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Abstract: We present a study of the impact of a beam far side-lobe lack of knowledge on
the measurement of the Cosmic Microwave Background B-mode signal at large scale. Beam
far side-lobes induce a mismatch in the transfer function of Galactic foregrounds between
the dipole and higher multipoles which degrads the performances of component separation
methods. This leads to foreground residuals in the CMB map. It is expected to be one
of the main source of systematic effects in future CMB polarization observations. Thus,
it becomes crucial for all-sky survey missions to take into account the interplays between
beam systematic effects and all the data analysis steps. LiteBIRD is the ISAS/JAXA second
strategic large-class satellite mission and is dedicated to target the measurement of CMB
primordial B modes by reaching a sensitivity on the tensor-to-scalar ratio r of σ (r) ≤ 10−3

assuming r = 0. The primary goal of this paper is to provide the methodology and develop the
framework to carry out the end-to-end study of beam far side-lobe effects for a space-borne
CMB experiment. We introduce uncertainties in the beam model, and propagate the beam
effects through all the steps of the analysis pipeline, most importantly including component
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separation, up to the cosmological results in the form of a bias δr. As a demonstration of our
framework, we derive requirements on the calibration and modeling for the LiteBIRD’s beams
under given assumptions on design, simulation, component separation method and allocated
error budget. In particular, we assume a parametric method of component separation with
no mitigation of the far side-lobes effect at any stage of the analysis pipeline.

We show that δr is mostly due to the integrated fractional power difference between the
estimated beams and the true beams in the far side-lobes region, with little dependence on
the actual shape of the beams, for low enough δr. Under our set of assumptions, in particular
considering the specific foreground cleaning method we used, we find that the integrated
fractional power in the far side-lobes should be known at the level of ∼ 10−4, to achieve
the required limit on the bias δr < 1.9 × 10−5. The framework and tools developed for this
study can be easily adapted to provide requirements under different design, data analysis
frameworks and for other future space-borne experiments, such as PICO or CMB-Bharat. We
further discuss the limitations of this framework and potential extensions to circumvent them.

Keywords: CMBR experiments, CMBR polarisation
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1 Introduction

Observations of the Cosmic Microwave Background (CMB) radiation have played a crucial
role in establishing the concordance model of cosmology in the past 50 years. In particular,
data from a sequence of space missions (COBE [1], WMAP [2] and Planck [3]) significantly
improved our knowledge of the history of the Universe and its constituents. However, we
have yet to probe the imprint of primordial gravitational waves in the curl component of
the CMB polarized signal, the so called B modes, which would constitute strong evidence of
the hypothetical inflationary period [4–8]. CMB polarization is sourced by scalar, produced
by primordial density fluctuations, and tensor perturbations, whose primordial contribution
comes exclusively from gravitational waves in the early Universe. The relative amplitude
between tensor and scalar modes is captured by the tensor-to-scalar ratio parameter r. A
precise measurement of r would allow us to shed new light on the physics of the early Universe
and constrain, in particular, the multitude of inflation models. Currently, the best constraint
on the tensor-to-scalar ratio is r < 0.032 (95% C.L. interval) using a combination of data
from the Planck mission and the BICEP/Keck experiment [9].

One of the main challenges in the precision primordial B-mode search is to distinguish
between primordial B modes from the inflationary period, and residuals from foreground

– 1 –
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polarized emissions of our own Galaxy as well as from instrumental systematic effects. A
standard method to differentiate the sources is to observe the sky over a broad frequency
range and make use of the fact that CMB and Galactic polarized emissions have a different
spectral behaviour.

Imperfect knowledge of the optical response of a telescope, its so-called beam pattern,
is one of the key systematic effects to be understood in order to properly process the
large angular scale signal. In particular, the far side-lobes region at large angle can be
very challenging to model and to measure. A number of studies have been carried out to
understand the beam systematic effects propagating to observations of past CMB experiments
and to evaluate the potential impacts on the scientific outcomes (e.g. in Planck [10–12]).
In the context of ground based experiments, e.g. the Atacama Cosmology Telescope or
the Simons Observatory, Gallardo et al. [13] addressed the systematic effects in the beam
parameters including side-lobe pick-up.

LiteBIRD [14, 15] is the second ISAS/JAXA strategic large-class mission. It will
conduct a full-sky survey and measure precisely the polarization anisotropies of the CMB,
with a combined sensitivity including statistical errors, foreground residuals and systematic
uncertainties on the tensor-to-scalar ratio of σ (r) ≤ 0.001, assuming r = 0. LiteBIRD will
observe the sky in 15 frequency bands from 34 to 448 GHz, with an effective polarization
sensitivity of 2.2µK-arcmin and angular resolution ranging from 71 to 18 arcmin, allowing
access to multipoles in the range 2 ≤ ℓ ≤ 200, which will provide unique power to distinguish
primordial B modes from the foreground and gravitational weak-lensing B modes. To achieve
such a challenging scientific requirement, we need to evaluate the impact of instrumental
systematic effects and impose strict requirements on their control. For a reliable estimation
of these effects, one has to bridge the science goal and the instrumental specifications,
which requires the implementation of various steps, e.g. instrument modeling, sky modeling,
and component separation. While a number of studies address some of these steps, to
our knowledge none made this bridge fully end-to-end [12, 13, 16–19]. The following work
proposes to set up a general framework to study beam systematic effects from the instrumental
beam simulations all the way up to their impact on the tensor-to-scalar ratio, which we
applied to the particular case of LiteBIRD [15]. This allows us to evaluate the required
knowledge of instrumental beam to achieve the scientific goal of LiteBIRD, in the current
experimental context as a first step towards future, more refined study cases. This framework
makes use of computational approximations, physical assumptions and arbitrary choices that
can impact these requirements. Most notably, the results depend on assumptions on the
optical design, approximations for the convolution of the sky with the beams, and the choice
of component separation method as well as the allocated error budget for this systematic
effect. However, these assumptions can be changed and refined with minimal modifications
to the analysis pipeline.

The paper is organized as follows. In section 2 we describe LiteBIRD’s instrumental
characteristics relevant for this study. The analysis procedure, detailed in section 3, is divided
into two different approaches depending on the region of the beam under study. The first region,
closer to the beam axis, will be accessible to measurements during calibration on the ground
and in flight and its knowledge will therefore be impacted by measurement uncertainties. By
assessing their impact on cosmological results, compared with the scientific goal of LiteBIRD,

– 2 –
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we can set requirements on the accuracy of these calibration measurements. On the other
hand, the second region, further from the beam axis, will be out of reach for precise direct
measurements and will rely mostly on modeling combined with indirect measurements. We
want to investigate the impact of these modeling uncertainties and the ideal location of the
transition between the two regions in order to meet the requirements. These results are
presented in section 4, and their interpretations and limitations are given in section 5.

2 Overview of LiteBIRD

The LiteBIRD satellite includes three telescopes at low, medium, and high frequencies
(LFT [20], MFT and HFT [21]). With an aperture diameter of 400 mm and an angular
resolution ranging from 71 to 24 arcmin, the LFT includes nine frequency bands, three of
them redundant making twelve channels within the LFT, distributed from the lower bound
of the lowest frequency channel at 34 GHz to the upper bound of the highest frequency
channel at 161 GHz, in order to cover the spectral domains of both CMB and low frequency
Galactic emission. Its optical design follows a crossed-Dragone configuration, with a rotating
Half-Wave Plate (HWP) as its first optical component. The LFT focal plane is made of
tri-chroic lens-coupled Transition Edge Sensors (TES) detectors cooled down to 100 mK.
On the other hand, the MFT and HFT, spanning from 89 to 448 GHz, consist of two fully
refractive telescopes held on a single mechanical structure, and so are part of a common
system called the MHFT. The frequency bands of the MFT range from 89 to 224 GHz,
and the HFT from 166 to 448 GHz, with an angular resolution between 18 and 38 arcmin.
Therefore, LiteBIRD is composed of 15 frequency bands, which partially overlap each other.
As a result, the total of 22 frequency channels are distributed from 34 to 448 GHz. Their
main characteristics (bands, beam sizes, sensitivites, etc.) are detailed in table 1. Figure 1
shows the integration of the LFT, MFT and HFT on the LiteBIRD satellite [20, 21].

The LiteBIRD main scientific requirement σ (r) < 0.001, assuming r = 0, is very
challenging from the instrumental point of view. It requires an unprecedented sensitivity
at the largest scales and an extreme control of systematic effects. In particular, a good
characterization of the beams is of utmost importance as this has a major impact on the quality
of observed data. Following the successful NASA WMAP and ESA Planck experiences, the
telescope’s main-beam response will be calibrated using the planets [12, 16, 23, 24]. Although
some information about the near and far side-lobes can be obtained in flight using planets
and brighter objects such as the Moon, such methods face strong limitations. Therefore,
most of the knowledge of the side-lobes response typically rely on a mathematical model
validated by the telescope characterization on the ground prior to the launch. Note that
we call side-lobes the region of the beam pattern at angles ≳ 5◦ away from the beam axis
given the optical system of LiteBIRD. The side-lobes characterization of a cryogenically
cooled telescope at a millimeter-wave range is known to be challenging. A modeling based
performance forecast is also computationally expensive. As a result, it is essential to study
the needed accuracy of calibration measurements of the beam side-lobes at an early phase
of the project to plan effectively the calibration strategy of LiteBIRD.

The current LiteBIRD beam model is based on simulations of the beam response of
individual detectors at the center frequency of the frequency bands with GRASP [25], a software
tool based on several electromagnetic methods (Physical Optics and Physical Theory of

– 3 –
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ν

(GHz)
∆ν (∆ν/ν)

(GHz)
Beam size
(arcmin)

Number of
bolometers

Sensitivity
(µK-arcmin)

40 12 (0.30) 70.5 48 37.42

50 15 (0.30) 58.5 24 33.46

60 14 (0.23) 51.1 48 21.31

68 16 (0.23) 41.6 144 19.91
47.1 24 31.77

78 18 (0.23) 36.9 144 15.55
43.8 48 19.13

89 20 (0.23) 33.0 144 12.28
41.5 24 28.77

100 23 (0.23) 30.2 144 10.34

119 36 (0.30) 26.3 144 7.69

LF
T

140 42 (0.30) 23.7 144 7.25

M
FT

100 23 (0.23) 37.8 366 8.48

119 36 (0.30) 33.6 488 5.70

140 42 (0.30) 30.8 366 6.38

166 50 (0.30) 28.9 488 5.57

195 59 (0.30) 28.0 366 7.05

H
FT

195 59 (0.30) 28.6 254 10.50

235 71 (0.30) 24.7 254 10.79

280 84 (0.30) 22.5 254 13.80

337 101 (0.30) 20.9 254 21.95

402 92 (0.23) 17.9 338 47.45
Total 4508 2.16

Table 1. LiteBIRD specifications in its 22 frequency channels, from [22]. From left to right the
columns are: the telescope covering the band, the band center frequency in GHz, the bandwidth
in GHz and its ratio to the central frequency, the main beam FWHM in arcmin, the number of
bolometers for each channel and the sensitivity in µK-arcmin.

Diffraction, Method of Moments, etc.) accounting for the optical elements expected for each
camera deployed in. Given the level of complexity, GRASP simulations have been performed on
a smaller set of detectors on the focal planes at this stage, leaving their complete description
for future work. For a given pixel in the focal plane, if the GRASP simulation is not available,
we consider the closest one (in terms of distance from the axis) and rotate the beam map
accordingly to the detector location. Our current GRASP models of the LFT and MHFT
telescopes include most of the elements of the nominal optics design, which directly contribute
to the response in the main beam region. However, they also include approximations, so

– 4 –
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Figure 1. Integration of the three telescopes, the LFT, the MFT and the HFT, to the payload of
LiteBIRD. The LFT follows a crossed-Dragone design while the MFT and HFT, mounted on the same
mechanical structure, are fully refractive telescopes.

they are far from being exhaustive in predicting the radiation pattern at larger angles, in the
far side-lobes region, over the whole 4π solid angle. This is particularly true for the LFT
model [20]. The MHFT model (see figure 2) includes the nominal optical elements of the two
refractive telescopes, from the focal plane to the aperture towards the sky: the beam former
(a lenselet coupled to sinuous antenna for MFT and a spline-profiled horn for HFT), the two
Ultra High Molecular Weight Polyethylene (UHMW-PE) dielectric lenses, the aperture stop
of the telescope and a perfectly absorbing fore-baffle. A half-wave plate will be used at the
vicinity of the aperture, but is not included in the current beam modeling simulations because
of the complexity of its integration. These elements do not directly contribute to most of the
asymmetries in the far side-lobes region of the beam, which are mainly due to the impact of
the large mechanical structures of the satellite on the beam (V-grooves, structural elements,
etc.) that are not taken into account, but include asymmetries for off-center detectors in the
focal plane. A more realistic impact of asymmetries is left for future work.

3 Methodology

3.1 Simulation of the effect of imperfect beam knowledge

In order to study errors arising from an inacurate knowledge of the beam patterns, we have to
simulate the effect of uncertainties on these shapes. We use two distinct approaches to study
two different cases. The first approach consists in introducing a localized perturbation of the
beam amplitude to account for either statistical or systematic measurement uncertainties
during calibration. The second approach relies entirely on a model to estimate the beam

– 5 –
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Figure 2. Left: ray diagrams of MFT (bottom) and HFT (top) models, as implemented into GRASP.
The on-axis and edge pixel fields (14 deg) are the blue and red rays, respectively. Right: a full 2π far
field beam map (normalized to peak amplitude) for a 100 GHz detector located at the edge of the
focal plane.

shape for angles larger than an angle θlim, this would correspond to the case where known
systematic effects during calibration prevent us from measuring accurately the beam shape at
very large angle. In the following, we will refer to the former as the Perturbation Case and to
the latter as the Modeling Case. We treat these two approaches separately in sections 3.1.1
and 3.1.2 respectively, and the general procedure is schematically described in figure 3.

3.1.1 Perturbation Case

Beam convolution of the sky. We use PySM [26] to simulate the Galactic microwave
emission accounting for thermal dust, synchrotron, Anomalous Microwave Emission (AME),
free-free, respectively the d0, s0, a1, f1 models.1 We further include the emission of radio
sources both in intensity and polarization following the modeling described in [27, 28]. As
the goal of this work is to assess the residuals from systematic uncertainties in terms of CMB
B modes, we do not include CMB emission nor other systematic effects to better single out
the effect. We do not include noise in the simulations, but due to the component separation
treatment described in section 3.2, the impact of noise is taken into account later in the
analysis process. Before beam convolution, the signal is integrated across the LiteBIRD
frequency band (assumed to be a top-hat for all the detectors). Because the beams themselves
are simulated only at the center frequency of each channel, this corresponds to assuming the
beams to have no frequency dependence, or alternatively the beam at the central frequency
to be representative of the band-averaged beam. This will need to be checked in future,
more precise studies including the frequency dependence of the beam patterns. We then

1These refer to models of dust, synchrotron, AME and free-free foreground emissions respectively, with
homogeneous spectral energy densities (SEDs) over the sky. AME and free-free are not polarized but are
needed in the dipole calibration step where temperature maps are used, see section 3.1.1.
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bias on the tensor-to-scalar ratio, defined as the measured r assuming its true value to be rtrue = 0,
from an uncertainty on the beam shape. In all cases, the perturbed maps (mpert) include a convolution
with perturbed beams while unperturbed maps (m4π) are convolved with a reference unperturbed
beam. The comparison of the reconstructed CMB maps in these two cases are interpreted as systematic
residuals and used to compute δr. Sections 3.1.1 and 3.1.2 describe two different methods, using
different definitions of perturbed and unperturbed maps, the former (in green) being more realistic
while the latter (in blue) is faster and more flexible. The steps in red are common to both methods.
We will see in section 4.2.1 that the two methods give compatible results.

use the TOAST [29] software to generate the Time-Ordered Data (TOD) with the nominal
scanning strategy of LiteBIRD, accounting for a portion of the focal plane detectors: 50%
for LFT, 80% for MFT and 90% for HFT. The beam convolution is done by the conviqt
algorithm [30] implemented in TOAST.

As mentioned earlier, we have not taken the HWP into account at the step of the beam
modeling. For experiments employing a continuously spinning HWP, the presence of these
extra-optical components needs to be correctly accounted for at the step of beam convolution
in addition to the conventional beam convolution. A methodology to include HWP rotation
with beam convolution by adding an extra-dimension in the data-cube was proposed in [31, 32].
Given the required resolution and number of detectors of current and forthcoming CMB
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experiments, this represents a limiting factor that makes the convolutions almost unfeasible.
We thus present here an approximated procedure able to ensure convolution of polarized signal
with the realistic beams simulated with GRASP in presence of a spinning HWP. The convolution
procedure relies on the assumption that the beam employed for the polarized signals, i.e. bQ

and bU , is assumed to be the same as the unpolarized one, bI = Ĩ. By following the notations
adopted by [31], we indicate beam maps in terms of the Stokes parameters bµ = (Ĩ , Q̃, Ũ , Ṽ ):

bI = (Ĩ , 0, 0, 0)
bQ = (0, Ĩ, 0, 0) (3.1)
bU = (0, 0, Ĩ, 0),

with Ĩ being the total intensity component of the GRASP simulated beam. Once we construct
the three beam maps bI , bQ, bU , we use the spherical harmonic (SH) transform to expand
each map into bXℓm with X = T,E,B. Based on our assumption (3.1) that there is no I → P

leakage in our simulations, we have bI,Eℓm = bI,Bℓm = bQ,Tℓm = bU,Tℓm = 0.
The transformation in harmonic domain speeds up the convolution step as it becomes

a simple product of the bXℓm with the SH coefficients of the input sky aℓm. We perform
3 separate convolutions:

1. multiplication in harmonic space of the unpolarized aIℓm by the bIℓm beam;

2. multiplication in harmonic space of the polarized component −2a
P
ℓm by the −2b

P
ℓm beam;

3. multiplication in harmonic space of the polarized component 2a
P
ℓm by the 2b

P
ℓm beam;

where aIℓm and ±2a
P
ℓm stands for the spherical harmonic coefficients of total intensity and both

the E-mode and B-mode components, respectively. The final convolved TOD is thus [31]:

dt ∝
∑
ℓm

√
4π

2ℓ+ 1

[
bI∗
ℓsa

I
ℓm + 1

2
(

−2b
P∗
ℓs −2a

P
ℓm e−4iϕt + 2b

P∗
ℓs 2a

P
ℓme4iϕt

)]
e−isψt

sYℓm(Ωt), (3.2)

with ψt being the orientation angle of the detectors at time t and ϕt the angle of the HWP
at time t. Using eq. (3.2), we can efficiently separate the data sampling and the convolution
into two steps [30], by evaluating the inverse spherical harmonics over the sphere for each
azimuthal mode s of the beam. Once the maps are computed, we use the pointing and
phase information to sample the TOD dt. It was shown in [31] that smax ≪ ℓmax thanks to
the azimuthal band-limit of the simulated beam so that each s mode can be independently
treated and recursively estimated via ei(s+1)ψ = eisψeiψ.

Using this framework, we produce several series of convolutions by applying different
apodization functions to the nominal beam patterns to consider the side-lobes contribu-
tion only:

A (θ, θcut) =


0 if θ < θapo
1
2

(
1 − cos

(
(2θ−θcut)π

θcut

))
if θapo < θ < θcut

1 if θcut < θ,

(3.3)

– 8 –



J
C
A
P
0
6
(
2
0
2
4
)
0
1
1

where θapo = θcut/2 is the angle at which we start the apodization and θ is defined in [0◦, 180◦].
This axisymmetric apodization is applied to the beam pattern to extract the contribution of
the side-lobes starting from the angle θcut. In this way, we extracted the side-lobes starting
from 3 different angular distances (θcut = 5◦, 10◦, 15◦), producing m (θ > θcut) = mcut maps,
and the full 4π beam, producing m4π maps. Note that this is an abusive notation as GRASP
produces beam maps only up to θ = π/2, so m4π is convolved by a 2π beam, rigorously
speaking, and the beam is assumed to vanish for θ > π/2. Nevertheless, we will continue
using it in the following. The three apodization functions used in the following are illustrated
in figure 4. These three angular ranges are chosen to probe several levels of side-lobe pick-up
given the specifics of the LiteBIRD optics and the experimental constraints to characterize
at high significance level the beam pattern.

We want to emphasize that even though all the specific features related to co-polar com-
ponents are obtained by GRASP simulations, they are lost from the use of the transformations
in eq. (3.1). Thus, they are not encoded in the convolution and the beam non-idealities
(e.g. side-lobe pick up) for the co-polar component are assumed to be similar to the ones
from Ĩ. Moreover, the results presented here are obtained with an approximated convolution
method as the cross-polar component of the beam, albeit small, is totally neglected in the
beam decomposition eq. (3.1). This is mainly supported by the fact that linear polarization
detectors are designed to have a minimal cross-polar response, and thus instrumental beams
are often approximated in the literature as just co-polar. The derivation of requirements
with an implementation properly accounting for cross-polar components of the beam is
left for future work.

Perturbed beam maps. The study presented here relies on the production of simulated
maps including the generation of sky emissions, map-making and realistic beam convolution
in various settings. Given the complexity and time consumption of such simulations, we
keep their production to the bare minimum and simulate the effect of an imperfect beam
knowledge directly at the map level. Therefore, we combine the previously defined sets
of maps mcut and m4π to produce maps convolved with perturbed beams. By producing
the map difference m (θ > θinf) − m (θ > θsup) ≡ minf − msup, we are left with maps that
correspond to a convolution of the sky by the beams in the angular region between θinf and
θsup, i.e. in an angular window function defined as:

W (θ) ≡ A (θ, θinf) −A (θ, θsup) . (3.4)

Throughout this paper, we consider three angular ranges [θinf , θsup]: [5◦, 10◦], [10◦,
15◦] and [15◦, 180◦]. To be more representative, we describe the angular range spanned
by these windows in terms of the angles at half maximum, which are respectively: [4◦, 8◦],
[7◦, 12◦] and [11◦, 180◦]. The window functions corresponding to these angular ranges can
be seen in figure 4.

We see that, given these three combinations of maps we can select parts of the beam on
rings at different angular radial distances from the beam axis, with some small overlap between
the three cases. This way, it is possible to generate maps convolved by a perturbed beam,
where the perturbation is localized in these annular rings and the shape of the perturbation
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Figure 4. (Left) Apodization functions as defined in eq. (3.3) for three values of θcut: 5◦, 10◦ and
15◦. The definition of θapo and θcut are emphasized for the case θcut = 15◦. (Right) Beam window
functions defined as in eq. (3.4), for three sets of [θinf , θsup]: [5◦, 10◦], [10◦, 15◦] and [15◦, 180◦]. The
corresponding angular ranges at half maximum are: [4◦, 8◦], [7◦, 12◦] and [11◦, 180◦].

is that of the nominal beam. These maps are produced using the following combination:

mpert (α) = m4π + α (minf − msup) , (3.5)

where α is an arbitrary parameter that drives the amplitude of the beam perturbation, that
will be referred to simply as the perturbation amplitude in the following. Note that, because
the beam amplitude is a positive quantity, we must have α ≥ −W−1

max, where Wmax is the
maximum of the window function over the angular range. An example of the perturbed beam
profile (averaged over the detectors and symmetrized, see section 3.1.2) by which mpert (α)
at 100 GHz in the LFT is convolved, with α = 2.0, is given in figure 5.

Dipole calibration. Since component separation methods are based on the relative com-
parison of the amplitude of observed maps in the different frequency channels, these maps
must be properly normalized beforehand. In particular, the combination of maps described
by eq. (3.5) modifies the map normalization compared to that of m4π. Therefore, we need
to renormalize these maps before applying component separation. The renormalization is
performed by matching the temperature dipoles CTTℓ=1 of the perturbed maps with those of
m4π. This is equivalent to a perfect calibration of the maps on the dipole, in other words
the perturbation of the beam we introduce has no impact on the dipole calibration. This is
justified because the procedure of gain calibration on the dipole is entirely decoupled from
the beam calibration. In the present work, we want to isolate the effect of imperfect beam
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Figure 5. Examples of perturbed beams used in this analysis in LiteBIRD’s 100 GHz channel, in
the three angular windows [4deg, 8deg] (purple), [7deg, 12deg] (orange) and [11deg, 180deg] (green),
compared to the nominal beam (black) used in the convolution of the reference m4π maps, for a
perturbation amplitude α = 2.0. The left panel shows the whole beam profile while the right panel is
zoomed on the [0◦, 25◦] angular range.

knowledge from other systematic effects so the study of a potential coupling with dipole
miscalibration, as well as with other systematic effects, is left for future work. For a study of
the effect of errors on gain calibration in the context of LiteBIRD, see [33].

Using this normalization convention, the maps convolved by a perturbed beam with a
normalization factor µ, hereafter the “perturbed maps”, are defined by:

mpert (α) = µ [m4π + α (minf − msup)] , (3.6)

After a little algebra, we find the analytical expression for µ to be determined by the dipoles
of the relevant maps previously defined:

µ =
√√√√ C4π

ℓ=1

C4π
ℓ=1 + 2α

(
C4π−inf
ℓ=1 − C4π−sup

ℓ=1

)
+ α2

(
C inf
ℓ=1 − 2C inf−sup

ℓ=1 + Csup
ℓ=1

) , (3.7)

where CXℓ=1 is the value of the temperature power-spectrum of X at ℓ = 1 (4π standing
for m4π, inf for minf and sup for msup) and CX−Y

ℓ=1 is the value of the temperature cross-
spectrum of X and Y .

Once all these preparation steps are performed, the resulting maps are effectively convolved
with the following perturbed beams:

Bν
pert(θ, ϕ) = µν(1 + ανW (θ))Bν

0 (θ, ϕ), (3.8)

where Bν
0 corresponds to the simulated GRASP beams used to convolve the sky maps in

the frequency channel ν.
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Beam correction and masking. The observed maps are convolved with the beams. In
order to follow the steps of the real analysis pipeline, we deconvolve the observed data in
harmonic domain using transfer functions bνℓ in each frequency band to obtain beam corrected
harmonic coefficients aνℓm,corr. In the real analysis, these transfer functions would be computed
from the beam maps estimated from calibration and modeling. Note that beam asymmetries
present in the input beam models are not taken into account in this step, but will not affect
the final results as will be explained in section 3.2. Indeed, we are interested in the effect
of imperfect beam knowledge on the cosmological results so we will ultimately compare the
contamination in the reconstructed CMB maps from the perturbed (mν

pert) and unperturbed
cases (mν

4π). Therefore, as long as the same bνℓ,eff are used in the perturbed and unperturbed
cases, our results will not depend on the shape of the effective beams. For this reason, we
defer the details of the computation of these transfer functions to appendix A.

The last step needed to produce the input data for the component separation step is to
apply a mask to the Galactic plane where the foreground signal is very strong. This amounts
to scaling each pixel’s amplitude using weights w ∈ [0, 1] where w is 0 in the masked region,
and smoothly gets to 1 in the region used for the analysis. Therefore, we first need to translate
back the corrected aℓm,corr into pixel amplitudes mcorr

pert before applying the mask weights:

mmasked
pert = w · mcorr

pert. (3.9)

This step, in itself, will introduce mixing between the Q and U components leading to
E → B leakage. However, this should not have a significant impact on residuals from beam
far side-lobes systematic mismatch as will be explained in section 3.2. In this study, we used
the Planck HFI Galactic mask with fsky ∼ 51% [34].

Finally, because we use component separation in the harmonic domain, we perform a
last translation of maps into harmonic domain, where we are dealing with pseudo-aℓm’s
because of the masking.

3.1.2 Modeling Case

We know that, in a realistic set-up, direct measurements of the beams will be very challenging
in the region very far from the center of the beam, and our main estimation of the beam
amplitude would be from modeling. We want to study the impact of modeling errors in
this region and its dependence in the angle θlim from which measurements are absent, which
constitutes our Modeling Case. We employ a different method, as opposed to the “Detailed
Method” presented in section 3.1.1, referred to as the “Axisymmetric Method”, to carry out
this study. This is because the Detailed Method that relies on focal plane simulation and
TOD level convolution is computationally heavy, which is not well suited for the Modeling
Case as we need to explore a broader parameter space (of the order of ∼ 104 configurations)
see section 4.2. As a result, we employ in the Axisymmetric Method a faster and more flexible
way of producing beam convolved maps based on an axisymmetric approximation.

It appears clear that the previously described methodology of local perturbation of the
beam is also not very well suited for the study of the Modeling Case. We develop in this
section a more adapted approach.
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Beam convolved map production. The approach developed in section 3.1.1 is based
on extensive simulations of realistic sky maps convolved with perturbed beams including
simulations of the focal plane, scanning strategy effects, and taking some level of beam
asymmetry into account. In the context of the current section, as we mentioned above,
we need a more flexible and quicker procedure. Therefore, we adopt here another similar
but simpler approach. The maps are convolved by the same beam in all studied cases, the
assumed true beams Bν

0 are taken from the simulated GRASP beams Bν
0 by averaging over

the simulated detectors of the focal plane and symmetrizing them around the beam axis, i.e.
averaging over the ϕ coordinate. On the other hand, they are corrected using the transfer
functions corresponding to the assumed beam model of the analysis. In harmonic space, the
aℓm to be used in component separation are defined as:

aℓm = bGRASP
ℓ

bmodel
ℓ

asky
ℓm , (3.10)

with asky
ℓm corresponding to simple band-passes integrated foreground maps assuming the

spatially homogeneous model d0s0 of PySM [26] and the bℓ’s being the transfer functions of
the averaged symmetrized GRASP beams and of the beam models. We also apply the same
masking scheme. In the same way, we make sure to reproduce the effect of dipole calibration,
assumed perfect, by re-scaling the model transfer function such that bmodel

ℓ=1 = bGRASP
ℓ=1 .

We will show in section 4.2.1 that this method relying on the axisymmetric beam
approximation and the more realistic one described in section 3.1.1 gives, in fact, very
comparable results in our settings. The interpretation of this correspondence will also be
discussed in section 5.

Beam modeling at large angle. We assume the beam to be perfectly known in the
central region, for angles lower than an arbitrary θlim. For angles θ > θlim, we assume an
empirical beam model to simulate the complete lack of information on the true beam shape
in this region. As explained earlier, one of the goals of the present study is to estimate angles
θlim for which the induced error from this lack of information is compatible with the scientific
goals of the mission. Two conservative empirical models would be a constant amplitude
Blim = Btrue (θlim), or otherwise to cut the beam for θ > θlim. However, both these two cases
are too simplistic and overly pessimistic. In addition, the results obtained by using this kind
of empirical model would be very dependent on the assumed true beam used in the analysis.

Therefore, we need a more complex model to capture the essential features, to be
determined, of the true beam. The question of how complex the model should be is essential
in this analysis since complexity is at the expense of flexibility and generality. With these
considerations in mind, we keep the complexity low and consider simple power laws for
θ > θlim with an arbitrary parameter b ≥ 0:

Bν
model (θ, θlim, b) =

(
1 −A′ (θ, θlim)

)
Bν

0 +A′ (θ, θlim)Bν
lim

(
θlim
θ

)b
. (3.11)

The function A′ is an apodization function, with a much sharper transition than in eq. (3.3),
because it needs to compensate the high amplitude of the power law Bν

lim

(
θlim
θ

)b
at low θ in
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Figure 6. Examples of beam models in LiteBIRD’s LFT 100 GHz channel compared to the averaged
and symmetrized GRASP beam used as true beam reference. The limit angle is taken to be θlim = 30◦,
and the arbitrary parameters of the power law model is taken to be b ∈ [0, 20].

a large range of possible θlim. It is taken to be the following logistic function:

A′ (θ, θlim) = 1
1 + e20(θlim−θ)/1◦ . (3.12)

The case b = 0 in eq. (3.11) gives back the constant model and the case b → ∞ leads to the
cut beam. Therefore, this model includes the two most non-informative models, but also
all the intermediate cases. Examples of such beam models are shown in figure 6 for several
values of b and θlim = 30◦, in LiteBIRD’s LFT 100 GHz channel. We will see in section 4.2
that these very simple models are enough to grasp the most important characteristic of the
beams, i.e. the residual power in the far side-lobes.

3.2 Component separation

3.2.1 Spectral parameters estimation

The goal of component separation for foreground cleaning is to retrieve the CMB and possibly
other components emission maps from the observed frequency maps mν . In particular, we are
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concerned with the contamination from polarized Galactic dust, dominant at high frequencies,
and synchrotron, dominant at low frequencies, which are expected to have a significant impact
on the scientific results if not properly cleaned [35–37]. Taking the foreground cleaning step
into account is very important in this analysis since the main effect of beam miscorrection
is to shift the relative amplitude between frequency channels, changing the effective SEDs
of the components for multipoles ℓ ≥ 2. The component separation technique used in this
analysis is based on the method described in [38, 39] and implemented in the FGBuster
package, with the notable difference that it operates in harmonic domain. This component
separation method is based on a parametric approach where the foreground components
spectral properties are modeled using analytic emission laws. The dust component is modeled
by a modified black-body law with temperature Td and spectral parameter βd, while the
synchrotron emission is modeled by a simple power law with spectral parameter βs. These
three parameters are assumed constant over the sky and are fitted using the maximum-
likelihood principle. Therefore, this component separation method is based on fitting the
SEDs from the relative amplitudes of the frequency maps which are significantly altered
for all ℓ ≥ 2 by the dipole calibration of maps with large leakage from the Galactic plane.
This makes our approach to foreground cleaning particularly sensitive to the effect of a
mismatch in the far side-lobes region.

The observed maps are assumed to be the result of combined emissions from the different
sources, CMB and foreground components, together with instrumental noise. Therefore, the
observed amplitudes mp in a single pixel gathered in a vector of nν frequencies are assumed
to be produced by nc components, and is modeled in pixel space as:

mp = A (β) sp + np. (3.13)

In the above data model, A is a matrix that gives each components’ amplitude scaling
across frequency bands and depends on a set of foreground parameters that we collectively
refer to as the spectral parameters β, sp is a vector describing the amplitude of the different
components in the pixel p, and np is the amplitude of instrumental noise in this pixel
assuming white noise determined from the sensitivities in table 1. These elements have
the following dimensions:

mp,np =

 ...


nν A =

 · · ·

︸︷︷︸
nc


 nν sp =

 ...


nc. (3.14)

Assuming that the noise is Gaussian with covariance matrix Np, the log-likelihood for
the data given the model is:

S ≡ −2 ln L = const.+
∑
p

(mp − Asp)T N−1
p (mp − Asp) . (3.15)

In the following, we drop the constant term as it does not impact the position of the
maximum. As mentioned previously, the parameters over which we maximize the likelihood
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are the foreground spectral parameters β and the amplitudes of the components s. The
vanishing partial derivatives of the likelihood at the maximum imply:

−
∑
p

(
∂A
∂β

sp
)T

N−1
p (mp − Asp) = 0 (3.16)

sp =
(
ATN−1

p A
)−1

ATN−1
p mp. (3.17)

Evaluating the likelihood eq. (3.15) at the maximum of sp, eq. (3.17) allows us to define
the profile likelihood, or spectral likelihood, which depends only on the spectral parameters β:

Sspec = −
∑
p

mT
p N−1

p A
(
ATN−1

p A
)−1

ATN−1
p mp. (3.18)

As was pointed out at the end of section 3.1.1, we work in harmonic domain instead of pixel
domain. Therefore, we have to expand mp and Np on the basis of spherical harmonics. We
use the spherical harmonic transform operator Yℓm and define the data harmonic coefficients
aℓm as well as the noise covariance in harmonic domain Nℓ1m1,ℓ2m2 by the following relations:

mp =
∑
ℓ,m

Y†
ℓm,paℓm and N−1

p =
∑

ℓ1,ℓ2,m1,m2

Yℓ1m1,pN
−1
ℓ1m1,ℓ2m2

Y†
ℓ2m2,p

. (3.19)

Given the orthogonality of spherical harmonics on the full sky, that we can use even
though we only observe a limited patch of the sky by setting mp outside the patch to be
zero, the spectral likelihood becomes:

Sspec = −
∑

a†
ℓ1m1

N −1
ℓ1m1,L1M1

A
(
ATN −1

L1M1,L2,M2
A
)−1

ATN −1
L2M2,ℓ2m2

aℓ2m2 , (3.20)

where the sum runs over all harmonic indices. If we further assume N−1 to be diagonal in
harmonic space, i.e. homogeneous noise, and to depend only on ℓ, the spectral likelihood
simplifies to:

Sspec = −
∑
ℓ,m

a†
ℓmN −1

ℓ A
(
ATN −1

ℓ A
)−1

ATN −1
ℓ aℓm. (3.21)

Since we are interested in forecasting the impact of beam shape uncertainty on component
separation, we only work with the likelihood averaged over noise realizations. Moreover, as
detailed in the previous sections, we apply a correction for the beam shape by deconvolving
the maps using effective beams beff

ℓ , therefore the noise covariance matrix is scaled by a factor(
beff
ℓ

)−2
. The noise averaged spectral likelihood is given by:

⟨Sspec⟩noise = −
∑
ℓ,m

Tr
[
N −1
ℓ A

(
ATN −1

ℓ A
)−1

ATN −1
ℓ

(
âℓmâ†

ℓm + N̂ℓ

)]
, (3.22)

where âℓm are the true (noiseless) observed multipoles, including only beam convolved
foreground emissions, and N̂ℓ is the true noise covariance. If we assume that N̂ℓ = Nℓ, this
likelihood reduces to the spectral likelihood eq. (3.21) involving noiseless data, and it was
shown in [39] that CMB data does not play any role on the likelihood maximization. This
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justifies the use of foreground only input maps in this analysis. Note that the likelihood
is defined for each Stokes parameter independently, because we assume no leakage from T
to P, or from E to B. Indeed, this effect is expected to be mostly mitigated by the HWP,
and the residual leakage to be of second order compared to foreground residuals. Therefore,
we consider only the CMB B modes in this work.

3.2.2 Impact on cosmological results

By maximizing the spectral likelihood eq. (3.22), we recover spectral parameters β. These
are then used to clean foreground emissions from frequency maps and recover the CMB
map. The estimate of the components is given by:

s̄ℓm =
(
ATN −1

ℓ A
)−1

ATN −1
ℓ âℓm. (3.23)

An error on the spectral indices will lead to foreground leakage into CMB maps and
larger reconstructed CMB power spectra. The perturbation introduced to account for the
uncertainty on the shape of beam far side-lobes can impact the measurement of the spectral
parameters, therefore introducing systematic residuals on the CMB B-mode power spectrum
and systematic bias δr on the tensor-to-scalar ratio r.

Because we want to disentangle the impact of systematic error from beam shape mismatch
and intrinsic systematic errors of the component separation procedure, we define the residuals
to be the difference between the recovered CMB B-mode multipoles in a reference case
s̄ref
ℓm that assumes no beam perturbation and the recovered CMB B-mode multipoles in the

perturbed case s̄ℓm (see [15]):

δsℓm = s̄ℓm − s̄ref
ℓm. (3.24)

In particular, because the reference case differs from the perturbed case only by the
absence of the perturbation, this comparison removes the contribution to the residuals
from a mismatch between the true foreground SEDs and the model used in the component
separation, from the masking procedure and other effects which are present both in the
reference and perturbed cases. This justifies the use of simplistic foreground models such
as the d0 and s0 models from PySM.

The bias δr is defined to be the measured value of r assuming its true value to be
r = 0. Therefore, we can extract it from the power spectrum Cres

ℓ of the residuals δsℓm by
maximizing the following cosmological likelihood as a function of r:

−2 ln Lcosmo = fsky
∑
ℓ

(2ℓ+ 1)
(

lnCth
ℓ (r) + Cth

ℓ (r = 0) + Cres
ℓ

Cth
ℓ (r)

)
, (3.25)

where Cth
ℓ is the theoretical CMB B-mode power spectrum that includes all expected

contributions:
Cth
ℓ = rCGWℓ + C lens

ℓ +Nℓ +Rfore
ℓ , (3.26)

where CGWℓ is the primordial CMB BB power-spectrum for r = 1, C lens
ℓ is the contribution

from gravitational lensing, Nℓ is the power-spectrum of the noise after component separation
and Rfore

ℓ is the expected power-spectrum of foreground residuals from statistical uncertainties
propagated through component separation. The contributions Nℓ and Rfore

ℓ are estimated
following [15].
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Perturbation Case Modeling Case
Detailed Method 4.1

Axisymmetric Method 4.2.1 4.2.2

Table 2. Organization of section 4 for the various cases. We remind the reader that the Perturbation
Case corresponds to the study of measurement uncertainties while the Modeling Case corresponds to
the study of modeling errors, and that the Detailed Method adopts a full simulation of the asymmetric
beam, focal plane and scanning strategy while the Axisymmetric Method follows an axisymmetric
map-based approach.

4 Results

The purpose of this section is to use the frameworks described in section 3 to build the bridge
between scientific requirements for LiteBIRD and requirements on the instrument knowledge
for the specific case of beam far-sidelobes. Table 2 describe how the results for the various
cases and methods are organized in the section.

4.1 Requirements for the Perturbation Case

4.1.1 Bias on the tensor-to-scalar ratio from the beam perturbation

The goal of this section is to use the approach described in 3.1.1 to evaluate the impact of an
imperfect beam knowledge from calibration errors and to produce requirements on calibration
measurements given the methodology assumptions of this work, detailed in section 3.

To this aim, we estimate the bias on r introduced by a perturbation of the beam in
a single frequency channel and in a single angular window at a time, with a perturbation
amplitude αν,W , following eq. (3.6) and the corresponding beam eq. (3.8). The beams in
other channels are left unperturbed such that the induced bias on the tensor-to-scalar ratio
δrν,W comes only from the perturbed channel. From a given set of arbitrarily assigned error
budgets per channel δrν,Wlim , we find the corresponding limit values αν,Wlim of the amplitudes
αν,W that induce a bias δrν,W = δrν,Wlim . We found that the bias on r scales as δr ∝ α2, as can
be seen in figure 7. This is to be expected since α scales the amplitude of the perturbation,
therefore the power-spectrum is scaled by α2.

If we assume the effect on each channel to be independent, which is a reasonable
assumption for small biases as is the case in this study, aℓm of the corresponding residuals
would add in quadrature. So, because δr is the amplitude of their variance the total bias is
obtained by simply summing the biases from the different channels. Therefore, the total bias
will correspond to the total error budget assigned to the beams far side-lobe systematic effect
∆rFSL =

∑
ν,W δrν,Wlim . We follow the total budget for beam far side-lobe systematic bias

defined by the LiteBIRD collaboration: ∆rFSL = 1.9 × 10−5 [15]. Note that this corresponds
to ∼ 3% of the total mission systematic budget which is 0.001/

√
3. We further assume, for

now, that each channel have the same contribution to ∆r. In our case, there are 22 frequency
channels and 3 angular windows, so the allowed bias from each channel is assigned with
equal weight and is simply δrν,Wlim = (1.9/66) × 10−5. Note that assuming different values
of ∆rFSL or δrν,Wlim would lead to different requirements.
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Figure 7. Evolution of the bias on r as a function of α in each frequency channel of the LFT (top),
MFT (middle) and HFT (bottom). The solid lines correspond to the quadratic law δrν ∝ α2

ν that
best fits the points at perturbation amplitudes α ≤ 100, where the quadratic scaling breaks down
in frequency channels that induce a large bias. These results are obtained in the angular window at
largest angle for illustration, the behaviour in the two other windows being similar.

In order to check that the correlation between the effect in the different frequency
channels is limited, we estimated the total contribution ∆r with a hundred realizations
of simultaneously varying the perturbation amplitudes αν,W in all frequency channels at
once but treating the angular windows separately, with a uniform distribution in the range[
max

(
−W−1

max,−
√

3αν,Wlim

)
;
√

3αν,Wlim

]
. We use a uniform distribution instead of a Gaussian

distribution with standard deviation αν,Wlim to avoid negative beam amplitudes. Nevertheless,
we maintain the same variance as the Gaussian distribution by introducing a factor of

√
3 to

the width of the uniform distribution. The average bias due to the far side-lobe systematic
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δRlim (dBi)
ν

(GHz)
LFT

40 50 60 68 78 89 100 119
4◦ < θ < 8◦ −23.54 −13.45 −17.68 −13.27 −8.02 −18.36 −16.43 −23.14 −15.50 −25.61 −27.57
7◦ < θ < 12◦ −25.41 −15.51 −19.68 −15.75 −10.99 −19.21 −17.28 −24.13 −16.49 −26.59 −28.46

11◦ < θ −27.49 −17.44 −21.53 −18.20 −13.67 −17.41 −16.18 −23.40 −16.27 −26.01 −27.86
ν

(GHz)
LFT MFT HFT
140 100 119 140 166 195 195 235 280 337 402

4◦ < θ < 8◦ −23.23 −26.84 −29.71 −23.92 −34.64 −37.07 −33.00 −35.65 −32.52 −41.78 −38.03
7◦ < θ < 12◦ −23.88 −27.90 −30.71 −24.61 −35.63 −37.89 −34.17 −36.60 −33.34 −42.66 −38.68

11◦ < θ −26.69 −25.74 −29.20 −29.83 −33.91 −34.30 −32.73 −34.38 −27.26 −37.79 −38.93

Table 3. Beam perturbation requirements for each frequency channel and each of the three angular
windows of the beam perturbations giving δr = 1.9 × 10−5/66, using unperturbed beams in the other
frequency channels and angular windows. These results are expressed in terms of δRlim, in dBi. The
color of the cells correspond to a linear scale from green for the easiest requirements (on δRlim) to red
for the most challenging.

effect is found to be ∆r = 2.08 × 10−5, in excess by less than ∼ 10% as compared to the
pre-defined bias budget defined above which we consider as validating our assumption of
small correlations between the channels. Note that these results are slightly different as
those presented in [15] where it was assumed that α ≥ −1, which tends to over-estimate
the average bias compared to the more precise limit used here. The average residual power
spectra are shown in figure 8.

From this procedure, we derive requirements on the perturbation amplitudes αν,W , given
δrν,Wlim , as an upper bound αν,Wlim . However, though the αlim parameters are useful intermediate
to evaluate the effect of imperfect beam knowledge, they are not directly accessible and we
want to relate them to physical properties of the beams. We describe three such properties
in the following sections.

4.1.2 Beam perturbation power

First, we introduce the parameter δRlim that quantifies the relative difference of power
between the perturbed and unperturbed beams:

δRν,Wlim ≡
∫
Bν,W

lim (θ)W (θ) dΩ∫
Bν

0 (θ) dΩ
. (4.1)

In this expression, we defined the fractional power difference between the perturbed and
nominal beams Bν,W

lim (θ) = αν,Wlim Bν
0 (θ) with the averaged beam normalized at the peak, i.e.

Bν
0 (θ = 0) = 1 as will always be the case in the following. This quantity clearly represents

the fraction of power in the perturbation expressed in units of the total power of the beam,
and is illustrated in figure 9 for the LFT 100 GHz channel. The δRν,Wlim values found in the
22 frequency channels and three angular windows are given in table 3.

We can see a remarkable fact from these requirements: they show little dependence on the
angular range. In a given frequency channel, the difference between requirements in the three
windows is at most of the order of a few dBis, much less than the variation between frequency
channels, despite the large difference between the definitions of the windows. This means
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Figure 8. Average of the residual B-mode power spectra from beam far side-lobes mismatch in
the 3 angular windows, for 100 realizations of randomly produced sets of perturbation amplitudes
αν,W parameters following the requirements that αν,W ∈

[
max

(
−W−1

max,−
√

3αν,W
lim

)
;
√

3αν,W
lim

]
for

all frequency channels in the given angular window. The corresponding total bias on r is evaluated,
combining the three windows and using (3.25), to be ∆r = 2.08 × 10−5.

that the requirements on δRlim are quite independent of the beam shape and of the shape
of the perturbation. So, the difference of power between the perturbed and unperturbed
beams is the leading effect to the bias on r. And the relative differences in sensitivity
between frequency channels come from their weight in the component separation, i.e. from
the relative amplitude of Galactic foreground emissions in these channels. In particular, the
requirements are the most stringent for the lowest frequency channel, important to clean for
synchrotron, around the CMB frequencies and for the high frequency channels, important to
clean for dust. Therefore, we believe that improving the beam modeling would not change
significantly the requirements on δRlim.

However, δRlim is not directly measurable because the total beam power, i.e. the integral
of the beam appearing in the denominator of eq. (4.1), is not precisely known. So, despite
the apparent robustness of this physical quantity, we have to express requirements in terms
of other related quantities.
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Figure 9. (Left) Illustration of δRlim as the shaded area in the three angular windows in LiteBIRD’s
100 GHz LFT channel, for a perturbation amplitude α = 1. (Right) Illustration of δBlim in the same
channel for α = 1. The dashed lines correspond to the actual beam perturbations, while the solid
lines represent what would be the perturbations if Bν

0 (θ) was constant in the window, equal to δBlim.

4.1.3 Average perturbation amplitude in the window

Following the results of the previous subsection, we define δBlim which is closer to what can
actually be used as a benchmark for calibration measurements (see also eq. (4.5)):

δBν,W
lim ≡

∫
Bν,W

lim (θ)W (θ) dΩ∫
W (θ) dΩ =

∫
Bν

0 (θ) dΩ∫
W (θ) dΩ δRν,Wlim . (4.2)

This quantity corresponds to the average amplitude, normalized to the peak, of the
perturbation in the angular window and is illustrated in figure 9. It is clear on one hand
that δBlim is easier to measure than δRlim but on the other hand that the requirements will
depend on the definition of the windows. In particular, the larger the window the more
stringent the requirements on δBlim. This is particularly relevant for the last angular window,
which in principle ranges from ∼ 11◦ up to ∼ 180◦, combining regions with very different
power levels. This would lead to unreasonably low requirements for δBlim in the last angular
window. So, we have to make a choice of upper bound up θmax to which we should compute
the integrals in the definition eq. (4.2), based on beam dependent considerations. This makes
the requirements on δBlim dependent on the beam modeling.

Because the amplitude of the beam models used for this analysis drops drastically at
angles larger than ∼ 50◦ (and are expected to decrease significantly at large angle thanks
to the design of LiteBIRD), this upper bound should not be too much higher than ∼ 50◦.
To stay conservative, we show the requirements on δBlim in table 4 where we restrict the
last window to angles smaller than 70◦.

As expected, the most challenging window and frequency channels are the one at large
angle covering the largest area and at high frequencies. This comes from two effects: the
importance of high frequency channels to estimate with a good lever arm the dust signal
in channels at CMB frequencies, and the small FWHM of high frequency channels leading
to very low average amplitude at large angles. In this context, it is clear that assigning
the same bias budget to all channels is not optimal in terms of requirements, and we can
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δBlim (dB)
ν

(GHz)
LFT

40 50 60 68 78 89 100 119
4◦ < θ < 8◦ −42.55 −34.09 −39.46 −36.70 −30.45 −42.82 −39.42 −48.56 −38.84 −51.80 −54.82
7◦ < θ < 12◦ −46.62 −38.35 −43.67 −41.38 −35.62 −45.87 −42.48 −51.75 −42.04 −54.98 −57.91
11◦ < θ < 70◦ −66.40 −57.98 −63.20 −61.52 −56.00 −61.76 −59.07 −68.70 −59.51 −72.09 −75.00

ν

(GHz)
LFT MFT HFT
140 100 119 140 166 195 195 235 280 337 402

4◦ < θ < 8◦ −51.25 −50.65 −54.58 −49.55 −60.87 −63.56 −59.01 −62.92 −60.57 −70.48 −67.91
7◦ < θ < 12◦ −54.11 −53.91 −57.78 −52.45 −64.07 −66.58 −62.38 −66.07 −63.60 −73.57 −70.77
11◦ < θ < 70◦ −74.60 −69.44 −73.96 −75.36 −80.06 −80.69 −78.63 −81.55 −75.23 −86.41 −88.72

Table 4. Beam perturbation requirements for each frequency channel and each of the three angular
windows of the beam perturbations giving δr = 1.9 × 10−5/66, using unperturbed beams in the
other frequency channels and angular windows. These results are expressed in terms of δBlim, in dB,
assuming the last angular window to range up to 70◦. The color of the cells correspond to a linear
scale from green for the easiest requirements (on δBlim) to red for the most challenging.

alleviate a little the requirements in the most sensitive channels by making those in the
other channels more stringent.

Having this in mind, we derived the requirements on δBlim assuming the whole frequency
and angular range to share the same calibration accuracy. In this case, the requirement will be
expressed as a single common δBlim, that we obtain by tuning the single channel bias budget
δrν,Wlim such that δBν,W

lim = δBlim. It is possible to compute analytically an estimation of δBlim

using the previously found values of αν,Wlim parameters with the scaling δrν,W ∝
(
αν,W

)2
.

This leads to the following expression:

δBlim =
√√√√√ nν × nθ∑

ν,W

(
δBν,W

lim

)−2 , (4.3)

where nθ is the number of angular windows, δBν,θ
lim are the requirements previously found.

In the case where δBlim is defined up to 70◦, these are taken from table 4, and we find
the common precision requirement to be δBlim = −80.42 dB. In other words, under our
assumptions the beam amplitude must be known in each frequency channel and each window
with a precision of ∼ 10−8 with respect to the peak, including systematic and statistical
sources of errors during calibration. Once again, this result depends on the definition of the
windows, and in particular on the maximum angle θmax of the last window. If θmax is different,
to reflect more accurately our knowledge of the optical characteristics of the telescope, or to
investigate the potential impact of other design choices, this would have a significant impact
on the value of δBlim. The left part of figure 10 shows how δBlim varies as a function of θmax,
keeping δRlim constant as we saw that it should not depend on the window.

To put these requirements into perspective, one can compare with the level of accuracies
that were reached for Planck during the ground calibration campaign. The difference between
modeling and measurements was of the order of 6 dB for iso-levels of −90 dB at 100 GHz,
and 7 dB at −80 dB at 320 GHz [40].
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Figure 10. (Left) Evolution of the common requirement δBlim defined in eq. (4.3) as a function
of the upper bound angle θmax after which the last angular window is W (θ > θmax) = 0. In the
definition of δBlim eq. (4.2), δRlim is kept constant as it is rather stable with respect to the definition
of the windows. The red star corresponds to the value of δBlim when θν

max is obtained in each channel
such that

∫ θν
max Bν

0 (θ)W (θ) dΩ include 97.5% of the theoretical perturbation power, at the mean of
the θν

max. (Right) Evolution of the common requirement σCalib defined in eq. (4.5) as a function of
θmax under the same assumptions.

4.1.4 Noise limited calibration measurements

If calibration measurements of the beams face systematic sources of errors, the requirements
that apply to the accuracy of calibration measurements are the ones set for δBlim in the
previous subsection. However, in the case of noise limited measurements, we do not need
to go to such accuracy, because we can make several independent measurements of the
same perturbation in many pixels on the sphere, distributed in the 2D angular ring of the
perturbation. To make this more precise, the quantity effectively measured during ground
beam calibration is the integrated power measured in a certain region of the sphere, normalized
to the integrated power measured at the beam center, which can be modeled as:

P νCalib (r̂) ≡
∫
Bν

0 (θ)ω
(
r̂′ − r̂

)
dΩ′ 1∫

Bν
0 (θ)ω (r̂′) dΩ′ + nCalib, (4.4)

where ω(r̂) is a small integration window of the beam that can be interpreted as a pixel in
the (θ, ϕ) surface and nCalib the noise in the beam calibration measurements.

We estimate the precision required on the measured quantity PCalib(r̂) assuming random
uncorrelated errors in each measurement (and hence no systematic effects), and a grid
of measurements at many angles as illustrated in figure 11. In this case the calibration
measurement uncertainty σCalib =

√
⟨nCalibnTCalib⟩ is related to the quantity δBlim by:

σν,WCalib =
∫
W (θ)dΩ√∑

ijW
2(θij)∆Ωpix

δBν,W
lim ≡

√
NW

eff δB
ν,W
lim , (4.5)

with ∆Ωpix the solid angle covered by one calibration measurement and i, j the pixel number
for a pixelized beam calibration map. The quantity σCalib can directly be interpreted as
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Figure 11. Illustration of the grid of beam measurement pixels on the sphere. Each pixel, as the
highlighted red one, is supposed to have the same area and are distributed in rings of constant ∆θ.

the accuracy of the beam measurements. In all of the following, we assume arbitrarily a
constant pixel size ∆Ωpix = 0.5◦ × 0.5◦ = 0.25 deg2, during beam ground calibration, but
different values of Ωpix would lead to different requirements on σCalib. As already mentioned,
we assume the calibration beam measurements to be normalized to one at the peak. The
factor NW

eff is the effective number of pixels in the region of the beam perturbation. As in the
case of δBlim, the requirements will depend on the definition of the windows. However, the
dependency on the windows is not as straightforward because, as θmax in the last window is
reduced, for instance, the effective number of pixel will decrease while δBlim will increase.
The requirements for σCalib assuming θmax = 70◦ are given in table 5, where the effective
numbers of pixels are Neff = 742.0, 1541.9, and 52943.2 in the three windows from small
to large angles respectively.

In the same way as we derive a common requirement δBlim using eq. (4.3), we can also
derive a single common σCalib. Under our general assumptions and assuming θmax = 70◦,
we find σCalib = −56.90 dB, and the θmax dependence of σCalib is shown in the right panel
of figure 10.

4.2 Requirements for the Modeling Case

4.2.1 Comparison of the Detailed Method and the Axisymmetric Method

The Axisymmetric Method, based on the axisymmetric beam approximation we detailed
in section 3.1.2, needs to be validated before being used for the purpose of investigating
modeling uncertainties. This is done by comparing the results described in the previous
section obtained using the Detailed Method with results obtained under the axisymmetric
approximation. We use the pipeline of the Perturbation Case described in section 3.1.1, but
here the input 4π maps and side-lobes maps are calculated with the averaged and symmetrized
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σCalib (dB)
ν

(GHz)
LFT

40 50 60 68 78 89 100 119
4◦ < θ < 8◦ −28.20 −19.73 −25.11 −22.34 −16.10 −28.46 −25.07 −34.20 −24.49 −37.45 −40.47
7◦ < θ < 12◦ −30.68 −22.41 −27.73 −25.44 −19.68 −29.93 −26.53 −35.81 −26.10 −39.04 −41.97
11◦ < θ < 70◦ −42.79 −34.37 −39.60 −37.92 −32.39 −38.16 −35.46 −45.10 −35.91 −48.49 −51.39

ν

(GHz)
LFT MFT HFT
140 100 119 140 166 195 195 235 280 337 402

4◦ < θ < 8◦ −36.90 −36.30 −40.23 −35.20 −46.52 −49.20 −44.65 −48.57 −46.22 −56.12 −53.56
7◦ < θ < 12◦ −38.17 −37.97 −41.84 −36.51 −48.13 −50.64 −46.44 −50.13 −47.66 −57.63 −54.83
11◦ < θ < 70◦ −51.00 −45.84 −50.36 −51.76 −56.45 −57.08 −55.03 −57.95 −51.63 −62.81 −65.12

Table 5. Beam perturbation requirements for each frequency channel and each of the three angular
windows of the beam perturbations giving δr = 1.9 × 10−5/66, using unperturbed beams in the
other frequency channels and angular windows. These results are expressed in terms of σCalib, in dB,
assuming the last angular window to range up to 70◦ and a constant pixel size ∆Ωpix = 0.5◦ × 0.5◦.
The color of the cells correspond to a linear scale from green for the easiest requirements (on σCalib)
to red for the most challenging.

GRASP beams following the description of section 3.1.2. The corresponding perturbed maps
are then produced using eq. (3.5). To perform a meaningful comparison, we perturb the
beam in the same three angular windows and keep the same bias budget in each channel
δrν,Wlim = (1.9/66) × 10−5. The results of the comparison between the two methods are given
in table 6, expressed as δB1

lim − δB2
lim where δBi

lim is obtained using Method i. The values
of δB2

lim in each frequency channel show a good agreement, with a difference with δB2
lim

of a few dBs, up to a little more than ∼ 3 dB in a few channels. We also note that the
Axisymmetric Method seems to systematically underestimate the bias on r which leads to a
systematically higher δBlim. Although the origin of such a factor of 2 of difference in some
channels needs to be further understood, given that the results span almost six orders of
magnitude (60 dB) throughout the different windows and frequency channels, this is still
an impressive agreement. This implies that the asymmetries of the beam do not have a
significant impact on our analysis, possibly thanks to the scanning strategy of LiteBIRD
which is efficient in symmetrizing the given GRASP beam. Note that the LiteBIRD GRASP
beams in this study do not have significant asymmetric features as explained in section 3.1.1.
The case of more realistic beam asymmetries will be studied in a future work.

In consideration of flexibility and less time consumption, we apply the new approach
in the following study of modeling uncertainties.

4.2.2 Bias on the tensor-to-scalar ratio from beam mismodeling at large angle

The main goal of this section is to find a way of figuring out the limit angle θlim after which
we can rely entirely on modeling to correct for beam effects. This angle will depend strongly
on the ability of the beam model to reproduce key features of the true beam. Therefore,
we have to explore the impact of both parameters of the beam model eq. (3.11), θlim and
b, at the same time. Following the same idea as in section 4.1, figure 12 shows the bias on
r on a grid of (θlim, b) values when perturbing a single channel at a time keeping the other
channels unperturbed, in three selected frequency channels: at the lowest frequency 40 GHz
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δB1
lim (dB) − δB2

lim (dB)

ν

(GHz)
LFT

40 50 60 68 78 89 100 119
4◦ < θ < 8◦ −1.63 −1.88 −1.56 −1.45 −0.31 −1.62 −1.60 −1.93 −1.79 −2.19 −2.59
7◦ < θ < 12◦ −1.91 −1.48 −1.63 −1.59 −0.96 −2.24 −2.18 −2.46 −2.29 −2.63 −2.99
11◦ < θ < 70◦ −1.45 −1.15 −1.24 −1.09 −0.89 −1.54 −1.58 −1.90 −1.80 −2.14 −2.44

ν

(GHz)
LFT MFT HFT
140 100 119 140 166 195 195 235 280 337 402

4◦ < θ < 8◦ −3.91 −1.76 −2.23 −3.63 −1.64 −1.92 −1.19 −1.67 −2.66 −2.82 −3.11
7◦ < θ < 12◦ −3.68 −2.26 −2.73 −3.13 −1.88 −1.99 −1.86 −2.06 −3.03 −3.08 −3.28
11◦ < θ < 70◦ −2.33 −1.94 −2.22 −2.18 −2.08 −2.08 −1.82 −1.76 −2.46 −2.97 −3.46

Table 6. Difference in dB between δBlim obtained from measurement uncertainties approach
(section 3.1.1) and the corresponding δB2

lim obtained using the axisymmetric approach (section 3.1.2)
for each frequency channel and each of the three angle ranges of the beam perturbations giving
δrν,W

lim = 1.9 × 10−5/66.

of the LFT, in one of the CMB frequency channels at 140GHz of the MFT and at the highest
frequency 402 GHz of the HFT which we know from the previous section give the tightest
constraints. In these figures, the region on the left of the black contour corresponds to sets
of parameters for which δrν > δrνlim, the allocated budget in the given frequency channel,
and the region on the right is where δrν < δrνlim. Following the spirit of the previous section
when dealing with calibration uncertainties, we allocate the same budget to every frequency
channel, namely δrνlim = ∆rFSL/nν = 1.9 × 10−5/22.

As we can see in each of these figures, neither of the flat beam model (b = 0) and the cut
beam model (b → ∞), allow to reach θlim close to the lowest possible values. In each frequency
channel, there is a value of b for which the limit bias is achieved for a lower value of θlim. This
corresponds to the value of b for which the power law beam model best fits the reference beam,
leading to an induced bias compatible with the budget for lower values of θlim. However, the
power law model is very simple and can only reproduce the most basic of properties from
the reference beam. In other words, at least after some angle, the measurement of r is not
sensitive to the particular shape of the beam but to other features of the beam that are
necessary global in nature such that they can be reproduced by a simple power law model.

Capitalizing on our results of the previous section, we investigate the link between δrν

and the residual beam power between the true beam and the model:

δKν
lim (θlim, b) =

∣∣∣∣∣
∫ 2π

0

∫ 180◦

θlim

[
Bν

model (θ; θlim, b) −Bν
0 (θ)

]
sin θ dθdϕ

∣∣∣∣∣ . (4.6)

The meaning of the δKlim parameter is illustrated in figure 13 in the LFT 100 GHz
channel and for b = 6. If the beam profile is normalized by the integral of the beam power,
this quantity is equivalent to the δRlim parameter in the previous section that we saw seemed
to be a robust quantity across the angular range. We keep a different name for this quantity
to emphasize the fact that δRlim is defined for a perturbation around a central beam with
the same shape, while δKlim corresponds to a mismatch between a model and the true beam.
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Figure 12. Bias on r in the 2D parameter space (θlim, b) for three frequency channels, 40 GHz of
the LFT (top left), 140 GHz of the MFT (top right) and 402 GHz of the HFT (bottom). The black
contours correspond to the limit case where the bias is equal to the systematic error budget allocated
to the individual frequency channels, δr = δrν

lim = 1.9 × 10−5/22.

To verify that δKlim is indeed a relevant parameter, we computed its value on the same grid
of (θlim, b) as before and compared it to the corresponding values of δr. This is illustrated
in figure 14. The two parameters seem to have a similar behaviour in the 2D parameter
plane. This is even more striking when looking at what happens for fixed values of θlim, i.e.
for vertical slices. Indeed, in this context, we see that the value of b that corresponds to
the minimum of δr is very close to the minimum of δKlim. Up to a very good accuracy, it
appears that the power law that induces the least bias is the one that minimizes the residual
power after θlim, regardless of the actual beam shape. For comparison, we also show the
minimum of another quantity, δK(2)

lim, which corresponds to a χ2 between the reference beam
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Figure 13. Illustration of the residual power in the θ direction between the true beam and the beam
model δKlim (θlim = 30◦, b = 6) in the LFT 100 GHz frequency channel as the blue shaded area. The
total residual power has to be integrated over ϕ, which in the current context amounts only to a
factor of 2π.

and the beam model, defined as follow:

δK
(2)
lim (ν, θlim, b) =

∫ 2π

0

∫ 180◦

θlim

[
Bν

model (θ; θlim, b) −Bν
0 (θ)

]2
sin θ dθdϕ. (4.7)

Although it would be an intuitive parameter to characterize how close the beam model is to
the reference model as its minimum is the least square estimation, it is slightly off especially
at high frequency. This gives further confidence in the particular relevance of the δKlim
parameter, and of the relative lack of importance of the shape of the beam profile.

Figure 15 shows scatter plots in the
(
δr, (δKlim)2

)
plane with the same grid points used

to produce previous plots. We see that the two parameters are tightly correlated. In fact,
the bias is proportional to the residuals power spectrum, i.e. to the correlation of harmonic
coefficients, so is proportional to the square of the perturbation at the map level. Therefore,
δr ∝ (δKlim)2 as was already pointed out in section 4.1. The very high correlation between the
two parameters means that, to a given requirement on δr would correspond a constant δKlim
for all values of θlim. To further check the correspondence between these two parameters and
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Figure 14. Residual beam power δKlim in the 2D parameter space for three frequency channels,
40 GHz of the LFT (top left), 140 GHz of the MFT (top right) and 402 GHz of the HFT (bottom). The
black contours are the same as the ones in figure 12. The solid blue, green and pink lines correspond
to the minimum value of δr, δKlim and δK

(2)
lim respectively for a given value of θlim.

also to see when it breaks down, we computed the value of δKlim (in units of the total beam
integral) for which δr = δrlim. To compute it, we find the value of b for which δr = δrlim,
for a fixed value of θlim and assuming that

∫ 180◦

θlim

[
Bν

model (θ; θlim, b) −Bν
0 (θ)

]
dΩ > 0 to avoid

issues coming from the lower bound of this integral corresponding to the case when b → ∞.
The results are shown in figure 16 in the same three frequency channels as before. We see that,
in each channel, there is a θlim after which we reach a regime where δKlim is approximately
constant, as expected. For lower values of θlim, a simple power law is not enough anymore
as the actual shape of the beam becomes more important.

Therefore, as we conjectured in the previous section, there is a direct link between the
bias on r from the far side-lobes and the relative power difference between the true beam
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Figure 15. Scatter plot in the 2D
(
δr, (δKlim)2

)
plane in the grid of θlim and b values used to

produce figures 12 and 14, in the same three frequency channels. Because at very low θlim, the impact
of imperfect beam knowledge is important and cannot be completely grasped by δKlim, we only show
the points for which θlim > 10◦. In addition, the integral in the definition of δKlim is bounded from
below by the negative of the reference beam’s integral so only the points where this integral is positive
are plotted to facilitate the interpretation. We checked that the high level of correlation between the
two parameters still hold when this integral is negative.

that convolves the sky maps and the beam model used to correct it. This relation can be
used to derive meaningful requirements on the needed precision of the modeling: if we have
an estimation of the residual power in the far side-lobes region at θ > θlim, δKlim can be
interpreted as the required accuracy of this estimation. Alternatively, this relation opens
new possibilities to mitigate the effect of the beam far side-lobes by calibrating for δKlim.
It can also be used to determine the value of the angle θlim after which we can rely on the
beam model, as the angle at which the relation between δr and δKlim breaks down. In the
case of the 3 frequency channels we explored in this section, these angles would be ∼ 10◦

for LFT 40 GHz, ∼ 10◦ for MFT 140 GHz and ∼ 30◦ for HFT 402 GHz.

5 Discussions

Characterizing the beam properties has always been important for CMB space experiments
to properly measure CMB intensity and E modes of polarization. The knowledge of the
instrument’s beam characteristics is especially crucial to reach the exquisite level of sensitivity
required to detect large-scale CMB B modes. In particular, the beam far side-lobes uncertainty
is expected to be one of the main sources of systematic error for LiteBIRD [15]. As previously
stated, this study is the first to propagate beam systematic effects all the way from their
accurate simulation to their impact on cosmological results. We first discuss the requirements
for both cases under the assumptions we made in this paper. Then, we further address the
limitations and assumptions of this study that leave room to define more meaningful and
reliable requirements in future studies. Finally, we describe how the framework developed
in this paper could be used to study realistic physical effects with the example of Ruze’s
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Figure 16. Values of δKlim for which δr = δrlim as a function of θlim, in units of the total beam
integral, at 40 GHz (top), 140 GHz (middle) and 402 GHz (low). These are computed for values of b
such that the integral in δKlim is positive and for values of θlim ≤ θlim (δr = δrlim, b = 0).

lobes, or to define smooth systematic error curves that are easier to exploit for calibration
measurements.

5.1 Requirements on calibration

First of all, the comparison between the Detailed Method and the Axisymmetric Method
which showed that the results are similar is very important for future studies that will be able
to capitalize on the simplicity and flexibility of the axisymmetric approach. In particular, in
the following we use this method to understand and interpret the results we obtained.

As explained above, we tried to understand to what extent these results are independent
of the particular beams used to convolve the simulated sky maps. Because we are always
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δBlim (dB) − δBconst.
lim (dB)

ν

(GHz)
LFT

40 50 60 68 78 89 100 119
4◦ < θ < 8◦ −1.25 −1.23 −1.06 −0.97 0.11 −1.86 −1.84 −2.08 −1.96 −2.34 −2.75
7◦ < θ < 12◦ −1.47 −1.11 −1.26 −1.22 −0.56 −2.10 −2.08 −2.30 −2.16 −2.53 −2.90
11◦ < θ < 70◦ −0.57 2.46 −0.53 0.15 0.66 −2.53 −2.95 −4.07 −4.32 −3.22 −0.35

ν

(GHz)
LFT MFT HFT
140 100 119 140 166 195 195 235 280 337 402

4◦ < θ < 8◦ −3.97 −1.93 −2.36 −3.55 −1.65 −1.93 −1.34 −1.82 −2.76 −2.85 −3.14
7◦ < θ < 12◦ −3.32 −2.18 −2.61 −2.93 −1.84 −1.97 −1.72 −2.00 −2.97 −3.03 −3.25
11◦ < θ < 70◦ 3.22 −1.21 0.95 1.22 0.19 −0.61 −2.50 −3.26 3.29 −1.22 −0.07

Table 7. δBlim using perturbations with constant δB and with the fiducial shape in standard method
for each frequency channel and each of the three angle ranges of the beam perturbations giving
∆rFSL = 1.9 × 10−5/66.

comparing the perturbed cases with the reference case of convolution with the full unperturbed
beam, the analysis itself is only sensitive to the shape of the beam perturbations. In other
words, if the perturbation vanishes, so does the bias on r, whatever the beam profile is. In
principle in our case, this introduces a dependence on the beam shape because the perturbation
is taken to have the same shape as the beam in the angular window of perturbation. In order
to quantify how dependent our results are in the beam shape, we followed the Axisymmetric
Method using perturbations with a different shape. In analogy with the perturbed beam
defined in eq. (3.8), we used perturbations of the form

Bν
pert(θ) = µν (Bν

0 (θ) +W (θ) δB) , (5.1)

where δB is a constant parameter that drives the amplitude of the perturbation. The results
of the comparison between the constant perturbation eq. (5.1) and the perturbation defined
in eq. (3.8) are detailed in table 7, expressed in terms of δBlim − δBconst.

lim where δBlim is given
in table 4 and δBconst.

lim is obtained using eq. (5.1). These results must be compared with
results of table 6. We see that the results are very similar, which supports the claim that
our results depend little on the shape of the beam perturbation.

Since the results depend on the perturbation windows, their choice is important and
needs to be motivated. The choice of the three windows we made here (see figure 4) is
somewhat arbitrary and probably not optimal. Nevertheless, it divides the beam profile into
a region close to the main beam, an intermediate region, and a region very far from the beam
axis, with little overlap between the regions, which physically makes sense. This can, in
particular, be used to plan the ground calibration strategy by dividing the beam into regions
that can be calibrated with different accuracies. The definition of the windows lead to an
apparent inconsistency where two very different requirements are defined at a same angle in
the overlap region of two windows. This can be solved by defining a smooth error curve based
on the requirements, see section 5.5. In addition, it will be possible to tune the accuracy
in the different regions by tuning the resolution of the measurements, contrary to what we
did here assuming constant resolution of 0.25 deg2. Perturbations in more angular windows
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will be simulated in future studies, allowing to define requirements with a better angular
resolution as well as a more thorough inspection of the effect of these perturbation windows.

In addition, these windows are completely axisymmetric, as well as the quantities δB̄lim,
δR̄lim and σcalib, which could be the source of an inconsistency in the results because the
beams used to produce the simulations include some asymmetries, even if not at a realistic
level. However, the comparison performed in section 4.2.1 teaches us that the results are, to
some extent, robust. This correspondence between a fully symmetric case and a case that
includes some level of asymmetries could come from the combination of many symmetrically
distributed detectors on the focal plane and from the symmetrizing effect of the scanning
strategy, optimized to observe the same pixels from many different angles.

5.2 Requirements on modelisation

As explained in section 3.1.2, we chose the power law beam model to reproduce the main
falling tail feature of beam profiles while staying rather general and simple. From its generality,
we expect our results to be rather independent of this particular modeling. Indeed, we saw
that we could describe the bias on r using a simple physical characteristic of the imperfect
beam knowledge, δKlim, which is completely independent both of the reference GRASP beams
and of the power law model. Therefore, we are confident that the results from this section
are general and apply to a large variety of cases.

After some sufficiently large angle θlim, depending on the frequency channel, the effect of
beam mismodeling corresponds to a modification of the signal at large scales. After calibrating
on the dipole, this will have a net effect of scaling the normalisation of the multipoles ℓ ≥ 2,
introducing a bias proportional to the square of this change of normalisation, i.e. to (δKlim)2.
This regime only occurs for angles larger than some transition θlim because for lower angles,
the effect of the beam miscorrection is quite different. It acts at smaller scales which, after
dipole, calibration will affect higher multipole. This is a potentially promising finding. Indeed,
if we manage to measure the residual power in the far side-lobes region at θ > θlim with a
precision better than δKlim, then we would be able to mitigate completely the systematic effect
from beam far side-lobes. However, it does not look straightforward to measure the integrated
power of the beam on such a large angular range, so this will require some sophisticated
methods to calibrate this parameter in the context of the LiteBIRD mission, possibly at the
data analysis level including the δKlim parameter in the component separation method.

5.3 Limitations, assumptions and future improvements

Because of the complexity of the present work, putting together multiple steps of the fore-
casting pipeline together, all undergoing active research, we had to face technical limitations
as well as make key methodological assumptions to obtain the results described in section 4.
In particular, by refining the optical modeling and the sky convolution, or by changing the
data analysis pipeline (in particular the component separation stage), the requirements on
the level of accuracy of beam measurements can potentially change by orders of magnitude
and should, thus, be understood as the set of requirements obtained in the given context
described here. For completeness, we detail in the following some of our assumptions that
will need to be improved or further explored in future studies.
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The beam models used for the above far side-lobes study are obtained from a GRASP
simulation assuming ideal optical systems. In particular, the external satellite geometry such
as the presence of fore-baffles and V-grooves for which we expect reflection and diffraction to
occur is not taken into account, significantly modifying the reference beam shapes. This would
have a positive effect on the requirements by lowering the amplitude of the far side-lobes,
possibly reducing the relevant size of the last angular window (see figure 10). In the optical
system itself, no cross-polar contribution to the beam is taken into account in this study.
We expect the cross-polar contribution to be reduced by the HWP, but it was shown in [32]
that high level of cross-polar contributions in the presence of a HWP are possible, and no
effect from the HWP beyond the modulation of the polarization signal is included in the
simulations of LiteBIRD either. Thus, the impact of the interactions between cross-polar
beams and the HWP will need to be addressed in the future. As far as only the error on
the transfer function is concerned, as we shall see in the next sections, it appears that our
analyses are fairly independent of the particular beam shapes. Thus, the results of the
previous sections would still be valid even when more realistic beam simulations are available,
given the stability of δRlim and δKlim.

Furthermore, because the simulated optical system is incomplete, the beam asymmetries
are underestimated, especially for detectors on the edge of the focal planes. Enhanced
asymmetries could lead to an additional contribution to the bias. The induced leakage from
E modes to B modes should, nevertheless, still be mitigated by the HWP in absence of
instrumental polarization, generated by diffraction on the V-grooves for instance. Therefore,
all our results assume implicitly that the averaging over detectors in a given frequency channel
and the scanning strategy of LiteBIRD induce enough symmetrization of the effective beams,
in contrast with the very asymmetric beams of the Planck satellite [16]. The comparison
between our two methods detailed in section 4.2.1, where one includes the current level
of asymmetries but the other does not, tends to show that this is indeed the case for the
incomplete beam simulations we have at hands.

Finally, throughout this work, our goal was to study and isolate the effect of beam far
side-lobes mismatch on the cosmological results. Therefore, we did not take into account
other potential sources of errors nor their interplay with far side-lobes systematic effects. In
particular, we used a very simple spatially homogeneous foreground model that may not
be realistic since evidence for spatial variations of the SEDs was found in Planck data [35].
However, first of all, we expect our analysis to be reliable despite the simple foreground model
because we always compare the residuals including effects from imperfect beam knowledge
with residuals from a reference case (see eq. (3.24)). However, it is expected that the results
depend significantly on the particular component separation method that we used here.
Because our method of foreground cleaning is parametric without any mitigation procedure
and the impact of the beam far side-lobes is to modify the polarization frequency maps
normalization factor from the dipole calibration procedure and effectively change the observed
SEDs of the polarized foreground components, our approach will be particularly sensitive to
this effect. Other methods, such as blind methods, are in principle more flexible and should
be able to compensate this effect, to some extent. Therefore, we can expect the requirements
to be significantly relaxed by using a blind component separation method. An equivalent
approach to relax the requirements presented in this paper would be to modify the parametric
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component separation approach with a mitigation procedure of the far side-lobes effect, taking
into account the error on the dipole calibration factor due to the far side-lobe mismatch,
which is left for future work. As we see, considering the dipole calibration step is crucial to
understand the impact of far side-lobes. Here, we assumed it to be perfect, however in a more
realistic setting there will be errors and miscalibration having an unknown impact on beam
far side-lobes systematic effects. The study of these interplays is, again, left for future work.

5.4 Application to a realistic physical effect: Ruze’s lobes

As an example of how the derivation of requirements described in this work can be used in
the presence of a realistic physical effect, we consider the case of Ruze’s lobes. Note that, we
do not present here a realistic study of the impact of the Ruze’s lobes effect, but show how
the formalism developed in this work could be used for such a study.

As described in his seminal paper [41], the effect of irregular optical surface (e.g. reflectors,
lenses, etc.) on the beam profile can be modeled by introducing a random phase to the
signal. It leads to an exponentially suppressed redistribution of the power from the main
beam towards regions at higher angle, following:

BRuze (θ) = e−δ2

B0 (θ) +
(2πc
λ

)2 +∞∑
n=1

(
δ2
)n

n · n! e
−(πc sin(θ)/λ)2/n

 , (5.2)

where c is the defect correlation length, i.e. radius of the typical defect, λ the wavelength
and δ2 the phase front variance at the origin of the effect. This variance can be expressed in
terms of the RMS surface error ϵ, i.e. the size of the typical surface irregularities:

δ2 =
(4πϵ
λ

)2
. (5.3)

In this exercise, we truncate the infinite sum, keeping only the terms for n ≤ 10, and for a
given frequency we are left with the set of two free parameters (c, ϵ). Figure 17 illustrates the
impact on the beam profile for multiple values of the parameters in the LiteBIRD’s 100 GHz
LFT channel. In order to be comparable with the types of perturbations considered in this
paper, we choose to investigate the case where the parameters are (c = 1.2 cm, ϵ = 5 µm),
which affects the angular range spanned by the two first windows. Note, however, that this
model also induces a deformation of the main beam and near side-lobes, which we neglect
here for the purpose of the exercise, as we are illustrating how the formalism developed in
the context of the far side-lobes can be used. We know that the important parameter to
consider is δRlim which in this case is:

δRRuze
lim =

∫ [
BRuze (θ) −B0 (θ)

]
W (θ) dΩ∫

B0 (θ) dΩ
. (5.4)

We find that δRRuze
lim = −27.68 dB in the first window and δRRuze

lim = −34.06 dB in the
second, to be compared with the requirements in table 3. Being below the requirements in
the two windows, we would conclude that such characteristics for the surface irregularities
are compatible with the requirements on the beam far side-lobes to achieve the scientific
goal of the mission.
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Figure 17. Illustration of the impact of surface irregularities in the optical system on the shape of
the beam profile, following the model eq. (5.4) for different set of parameters, in LiteBIRD’s 100 GHz
LFT channel.

5.5 Linking requirements to reconstructed beam error bars

In this section, we explore how the requirements on δBlim defined in table 4 can be translated
in terms of error bars on the beam reconstruction. For illustration purposes, we start from an
arbitrary symmetrized “theoretical beam”, whose profile is shown in red in the upper panel
of figure 18, for θ > 0. For concreteness, we assume that the beams will be reconstructed
by a combination of measurements (ground calibration campaign) and optical modeling. As
both the measurements and the simulations are subject to systematic errors (for example
quality of the quiet zone on one side, and the precision of the optical model used as inputs
for GRASP simulations on the other), we consider that the reconstructed beam will come
together with a level of systematic error. This error typically comes from a residuals between
model and measurements. We consider that the requirements apply to this systematic error
and depend on the beam amplitude.

In figure 18, the black curve is the reconstructed beam assuming the systematic residual
between the measurement and the theoretical beam which is illustrated on the figure of the
left panel. We also indicate the δBν,W

lim values corresponding to the difference between the
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Figure 18. Left: illustration of assumed systematic residuals between model and measurements found
by trial-and-error to match approximately the requirements of table 4 for the MFT 166 GHz channel.
Right: illustration of an arbitrary theoretical beam shape (in red) together with the reconstructed
one (in black) assuming the systematic residuals between this model and measurements given by the
figure of the left panel.

black and the red curves (the reconstructed beam amplitude is assumed to be zero above 60
degrees). The curve of systematic residuals is found by a trial-and-error approach to match
approximately the corresponding δBlim values to those of the table 4, for the MFT 166 GHz
channel. This is achieved for a residual error of ≃ 3 dB at −60 dB and 7 dB at −80 dB, i.e.
the order of magnitude that has been achieved on the Planck RFQM at 100 GHz. Contrary
to the requirements on δBlim that depend on the beam shape only through the size of the
angular window, this smooth error curve dramatically depends on the theoretical beam shape.

6 Conclusion

Instrument calibration is a critical step to mitigate systematic effects and define the instrument
model necessary to perform a correct data analysis. We have studied the impact of beam far
side-lobes through a simple procedure of beam perturbation in simulated observations. As
a demonstration of the reliability of the framework, we set requirements on the calibration
of beam amplitudes in three angular windows ranging from regions near the main beam
up to 70◦ which we related to physical quantities. These results may depend on a set of
computational approximations, namely a simplified optical system and convolution of the
sky, physical assumptions such as the reduced cross-polar contribution, and arbitrary choices,
in particular the choice of component separation method and the attribution of error budget.
Detailed investigation of these assumptions and a more realistic evaluation of the requirements
will be conducted in future studies. Under these assumptions, we compared a procedure
including a simulation of the focal plane and of the scanning strategy of LiteBIRD with a
simpler method including only axisymmetric beams and direct convolution of the sky signal
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and found the results to be comparable which allowed us to use the latter, a much simpler
and faster method. Far from the main beam, we have found that the relevant parameter to
be constrained is the difference of power in the far side-lobes between the model and the
actual beam, regardless of the beam shape. Provided this parameter can be measured this
could open a window to mitigate the beam far side-lobes systematic effect without having
to rely too much on modeling in regions very far from the beam axis.
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A Correction by the effective beam

Individual effective beams are produced in each frequency channel and for each Stokes
parameter. We do not use the simulated beams at the detector level to produce the effective
beams because these are transformed in a highly non-trivial way by the scanning strategy and
map-making. So, we compute the effective beams by directly comparing the power spectra
from the band-pass integrated PySM sky emission maps as reference and the unperturbed
mν

4π maps. The transfer functions in harmonic domain is, thus, given by:

bℓ,eff =
√
Cref
ℓ

C4π
ℓ

, (A.1)

that we decided to fit (A.1) with an empirical function βℓ (λ, µi) = P 3
ℓ (µi) e−ℓ2/λ, where P 3

ℓ

is a third order polynomial in ℓ with parameters µi.
We apply beam deconvolution per frequency by translating input maps into harmonic

domain, using their aℓm coefficients instead of pixel amplitudes. The beam corrected input
signal is therefore:

aνℓm,corr =
aνℓm,pert
bνℓ,eff

. (A.2)
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