜

for the ordinal

setting as follows: Upon the arrival of the 𝑖th vertex, match the two top vertices up to time 𝑖 with

probability 𝑐𝑖 , if this is possible. By the union bound, for every set Λ ∈
(
𝑇
𝑛

)
,

ALG𝑜 (Λ) = ALGhyb

𝑂
(Λ) + 𝑛 ·𝑂 (Y) = ALGhyb (Λ) + 𝑛 ·𝑂 (Y) = ALGhyb (Λ) +𝑂 (1

𝑛
).

Thus, ALG𝑜
is an 𝛼 − 𝑂 (1

𝑛
)-competitive online algorithm for the ordinal setting, whose binary

decisions depend only on the time 𝑡 and the possibility of matching the two top vertices in Λ𝑡 at

time 𝑡 . This concludes the proof. □

4.1.3 An Upper Bound for the Ordinal Setting. In this section we study the ordinal setting. Based

on the analysis of Section 4.1.2, we restrict ourselves, without loss of generality, to algorithms that

decide at each step whether to match the top two vertices so far, and the decision depends only on

the time 𝑡 and whether this matching is possible. Such an algorithm can be fully characterized by a

vector ®𝑐 ∈ [0, 1]𝑛 , where 𝑐𝑖 is the probability that the algorithm matches the top two vertices so far

at step 𝑖 , given that it is possible to match them.

Our main theorem in this section is an upper bound of 5/12 on the competitive ratio of any

algorithm in the ordinal setting, whose proof is deferred to Appendix A.3.

Theorem 4.4. In the ordinal setting, for any ®𝑐 ∈ [0, 1]𝑛 , the corresponding algorithm matches the
top two vertices with probability at most 5

12
+𝑂 (1

𝑛
).

5 SECRETARY MATCHINGWITH EDGE ARRIVAL
In this section we present an algorithm — Algorithm 2 — that gives a competitive ratio of 1/4 for

edge arrival. Let 𝑒1, . . . , 𝑒𝑚 be the edges in their arrival order. Let 𝐸𝑡 = {𝑒1, . . . , 𝑒𝑡 } denote the set of
edges that arrived up to time 𝑡 , and let `∗𝑡 denote the (unique) maximum weighted matching in

𝐺 (𝐸𝑡).
Algorithm 2 ignores the first ⌊𝑚

2
⌋ edges (exploration phase). Then, in every round 𝑡 , upon the

arrival of edge 𝑒𝑡 = 𝑢𝑣 , it computes the probability that both 𝑢 and 𝑣 are available (the probability

is taken with respect to the random arrival order of the edges 𝐸𝑡−1 and the random choices of the

algorithm in steps 1 to 𝑡 − 1); denote this probability by 𝑥𝑡 . It then finds the maximum weighted

matching `∗𝑡 in the graph induced by 𝐸𝑡 . If 𝑒𝑡 ∈ `∗𝑡 , the algorithm matches 𝑒𝑡 with probability
𝛼𝑡
𝑥𝑡
,

where 𝛼𝑡 is given by the following formula (7):

𝛼𝑡 =

{
0 if 𝑡 ≤ 𝑚

2

1 − 2

∑𝑡−1

𝑖=1

𝛼𝑖
𝑖

if 𝑡 > 𝑚
2

(7)

The algorithm ensures that every given edge 𝑒𝑡 = 𝑢𝑣 is matchedwith a certain probability𝛼𝑡 given

by (7), whenever 𝑒𝑡 is in the current maximum matching. This allows us to conveniently estimate

the expected contribution of the maximum matching at time 𝑡 and compare it to the maximum

matching in the whole graph. Before doing that, we need to prove that the algorithm is well defined,

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1162

ALGORITHM 2: 1/4-competitive algorithm for secretary matching with edge arrival

1 Let 𝑒1, . . . , 𝑒𝑚 be the edges given in their arrival order;

2 𝐴 = 𝑉 , ` = ∅; ⊲ 𝐴 is the set of available vertices, ` is the returned

matching

3 for 𝑡 = ⌊𝑚
2
⌋ + 1 to𝑚 do

4 Let 𝑒𝑡 = 𝑢𝑣 be the edge arriving at time 𝑡 ;

5 𝑥𝑡 ← Pr [𝑢, 𝑣 ∈ 𝐴] (i.e., 𝑒𝑡 is available); ⊲ random: order of 𝑒1, ..., 𝑒𝑡−1+ alg’s

choices

6 `∗𝑡 ← the maximum weighted matching in 𝐺 (𝐸𝑡);
7 if 𝑒𝑡 ∈ `∗𝑡 and 𝑢, 𝑣 ∈ 𝐴 then
8 begin with probability

𝛼𝑡
𝑥𝑡

9 Add 𝑒𝑡 to `;

10 Remove 𝑢 and 𝑣 from 𝐴;

11 return matching `

i.e., that 𝑥𝑡 ≥ 𝛼𝑡 for every 𝑡 . Note that 𝑥𝑡 is the probability that 𝑒𝑡 is available, given a random order

of edges in 𝐸𝑡 (the edges arriving up to time 𝑡) that ends with 𝑒𝑡 . As such, it depends on 𝑒𝑡 , and the

set 𝐸𝑡 , but not on the order of edges within 𝐸𝑡 (except for 𝑒𝑡 being the 𝑡-th edge). We use 𝑥𝑡 (𝑆, 𝑒)
to denote the probability that 𝑒𝑡 is available when 𝐸𝑡 = 𝑆 and 𝑒𝑡 = 𝑒 . We use “matched(𝑢, < 𝑡)" to
denote the event that 𝑢 becomes unavailable before time 𝑡 , and “matched(𝑒,@𝑡)" to denote the

event that edge 𝑒 is matched exactly at time 𝑡 . We use 𝐴𝑡 to denote the random set of available

vertices at time 𝑡 .

Lemma 5.1. For every time 𝑡 , vertices 𝑢, 𝑣 and set of edges 𝑄 of size 𝑡 − 1, given that 𝑒𝑡 = 𝑢𝑣 and
𝐸𝑡−1 = 𝑄 , it holds that 𝑥𝑡 ≥ 𝛼𝑡 .

Proof. We prove by induction on 𝑡 . For the base case, where 𝑡 = ⌊𝑚
2
⌋ + 1, the statement holds

trivially since we have not matched anything yet, i.e., 𝑥𝑡 = 1. Next, fix 𝑡 and suppose the statement

holds for all 𝑡 ′ ≤ 𝑡 − 1. Let 𝑒𝑡 = 𝑢𝑣 be the edge arriving at time 𝑡 and the let 𝑄 = 𝐸𝑡−1 be the set of

arrived edges before time 𝑡 .

For simplicity, in the remainder of the proof, we omit the given 𝑒𝑡 = 𝑢𝑣 and 𝐸𝑡−1 = 𝑄 in all

probabilities and indicator expressions. It holds that

Pr [matched(𝑢, < 𝑡)] =
∑︁
𝑒∋𝑢,
𝑒∈𝑄

𝑡−1∑︁
𝑖=1

Pr [𝑒 = 𝑒𝑖] · Pr [matched(𝑒,@𝑖) | 𝑒 = 𝑒𝑖] ,

Clearly, Pr [𝑒 = 𝑒𝑖] = 1

𝑡−1
due to the random arrival order. To calculate Pr [matched(𝑒,@𝑖) | 𝑒 = 𝑒𝑖]

for a given 𝑒 = (𝑢𝑣 ′) and any given set 𝑆 = 𝐸𝑖 ∋ 𝑒 of arrived edges at step 𝑖 < 𝑡 , note that by the

induction hypothesis, 𝑥𝑖 ≥ 𝛼𝑖 , and whenever 𝑒 ∈ `∗ (𝑆), Algorithm 2 includes 𝑒 in the matching

with probability 𝛼𝑖 precisely. We get

Pr [matched(𝑒,@𝑖) | 𝑒 = 𝑒𝑖] =
∑︁
𝑆⊆𝑄 :

|𝑆 |=𝑖, 𝑒∈𝑆

Pr [𝐸𝑖 = 𝑆 | 𝑒 = 𝑒𝑖] · 1[𝑒 ∈ `∗ (𝑆)] · 𝑥𝑖 (𝑆, 𝑒) ·
𝛼𝑖

𝑥𝑖 (𝑆, 𝑒)

= 𝛼𝑖 ·
∑︁
𝑆⊆𝑄 :

|𝑆 |=𝑖, 𝑒∈𝑆

Pr [𝐸𝑖 = 𝑆 | 𝑒 = 𝑒𝑖] · 1[𝑒 ∈ `∗ (𝑆)] = 𝛼𝑖 · Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1163

It follows that

Pr [matched(𝑢, < 𝑡)] =
∑︁
𝑒∋𝑢,
𝑒∈𝑄

𝑡−1∑︁
𝑖=1

1

𝑡 − 1

· Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
· 𝛼𝑖

=
1

𝑡 − 1

𝑡−1∑︁
𝑖=1

𝛼𝑖

∑︁
𝑒∋𝑢,
𝑒∈𝑄

Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
, (8)

where the last equality is obtained by changing the order of summation. We next prove that∑︁
𝑒∋𝑢,
𝑒∈𝑄

Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
≤ 𝑡 − 1

𝑖
. (9)

It holds that∑︁
𝑒∋𝑢,
𝑒∈𝑄

Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
=

∑︁
𝑒∋𝑢,
𝑒∈𝑄

∑︁
𝑆⊆𝑄 :

𝑒∈𝑆, |𝑆 |=𝑖

1[𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖 , 𝑆 = 𝐸𝑖] · Pr [𝑆 = 𝐸𝑖 | 𝑒 = 𝑒𝑖] .

Since the arrival order is chosen uniformly at random, ∀𝑆 ⊂ 𝑄 : |𝑆 | = 𝑖 we have Pr [𝑆 = 𝐸𝑖 | 𝑒 =

𝑒𝑖] = 1

(𝑡−2

𝑖−1
) , which can be written as

1

(𝑡−1

𝑖)
· 𝑡−1

𝑖
. By changing the order of summation we get∑︁

𝑒∋𝑢,
𝑒∈𝑄

Pr
[
𝑒 ∈ `∗𝑖 | 𝑒 = 𝑒𝑖

]
=

∑︁
𝑆⊆𝑄 :

|𝑆 |=𝑖

∑︁
𝑒∋𝑢,
𝑒∈𝑆

1[𝑒 ∈ `∗𝑖 | 𝑆 = 𝐸𝑖] ·
1(

𝑡−1

𝑖

) · 𝑡 − 1

𝑖

=
𝑡 − 1

𝑖

∑︁
𝑆⊆𝑄 :

|𝑆 |=𝑖

∑︁
𝑒∋𝑢,
𝑒∈𝑆

1[𝑒 ∈ `∗𝑖 | 𝑆 = 𝐸𝑖] · Pr [𝑆 = 𝐸𝑖] ≤
𝑡 − 1

𝑖

∑︁
𝑆⊆𝑄 :

|𝑆 |=𝑖

Pr [𝑆 = 𝐸𝑖] =
𝑡 − 1

𝑖
.

The second equality holds since Pr [𝑆 = 𝐸𝑖] = 1

(𝑡−1

𝑖)
, and the inequality follows by observing that∑

𝑒∋𝑢,𝑒∈𝑆 1[𝑒 ∈ `∗𝑖 | 𝑆 = 𝐸𝑖] ≤ 1 since the events 𝑒 ∈ `∗𝑖 are disjoint for different 𝑒 ∋ 𝑢. The last
equality follows since

∑
𝑆⊆𝑄 : |𝑆 |=𝑖 Pr [𝑆 = 𝐸𝑖] = 1, as a partition into all possible realizations of 𝐸𝑖 .

This concludes the proof of Equation (9). We combine (8) and (9) and get the following probability

bound that 𝑢 (and similarly 𝑣) is matched before time 𝑡 :

Pr [matched(𝑢, < 𝑡)] ≤
𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
, Pr [matched(𝑣, < 𝑡)] ≤

𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖

Applying the union bound to the events matched(𝑢, < 𝑡) and matched(𝑣, < 𝑡) the probability
that both 𝑢 and 𝑣 are available upon the arrival of 𝑒𝑡 is

𝑥𝑡 = Pr [𝑢, 𝑣 available @𝑡] ≥ 1 − 2

𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖

(7)

= 𝛼𝑡 .

This concludes the proof of Lemma 5.1. □

We are now ready to prove that Algorithm 2 is
1

4
-competitive.

Theorem 5.2. Algorithm 2 has a competitive ratio of 1

4
.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1164

Proof. First, as the set of the first 𝑡 edges 𝐸𝑡 is chosen uniformly at random, the maximum

matching `∗𝑡 in 𝐸𝑡 has the expected total weight greater than or equal to the expected weight of the

𝐸𝑡 edges in the optimal matching `∗

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ≥
𝑡

𝑚
·
∑︁
𝑒∈`∗

𝑤𝑒 . (10)

Next, we prove by induction that for every 𝑡 > 𝑚
2
:

𝛼𝑡 =
⌊𝑚

2
⌋ · ⌊𝑚−2

2
⌋

(𝑡 − 1) (𝑡 − 2) . (11)

For 𝑡 = ⌊𝑚
2
⌋ + 1, 𝛼𝑡 is indeed 1. For 𝑡 > ⌊𝑚

2
⌋ + 1,

𝛼𝑡 = 1 − 2

𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
= 𝛼𝑡−1 − 2 · 𝛼𝑡−1

𝑡 − 1

=
𝑡 − 3

𝑡 − 1

· 𝛼𝑡−1.

The induction hypothesis now implies that
𝑡−3

𝑡−1
·𝛼𝑡−1 =

𝑡−3

𝑡−1
· ⌊

𝑚
2
⌋ ·⌊𝑚−2

2
⌋

(𝑡−2) (𝑡−3) =
⌊𝑚

2
⌋ ·⌊𝑚−2

2
⌋

(𝑡−1) (𝑡−2) , concluding (11).
We are now ready to establish the competitive ratio of Algorithm 2. Write ` for the matching

returned by Algorithm 2. Edge 𝑒𝑡 = 𝑢𝑣 is matched in round 𝑡 if: (i) it belongs to `∗𝑡 , and (ii) both 𝑢

and 𝑣 are available. Observing that condition (ii) happens with probability 𝑥𝑡 (𝑆, 𝑒) for 𝑆 = 𝐸𝑡 , we

get

E

[∑︁
𝑒∈`

𝑤𝑒

]
=

𝑚∑︁
𝑡=⌊𝑚

2
⌋+1

∑︁
𝑆⊆𝐸:

|𝑆 |=𝑡

∑︁
𝑒∈𝑆

E
[
𝑤𝑒 · 1[𝑒 ∈ `∗𝑡] | 𝑒 = 𝑒𝑡 , 𝐸𝑡 = 𝑆

]
·Pr [𝐸𝑡 = 𝑆, 𝑒 = 𝑒𝑡]·𝑥𝑡 (𝑆, 𝑒)·

𝛼𝑡

𝑥𝑡 (𝑆, 𝑒)
.

Observe that

∑
𝑒∈𝑆 E [𝑤𝑒 · 1[𝑒 ∈ `∗𝑡] | 𝑒 = 𝑒𝑡 , 𝐸𝑡 = 𝑆] = E [∑𝑒∈`∗𝑡 𝑤𝑒 | 𝐸𝑡 = 𝑆] and also that

Pr [𝐸𝑡 = 𝑆, 𝑒 = 𝑒𝑡] = Pr [𝐸𝑡 = 𝑆] · 1

𝑡
. We get

E

[∑︁
𝑒∈`

𝑤𝑒

]
=

𝑚∑︁
𝑡=⌊𝑚

2
⌋+1

∑︁
𝑆⊆𝐸:

|𝑆 |=𝑡

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

��� 𝐸𝑡 = 𝑆

 · Pr [𝐸𝑡 = 𝑆] · 1

𝑡
· 𝛼𝑡

=

𝑚∑︁
𝑡=⌊𝑚

2
⌋+1

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ·
𝛼𝑡

𝑡

(11)

=

𝑚∑︁
𝑡=⌊𝑚

2
⌋+1

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ·
1

𝑡
·
⌊𝑚

2
⌋ · ⌊𝑚−2

2
⌋

(𝑡 − 1) (𝑡 − 2)

(10)

≥
𝑚∑︁

𝑡=⌊𝑚
2
⌋+1

𝑡 ·∑𝑒∈`∗ 𝑤𝑒

𝑚
· 1

𝑡
·
⌊𝑚

2
⌋ · ⌊𝑚−2

2
⌋

(𝑡 − 1) (𝑡 − 2)

=

⌊𝑚
2

⌋
·
⌊
𝑚 − 2

2

⌋
·
∑

𝑒∈`∗ 𝑤𝑒

𝑚
·

𝑚∑︁
𝑡=⌊𝑚

2
⌋+1

1

(𝑡 − 1) (𝑡 − 2) ≥
1

4

∑︁
𝑒∈`∗

𝑤𝑒 (12)

The last inequality follows by observing that
1

(𝑡−1) (𝑡−2) =
1

𝑡−2
− 1

𝑡−1
, thus the sum telescopes to

1

⌊𝑚
2
⌋−1
− 1

𝑚−1
; we have

⌊
𝑚
2

⌋
·
⌊
𝑚−2

2

⌋
· 1

𝑚

(
1

⌊𝑚
2
⌋−1
− 1

𝑚−1

)
=
⌊𝑚

2
⌋

𝑚

(
1 − ⌊

𝑚−2

2
⌋

𝑚−1

)
> 1

2

(
1 − 1

2

)
= 1/4

(where the inequality holds for any 𝑚 ≥ 2). I.e., the coefficient of

∑
𝑒∈`∗ 𝑤𝑒 is at least

1

4
. This

concludes the proof of the theorem. □

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1165

Remark: It is quite straightforward to implement Algorithm 2 in exponential time in the number

of edges𝑚 using Monte Carlo simulations: one simply needs to compute all 𝑥𝑡 = 𝑥𝑡 (𝑆) depending
on the set of visible edges 𝑆 ⊂ 𝐸 (i.e., edges with known weights). We can easily compute all 𝛼𝑡
using the simple explicit formula (11). Unfortunately, we do not know how to efficiently compute

or estimate 𝑥𝑡 in subexponential time (to estimate the probability that both ends of 𝑒𝑡 are available,

we need to predict at each step 𝑖 < 𝑡 what Algorithm 2 would do for a random set of edges 𝑆 ⊂ 𝐸𝑡).

Thus, our result in Theorem 5.2 can be seen as an information-theoretic result. It remains an

interesting open problem whether there is a poly-time online algorithm that matches this bound of

1/4.

ACKNOWLEDGMENTS
This work is supported by Science and Technology Innovation 2030 –“New Generation of Artificial

Intelligence” Major Project No.(2018AAA0100903), Innovation Program of Shanghai Municipal

Education Commission, Program for Innovative Research Team of Shanghai University of Finance

and Economics (IRTSHUFE) and the Fundamental Research Funds for the Central Universities.

The first two authors are partially supported by the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation program (grant agreement No. 866132),

and by the Israel Science Foundation (grant number 317/17). Zhihao Gavin Tang is supported by

NSFC grant 61902233. Nick Gravin is supported by NSFC grant 62150610500. Tomer Ezra is partially

supported by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design

Research in Online Markets” and the MIUR PRIN project ALGADIMAR “Algorithms, Games, and

Digital Markets”.

REFERENCES
[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. 2011. Online Vertex-Weighted Bipartite

Matching and Single-bid Budgeted Allocations. In SODA. SIAM, 1253–1264.

[2] Noga Alon, Tristan Pollner, and S. Matthew Weinberg. 2020. Three Results on Prophet Inequalities on (Hyper-) Graphs.

Personal communication.

[3] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley. 2019. Edge Weighted

Online Windowed Matching. In EC. ACM, 729–742.

[4] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. 2018. Matroid Secretary Problems. J. ACM 65,

6 (2018), 35:1–35:26.

[5] José Correa, Paul Dütting, Felix Fischer, and Kevin Schewior. 2019. Prophet inequalities for iid random variables from

an unknown distribution. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC. ACM, 3–17.

[6] Nedialko B. Dimitrov and C. Greg Plaxton. 2012. CompetitiveWeightedMatching in Transversal Matroids. Algorithmica
62, 1-2 (2012), 333–348.

[7] Shaddin Dughmi. 2020. The Outer Limits of Contention Resolution on Matroids and Connections to the Secretary

Problem. In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference) (LIPIcs), Artur Czumaj, Anuj Dawar, and Emanuela Merelli (Eds.), Vol. 168.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 42:1–42:18. https://doi.org/10.4230/LIPIcs.ICALP.2020.42

[8] E. Dynkin. 1963. The optimum choice of the instant for stopping a markov process.

[9] Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. 2020. Online Stochastic Max-Weight Matching:

Prophet Inequality for Vertex and Edge Arrival Models. In EC ’20: The 21st ACM Conference on Economics and
Computation, Virtual Event, Hungary, July 13-17, 2020, Péter Biró, Jason Hartline, Michael Ostrovsky, and Ariel D.

Procaccia (Eds.). ACM, 769–787. https://doi.org/10.1145/3391403.3399513

[10] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam. 2020. Edge-Weighted Online Bipartite

Matching. In FOCS. IEEE, 412–423.
[11] Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. 2009. Online Ad Assignment with

Free Disposal. In WINE (Lecture Notes in Computer Science), Vol. 5929. Springer, 374–385.
[12] Michal Feldman, Nick Gravin, and Brendan Lucier. 2015. Combinatorial Auctions via Posted Prices. In SODA. SIAM,

123–135.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1166

https://doi.org/10.4230/LIPIcs.ICALP.2020.42
https://doi.org/10.1145/3391403.3399513

[13] Moran Feldman, Ola Svensson, and Rico Zenklusen. 2018. A Simple O(log log(rank))-Competitive Algorithm for the

Matroid Secretary Problem. Math. Oper. Res. 43, 2 (2018), 638–650.
[14] Thomas S. Ferguson. 1989. Who Solved the Secretary Problem? Statist. Sci. 4, 3 (08 1989), 282–289. https://doi.org/10.

1214/ss/1177012493

[15] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc. 2019. Online Matching with

General Arrivals. In FOCS. IEEE Computer Society, 26–37.

[16] Martin Gardner. 1966. New Mathematical Diversions from Scientific American. Simon and Schuster, Chapter 3, problem

3. Reprint of the original column published in February 1960 with additional comments.

[17] Alexander V. Gnedin. 1994. A Solution to the Game of Googol. Annals of Probability 22, 3 (July 1994), 1588–1595.

[18] Nick Gravin, Zhihao Gavin Tang, and Kangning Wang. 2021. Online Stochastic Matching with Edge Arrivals. In ICALP
(LIPIcs), Vol. 198. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 74:1–74:20.

[19] Nikolai Gravin and Hongao Wang. 2019. Prophet Inequality for Bipartite Matching: Merits of Being Simple and Non

Adaptive. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC. 93–109.
[20] Guru Prashanth Guruganesh and Sahil Singla. 2017. Online Matroid Intersection: Beating Half for Random Arrival. In

Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada,
June 26-28, 2017, Proceedings (Lecture Notes in Computer Science), Friedrich Eisenbrand and Jochen Könemann (Eds.),

Vol. 10328. Springer, 241–253.

[21] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Tuomas Sandholm. 2007. Automated Online Mechanism

Design and Prophet Inequalities. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. 58–65.
[22] Martin Hoefer and Bojana Kodric. 2017. Combinatorial Secretary Problems with Ordinal Information. In ICALP (LIPIcs),

Vol. 80. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 133:1–133:14.

[23] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and Xue Zhu. 2020. Fully Online Matching.

J. ACM 67, 3 (2020), 17:1–17:25.

[24] Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao Zhang. 2019. Tight Competitive

Ratios of Classic Matching Algorithms in the Fully Online Model. In SODA. SIAM, 2875–2886.

[25] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. 2019. Online Vertex-Weighted Bipartite Matching:

Beating 1-1/e with Random Arrivals. ACM Trans. Algorithms 15, 3 (2019), 38:1–38:15.
[26] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. 2020. Fully Online Matching II: Beating Ranking

and Water-filling. to appear in FOCS (2020).
[27] Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. 2020. AdWords in a Panorama. In FOCS. IEEE, 1416–1426.
[28] Billy Jin and David P. Williamson. 2020. Improved Analysis of RANKING for Online Vertex-Weighted Bipartite

Matching. CoRR abs/2007.12823 (2020).

[29] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. 2011. Online bipartite matching with unknown distributions.

In STOC. ACM, 587–596.

[30] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. 1990. An Optimal Algorithm for On-line Bipartite Matching.

In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC. ACM, 352–358.

[31] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. 2013. An Optimal Online Algorithm for

Weighted Bipartite Matching and Extensions to Combinatorial Auctions. In ESA (Lecture Notes in Computer Science),
Vol. 8125. Springer, 589–600.

[32] Robert Kleinberg and S. Matthew Weinberg. 2019. Matroid prophet inequalities and applications to multi-dimensional

mechanism design. Games and Economic Behavior 113 (2019), 97–115.
[33] Robert D. Kleinberg. 2005. A multiple-choice secretary algorithm with applications to online auctions. In Proceedings of

the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada,
January 23-25, 2005. SIAM, 630–631. http://dl.acm.org/citation.cfm?id=1070432.1070519

[34] Nitish Korula and Martin Pál. 2009. Algorithms for Secretary Problems on Graphs and Hypergraphs. In ICALP (2)
(Lecture Notes in Computer Science), Vol. 5556. Springer, 508–520.

[35] Ulrich Krengel and Louis Sucheston. 1977. Semiamarts and finite values. Bull. Amer. Math. Soc. 83, 4 (07 1977), 745–747.
[36] Ulrich Krengel and Louis Sucheston. 1978. On semiamarts, amarts, and processes with finite value. Advances in Prob 4,

197-266 (1978), 1–5.

[37] Oded Lachish. 2014. O(log log Rank) Competitive Ratio for the Matroid Secretary Problem. In FOCS. IEEE Computer

Society, 326–335.

[38] Mohammad Mahdian and Qiqi Yan. 2011. Online bipartite matching with random arrivals: an approach based on

strongly factor-revealing LPs. In STOC. ACM, 597–606.

[39] Aranyak Mehta. 2013. Online Matching and Ad Allocation. Foundations and Trends in Theoretical Computer Science 8,
4 (2013), 265–368.

[40] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. 2007. AdWords and generalized online

matching. J. ACM 54, 5 (2007), 22.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1167

https://doi.org/10.1214/ss/1177012493
https://doi.org/10.1214/ss/1177012493
http://dl.acm.org/citation.cfm?id=1070432.1070519

[41] Tristan Pollner. 2020. Two Problems In Combinatorial Optimization Under Uncertainty.

[42] Frank P Ramsey. 2009. On a problem of formal logic. In Classic Papers in Combinatorics. Springer, 1–24.
[43] Rebecca Reiffenhäuser. 2019. An Optimal Truthful Mechanism for the Online Weighted Bipartite Matching Problem.

In SODA. SIAM, 1982–1993.

[44] Aviad Rubinstein. 2016. Beyond matroids: Secretary problem and prophet inequality with general constraints. In

Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 324–332.
[45] Ester Samuel-Cahn et al. 1984. Comparison of threshold stop rules and maximum for independent nonnegative random

variables. the Annals of Probability 12, 4 (1984), 1213–1216.

[46] José A. Soto, Abner Turkieltaub, and Victor Verdugo. 2018. Strong Algorithms for the Ordinal Matroid Secretary

Problem. In SODA. SIAM, 715–734.

[47] Yajun Wang and Sam Chiu-wai Wong. 2015. Two-sided Online Bipartite Matching and Vertex Cover: Beating the

Greedy Algorithm. In ICALP (1) (Lecture Notes in Computer Science), Vol. 9134. Springer, 1070–1081.

A MISSING PROOFS
A.1 Proof of Lemma 3.2
Lemma 3.2. For every 𝑘 ≥ 3, 𝑡 ≥ 𝑘 , every possible realization 𝑉 of 𝑉𝑡 (i.e., 𝑉 ⊆ 𝑉 , |𝑉 | = 𝑡), and

every vertex 𝑢 ∈ 𝑉 , it holds that

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
=

2

3

(
1 − (𝑡 − 3)! · 𝑘!

𝑡 ! · (𝑘 − 3)!

)
. (1)

Proof. To prove the lemma, we show that the probability that𝑢 is matched by time 𝑡 , conditioned

on 𝑉𝑡 = 𝑉 can be expressed by the following recursive formula:

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
= 𝑝 (𝑘, 𝑡), (13)

where

𝑝 (𝑘, 𝑘) = 0 and 𝑝 (𝑘, 𝑡) = 2

𝑡
+ 𝑡 − 3

𝑡
· 𝑝 (𝑘, 𝑡 − 1) for every 𝑡 ∈ {𝑘 + 1, . . . , 𝑛}. (14)

We prove (13) by induction on 𝑡 . For 𝑡 = 𝑘 , 𝑝 (𝑘, 𝑘) = 0 and (13) holds trivially. Consider next the

case where 𝑡 > 𝑘 , and 𝑉𝑡 = 𝑉 . For every set 𝑇 ⊆ 𝑉 of even size, `𝑇 denotes the unique maximum

matching of𝑇 (recall that the maximum matching is unique and matches all vertices) and for 𝑢 ∈ 𝑇 ,
`𝑇 (𝑢) denotes the match of 𝑢 in the `𝑇 . We distinguish between two cases, namely whether 𝑡 is

even or odd; in both cases 𝑉 ′𝑡 is even.

Case 1: 𝑡 is even. In this case 𝑉 ′𝑡 = 𝑉𝑡 . We partition the event that 𝑢 is matched by time 𝑡 , given

that𝑉𝑡 = 𝑉 , into the following disjoint events: (i) 𝑣𝑡 = 𝑢, (ii) 𝑣𝑡 = 𝑣 for some 𝑣 ∈ 𝑉 \ {𝑢, `
𝑉
(𝑢)}, and

(iii) 𝑣𝑡 = `
𝑉
(𝑢). Each one of these events occurs with probability

1

𝑡
(in (ii),

1

𝑡
is the probability of

every given 𝑣 ∈ 𝑉 \ {𝑢, `
𝑉
(𝑢)}). We get:

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
= Pr

[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 , 𝑣𝑡 = 𝑢

]
1

𝑡

+
∑︁

𝑣∈𝑉 \{𝑢,`
𝑉
(𝑢) }

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 , 𝑣𝑡 = 𝑣

]
1

𝑡

+ Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 , 𝑣𝑡 = `

𝑉
(𝑢)

]
1

𝑡
.

If 𝑣𝑡 = 𝑢, then 𝑢 is matched by time 𝑡 , iff `
𝑉
(𝑢) is unmatched before 𝑢’s arrival, which happens with

probability 1 − 𝑝 (𝑘, 𝑡 − 1) by induction hypothesis for 𝑉𝑡−1 = 𝑉 \ {𝑢}. If 𝑣𝑡 is neither 𝑢 nor `
𝑉
(𝑢),

then 𝑢 is matched by time 𝑡 iff it is matched by time 𝑡 − 1. Finally, if 𝑣𝑡 = `
𝑉
(𝑢), then 𝑢 is always

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1168

matched by 𝑡 , since if it is unmatched before time 𝑡 , it will be matched to `
𝑉
(𝑢) upon arrival of

𝑣𝑡 = `
𝑉
(𝑢). Putting it all together we get:

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
= (1 − 𝑝 (𝑘, 𝑡 − 1)) 1

𝑡
+ (𝑡 − 2)𝑝 (𝑘, 𝑡 − 1) 1

𝑡
+ 1

𝑡

=
2

𝑡
+ 𝑡 − 3

𝑡
· 𝑝 (𝑘, 𝑡 − 1)

(14)

= 𝑝 (𝑘, 𝑡).

Case 2: 𝑡 is odd. Let 𝑟𝑡 be the index of the random vertex that is dropped in line 7 of the algorithm.

Then,𝑉 ′𝑡 = 𝑉 \ {𝑣𝑟𝑡 }. We partition the event that 𝑢 is matched by time 𝑡 , given that𝑉𝑡 = 𝑉 , into the

following disjoint events: (i) 𝑢 = 𝑣𝑡 , (ii) 𝑢 = 𝑣𝑟𝑡 , and (iii) 𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡 . Each of the events (i) and (ii)

occurs with probability
1

𝑡
; event (iii) occurs with probability

𝑡−2

𝑡
. We get:

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
= Pr

[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 ,𝑢 = 𝑣𝑡

]
1

𝑡

+ Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 ,𝑢 = 𝑣𝑟𝑡

]
1

𝑡

+ Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 ,𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡

] 𝑡 − 2

𝑡
.

If 𝑢 = 𝑣𝑡 , then 𝑢 is matched iff its match is available in round 𝑡 , which happens with probability

1 − 𝑝 (𝑘, 𝑡 − 1), by induction. If 𝑢 = 𝑣𝑟𝑡 , then 𝑢 is matched by time 𝑡 iff it is matched by time 𝑡 − 1,

which happens with probability 𝑝 (𝑘, 𝑡 − 1) by the induction hypothesis for 𝑉𝑡−1 = 𝑉 \ {𝑣𝑡 }. If
𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡 , then 𝑣𝑡 , 𝑣𝑟𝑡 are uniformly distributed among the pairs of vertices in𝑉 \ {𝑢}. To calculate

the probability that 𝑢 is matched by time 𝑡 we separate the latter case into two disjoint events: (i)

`𝑡 (𝑣𝑡) = 𝑢, in which case 𝑢 is matched with probability 1; and (ii) `𝑡 (𝑣𝑡) ≠ 𝑢, in which case 𝑢 is

matched only if it was matched before time 𝑡 , which is 𝑝 (𝑘, 𝑡 − 1) by induction. Thus,

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉 ,𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡

]
= Pr

[
`𝑡 (𝑣𝑡) = 𝑢 | 𝑉𝑡 = 𝑉 ,𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡

]
· 1

+ Pr
[
`𝑡 (𝑣𝑡) ≠ 𝑢 | 𝑉𝑡 = 𝑉 ,𝑢 ≠ 𝑣𝑡 , 𝑣𝑟𝑡

]
· 𝑝 (𝑘, 𝑡 − 1)

=
1

𝑡 − 2

· 1 + 𝑡 − 3

𝑡 − 2

𝑝 (𝑘, 𝑡 − 1).

Putting it all together we get:

Pr
[
matched(𝑢, ≤ 𝑡) | 𝑉𝑡 = 𝑉

]
= (1 − 𝑝 (𝑘, 𝑡 − 1)) 1

𝑡
+ 𝑝 (𝑘, 𝑡 − 1) 1

𝑡

+ 𝑡 − 2

𝑡
·
(

1

𝑡 − 2

+ 𝑡 − 3

𝑡 − 2

· 𝑝 (𝑘, 𝑡 − 1)
)
=

2

𝑡
+ 𝑡 − 3

𝑡
𝑝 (𝑘, 𝑡 − 1) = 𝑝 (𝑘, 𝑡).

This concludes the proof of Equation (13).

It remains to solve the recursion. We prove by induction that

𝑝 (𝑘, 𝑡) = 2

3

(
1 − (𝑡 − 3)! · 𝑘!

𝑡 ! · (𝑘 − 3)!

)
. (15)

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1169

For 𝑡 = 𝑘 this holds trivially, since 𝑝 (𝑘, 𝑘) = 0. For 𝑡 > 𝑘 , suppose (15) holds for 𝑡 − 1; then,

𝑝 (𝑘, 𝑡) (14)

=
2

𝑡
+ 𝑡 − 3

𝑡
· 𝑝 (𝑘, 𝑡 − 1)

(15)

=
2

𝑡
+ 𝑡 − 3

𝑡
· 2

3

(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

)
=

2

3

(
3

𝑡
+ 𝑡 − 3

𝑡
·
(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

))
=

2

3

(
1 − (𝑡 − 3)! · 𝑘!

𝑡 ! · (𝑘 − 3)!

)
,

where the second equality holds by the induction assumption. This concludes the proof of Lemma 3.2.

□

A.2 Missing Derivation from the Proof of Theorem 3.1

E [𝑤 (`)]
E [𝑤 (`∗)] ≥ 1

E [𝑤 (`∗)]

𝑛∑︁
𝑡=𝑘+1
(1 − 𝑝 (𝑘, 𝑡 − 1)) · 4 · ⌊𝑡/2⌋ − 2

𝑛 · (𝑛 − 1) · E [𝑤 (`
∗)]

(15)

=

𝑛∑︁
𝑡=𝑘+1

(
1 − 2

3

(
1 − (𝑡 − 4)! · 𝑘!

(𝑡 − 1)! · (𝑘 − 3)!

))
· 4 · ⌊𝑡/2⌋ − 2

𝑛 · (𝑛 − 1)

≥
𝑛∑︁

𝑡=𝑘+1

(
1

3

+ 2 · (𝑡 − 4)! · 𝑘!

3 · (𝑡 − 1)! · (𝑘 − 3)!

)
· 2𝑡 − 4

𝑛 · (𝑛 − 1)

≥
𝑛∑︁

𝑡=𝑘+1

(
1

3

+ 2(𝑘 − 2)3
3 · 𝑡3

)
· 2𝑡 − 4

𝑛2

≥ 1

𝑛2

∫ 𝑛

𝑘

(
1

3

+ 2(𝑘 − 2)3
3 · (𝑡 + 1)3

)
· (2𝑡 − 4)d 𝑡

=
1

𝑛2
· 1

3

(
−4(𝑘 − 2)3

𝑡 + 1

+ 6(𝑘 − 2)3
(𝑡 + 1)2 + (𝑡 + 1)2 − 6𝑡

)�����𝑛
𝑘

= −4𝑘3

3𝑛3
+ 4𝑘2

3𝑛2
+ 1

3

− 𝑘2

3𝑛2
−𝑂

(
1

𝑛

)
=

1

3

+ 𝑘
2

𝑛2
− 4𝑘3

3𝑛3
−𝑂

(
1

𝑛

)
,

where to get the first inequality, we used the bound ⌊𝑡/2⌋ ≥ 𝑡/2 − 1/2; to get the second inequality,

we applied basic algebraic transformations to simplify each term under the summation; to get the

third inequality, we estimated the integral

∫ 𝑡=𝑛

𝑡=𝑘
as a Riemann sum with the subdivision into equal

intervals of length 1 and used a simple upper bound on the function’s value in each subdivision

interval; in the last two equalities all low-order terms are contained in the𝑂 (1

𝑛
) term (that vanishes

for 𝑛 →∞ and 𝑘 = Θ(𝑛)).

A.3 Proof of Theorem 4.4
Theorem 4.4. In the ordinal setting, for any ®𝑐 ∈ [0, 1]𝑛 , the corresponding algorithm matches the

top two vertices with probability at most 5

12
+𝑂 (1

𝑛
).

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1170

Proof. Let 𝑣𝑖 denote the vertex that arrives at time 𝑖 , and let I𝑖 , II𝑖 denote the respective top

and second-top vertices among 𝑣1, . . . , 𝑣𝑖 . Let 𝑂𝑖 be the event that I𝑖 remains unmatched by the

end of step 𝑖 , and let 𝑝𝑖 = Pr [𝑂𝑖], where the randomness is taken over the arrival order of the

first 𝑖 vertices. Clearly, 𝑝1 = 1. In what follows, “matched(𝑒,@𝑡)" denotes the event that edge 𝑒 is
matched exactly at time 𝑡 . For 𝑖 > 1, we can express 𝑝𝑖 by the following recursive formula:

𝑝𝑖 = Pr [𝑂𝑖 ∧ (𝑣𝑖 = I𝑖)] + Pr [𝑂𝑖 ∧ (𝑣𝑖 = II𝑖)] + Pr [𝑂𝑖 ∧ (𝑣𝑖 ≠ I𝑖 , II𝑖)]

=
1

𝑖
· Pr

[
𝑂𝑖

��𝑣𝑖 = I𝑖

]
+ 1

𝑖
· Pr

[
𝑂𝑖

��𝑣𝑖 = II𝑖

]
+ 𝑖 − 2

𝑖
· Pr

[
𝑂𝑖

��𝑣𝑖 ≠ I𝑖 , II𝑖
]

=
1

𝑖
· Pr

[
¯𝑂𝑖−1 ∨matched(𝑣𝑖 I𝑖−1,@𝑖)

�� 𝑣𝑖 = I𝑖

]
+ 1

𝑖
· Pr

[
𝑂𝑖−1 ∧matched(𝑣𝑖 I𝑖−1,@𝑖)

�� 𝑣𝑖 = II𝑖

]
+ 𝑖 − 2

𝑖
· Pr [𝑂𝑖−1]

=
1

𝑖
· (1 − 𝑝𝑖−1𝑐𝑖) +

1

𝑖
· 𝑝𝑖−1 (1 − 𝑐𝑖) +

𝑖 − 2

𝑖
· 𝑝𝑖−1

=
1

𝑖
· (1 + (𝑖 − 1)𝑝𝑖−1 − 2𝑝𝑖−1𝑐𝑖). (16)

The first equality follows by considering three disjoint cases for vertex 𝑣𝑖 ; the second equality

holds since the distribution over the arrival order of {𝑣 𝑗 } 𝑗∈[𝑖] is uniform; to get the third equality

we further consider cases where I𝑖 will be matched: (a) if 𝑣𝑖 is the top vertex so far, then it stays

unmatched if either the vertex II𝑖 = I𝑖−1 is already matched, or we don’t match 𝑣𝑖 to I𝑖−1, (b) if 𝑣𝑖 is

the second top vertex so far, then I𝑖 = I𝑖−1 stays unmatched if it is unmatched at the step 𝑖 − 1 and
it is not matched to 𝑣𝑖 at step 𝑖 , (c) if 𝑣𝑖 is ranked lower than I𝑖 , II𝑖 , then I𝑖 = I𝑖−1 stays unmatched if

it is unmatched at step 𝑖 − 1; to obtain the fourth equality, we use the fact that the probability 𝑐𝑖 of

matching I𝑖 and II𝑖 (if it is possible) depends only on the time step 𝑖 .

We next claim that the expected performance of the algorithm can be written as

ALG(®𝑐) = 1(
𝑛
2

) 𝑛∑︁
𝑖=2

(𝑖 − 1) · 𝑝𝑖−1 · 𝑐𝑖 . (17)

To see this, note that

ALG(®𝑐) =
𝑛∑︁
𝑖=2

Pr [{I𝑖 , II𝑖 } = {I𝑛, II𝑛} ∧ 𝑣𝑖 ∈ {I𝑖 , II𝑖 } ∧𝑂𝑖−1 ∧matched(I𝑖 II𝑖 ,@𝑖)]

=

𝑛∑︁
𝑖=2

Pr [{I𝑖 , II𝑖 } = {I𝑛, II𝑛}] ·
2

𝑖
· 𝑝𝑖−1 · 𝑐𝑖 =

𝑛∑︁
𝑖=2

(
𝑛−2

𝑖−2

)(
𝑛
𝑖

) · 2

𝑖
· 𝑝𝑖−1 · 𝑐𝑖

=
1(
𝑛
2

) 𝑛∑︁
𝑖=2

(𝑖 − 1) · 𝑝𝑖−1 · 𝑐𝑖 ,

where the first equality follows from the law of total probability; the second equality follows from

the following facts: 1) conditioned on {I𝑖 , II𝑖 } = {I𝑛, II𝑛}, the arrival order of 𝑣1, . . . , 𝑣𝑖 is chosen

uniformly at random, 2) the events 𝑣𝑖 ∈ {I𝑖 , II𝑖 } and𝑂𝑖−1 are independent, 3) our algorithm matches

I𝑖 II𝑖 with probability 𝑐𝑖 when possible, i.e., when 𝑣𝑖 ∈ {I𝑖 , II𝑖 } and I𝑖−1 is unmatched.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1171

For notation simplicity, let 𝑞𝑖 = 𝑖𝑝𝑖 for 𝑖 ∈ [𝑛]. By equations (16) and (17), in order to find the

optimal ®𝑐 ∈ [0, 1]𝑛 , it suffices to find the maximum of the following function
8
on ®𝑐 ∈ [0, 1]𝑛 :

𝑓 (®𝑐, ®𝑞) def

==

𝑛∑︁
𝑖=2

𝑞𝑖−1𝑐𝑖 where 𝑞𝑖 = 1 +
(
1 − 2𝑐𝑖

𝑖 − 1

)
· 𝑞𝑖−1, and 𝑞1 = 1 (18)

We calculate the derivative of 𝑓 (®𝑐, ®𝑞(®𝑐)) over 𝑐𝑖 (note that ®𝑞 also depends on ®𝑐).
𝑑 𝑓

𝑑𝑐𝑖
=𝑞𝑖−1 +

𝑛∑︁
𝑗=𝑖+1

𝑐 𝑗 ·
𝑑𝑞 𝑗−1

𝑑𝑐𝑖
(𝑞 𝑗 does not depend on 𝑐𝑖 for 𝑗 < 𝑖)

=𝑞𝑖−1 +
𝑛∑︁

𝑗=𝑖+1
𝑐 𝑗 ·

𝑑𝑞 𝑗−1

𝑑𝑞 𝑗−2

·
𝑑𝑞 𝑗−2

𝑑𝑞 𝑗−3

· · · 𝑑𝑞𝑖
𝑑𝑐𝑖

(by the chain rule)

=𝑞𝑖−1 +
𝑛∑︁

𝑗=𝑖+1
𝑐 𝑗 ·

𝑗−1∏
𝑘=𝑖+1

(
1 − 2𝑐𝑘

𝑘 − 1

)
·
(
−2𝑞𝑖−1

𝑖 − 1

)
(by the recursive formula of 𝑞 𝑗 , see Equation (18))

=𝑞𝑖−1 ·
(
1 − 2

𝑖 − 1

·
𝑛∑︁

𝑗=𝑖+1
𝑐 𝑗

𝑗−1∏
𝑘=𝑖+1

(
1 − 2𝑐𝑘

𝑘 − 1

))
.

Notice that
𝑑𝑓

𝑑𝑐𝑖
does not depend on 𝑐𝑖 , i.e., f is a linear function of 𝑐𝑖 . In particular, it means that

the maximum of 𝑓 (®𝑐) on ®𝑐 ∈ [0, 1]𝑛 is achieved at either 𝑐𝑖 = 0, or 𝑐𝑖 = 1 depending on the sign of

𝑑𝑓

𝑑𝑐𝑖
. Note that the maximum of 𝑓 must be attained by some ®𝑐 , since [0, 1]𝑛 is a compact space and

𝑓 is a continuous function. Moreover, we observe the following “monotonicity” property of the

derivatives
𝑑𝑓

𝑑𝑐𝑖
.

Claim A.1. Let 𝑖 ≥ 3. If 𝑑𝑓

𝑑𝑐𝑖
≤ 0, then 𝑑𝑓

𝑑𝑐𝑖−1

< 0.

Proof. Let 𝑥𝑖−1 =
∑𝑛

𝑗=𝑖 𝑐 𝑗
∏𝑗−1

𝑘=𝑖

(
1 − 2𝑐𝑘

𝑘−1

)
and 𝑥𝑖 =

∑𝑛
𝑗=𝑖+1 𝑐 𝑗

∏𝑗−1

𝑘=𝑖+1

(
1 − 2𝑐𝑘

𝑘−1

)
. Thus 𝑥𝑖−1 =

𝑥𝑖 ·
(
1 − 2𝑐𝑖

𝑖−1

)
+ 𝑐𝑖 . Then, 𝑑𝑓

𝑑𝑐𝑖
≤ 0 iff 1 − 2𝑥𝑖

𝑖−1
≤ 0 iff 𝑥𝑖 ≥ 𝑖−1

2
.

We get:

𝑥𝑖−1 = 𝑥𝑖 ·
(
1 − 2𝑐𝑖

𝑖 − 1

)
+ 𝑐𝑖 = 𝑥𝑖 + 𝑐𝑖 ·

(
1 − 2𝑥𝑖

𝑖 − 1

)
≥ 𝑥𝑖 + 1 ·

(
1 − 2𝑥𝑖

𝑖 − 1

)
= 𝑥𝑖 ·

𝑖 − 3

𝑖 − 1

+ 1 ≥ 𝑖 − 1

2

· 𝑖 − 3

𝑖 − 1

+ 1 =
𝑖 − 1

2

>
𝑖 − 2

2

.

Consequently
𝑑𝑓

𝑑𝑐𝑖−1

< 0. □

Let ®𝑐 ∈ [0, 1]𝑛 be the vector at which 𝑓 (®𝑐) attains its maximum. Let ℓ be the largest index 𝑖 ∈ [𝑛]
such that

𝑑𝑓

𝑑𝑐𝑖
≤ 0. Then,

𝑑𝑓

𝑑𝑐𝑖
> 0 for all 𝑖 > ℓ , and by Claim A.1,

𝑑𝑓

𝑑𝑐𝑖
< 0 for all 𝑖 < ℓ . Since 𝑓 attains

its maximum at ®𝑐 , it must be that 𝑐𝑖 = 1 for all 𝑖 > ℓ and 𝑐𝑖 = 0 for all 𝑖 < ℓ . We can also assume

without loss of generality that 𝑐ℓ = 0, as
𝑑𝑓

𝑑𝑐ℓ
≤ 0 (if

𝑑𝑓

𝑑𝑐ℓ
= 0, then 𝑓 does not depend on 𝑐ℓ). We

conclude that 𝑐𝑖 = 0 for all 𝑖 ≤ ℓ and 𝑐𝑖 = 1 for 𝑖 > ℓ . In other words, the algorithm is deterministic:

it matches no vertices up to step ℓ , and thereafter matches the top two vertices so far whenever

possible.

Next, we calculate the value of 𝑞𝑖 for all 𝑖 .

• For 𝑖 ≤ ℓ , 𝑐𝑖 = 0, and we get 𝑞𝑖 = 1 + 𝑞𝑖−1 · (1 − 2·𝑐𝑖
𝑖−1
) = 1 + 𝑞𝑖−1. Thus, 𝑞𝑖 = 𝑖 .

8 𝑓 does not depend on 𝑐1.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1172

• For 𝑖 > ℓ , 𝑐𝑖 = 1, and we get 𝑞𝑖 = 1 + 𝑞𝑖−1 · (1 − 2·𝑐𝑖
𝑖−1
) = 1 + 𝑖−3

𝑖−1
· 𝑞𝑖−1. Multiplying the last

equality by (𝑖 − 1) (𝑖 − 2) gives

(𝑖 − 1) (𝑖 − 2)𝑞𝑖 − (𝑖 − 2) (𝑖 − 3)𝑞𝑖−1 = (𝑖 − 1) (𝑖 − 2). (19)

Summing the LHS of (19) over 𝑗 = ℓ + 1, . . . , 𝑖 (with 𝑗 in the role of 𝑖) gives (𝑖 − 1) (𝑖 −
2)𝑞𝑖 − ℓ (ℓ − 1) (ℓ − 2) due to telescopic sum. Summing the RHS of (19) over 𝑗 = ℓ + 1, . . . , 𝑖

(with 𝑗 in the role of 𝑖) gives
∑𝑖

𝑗=ℓ+1 (𝑗 − 1) (𝑗 − 2) = 𝑖 (𝑖−1) (𝑖−2)
3

− ℓ (ℓ−1) (ℓ−2)
3

. We get that

𝑞𝑖 =
𝑖
3
+ 2ℓ (ℓ−1) (ℓ−2)

3(𝑖−1) (𝑖−2) .

We are now ready to calculate the performance of the algorithm. Using Equation (17), the fact

that 𝑐𝑖 = 0 for all 𝑖 ≤ ℓ and 𝑐𝑖 = 1 for all 𝑖 > ℓ , and the values of 𝑞𝑖 as calculated above gives(
𝑛

2

)
· ALG =

𝑛∑︁
𝑖=2

𝑞𝑖−1𝑐𝑖 =

𝑛−1∑︁
𝑖=ℓ

𝑞𝑖 =

𝑛−1∑︁
𝑖=ℓ

(
𝑖

3

+ 2ℓ (ℓ − 1) (ℓ − 2)
3(𝑖 − 1) (𝑖 − 2)

)
=

∑𝑛−1

𝑖=1
𝑖 −∑ℓ−1

𝑖=1
𝑖

3

+ 2ℓ (ℓ − 1) (ℓ − 2)
3

𝑛−1∑︁
𝑖=ℓ

[
1

𝑖 − 2

− 1

𝑖 − 1

]
=
𝑛2 − 𝑛 − ℓ2 + ℓ

6

+ 2

3

ℓ (ℓ − 1) (ℓ − 2)
(

1

ℓ − 2

− 1

𝑛 − 2

)
=
𝑛2

6

+ ℓ2

2

− 2ℓ3

3𝑛
+

[
ℓ − 𝑛

6

− 2ℓ

3

+ 2(3ℓ2 − 2ℓ)
3𝑛

− 4ℓ (ℓ − 1) (ℓ − 2)
3𝑛(𝑛 − 2)

]
=𝑛2 ·

(
1

6

+ ℓ2

2𝑛2
− 2ℓ3

3𝑛3
+𝑂

(
1

𝑛

))
≤ 5

24

𝑛2 +𝑂 (𝑛),

where the last equality holds since 0 < ℓ ≤ 𝑛; and the last inequality holds since the cubic function

𝑔(𝑥) def

== 1

6
+ 𝑥2

2
− 2𝑥3

3
with 𝑥 = ℓ

𝑛
attains its maximum on the interval 𝑥 ∈ [0, 1] at 𝑥 = 0.5, where

the maximum value is
5

24
. Therefore, ALG ≤ 5

12
+𝑂 (1

𝑛
), concluding the proof of Theorem 4.4. □

B GENERALIZATION TO HYPERGRAPHS
In this section we generalize Algorithm 2 to the online bipartite hypergraph secretary matching

problem studied by [34] and [31].

Let 𝐻 = (𝐿 ∪ 𝑅, 𝐸) be the underlying edge-weighted (𝑑 + 1)-hypergraph. Each edge in 𝐸 has the

form (𝑣, 𝑆) where 𝑣 ∈ 𝐿, 𝑆 ⊆ 𝑅 and |𝑆 | ≤ 𝑑 . All vertices in 𝑅 are given in advance and the vertices

in 𝐿 arrive online uniformly at random. We assume |𝐿 | = 𝑚, and𝑚 is known in advance. Upon

the arrival of vertex 𝑣 , all its incident hyperedges are revealed with the corresponding weights.

The edge arrival model studied in Section 5 can be viewed as a special case of the online bipartite

3-hypergraph matching. Specifically, for the underlying graph 𝐺 = (𝑉 , 𝐸𝐺) of the edge arrival
problem we construct a hypergraph in which 𝑅 = 𝑉 and each vertex in 𝐿 corresponds to an edge

in 𝐸𝐺 . That is, each vertex ℓ ∈ 𝐿 corresponding to the edge 𝑒 = (𝑢𝑣) ∈ 𝐸𝐺 has only one incident

hyperedge {ℓ,𝑢, 𝑣} in the hypergraph.

Let 𝐿𝑡 = {ℓ1, . . . , ℓ𝑡 } denote the set of vertices that arrived up to time 𝑡 , and let `∗𝑡 denote the
(unique) maximum weighted matching in 𝐻 (𝐿𝑡 ∪ 𝑅). The algorithm (see Algorithm 3) ignores the

first ⌊𝑓𝑑 ·𝑚⌋ vertices (exploration phase), where 𝑓𝑑 = 1/𝑑 1

𝑑−1 . Then, in every round 𝑡 , upon the

arrival of vertex ℓ𝑡 , we first find the maximum weighted matching `∗𝑡 in the graph induced by

𝐿𝑡 ∪ 𝑅. Let 𝑒𝑡 be the incident edge of ℓ𝑡 in `∗𝑡 . If ℓ𝑡 is not matched in `∗𝑡 , let 𝑒𝑡 be a null edge for
notation simplicity. We compute the probability that edge 𝑒𝑡 is available (the probability is taken

with respect to the random arrival order of the vertices 𝐿𝑡−1 and random choices of the algorithm

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1173

in steps 1 to 𝑡 − 1); denote this probability by 𝑥𝑡 . Then, the algorithm matches 𝑒𝑡 with probability

𝛼𝑡
𝑥𝑡
, where 𝛼𝑡 is given by the following formula (20):

𝛼𝑡 =

{
0 if 𝑡 ≤ 𝑓𝑑 ·𝑚
1 − 𝑑 ·∑𝑡−1

𝑖=1

𝛼𝑖
𝑖

if 𝑡 > 𝑓𝑑 ·𝑚
(20)

ALGORITHM 3: Algorithm for online bipartite hypergraph secretary matching

1 Let ℓ1, . . . , ℓ𝑚 be the vertices of the left side 𝐿 given in their arrival order;

2 𝐴 = 𝑅, ` = ∅; ⊲ 𝐴 is the set of available vertices, ` is the returned

matching

3 for 𝑡 ∈ {⌊𝑓𝑑 ·𝑚⌋ + 1, ...,𝑚} do
4 `∗𝑡 ← the maximum weighted matching in 𝐻 (𝐿𝑡 ∪ 𝑅);
5 Let 𝑒𝑡 = (ℓ𝑡 , 𝑆𝑡) be the incident edge of ℓ𝑡 in `∗𝑡 ; ⊲ If ℓ𝑡 is not matched in `∗𝑡 , let

𝑆𝑡 = ∅
6 𝑥𝑡 ← Pr [𝑆𝑇 ⊆ 𝐴] (𝑒𝑡 is available); ⊲ random: order of {𝑒1, ..., 𝑒𝑡−1} + algorithm’s

choices

7 if 𝑆𝑡 ⊆ 𝐴 then
8 begin with probability

𝛼𝑡
𝑥𝑡

9 Add 𝑒𝑡 to `;

10 Remove 𝑆𝑡 from 𝐴;

11 return matching `

Observe that the edge 𝑒𝑡 we consider to take at time 𝑡 only depends on the set of arrived vertices

𝐿𝑡 at time 𝑡 and the last arriving vertex ℓ𝑡 . The algorithm ensures that every edge 𝑒𝑡 is matched

with a certain probability 𝛼𝑡 given by (20). This allows us to conveniently estimate the expected

contribution of the maximum matching at time 𝑡 and compare it to the maximum matching in

the whole graph. Before doing that, we need to prove that the algorithm is well defined, i.e., that

𝑥𝑡 ≥ 𝛼𝑡 for every 𝑡 .

Note that 𝑥𝑡 is the probability that 𝑒𝑡 is available, given a random order of vertices in 𝐿𝑡 (the

vertices arriving up to time 𝑡) that ends with ℓ𝑡 . As such, the probability depends on ℓ𝑡 , and the set

𝐿𝑡 , but not on the order of vertices within 𝐿𝑡 (except for ℓ𝑡 being the 𝑡-th vertex).

Recall that “matched(𝑢, < 𝑡)" denotes the event that 𝑢 ∈ 𝑅 becomes unavailable before time 𝑡 ,

and “matched(𝑒,@𝑡)" denotes the event that edge 𝑒 is matched exactly at time 𝑡 .

Lemma B.1. For every time 𝑡 , vertex 𝑣 ∈ 𝐿, and a set of vertices 𝑄 , if ℓ𝑡 = 𝑣 and 𝐿𝑡−1 = 𝑄 , then
𝑥𝑡 ≥ 𝛼𝑡 .

Proof. The proof proceeds by induction on 𝑡 . For the base case, where 𝑡 = ⌊𝑓𝑑 ·𝑚⌋ + 1, the

statement holds trivially since we have not matched anything yet, i.e., 𝑥𝑡 = 1. Next, fix 𝑡 and

suppose the statement holds for all 𝑡 ′ ≤ 𝑡 − 1. Let 𝑣 = ℓ𝑡 be the vertex arriving at time 𝑡 and let

𝑄 = 𝐿𝑡−1 be the set of arrived vertices up to time 𝑡 . Observe that given 𝑣 = ℓ𝑡 , 𝑄 = 𝐿𝑡−1, the edge

𝑒𝑡 = (𝑣, 𝑆) is fixed. For simplicity, we omit conditioning on ℓ𝑡 = 𝑣, 𝐿𝑡−1 = 𝑄 in all probabilities and

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1174

indicator expressions in the remainder of the lemma’s proof. For each vertex 𝑢 ∈ 𝑅, it holds that

Pr [matched(𝑢, < 𝑡)] =
𝑡−1∑︁
𝑖=1

∑︁
𝑄𝑖⊆𝑄
|𝑄𝑖 |=𝑖

∑︁
𝑧𝑖 ∈𝑄𝑖

Pr [ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] · 1[𝑢 ∈ 𝑒𝑖 | ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖]

· Pr [matched(𝑒𝑖 ,@𝑖) | ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] . (21)

Notice that Pr [matched(𝑒𝑖 ,@𝑖) | ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] = 𝛼𝑖 , according to the design of our algorithm

and the induction hypothesis, and that Pr [ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] = 1

𝑖
Pr [𝐿𝑖 = 𝑄𝑖] due to the random

arrival order of the vertices. We get

Pr [matched(𝑢, < 𝑡)] =

𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
·

∑︁
𝑄𝑖⊆𝑄
|𝑄𝑖 |=𝑖

Pr [𝐿𝑖 = 𝑄𝑖]
∑︁
𝑧𝑖 ∈𝑄𝑖

1[𝑢 ∈ 𝑒𝑖 | ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] .

The maximum matching `∗𝑖 is fixed for a given𝑄𝑖 and 𝑢 ∈ 𝑒𝑖 if and only if (i) 𝑢 is matched in `∗𝑖 and
(ii) its corresponding online vertex arrives at time 𝑖 . That is,

∑
𝑧𝑖 ∈𝑄𝑖

1[𝑢 ∈ 𝑒𝑖 | ℓ𝑖 = 𝑧𝑖 , 𝐿𝑖 = 𝑄𝑖] ≤ 1.

Consequently, we have that

Pr [matched(𝑢, < 𝑡)] ≤
𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
·

∑︁
𝑄𝑖⊆𝑄
|𝑄𝑖 |=𝑖

Pr [𝐿𝑖 = 𝑄𝑖] · 1 =

𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
. (22)

Finally, since 𝑆𝑡 contains at most 𝑑 vertices, applying the union bound to the events matched(𝑢, < 𝑡)
for all 𝑢 ∈ 𝑆𝑡 , we have that the probability that 𝑒𝑡 is available is

𝑥𝑡 = Pr [𝑒𝑡 available @𝑡] ≥ 1 − 𝑑
𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖

(20)

= 𝛼𝑡 .

This concludes the proof of Lemma B.1. □

We are now ready to conclude the competitive analysis of Algorithm 3. Our competitive ratio has

the same asymptotic order Ω(1

𝑑
) as the previous best bound of

1

𝑒𝑑
by [31], but the constant factor

of 𝑒 improves when 𝑑 goes to infinity. We assume without loss of generality that the number of

vertices𝑚 in 𝐿 is large. Indeed, we can slightly modify Algorithm 3 by adding a number of dummy

vertices with no edges to 𝑅.

Theorem B.2. Algorithm 3 has a competitive ratio of 1/𝑑 𝑑
𝑑−1 .

Proof. As the set of the first 𝑡 vertices 𝐿𝑡 is chosen uniformly at random, the expected total

weight of the maximum matching `∗𝑡 is greater than or equal to the expected weight of those edges

of 𝐿𝑡 in the optimal matching `∗, i.e.,

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ≥
𝑡

𝑚
·
∑︁
𝑒∈`∗

𝑤𝑒 . (23)

Next, we prove by induction on 𝑡 that for every 𝑡 > ⌊𝑓𝑑 ·𝑚⌋:

𝛼𝑡 =

𝑑∏
𝑖=1

⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖
𝑡 − 𝑖 . (24)

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1175

For 𝑡 = ⌊𝑓𝑑 ·𝑚⌋ + 1, 𝛼𝑡 is indeed 1. For 𝑡 > ⌊𝑓𝑑 ·𝑚⌋ + 1,

𝛼𝑡 = 1 − 𝑑
𝑡−1∑︁
𝑖=1

𝛼𝑖

𝑖
= 𝛼𝑡−1 − 𝑑 ·

𝛼𝑡−1

𝑡 − 1

=
𝑡 − 𝑑 − 1

𝑡 − 1

· 𝛼𝑡−1 =
𝑡 − 𝑑 − 1

𝑡 − 1

𝑑∏
𝑖=1

⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖
𝑡 − 1 − 𝑖 .

The induction hypothesis now implies (24).

We are now ready to establish the competitive ratio of Algorithm 3. Write ` for the matching

returned by Algorithm 3. Edge 𝑒𝑡 = (𝑣, 𝑆) is matched in round 𝑡 if all vertices in 𝑆 are available (this

happens with probability 𝑥𝑡). Under this event, 𝑒𝑡 is matched with probability 𝛼𝑡/𝑥𝑡 . Therefore,

E

[∑︁
𝑒∈`

𝑤𝑒

]
=

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

∑︁
𝑉 ⊆𝐿,
|𝑉 |=𝑡

∑︁
𝑣∈𝑉

E
[
𝑤𝑒𝑡 | ℓ𝑡 = 𝑣, 𝐿𝑡 = 𝑉

]
· Pr [ℓ𝑡 = 𝑣, 𝐿𝑡 = 𝑉] · 𝛼𝑡 .

Observe that

∑
𝑣∈𝑉 E [𝑤𝑒𝑡 | ℓ𝑡 = 𝑣, 𝐿𝑡 = 𝑉] = E [∑𝑒∈`∗𝑡 𝑤𝑒 | 𝐿𝑡 = 𝑉] and also that Pr [ℓ𝑡 = 𝑣, 𝐿𝑡 =

𝑉] = Pr [𝐿𝑡 = 𝑉] · 1

𝑡
. We get

E

[∑︁
𝑒∈`

𝑤𝑒

]
=

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

∑︁
𝑉 ⊆𝐿,
|𝑉 |=𝑡

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

��� 𝐿𝑡 = 𝑉

 · Pr [𝐿𝑡 = 𝑉] · 1

𝑡
· 𝛼𝑡

=

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ·
𝛼𝑡

𝑡

(24)

=

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

E

∑︁
𝑒∈`∗𝑡

𝑤𝑒

 ·
1

𝑡
·

𝑑∏
𝑖=1

⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖
𝑡 − 𝑖

(23)

≥
𝑚∑︁

𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

𝑡 ·∑𝑒∈`∗ 𝑤𝑒

𝑚
· 1

𝑡
·

𝑑∏
𝑖=1

⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖
𝑡 − 𝑖

=

𝑑∏
𝑖=1

(⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖) ·
∑

𝑒∈`∗ 𝑤𝑒

𝑚
·

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

𝑑∏
𝑖=1

1

𝑡 − 𝑖 . (25)

Observe that

𝑑∏
𝑖=1

1

𝑡 − 𝑖 =
1

𝑑 − 1

(
𝑑−1∏
𝑖=1

1

𝑡 − 𝑖 − 1

−
𝑑−1∏
𝑖=1

1

𝑡 − 𝑖

)
.

The summation over 𝑡 in Equation (25) telescopes to

𝑚∑︁
𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

𝑑∏
𝑖=1

1

𝑡 − 𝑖 =
1

𝑑 − 1

·
(
𝑑−1∏
𝑖=1

1

⌊𝑓𝑑 ·𝑚⌋ − 𝑖
−

𝑑−1∏
𝑖=1

1

𝑚 − 𝑖

)
.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1176

Thus, we have

1

𝑚
·

𝑑∏
𝑖=1

(⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖) ·
𝑚∑︁

𝑡=⌊ 𝑓𝑑 ·𝑚⌋+1

𝑑∏
𝑖=1

1

𝑡 − 𝑖

=
1

𝑚
·

𝑑∏
𝑖=1

(⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖) · 1

𝑑 − 1

·
(
𝑑−1∏
𝑖=1

1

⌊𝑓𝑑 ·𝑚⌋ − 𝑖
−

𝑑−1∏
𝑖=1

1

𝑚 − 𝑖

)
=

1

𝑑 − 1

·
(
⌊𝑓𝑑 ·𝑚⌋

𝑚
−

𝑑∏
𝑖=1

⌊𝑓𝑑 ·𝑚⌋ + 1 − 𝑖
𝑚 + 1 − 𝑖

)
=

1 + 𝑜 (1)
𝑑 − 1

(
𝑓𝑑 − 𝑓 𝑑

𝑑

)
= (1 + 𝑜 (1))/𝑑 𝑑

𝑑−1 ,

where to get the second to the last equality we used that
⌊ 𝑓𝑑 ·𝑚⌋−𝑖

𝑚−𝑖 ≈ 𝑓𝑑 for fixed 𝑖 and 𝑓𝑑 as𝑚 goes

to infinity; the last equation follows from the definition of 𝑓𝑑 = 1/𝑑 1

𝑑−1 . To sum up, the coefficient

of

∑
𝑒∈`∗ 𝑤𝑒 in Equation (25) is at least 1/𝑑 𝑑

𝑑−1 ; this concludes the proof of the theorem. □

Remark: In this section we study the extension of the edge arrival model to hypergraphs. The

extension of the vertex arrival model to hypergraphs remains an open problem.

Session 9C: Secretary Problems and Welfare Bounds ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1177

	Abstract
	1 Introduction
	1.1 Our Techniques
	1.2 Related work

	2 Model and Preliminaries
	3 Secretary Matching with Vertex Arrival: Positive Result
	4 Secretary Matching with Vertex Arrival: A Tight Upper Bound
	4.1 Full Analysis

	5 Secretary Matching with Edge Arrival
	Acknowledgments
	References
	A Missing Proofs
	A.1 Proof of Lemma 3.2
	A.2 Missing Derivation from the Proof of Theorem 3.1
	A.3 Proof of Theorem 4.4

	B Generalization to Hypergraphs

