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Classical and quantum systems are used to simulate the Ising Hamiltonian, an essential component in
large-scale optimization and machine learning. However, as the system size increases, devices like quantum

annealers and coherent Ising machines face an exponential drop in their success rate. Here, we introduce a
novel approach involving high-dimensional embeddings of the Ising Hamiltonian and a technique called
“dimensional annealing” to counteract the decrease in performance. This approach leads to an exponential

improvement in the success rate and other performance metrics, slowing down the decline in performance
as the system size grows. A thorough examination of convergence dynamics in high-performance
computing validates the new methodology. Additionally, we suggest practical implementations using

technologies like coherent Ising machines, all-optical systems, and hybrid digital systems. The proposed
hyperscaling heuristics can also be applied to other quantum or classical Ising devices by adjusting
parameters such as nonlinear gain, loss, and nonlocal couplings.
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Hard optimization problems permeate science and society
and are crucial to machine learning [1], traffic and portfolio
optimization [2], markets and finance [3], life science [4],
bioinformatics [5], protein folding [6], and epidemic
spreading [7]. Finding efficient ways to tackle such prob-
lems means determining the optimal configuration of a
massive amount of degrees of freedom interacting in a
highly nontrivial way. Building a generation of computing
machines to tackle large-scale optimization is one of the
most significant challenges of modern science.

A viable route is offered by the possibility of mapping
optimization problems onto a classical Ising Hamiltonian [8].
Solving the problem translates into finding the ground state
(GS) of the corresponding Ising system. Quantum annealers
(QAs) as D-Wave achieve this mapping by superconducting
technology [9,10]. The last QA’s generation reaches the scale
of 5000 qubits [11]. Coherent Ising machines (CIMs) [12]
exploit optical pulses in a network of degenerate parametric
oscillators (POs) simulating up to 100 000 spins with tunable
couplings [13].

Both of these groundbreaking technologies suffer poor
scaling with the number of spins N. The success probability
drops more than exponentially with N for QAs, while a
better performance has been reported for the CIMs [14].
When N grows, the number of local minima grows
exponentially for a spin glass. Correspondingly, the prob-
ability of being stuck in a suboptimal solution increases.
This mechanism lies at the origin of the poor scaling of
Ising machines and optimization algorithms.

During a run in an annealing device, one carefully
chooses specific hyperparameters as the pump power &
of CIMs. A large number of local minima narrows the range
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of h where the GS is found [15]. The difference between the
final energy E after minimization and the target GS energy
Egg signals the absence of convergence. A strategy to
overcome these detrimental effects is increasing dimen-
sionality, for example, by replacing the binary Ising model
with continuous spin systems. Considering one local
minimum in the phase space, additional dimensions turn
the minimum into a saddle and open escape directions.
However, this also affects the global minimum, whose
energy lowers when the number of dimensions increases.
By increasing the dimensionality, one escapes local minima
but loses the opportunity to identify the target (Ising) GS.

We introduced the idea of hyperspins and dimensional
annealing to exploit large dimensional spaces [16]. One
starts from the binary Ising model encoding a graph defined
by a coupling matrix Jy. The binary spins are replaced by
unitary vectors in a D-dimensional space (the hyperspins)
on a hypergraph with the same Jy. The hyperspin time
evolution leads to a steady-state energy E < Egg. After
reaching the steady state, the topology of the hypergraph
morphs adiabatically to the original binary Ising model, a
heuristic that we name dimensional annealing. Notably, the
approach radically widens the parameter range of success-
ful convergence to the Ising GS for dense and computa-
tionally hard graphs [16].

However, the way to physically realize hyperspins and
dimensional annealing has yet to be considered. The
literature has reported proposals relying on nonlinear
POs [17,18] and the first observation of hyperspin dynam-
ics [19]. In this Letter, we discuss different implementa-
tions of the hyperspin machine and validate the resulting
coherent hyperspin machine (CHYM) by first-principle
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FIG. 1. CHYM designs. (a) All-optical spatial CHYM
(SPHYM) with D =2. The N hyperspins are encoded as
different spatial points on the signal optical wave front [22],
and the D = 2 components are the two polarizations H and V at
each point. The scheme comprises y(®) nonlinear medium (NLM)
pumped by a field at amplitude h, reverse saturable absorber
(RSA) implementing W, polarizing beam splitter (PBS), optical
vector matrix multipliers (OVMs) implementing J, and beam
splitters (BS) for recombinations and extraction to the detector
(D). (b) Hybrid CHYM with generic D. POs are generated
optically by a @ NLM as a train of DN spatially separated
pulses [23]. The blocks are couplers (CC1 and CC2) connecting
the cavity to the electronic feedback, detector (D), FPGA
implementing W and C, modulator (M), output coupler (OC),
and detector (D). The fields A; ., B; ., Fj ., X ;, Y ., and Z; , after
the respective blocks are shown

parallel large-scale simulations. We also compare with the
XY machine [20,21]. We show an exponential increase in
the probability of success, with one order of magnitude
improvement in the convergence range and accuracy of the
GS energy.

Two implementations of the hyperspin machine are
shown in Fig. 1: Fig. 1(a), the all-optical, following [17],
designed for the XY model (D = 2), and Fig. 1(b), hybrid
(electro-optical), based on [14,23-25], for generic D.
Compared to the Ising machine, the hyperspin machine
introduces a nonlinear coupling involving D POs at once,
effectively turning a system of DN linearly and nonlinearly
coupled POs into a network of N, D-dimensional hyper-
spins [16]. In Fig. 1(a), the N hyperspins are encoded in
different spatial points on the signal wave front [22], and
the D = 2 components are the two polarizations H and V at
each point.

A »? nonlinear medium (NLM), pumped by a field at
amplitude % and frequency 2w, amplifies the PO fields at
frequency w,, enforcing a phase 0 or z with respect to the
pump (A; ; is real [17]). Here j = 1, ..., DN labels the POs

and 7 = 1, ..., 75, counts the cavity round-trip. The NLM
transforms A - into B; .. The nonlinear coupling by the
matrix W is 1nduced by a reverse saturable absorber (RSA),
which reduces the amplitude of each hyperspin by its
intensity, yielding F; ..

A polarizing beam splitter (PBS) spatially separates H
and V. Two optical vector matrix multipliers (OVMs)
implement the coupling including self-interaction and
the matrix Jy [17]. The recombined polarizations yield
Y. =>N0;F,, where Q=alpy+bC, witha+b=1
and C = Jy ® 1 is the linear coupling matrix implement-
ing the Euclidian scalar product between hyperspins [16].
Then, Z;, =dY;, with d <1 is extracted by a beam
splitter (BS), so A;..| = (1 —=d)Y;, is the field at the
subsequent round-trip. This recurrence relation allows us to
describe the CHYM dynamics by a discrete-time nonlinear
map [26] (see [15,17,27] for studies on Ising machines).

Figure 1(b) shows the electro-optical hyperspin machine
based on [14,23,24], where the DN POs are spatially
separated optical pulses. The electronic coupling device
composed by identical couplers (CC1 and CC2), field
programmable gate array (FPGA), detector (D), and modu-
lator (M), arranges the DN POs as N, D-dimensional
hyperspins and couples them. CC1 extracts a fraction of the
amplified fields B; ;. The FPGA preprogrammed with W
and C computes the feedback fields X ., which modulate
the optical field injected into the cavity, yielding Y ; after
CC2. Detection occurs at the output coupler (OC); see
Supplemental Material (SM) for details [28].

Another hybrid scheme was proposed in [29], where the
coupling is implemented optically by OVM [17,30], while
the nonlinearity is electronically computed. All-optical
machines potentially offer the largest speedup over digital
electronics [the setup in Fig. 1(a) is expected to perform
ultrafast, size-independent computation [17,22] ], but their
implementation is currently a major challenge. Instead,
existing hybrid setups allow the implementation of the
hyperspin machine in a fully controllable way by simple
software modifications. Hence, we analyze the scaling per-
formance of the hyperspin machine focusing on Fig. 1(b)
(other schemes are discussed in the SM [28]).

Figure 2 shows the CHYM working principle, with the
dynamics of the hyperspin energy Ep, (see SM) for (I)
CHYM (simulating the XY model [31] with D = 2, blue
line), (I) CHYM with dimensional annealing (interpolating
between D=2 and D =1, red line), and (II) CIM
(D =1, orange line). During the dynamics, the system
explores different spin configurations behaving as gradient
descent in the energy landscape of the coupled POs [16].
For Ising machines (orange line), whose energy landscape
is sketched in Fig. 2(a) as the black wavy line, spins
undergo discrete flips, exploring local minima at decreasing
energy that may trap the system, preventing the reach of the
Ising GS. Instead, the CHYM converges to an energy below
the Ising GS (blue line). Remarkably, since Ising states are
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FIG. 2. (a) Sketch of energy dynamics on the Ising energy

landscape showing the principle of operation of the CHYM
working as (I) XY machine (D = 2, blue line), (II) XY machine
with dimensional annealing (from D = 2 to D = 1, red line), and
(IIT) Ising machine (D = 1, orange line). Full black wavy line
depicts the Ising energy landscape for the CIM. Horizontal dotted
black and dashed magenta line mark the minimum (GS) energies
for the Ising and XY model, respectively. The CIM approaches
the Ising GS from larger energy values, visiting local minima by
flipping the Ising spins ¢ = =1 (arrows) during the evolution that
can trap the dynamics. On the contrary, the CHYM simulates
continuous spins ¢ € R? (arrow in the sphere) and is insensitive to
the Ising local minima. The energy tunnels straight toward the XY
GS, which is below the Ising GS. From the XY GS, the Ising GS
energy is approached from below by the dimensional annealing.
(b) Hyperspin energy Ej during the round-trips 7 from a CHYM
simulation, confirming the picture in (a).

not fixed points of the hyperspin dynamics, the hyperspins
evolve towards their GS and cannot be trapped in Ising
local minima. When dimensional annealing is performed
from the hyperspin GS, the Ising GS is approached from
below (red line). The combined effect of being insensitive
to Ising local minima and approaching the Ising GS from
below is at the core of the enhanced performance of the
CHYM with dimensional annealing, as detailed hereafter.

We use the map for the numerical simulation of the
CHYM and validate the picture in Fig. 2(b) for N = 100.
We focus on Jy describing random binary sparse graphs
with density 20%. Dimensional annealing is implemented
on C as detailed in the SM [28].

The CHYM has two sources of nonlinearity: the y()
NLM (local, with strength kL being L the propagation
length) and the FPGA (nonlocal, with strength pBb?).
Previous studies argued that local nonlinearities are crucial
to the functioning of Ising machines, while nonlocal
nonlinearities are detrimental [15,19]. Instead, the hyper-
spin machine works with only nonlocal nonlinearities [16].
Therefore, we set (I) kL = 1073 for the CHYM, (I)

kL = 107! for the CHYM with dimensional annealing,
with fb* = 25 in both cases to have a dominating FPGA
nonlinearity, and (III) kL = 10~ and 8 = 0 for the CIM.

In Fig. 2(b), we see that (I) the CHYM rapidly converges
to the XY GS energy (relative deviation below 0.14%), (1)
the CHYM with dimensional annealing first converges
close to the XY GS and then to the Ising GS from lower
energy, and (III) the CHYM used as a CIM converges to the
Ising GS from above [32]. These results are in agreement
with [16], demonstrating that the CHYM in Fig. 1 as an
implementation of the hyperspin machine.

The remarkable outcome is that existing hybrid imple-
mentations of CIMs can be adapted into CHYMs by a
software modification, which enables us to simulate general
continuous spin models and novel annealing strategies
using off-the-shelf experimental setups.

We now move to the statistical and scaling analysis of the
performance comparison of the CHYM working as a CIM
and as an XY machine with dimensional annealing. The
performance is quantified by running for fixed parameters
the CHYM map N, times and computing at the steady
state two quantities: the success probability Py, and the
histogram Hp of energy levels. Here, Py, counts the
fraction of the N, repetitions in which the CHYM con-
verges to the Ising GS energy Egs. Instead, Hg is the
number of times a given Ising energy E is found.

Previous work reported on the strong dependency of Py,
on both system parameters and coupling matrix [14-16].
To have a reliable statistics, we simulate the dynamics for
N, =100 sparse graphs with 7, = 15 X 10%, and for N
ranging from 10 to 100. We repeat the simulations for N
values of the pump amplitude 2 = hy,(1 + 5h) by scanning
the relative deviation 6k from threshold hy,. We have
N, =51, 21 for D = 1, 2, respectively, and N, = 100.

Figure 3 exemplifies the behavior of Py, (/) and H. By
comparing D = 1 (blue) and D = 2 (red), we observe three
striking differences: (i) Pigjn, for D = 2 has higher maximum
value over the pump scans, (ii) Pygne for D = 2 has a much
weaker dependency on £, and (iii) H, is considerably closer
to Egg. The dimensional annealing boosts the performance
of the CHYM in terms of enhanced accuracy in the Ising GS
and reduced sensitivity to the system hyperparameters.

The analysis suggests three figures of merit from Fig. 3:
Plging max  g1ving the maximum value of PISing(h), w
quantifying Pygn. (%) and its sensitivity on 4, and AE =
> p(E—Egs)Hp giving the average energy deviation
from the GS (see SM [28]). Figure 4 shows the finite-size
scaling of Pigpgmax» W, and AE, defined, respectively, as
the averages of Pigne max» W, and AE, over the N, graphs.
Data are shown as connected points (blue and red for
D =1, 2, respectively). The uncertainty is the interquartile
range (IQR, shaded areas).

The decay Plsing’max in Fig. 4(a) is well captured by an
exponential ~e~*" in both cases (orange and green dashed
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FIG. 3. Typical distribution of (a) success probability to solve
the Ising model Py, as a function of 64 and (b) histogram H j; of
energy levels as a function of E — Eg, comparing the data from
the CIM (blue) and those from the CHYM with dimensional
annealing (red). The magenta arrow marks the GS value
E = Egg. Compared to the CIM, the CHYM with dimensional
annealing provides (i) Pyne almost independent of 6k (where
nonzero) and with higher maximum value, and (ii) higher
probability Hg to converge to low-energy Ising states. Data
are shown for a random graph with N = 100 for illustration
purposes (SM reports comprehensive results [28]).

lines), with a; /a, ~2.32. For D = 1, this exponential trend
agrees with Ref. [14]. The implication of this result is
twofold: First, the decay of Py max for the CHYM with
dimensional annealing is also exponential, and second, its
decay rate is halved compared to the CIM. In other words,
the CHYM with dimensional annealing shows a decay of
Plsing,max that is exponentially slower (i.e., the performance
is exponentially improved) by a factor e(@1=@)N,

The scaling of Pigngmax 1S complemented by W in
Fig. 4(b), which gives comprehensive information on the
dependence on & of the success rate. We see that W for
D =2 is almost one order of magnitude larger than for
D = 1. The dimensional annealing makes on average
Pising(h) significantly less sensitive to the specific value
of h. Remarkably, this implies that the CHYM with
dimensional annealing does not require a fine calibration
of the pump to operate in the optimal regime. We ascribed
the large IQR to the strong graph dependency of the
considered figures of merit.

Figure 4(c) shows AE. As evident, AE for D = 1 starts
from ~0.1 at N = 10, and rapidly increases with N reaching
~1.0for N = 100. Instead, for D = 2, AE is close to zero up
to N = 60, showing a slower increase compared to D = 1,
reaching ~0.1 at N = 100. The reported data provide clear
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FIG. 4. Finite-size scaling of (a) Pigngmax- (b) W, and (c) AE,
statistically quantifying the advantages of the CHYM with
dimensional annealing over the CIM: (i) higher probability to
solve the Ising model, (ii) reduced dependency on the pump
amplitude, and (iii) enhanced convergence to low-energy Ising
states (see also Fig. 3). Mean value (points) and IQR (shaded
areas) are computed by averaging over N, = 100 graphs for each
value of N and D (see text). Dashed lines in top panel are
exponential functions fp(N) = bpe~®V, with a; ~ 18 x 1073
(orange dashed line) and a, ~8 x 10~> (green dashed line).
Notice the log-linear scale in (a) and (b).

evidence that the CHYM increases the tendency to converge
to low-energy Ising states.

In conclusion, an extensive statistical analysis shows that
the hyperspin heuristics enhances the finite-size scaling
of Ising machines. We identified three figures of merit:
(i) maximum success rate, (ii) sensitivity of the success rate
to pump amplitude, and (iii) convergence accuracy to the
Ising GS. High-performance-computing simulations fur-
nish the scaling of the figures of merit averaged over
hundreds of graphs. The dimensional annealing exponen-
tially improves the figures of merit in the accuracy of the
optimal solution and also in the sensitivity to hyperpara-
meters. The approach can be combined with other algo-
rithms [33], where scaling advantages were also reported,
as it will be detailed in the future.

Here we used dimensional annealing from D =2 to
D = 1. An intriguing perspective is whether annealing
from D > 2 further enhances the performance, or if
performance saturation occurs.

Also, a simple software modification to the CIM feed-
back mechanism enables an experimental implementation
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through an effective nonlinear coupling between POs. For a
family of random graphs, we unveiled that the resulting
CHYM can handle general high-dimensional models and
dimensional annealing. Compared with the CIM, the
CHYM has a more reliable and successful convergence
to the Ising GS and does not require a fine calibration of the
pump amplitude. Our proposal turns state-of-the-art CIMs
into hyperspin machines boosting their performance.

The application of hyperspins and dimensional annealing
extends to many software and hardware platforms, including
nonlinear optics, quantum devices, and dedicated digital
electronics. The crucial recipe is engineering the nonlocal
couplings and the nonlinear loss. The high-dimensional
embedding not only may accelerate by orders of magnitude
classical and quantum computing, but also trigger the
development of new algorithms for large-scale optimization
and machine learning.
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computing resources and support. Numerical simulations
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