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Abstract—In this work, we investigate the impact of the wind
in a drone-based delivery system. For the first time, to the best
of our knowledge, we adapt the trajectory of the drone to the
wind. We consider a truck-drone tandem delivery system. The
drone actively reacts to the wind adopting the “most tailwind”
trajectory available between the truck’s path and the delivery.
The truck moves on a predefined route and carries the drone close
to the delivery point. We propose the Minimum-energy Drone-
trajectory Problem (MDP) which aims, when the wind affects
the delivery area, at planning minimum-energy trajectories for
the drone to serve the customers starting from and returning
to the truck. We then propose two algorithms that optimally
solve MDP under two different routes of the truck. We also
analytically study the feasibility of sending drones with limited
battery to deliver packages. Finally, we first numerically compare
our algorithms on randomly generated synthetic and real data,
and then we evaluate our model simulating the drone’s flight in
the BlueSky simulator.

Index Terms—Drone, Delivery, Wind model, Energy model.

I. INTRODUCTION

Recently, drones or Unmanned Aerial Vehicles (UAVs) have
been widely investigated in civil applications, such as agri-
culture [1], environmental protection [2], task offloading [3],
localization [4], [5], last-mile package delivery [6], [7], and
so on. In fact, drone-based solutions for the delivery of
small packages have been announced by big companies in
e-commerce. Initially, it did not seem safe or practical to
have robotic objects flying in the sky, but now there are
several reasons to believe that package delivery by drones
may be coming soon. In fact, new regulation laws have been
just released in 2021 by the Federal Aviation Administration
(FAA), which allow operators of small drones to fly over
people and at night under certain conditions [8].

Drones are considered to be much faster than traditional
trucks in some circumstances and can also lead to a reduction
in pollution and greenhouse gas emissions. For example,
drones are not delayed by rush hours in congested areas and
can significantly shorten the paths to reach customers by flying
over rivers, green parks, and sea bays. So, it is highly expected
that pretty soon, if not already, companies can further extend
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F. Betti Sorbelli, F. Corò, and C. M. Pinotti are with Dept. of Computer
Science and Mathematics, University of Perugia, Italy. L. Palazzetti is with
Dept. of Computer Science and Mathematics, University of Florence, Italy.
G. Rigoni is with Dept. of Mathematics, University of Padua, Italy

Digital Object Identifier XXXXXXXX/TITS.YYYYYYYY

their business by relying on drones that cross the last mile to
their customers. However, drone-based delivery systems still
have to face exciting challenges. First, due to the small size of
the battery, drones (i.e., copters) have limited flight autonomy,
and such a limitation is more accentuated by their carried
payload. Also, due to payload constraints, drones cannot fulfill
more than a single delivery at a time, so they must go back to a
depot for grabbing other packages for other customers. Finally,
weather conditions, in particular wind, must be considered
during the drones’ deliveries.

In this work, we concentrate on the wind challenge. Sur-
prisingly, in the literature, the wind has been only considered
as a limiting factor for drones, to the best of our knowledge.
All the manufacturers set the maximum allowed wind speed
that can be safely tolerated by their drones.

The wind as a factor that influences the aircraft’s path has
been previously considered in [9]. Similarly to us, the authors
are interested in finding the “global optimal path” in presence
of wind. But, they aim to optimize the duration of the flight.
They specifically aim at determining the aircraft’s minimum-
time path while also avoiding obstacles, not considered in
our work. The aircraft’s energy is not taken into account.
Moreover, the kind of the aircraft and its routes are not
comparable with ours. Namely, the geographical scale is
completely different. The authors in [9] analyze the wind effect
on commercial planes, powered by fuel, whose routes’ lengths
are much longer than ours (i.e., ≥ 800km).

This work provides proof-of-concept of how wind can help
drones during deliveries. We consider the following scenario,
which is realistic in the current state of technology. We
assume drones engaged in last-mile deliveries with lightweight
payloads. In a delivery, a drone can afford to carry 1–6kg of
payload in a range of 8–12km [10]. To reduce the length of
the round trips to/from the depot, inspired by big companies’
drone delivery programs, we assume that a drone is assisted
by a truck. The drone picks up the packages from the truck
and flies towards the customer, and then back to the truck,
while the latter continues its journey near a series of delivery
points [11], [12], [13]. In the literature, several scenarios have
been addressed using truck-drone tandem delivery systems,
but at the best of our knowledge, no one considers adapting
drones’ trajectories to wind conditions.

In this work, instead, motivated by the observation that
when the drone operates under “tailwind” conditions (i.e.,
when the wind blows in the direction of the drone’s movement)
it consumes less energy, we explore the possibility that the
drone selects the detaching point from the truck to reach
the customer following, as much as it can, the “tailwind”
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trajectory. We do that even at the cost of increasing the length
of the trajectory, as long as we do not lose energy. The same
approach is followed to return back to the truck (see Figure 1).

T

P

H L

Fig. 1. Abstraction of a delivery performed by the truck-drone tandem in a
supply chain scenario. The truck moves carrying the drone; P is the delivery.

In this work, the drone’s route consists of a polygonal chain
that starts from the take-off point T on the truck’s road and
returns to the landing point L passing through the delivery
point P (see Figure 1). Notice that, in general, the take-off and
landing points do not coincide. We only assume that the take-
off point precedes the landing point on the truck’s route. To
give the drone the freedom to arbitrarily select the take-off and
landing points, we assume a rural or suburban environment,
like a residential area neighborhood, where already at low
altitudes, the drone can freely move in any direction having
no significant obstacles on its way. We also assume a very
mild truck-drone synchronization, and so, the first vehicle that
arrives at the landing point, waits for the other.

Our goal is twofold: i) to determine the take-off and landing
points on the truck’s route that minimize the energy consumed
by the drone for the delivery, and ii) to study the delivery
feasibility because the drones are energy-constrained. This
work extends our prior conference paper [14], and our results
are summarized as follows:

• We define the Minimum-energy Drone-trajectory Prob-
lem (MDP) whose goal is to find the minimum-energy
trajectories when the wind influences the delivery area;

• We devise two algorithms for MDP, i.e., SINGLE and
MULTI which assume that the truck’s path is a straight
line or a polygon, respectively;

• We analyze the feasibility in terms of energy of sending
drones for deliveries in a windy area, by presenting the
FEASIBILITY algorithm;

• We numerically compare our algorithms on synthetic and
real data sets. Moreover, we evaluate the energy spent by
our solution simulating the drone’s flight in BlueSky.

The rest of the work is organized as follows. Section II
surveys the related work. Section III introduces the wind
and energy models. Section IV defines the MDP and details
the math that supports the SINGLE and the FEASIBILITY
solutions. Section V gives the pseudo-code and the flowcharts
of the SINGLE, the MULTI, and the FEASIBILITY algorithms.
Section VI numerically evaluates our algorithms through syn-
thetic and real winds, and also simulates the drone’s flight by
using BlueSky. Finally, Section VII offers conclusions.

II. RELATED WORK

In this section, we review works about truck-drone delivery
systems with an emphasis to those influenced by the wind.

A. Truck-Drone Tandem Delivery Systems

Recently, the problem of delivering goods with drones
has been approached by several papers [12], [15]. The vast
majority of them assume that the drone has a limited battery
and has to return back to the warehouse after every delivery
due to the payload and energy budget constraints. Many
solutions consider drones working in tandem with a truck,
and there are many ways the two means of transportation
can collaborate. Some solutions divide the deliveries between
the two, while others make them collaborate in every single
mission [16], [17], [18].

The authors in [16] consider symbiotic cooperation between
a truck and a drone to accomplish a set of deliveries. Precisely,
the goal is to minimize the makespan to serve all the customers
by either the truck or the drone. This problem is presented as
a variant of the TSP known as the flying sidekicks traveling
salesman problem. The authors propose a hybrid heuristic
divided into three steps. Initially, the algorithm creates a TSP
solution where the truck serves all the customers. Next, the
algorithm greedily assigns deliveries to the drone considering
the quantity of time saved with respect to the truck without
exceeding the battery budget. Each delivery is served with
a polygonal chain that starts from and returns to a point
of the truck’s route passing through the customer. Finally,
the algorithm tries to improve the solution by visiting the
neighborhood of each customer, i.e., by evaluating a differ-
ent assignment for each customer. Our work is completely
different. Although like [16] we use a polygonal chain to
serve a delivery customer, we select the polygonal chain by
minimizing the energy for every single delivery and not to
minimize the total makespan of all the customers. Moreover, in
our solution, any position on the truck’s road is a candidate for
the take-off/landing, whereas in [16] only a subset of positions,
which correspond to points on the truck’s route, are candidates.

A similar problem is proposed in [18] where, given a fixed
sequence of stops that constitute a truck’s route and a set of
customers, the goal is to find a scheduling for drones (i.e., a
set of trips defined by a drone’s take-off, customer service,
and landing) so that all the customers are served and the
makespan is minimized. The authors provide a mixed-integer
programming formulation to solve the single and multiple
drone scenarios. However, unlike our approach, it is not
possible to change neither the truck’s route nor the drone’s
trajectories for a customer in order to increase time savings.

Notice that, all these works do not consider the impact of
winds on energy consumption since they are focused only on
the time required to perform a delivery.

B. Drone Delivery Systems Influenced by the Wind

The impact of the wind on defining long-distance trajecto-
ries of aircraft has been considered in [9]. Instead, the impact
of winds on small and battery powered drones’ trajectory
planning has not received much attention so far.

In [19], [20], [21], the wind is introduced in the model.
Precisely, the drone trajectories are represented by paths in
a weighted graph whose edge weights model the energy
consumed by the drone, which depends on the carried payload
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and the wind speed. In [20], [21] authors focus on finding
which is the percentage of deliveries that can be accomplished
with a given energy budget knowing the wind conditions on-
the-fly. Authors of [22] extend the above solution to a multi-
depot multi-drone delivery system. Whereas in [20], [21], the
drone moves along predefined routes represented by the edges
of a graph given in input to the problem, in this paper we must
find the drone’s trajectory, which is the output of the problem,
by leveraging the impact of the wind.

A multi-drone delivery system dealing with wind, obstacle
avoidance, and maximum energy budget, is also proposed
in [23]. A subset of feasible deliveries is initially computed
offline, and a depth-first search strategy is performed then
to get the final mission plan. Their extended work [24]
considers the same setting with many clusters, in which the
problem is seen as a constraint satisfaction problem. In [25],
a delivery scenario where the wind affects multiple drones
is considered. Differently from our approach, each drone can
perform multiple deliveries on the same mission. The focus
is on optimizing the global mission plan. The wind influences
the energy consumption, but the drone passively suffers the
wind, i.e., it does not adapt the route to the wind, as we do.

Lastly, authors in [26] exploit the service paradigm to
abstract drone’s capabilities into a drone service. The main
novelty is the creation of a test-bed that consists of an indoor
replica of a city. A drone flies over it by using different
polygonal trajectories and payloads. The wind conditions are
simulated by a fan. The energy consumption is inferred from
the collected data of 72 indoor flights. The authors focus on
the study of how the shape (triangular, rectangular, hovering)
of the drone’s path acts on the energy consumption.

In conclusion, our work is different from the surveyed ones
in many aspects. The most important difference is that in
our study the battery powered drone actively reacts to the
wind and searches for the minimum energy trajectory, i.e., the
trajectory as closer to the tailwind as possible given the truck’s
movement. Computed the optimum trajectory, we compare
how much energy is saved using the found trajectory with
respect to the energy spent traversing the shortest trajectory,
which is the best solution in absence of wind.

III. BACKGROUND

In the background of our solution there is the wind triangle
concept. In air navigation, the wind triangle (see Figure 2)
is a graphical representation of the relationship between the
drone’s motion and the wind. The ground vector represents the
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Fig. 2. The wind triangle.

motion of the drone over the ground, and it is the resultant of
adding the air vector, i.e., the motion of the drone through the

air mass, and the wind vector [27]. Specifically, when there is
a wind and the drone wants to follow a specific ground track,
the air vector indicates the true heading and drone’s speed.
The difference in angle between heading and ground track is
known as the drift angle. So, if the drone wants to follow the
desired track, it must correct its heading of an angle depending
on the wind direction. Each vector z⃗ = (zd, zs) in the wind
triangle is characterized by a direction zd and a speed zs.

We first observe that in presence of wind, varying the
ground direction also varies the air vector (see Figure 2). Since
we aim to find the track that minimizes the energy spent by
the drone (i.e., we try many possible ground directions) and
since the energy spent to fly depends on the air vector (as we
will see in Eq. (1)), our solution relies on the aforementioned
wind triangle construction. The second observation is that
by varying the ground track, the energy changes due to the
variations in both the length of the trajectory to be traversed,
and the air speed. In this work, we will show that sometimes, in
presence of wind, it is convenient to leave the shorter drone’s
trajectory for a longer one that consumes less energy.

In the rest of this section, we explain how we derive the
unitary energy for the ground trajectories.

A. The Relative Wind and Energy Model

The wind, characterized by speed and direction, is an
important variable for evaluating the drone’s energy consump-
tion. Usually, the weather stations record the meteorologic
direction of the wind ωme

d , i.e., the direction from which the
wind originates, assuming the North as the 0◦ direction. For
instance, if the wind blows from the North to the South, a
weather station records a direction of 0◦, while if it blows from
the East to the West, the weather station refers to 90◦. From
now on, to ease the notation, we indicate the angles without
the degree symbol (◦). The meteorologic direction of the
wind conventionally grows clockwise in a Cartesian coordinate
system xOy whose x-axis is the North direction and the
wind direction is given as the direction the wind is from.
To conform the wind to the classical Cartesian coordinate
system, we convert the meteorologic direction of the wind
into the mathematical direction of the wind ωma

d . First, ωma
d

defines the winds blowing to the origin O of the Cartesian
coordinate system and not from it. The mathematical wind
directions grow counterclockwise from the usual x-axis which
is equal to the East direction. Hence, the conversion rule from
the meteorological direction of the wind to the mathematical
one is explained in [28], and it is as follows:

ωma
d =

∣∣∣−ωme
d + 360︸ ︷︷ ︸

clockwise

+90︸︷︷︸
phase

−180︸ ︷︷ ︸
O

∣∣∣
360

= | − ωme
d + 270|360.

Figure 3a shows the direction of the meteorological wind
ωme
d = 225 that is directed towards O and the corresponding

mathematical direction ωma
d = 45 that has O as the source. In

our work, from now on, we always refer to the mathematical
direction of the wind.

Let us now define the global wind ω as the (mathematical)
wind that blows in the delivery area. The global wind vector
ω = (ωd, ωs) has direction ωd and speed ωs. The relative wind
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Fig. 3. Axes are labeled with the cardinal, mathematical, and meteorologic
(in brackets) directions. Note the phase (equals to 90) which represents the
offset North-East among the two ways for representing the wind (a); Relative
wind φ(⃗r) = 90 on r⃗ when γr = 25 and ωd = 115 (b).

on r φ(γr) has direction |ωd − γr|360 which is the difference
mod 360 between the direction of the global wind and the
direction of the drone’s trajectory (see Figure 3b).

The energy for flying a unit of distance (e.g., 1m) on a line
r mostly depends on the air speed of the drone, which in turn
depends on the global wind ω = (ωd, ωs) and on the ground
vector r⃗ = (γr, υd), as seen in Figure 2. Precisely, the air
speed as can be calculated as [10]:

as =
√
s2N + s2E , (1)

where sN = υd − ωs cos(φ(γr)) and sE = −ωs sin(φ(γr)).
Hence, when ωs = 0, it holds that as = υd.

The energy also depends on other drone’s features like the
number of rotors, and the payload weight. There is no simple
formula to calculate the unit energy as a function of the relative
wind [10], so we introduce the compass rose to discretize the
relative winds and to tabulate the energy for them. In this way,
fixing the type of the drone (i.e., octocopter, quadcopter), the
drone’s ground speed vd, the payload κ, and the speed of the
global wind ωs, we can pre-compute the energy to traverse
1m: one energy coefficient for each sector of the compass rose
(e.g., see Table II in Section VI). For the sake of simplicity,
when all the involved parameters are clear from the contexts,
the energy E(A⃗B) will denote the energy spent by a drone to
fly the ground segment AB from A to B.

B. The Compass Rose

In general, weather stations store the different winds de-
tected by applying a discretization. In other words, given a
compass rose, the winds are grouped in a finite number of
sectors. To define the sectors and the compass rose, we divide
the turn angle at O of a conventional Cartesian coordinate
system xOy into 4t sectors, each of width σ = 180/2t, where
t is the compass rose cardinality. Therefore, σ defines the
width of each sector. Conventionally, a sector Si contains the
winds whose relative wind direction verify:(

i
180

2t
; (i+ 1)

180

2t

]
0 ≤ i ≤ 4t− 1. (2)

A representative wind direction ρi, with 0 ≤ i ≤ 4t − 1,
is associated to each sector Si. The representative ρi is then
used to compute the energy consumption of any relative wind
direction that falls in Si. The unit energy consumption for

any wind in Si is denoted as µi. Basically, the compass rose
is used to bound to 4t the number of relative winds and
thus the possible energy levels, as we will see in the next
section. Table II reports the values of the energy required by
a octocopter with different payloads for the 12 winds of the
compass rose used in our experiments when ωs = 10m/s [10].

Having defined the energy consumption, we formally in-
troduce the Minimum-energy Drone-trajectory Problem and
explain how the drone can minimize the energy consumption.

IV. THE PROBLEM DEFINITION

In this work, we assume the truck-drone tandem delivery
system which consists of a truck that carries drones in the
delivery area. When the global wind is absent, i.e., ωs = 0,
the speed of the relative wind is zero and the energy spent by
the drone does not depend on the direction of the trajectory.
Hence, in this case, the best solution for the drone is to select
the shortest trajectory from the truck’s route to the customer.
In presence of wind, the less consuming trajectory is the one
parallel to the wind (see Eq. (1)). However, there may be no
trajectory parallel to the wind that starts from the truck’s path
and reaches the customer. In that case, the selection of the
drone’s trajectory that minimizes the energy is not trivial. In
the rest of the section, we first describe the problem, then we
introduce our solution when the truck’s path is a single line.

A. The Minimum-energy Drone-trajectory Problem (MDP)

Let r be the line that represents the truck’s path. So, the
truck’s path is represented by a vector r⃗ whose direction is γr.
Notice that, in this work we do not consider the truck’s speed.
Let us consider a delivery point P to be served by the drone.
To serve P from the road r (see Figure 1), the truck selects
the take-off point and landing point for the drone, called T
and L, respectively. Thus, the drone detaches from the truck
at T and flies on the line from T to P carrying the payload.
After the delivery, the drone (without payload) moves back on
the line from P to L, rendezvousing at the truck again. We
select the trajectories making this assumption: the drone and
the truck always move forward in the sense that the projection
H of P onto the truck’s path must follow T and precede L.

Our problem is to find the optimal composed trajectory
T⃗P ∪ P⃗L such that the energy consumed by the drone to
serve P is minimized under the assumption that T ≼ H ≼ L.
We assume a constant wind during the whole delivery. We
call this problem Minimum-energy Drone-trajectory Problem
(briefly, MDP). In other words, we aim at minimizing the
quantity E(T⃗P )+E(P⃗L). Changing T and L, the slope (i.e.,
direction) of the segments TP and PL changes, and so, by
the wind triangle rule, the relative winds φ(T⃗P ) and φ(P⃗L),
and their relative energy, change.
In the next, we show how to solve MDP by selecting the opti-
mum trajectory among a discrete set of candidate trajectories.

B. Towards the MDP Solution

Considering T and L fixed on the track’s route r, we
calculate the relative wind on the trajectories T⃗P and P⃗L
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Fig. 4. The relative winds on T⃗ P and P⃗L, where the quadrants Q1 and Q4

are highlighted in blue and red, respectively.

to find the energy consumption. First of all, we need to figure
out whether P is to the right or left of the truck. This can
be quickly done by evaluating the sign of the determinant of
the associated matrix M = [v(T⃗H), v(T⃗P )], where v(T⃗P )
and v(T⃗H) are the column vectors1 associated to the drone’s
trajectories. Specifically, (i) P is on the left of truck (denoted
as P ↶ r) if det(A) > 0; and (ii) P is on the right of truck
(denoted as P ↷ r) if det(A) < 0.

In our discussion, we consider the Cartesian coordinate
system xPy of the mathematical wind, with origin in P .
Let H be the projection of P on r (see Figure 4). Let δT

and δL be the angles formed, respectively, by the drone’s
trajectory T⃗P and P⃗L with the truck’s route r. Namely,
δT = ∠PTH and δL = ∠PLH can be easily computed
as δT = arctan (PH/TH) and δL = arctan (PH/HL).
Therefore, TP = PH

sin(δT )
and PL = PH

sin(δL)
(see Figure 4).

So, it is evident that the length of the trajectories depends on
the take-off or landing points and the slope of the truck’s route
r. Now, we can state the following.

Theorem 1. The relative winds on T⃗P and P⃗L are:

φ(T⃗P ) =

{
|ωd − (γr + δT )|360 if P ↶ r
|ωd − (γr − δT )|360 if P ↷ r

φ(P⃗L) =

{
|ωd − (γr − δL)|360 if P ↶ r
|ωd − (γr + δL)|360 if P ↷ r

(3)

Proof. We prove Eq. (3) when P ↶ r (see Figure 4a).
Consider the rotated Cartesian system xrPyr with origin in
P , xr-axis parallel to r and oriented in the same direction as
r. Recall that the yr-axis forms a 90 counter-clockwise angle
with xr. Note that the angle between x and xr has width γr.
Observed that r and xr are parallel, the segment TP forms the
same angle δT = ∠WPQ on xrPyr, and the angle (γr+ δT )
on xPy. Hence, the direction of the relative wind on xPy is
φ(T⃗P ) = ωd − (γr + δT ). Also the returning path P⃗L forms
the angle −δL on xrPyr. Hence, the direction of the relative
wind on xPy is φ(P⃗L) = ωd − (γr − δL).

The case where P ↷ r is depicted in Figure 4b. Eq. (3)
can be proven similarly to the left case.

Hence, the relative wind depends on the wind direction, the
direction of the truck’s path, and take-off and landing points.

1For instance, given A = (1, 1) and B = (3, 4), then v(A⃗B) =
(
2
3

)
.

We now analyze in which sector of the compass rose both
φ(T⃗P ) and φ(P⃗L) fall, when T and L move on r. Let us
discuss the case P ↶ r. When T and L move on r towards
H (see Figure 4), it is easy to see that δT , δL ∈ (0, 90].
Precisely, δT = δL = 90 when TH = HL = 0, while δT

and δL → 0 when both TH and HL → ∞. Then, the take-off
and landing drone’s trajectories T⃗P and P⃗L scan, respectively,
the first quadrant Q1 (shown in blue) and the fourth quadrant
Q4 (shown in red) of the Cartesian coordinate system (see
Figure 4) with origin in P and whose x-axis coincides with the
relative wind φ(⃗r). Hence, observing that the relative wind on
the truck’s route is φ(⃗r) = |ωd−γr|360, the take-off trajectories
scan the compass rose starting from φ(⃗r) shown in blue in
Figure 5, while the landing trajectories scan the compass rose
starting from φ(⃗r) shown in red in Figure 5.

From that, Eq. (3) can be rewritten relatively to φ(⃗r):

φ(T⃗P ) =

{
|φ(⃗r)− δT |360 if P ↶ r Q1

|φ(⃗r) + δT |360 if P ↷ r Q4

φ(P⃗L) =

{
|φ(⃗r) + δL|360 if P ↶ r Q4

|φ(⃗r)− δL|360 if P ↷ r Q1

(4)

As explained in Section III-B, fixed T and P , the relative
winds φ(T⃗P ) and φ(P⃗L) experienced by the drone are
given by wind representative ρ of the sector where they
reside. The sectors visited when T and P move are listed
starting from the sector Sτ where φ(⃗r) resides, i.e., Sτ , where
τ = ⌊|φ(⃗r)− 1|360/σ⌋. Note that τ is computed from φ(⃗r)−1
instead of φ(⃗r) because sectors in Eq. (2) are defined left-open
and right-closed. By the previous Eqs. (4) and (2), it holds:

Theorem 2. Let τ = ⌊|φ(⃗r)− 1|360/σ⌋. When φ(T⃗P ) or
φ(P⃗L) scan Q1, the drone spends the energy µi that depends
on the winds Si of the compass rose whose indices i are τ ≤
i ≤ |τ + t|4t. When φ(T⃗P ) or φ(P⃗L) scan Q4, the drone
spends the energy µi that depends on the winds Si of the
compass rose whose indices i are |τ − t|4t ≤ i ≤ τ .

Figure 5 shows two examples where t = 3 and so σ = 30
whose crossed quadrants are different in sectors and number.
Specifically, when φ(⃗r) = 0, we cross the sectors S0, S1,
and S2 in Q1, and S11, S10, and S9 in Q4, examining so
exactly t = 3 sectors per quadrant. Instead, with φ(⃗r) = 50
we scan one more sector than before, crossing S1, S2, S3, and
S4 in Q1, and S1, S0, S11, and S10 in Q4. Table I reports the
sectors and the angles δ ∈ (0, 90] associated to each sector of
Q1 and Q4 when φ(⃗r) = 0 and φ(⃗r) = 50 (see Figure 5).
Generalizing, when |φ(⃗r)|σ = 0 we cross exactly t sectors,
instead when |φ(⃗r)|σ ̸= 0 we scan t+1 sectors. So, depending
on which sector T and L fall in, the µ depends on the relative
wind of the scanned sectors. Finally, note that changing r or
the direction of the global wind has the same effect: φ(r)
changes and so the candidate sectors change.

The take-off/landing positions that delimit the ith sector in
Q1 are those that form with γr the δi angle so defined:

δi =


{
−|φ(⃗r)|σ + (i+ 1)σ if i < t

90 if i = t
if |φ(⃗r)|σ ̸= 0

(i+ 1)σ if |φ(⃗r)|σ = 0

(5)
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Fig. 5. The candidate sectors: |φ(⃗r)|σ ̸= 0 (blue) and |φ(⃗r)|σ = 0 (green).

Similarly, the take-off/landing positions that delimit the ith

sector in Q4 are those that form with γr the δi angle so defined:

δi =


{
|φ(⃗r)|σ − 1 + iσ if i < t

90 if i = t
if |φ(⃗r)|σ ̸= 0

(i+ 1)σ − 1 if |φ(⃗r)|σ = 0

(6)

In the following, we generally refer to the trajectory angles
in Eqs. (5)–(6) with δ (omitting the index). We also use δT

and δL when we generally refer to the angles of the take-off
and the landing trajectories, respectively. These δ angles are
very important because not only delimit the sector, but they
also return the candidate trajectory in each sector. Indeed, the
shortest trajectory in a sector forms the largest angle, which
is δ, with the truck’s route. Note that δ depends on φ(r): so
the trajectories vary with the truck’s route and the wind.

Table I shows the δ angles for the example in Figure 5.

TABLE I
THE ANGLES δ OF THE EXAMPLES IN FIGURE 5.

φ(⃗r) = 50 φ(⃗r) = 0
Q1 Q4 Q1 Q4

δi S|τ+i|4t i δj S|τ−j|4t j δi S|τ+i|4t i δj S|τ−j|4t j
10 S1 0 19 S1 0 30 S0 0 29 S11 0
40 S2 1 49 S0 1 60 S1 1 59 S10 1
70 S3 2 79 S11 2 90 S2 2 89 S9 2
90 S4 3 90 S10 3

To complete our analysis, it remains to find T and L given δ.
Given P and a take-off point T on the route path, the length
of the drone’s take-off route is PH

sin(δT )
, with δT ∈ (0, 90].

Precisely, the drone selects T such that δTi is maximum
varying Si. The same holds for the landing points.

So, at this point, we are ready to solve MDP. Given a global
wind ω, a truck’s route r⃗, and a delivery point P , MDP aims
at determining the optimal wind sectors i∗ and j∗ such that:

(i∗, j∗) = argmin
i,j

{
µT
i

sin(δTi )
+

µL
j

sin(δLj )

}
HP (7)

where i, j are the indices of the sectors given by Theorem 2,
µT
i and µL

j are the energy consumption in these sectors Si

and Sj in Q1 or Q4, and HP/sin(δTi ) and HP/sin(δLj ) are
the lengths of the trajectories candidates for being T⃗P and
P⃗L in Si and Sj , respectively. Recall δT and δL are given by
Eqs. (5) and (6) depending on the position of P with respect
to r. Note that, the length HP does not affect the minimum,
and when δT = 90, the minimum energy trajectory coincides
with the shortest trajectory H⃗P in absence of wind.

The SINGLE algorithm in Section V gives all the details to
implement our solution.

Although the selection of the optimal trajectory for MDP
is not affected by the distance of the customer from the
truck’s route, the energy changes with PH . This means that
the drone’s battery might be depleted before reaching P .
Nevertheless, if P is not reachable with the minimum energy
trajectory, it is also not reachable in absence of wind, i.e.,
using the trajectory P⃗H of minimum distance PH . While the
best wind can be leveraged to reach customers unreachable in
absence of wind. In the next section, we consider this aspect.

C. The Feasibility Analysis

Given that drones are energy-constrained vehicles with a
limited battery capacity, their flight range is bounded. Let B
be the battery budget of the drone. By Eq. (7), for any feasible
delivery point P , it holds:

B ≥ µT HP
sin(δT )

+ µL HP
sin(δL)

.

Fixed ωs, vd, κ, and the truck’s path r⃗, we compute the energy
coefficients µT and µL that depend on the relative wind φ(r)
of the optimal trajectories of SINGLE, we have:

PM (φ(r)) = HP ≤ B
µT

sin(δT )
+ µL

sin(δL)

(8)

i.e., PM (φ(r)) represents the farthest distance reachable from
the truck’s route r⃗. By varying the wind direction and keep-
ing all the other conditions the same, the farthest distance
reachable from r varies because the relative wind changes,
the compass rose is rotated, and the minimum energy tra-
jectories change. Let Pmax = maxωd

PM (φ(r)) and Pmin =
minωd

PM (φ(r)) be the maximum and minimum distance that
can be reached from r with the minimum energy trajectory in
presence of any wind, respectively. Moreover, let P st be the
maximum distance reachable from r in absence of wind. Note
that Pmin ≤ P st ≤ Pmax for any wind because P st is one of the
trajectories always tested in presence of wind to find the best
trajectory (precisely, the one with δ = 90). Any delivery closer
than Pmin is feasible with any wind (using either the minimum
energy or the shortest trajectory), any delivery further than
Pmax is not-feasible with any wind (even if the best trajectory
is implemented), while any delivery in between Pmin and Pmax
is feasible only with the minimum energy trajectory and in the
presence of some wind (i.e., the wind that returns Pmax). We
use the comparison between Pmin and Pmax and the number
of feasible points to evaluate the impact of our solution. The
FEASIBILITY algorithm in Section V gives all the details.

V. THE MDP EXTENSION

In this section, we give the pseudocode for SINGLE dis-
cussed in Section IV, and then we propose the MULTI algo-
rithm that applies MDP in the extended multi-line scenario.
Eventually, we devise an algorithm, called FEASIBILITY, for
determining “a priori” the feasibility of sending a drone for a
delivery P given a drone’s budget B using SINGLE or MULTI.

In Figure 6, we report the flowchart of the SINGLE, MULTI,
and FEASIBILITY algorithms.
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A. The SINGLE Algorithm

The SINGLE algorithm optimally solves MDP when T and
L are selected from a single road, requiring O(t) time and
space, where t is the number of sectors for each quadrant.
SINGLE has as input the wind vector (ωd, ωs), the drone’s
speed vd, the payload weight κ, the truck’s road r⃗, the cardi-
nality of sectors t in the compass rose, and the delivery point
P . The pseudocode of SINGLE is sketched in Algorithm 1.

Algorithm 1: SINGLE (P, ω, t, r⃗, vd, κ)
1 µT

0 , . . . , µ
T
4t−1, µ

L
0 , . . . , µ

L
4t−1 ← UNIT COSTS(ω)

2 φ(⃗r)← |ωd − γr|360
3 τ ← ⌊|φ(⃗r)− 1|360/σ⌋
4 if P ↶ r then

5 i∗ ← argmin0≤i≤t

{
µT
|τ+i|4t

sin
(
δT|τ+i|4t

)
}

6 j∗ ← argmin0≤j≤t

{
µL
|τ−j|4t

sin
(
δL|τ−j|4t

)
}

7 let T such that TH = HP cot(δT|τ+i∗|4t)

8 let L such that HL = HP cot(δL|τ−j∗|4t)

9 if P ↷ r then

10 i∗ ← argmin0≤i≤t

{
µT
|τ−i|4t

sin
(
δT|τ−i|4t

)
}

11 j∗ ← argmin0≤j≤t

{
µL
|τ+j|4t

sin
(
δL|τ+j|4t

)
}

12 let T such that TH = HP cot(δT|τ−i∗|4t)

13 let L such that HL = HP cot(δL|τ+j∗|4t)

14 return T,L

The SINGLE algorithm works as follows. Initially (Line 1),
we perform a pre-processing phase to compute the unitary
energy costs according to the payload weight. Precisely, with
0 ≤ i ≤ 4t− 1, µT

i represents the energy spent for traversing
a unitary distance when the global wind has speed ωs, the
drone moves in Si with speed vd and carries the payload κ,
instead, µL

i , is the same as µT
i but without payload. Then,

we compute the relative wind φ(⃗r) on the road r according
to the current global wind condition ω (Line 2), and also the
wind sector with index τ (Line 3). At this stage, by exploiting
Eq. (4) we identify the quadrants for T and L to scan in order
to find the sub-routes with minimum energy. In other words,
we find the best indices that return the optimal sectors for the
take-off and landing sub-routes, i.e., i∗ and j∗, respectively,
starting from Sτ (Lines 5–6). Now, depending on the position
of P with respect to the truck’s road r, we can compute the
optimal pair of points. If P ↶ r (Line 4), we calculate the
best T searching in Q1 and the best L in Q4, otherwise, if
P ↷ r (Line 9), we do the opposite reasoning. Eventually,
we return the best pair T and L (Line 14).

B. The MULTI Algorithm

The MDP extension to multi-line assumes that the truck’s
path is a polygon. The sides of the polygon determine the set
Π of different routes on which to run the SINGLE algorithm. In
this case, we need to select not only the take-off and landing
points, but also the side of the polygon where T and L reside.

Algorithm 2: MULTI (P, ω, t,Π, vd, κ)
1 T ← ∅,L ← ∅
2 foreach π ∈ Π do
3 {T,L} ← SINGLE (P, ω, t, π)
4 T ← T ∪ T,L ← L ∪ L

5 T ← −∞, L← +∞
6 for i ∈ 0, . . . , |T | do
7 for k ∈ i, . . . , |L| do
8 if E(T [i]P ) + E(PL[j]) < E(TP ) + E(PL) then
9 T ← T [i], L← L[j]

10 return T,L

Moreover, T and L can be selected on two distinct sides. The
pseudocode of MULTI is sketched in Algorithm 2.

Firstly, we build the two sets T and L which contain the
set of feasible take-off and landing points computed for each
route π ∈ Π (Algorithm 2, Line 1–4). After this, we compute
the optimal solution by searching among all the possible pairs
(T, L) in T and L, paying attention that T precedes L (Line 6–
8). The current best pair is then saved (Line 9) and eventually
returned (Line 10). The algorithm requires O(|Π|2+|Π|t) time.

C. The FEASIBILITY Algorithm

The FEASIBILITY algorithm finds the two thresholds, i.e.,
Pmax and Pmin, used to establish the feasibility of a delivery P
regardless of the wind conditions for a given drone’s battery
budget. The algorithm considers all the winds ωd ∈ Ω2. It
takes O(|Ω|t) = O(t) time and O(1) space, where t is the
number of sectors of the compass rose. The pseudocode of
FEASIBILITY is sketched in Algorithm 3.

Algorithm 3: FEASIBILITY (P, ω, t, r, vd, κ)
1 µT

0 , . . . , µ
T
4t−1, µ

L
0 , . . . , µ

L
4t−1 ←UNIT COSTS(ω)

2 HPmax ← 0, HPmin ← +∞
3 foreach ωd ∈ Ω do
4 φ(⃗r)← |ωd − γr|360, τ ← ⌊|φ(⃗r)− 1|360/σ⌋

5 ∆∗
T ← min0≤j≤t

{
µT
|τ−j|4t

sin
(
δT|τ−j|4t

)
}

6 ∆∗
L ← min0≤j≤t

{
µL
|τ+j|4t

sin
(
δL|τ+j|4t

)
}

7 HPM (ωd)← B
∆∗

T
+∆∗

L

8 if HPM (ωd) > HPmax then HPmax ← HPM (ωd)

9 if HPM (ωd) < HPmin then HPmin ← HPM (ωd)

10 return Pmax, Pmin

Note that varying ωd ∈ Ω also varies the relative wind,
but not the energy coefficients µT

0 , . . . , µ
T
4t−1, µ

L
0 , . . . , µ

L
4t−1.

Only different sectors of the compass rose will be consid-
ered for different relative winds, as explained before. In our
experiments, FEASIBILITY is then extended considering not
only the truck’s path r⃗ but all the lines Π of the sides of
the truck’s polygon path. Note that changing r, although the
energy coefficient of the compass rose are the same, the
trajectory angles will change, as explained before.

2This is implemented by varying ωd with regular steps between 0 to 360.
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Fig. 6. Flowchart of SINGLE (a), MULTI (b), and FEASIBILITY (c).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algo-
rithms when solving MDP. Specifically, we perform two kinds
of evaluation: numerical in Section VI-B, and simulation in
Section VI-C. In the previous, we simply run our proposed
algorithms by varying all the aforementioned parameters, and
by relying on our ad-hoc and coded environment. In the latter,
instead, we rely on the open air simulator called BlueSky [29].

A. Settings and Parameters

We implemented our algorithms in Python language version
3.7, and run all the instances on an Intel i7-10genK computer
with 16GB of RAM. We consider a delivery area that consists
of a circle of radius 5km whose origin coincides with the
Cartesian coordinate system. When considering the single line
(SL) scenario, we simply generate a line inside the area.
In this case, the truck travels on a straight line (e.g., a
highway), and deliveries take place in the area in front of
such line. On the other hand, when we consider the multi-
line (ML) scenario, we randomly generate a convex polygon
with 8 sides that represent the closed path (route) of the truck
to/from the depot. In other words, there are 8 contiguous roads
that the truck traverses in the delivery area. By setting the
starting point of the truck’s route as one of the vertices of the
polygon, the route follows the sequence of vertices traveled in
a clockwise direction. In this case, the truck circumnavigates
the area where the deliveries occur. Also, n = 20 deliveries
P1, . . . , P20 are uniformly generated inside the delivery area.

We also consider two types of winds in the evaluation:
exhaustive winds (EW) and real winds (RW). In EW, we vary
ωd with regular steps and consequently the relative wind φ(⃗r)
on r varies. In RW, the wind varies according to the collected
data at different hours of the day in two locations in Corsica
(France) during winter days. In general, such a region is
characterized by low-intensity inland wind and high-intensity
sea wind. When considering the EW scenario, we vary the
wind speed ωs = {10, 20}m/s and the wind direction which
varies according to a step of 15◦. Moreover, we set the wind
cardinality to t = 3 affecting so the wind sectors and classes.

Concerning the parameters of the drone, we set the speed of
the drone υd = {10, 20, 30}m/s, the weight of the payload
κ = {2, 6}kg, and the battery budget B = {2.5, 5, 10}MJ
when dealing with the feasibility.

Also, as a reference, we compare our solution (minimum
energy trajectory) with respect to the shortest trajectory, on
both the single line (SINGLE-ST) and multi-line (MULTI-ST)
scenarios, where ST denotes “shortest trajectory” (i.e., the one
with δ = 90) that is optimal when the wind is absent. So, our
numerical evaluations compare the energy required in presence
of wind with the energy required in absence of wind.

B. Numerical Evaluation
In this section, we perform a numerical evaluation concern-

ing the proposed algorithms. We will consider the compass
rose formed by 12 sectors and hence σ = 30 (case t = 3). In
Table II, we report the different values of µi that have been
used in the experiments. We tabulated these values since there
is no simple formula to calculate them [10].

TABLE II
OCTOCOPTER ENERGY CONSUMPTION µi FIXING υd = 10m/s AND

ωs = 10m/s, AND WITH DIFFERENT PAYLOADS κ.

payload κ payload κ
Si 0 2 6 Si 0 2 6
0 0.123 0.151 0.212 6 0.567 0.602 0.677
1 0.148 0.177 0.239 7 0.532 0.567 0.640
2 0.221 0.251 0.316 8 0.442 0.474 0.545
3 0.446 0.478 0.549 9 0.218 0.247 0.313
4 0.534 0.569 0.642 10 0.147 0.175 0.238
5 0.567 0.602 0.677 11 0.123 0.151 0.212

1) Single Line Exhaustive Winds Scenario: In Figure 7, we
focus on the SL-EW scenario. In the x-axis we report the
scanned wind directions ωd, while in the y-axis we report the
ratio among the energy required for performing a delivery P
in absence of wind (by invoking SINGLE-ST), and the optimal
energy required in presence of wind (by invoking SINGLE).

0 90 180 270 360
1

3

5

7

9

ra
ti
o

γr = 0, ωs = 20m/s, κ = 6kg

υd = 10m/s υd = 20m/s υd = 30m/s

0 90 180 270 360

γr = 180, ωs = 20m/s, κ = 6kg

0 90 180 270 360
1

3

5

7

9

ωd

ra
ti
o

γr = 0, ωs = 10m/s, κ = 6kg

0 90 180 270 360
ωd

γr = 0, ωs = 20m/s, κ = 2kg

Fig. 7. SL-EW scenario: SINGLE vs SINGLE-ST.

In the first row of Figure 7 we initially see that by fixing
a configuration of the speed and payload of the drone, and
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varying the direction of the truck’s route γr, the results are the
same. In fact, they have just shifted by 180◦. So, changing the
direction of the road, the compass rose just rotates. Namely, for
instance, the values on the y-axis when ωd = 45 and γr = 0
are exactly the same when ωd = 45 + 180 and γr = 180.
Also the lengths of the minimum trajectories are the same
because the δ angles coincide being |φ(0)|30 = |φ(180)|30 =
0. Focusing on the first plot with γr = 0, we can see that when
the wind ωd ∈ [90, 270], the ratio is 1, which means that the
two solutions work the same. In other words, the best solution
provided by SINGLE forces the drone to fly perpendicularly
like SINGLE-ST. Eventually, if there is a trajectory that starts
from r and reaches P which is “more” tailwind (i.e., parallel or
almost parallel to the global wind), SINGLE finds much better
solutions with respect to the shortest perpendicular ones. In
particular, it is interesting to see how much energy can be
saved when υd varies in these circumstances.

In Figure 7, where ωs = 20m/s, when υd = 20m/s the
minimum trajectory consumes 1/8 of the energy in absence
of wind, when υd = 30m/s, 1/6, and when υd = 10m/s, 1/2.
This behavior is expected and comes from the adopted drone’s
energy reported for completeness in Section A: the energy
does not change linearly with υd as it seems at first glance
in Eq. (9). Indeed, the energy gain also depends on the air-
speed as and as such on the relative difference between vd and
ωs as reported in Eq. (1). The gain is emphasized when such
difference is positive, and it is reduced when such difference
is negative. When we decrease the wind speed ωs from 20m/s
to 10m/s (i.e., plots of the first column), the energy saved is
less because the head/tail component decreases. Finally, for
the payload weight (i.e., comparing κ = 6kg and κ = 2kg),
the energy saved is more when the payload is lighter.

2) Number of Sectors Analysis: In Figure 8, we analyze
how the number of sectors can impact on the performance.
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Fig. 8. SL-EW scenario: comparison between different number of sectors.

Both the x-axis and y-axis have the same meaning as those
in Figure 7. We varied the value of t. With t = 2, we have
4 different classes and therefore sectors with a width of 45◦;
with t = 3, we have 6 different classes and sectors with a
width of 30◦; and finally, with t = 6, we have 12 different
classes and sectors with a width of 15◦.

The discretized angle (in more classes) makes the energy
consumption calculation more accurate, and therefore the used
representative angle is closer to the actual experienced angle
by the drone (i.e., when t = 6). However, when there are
more sectors to deal with, the running time for computing the

correct angles in presence of wind increases accordingly. On
the other hand, when the number of classes is small, the energy
consumption calculation is less accurate. So, for this reason,
we decided to use a good trade-off between performance and
complexity, relying on the average case with t = 3.

3) Single Line Real Winds Scenario: In Figure 9, we focus
on the SL-RW scenario by using real data of winds collected
in a few locations in Corsica, France. In the x-axis we report
the time (hours) of a winter day, while in the y-axis we report
the same ratio as already explained in Figure 7.
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Fig. 9. SL-RW scenario: SINGLE vs SINGLE-ST.

We considered two cities that are differently affected by the
wind, i.e., Cape Corse and Corte, during a whole day, from
hour 1 to hour 24, during the winter season. Cape Corse is
close to the sea where the wind strongly blows, while Corte is
an inland city, and therefore the wind is much more moderate.
In the first row of Figure 9 we report the results when the
payload is 2kg, while in the second one when the payload is
6kg. The most interesting thing to observe is the impact of the
wind in the first two-thirds of the day in Cape Corse. So, due
to the strong wind in Cape Corse, the drone took advantage
of the wind in its favor thus saving a lot of energy.

A counter-intuitive but correct behavior can be observed
in Cape Corse when the drone’s speed is the highest, i.e.,
υd = 30m/s. In the previous Figure 7 we had seen that when
the drone flies very fast, the energy saved is less. However,
in Cape Corse the recorded wind from 4AM to 8AM was
severely strong (even more than 30m/s ≈ 110km/h) and the
drone, although flying at υd = 30m/s, was able to save more
energy than when it flies at the “most suitable” speed υd =
20m/s. So, the energy saving depends on the relationship of
the wind and drone’s speed, and not only on drone’s speed.
Namely, the tailwind component is a function of ωs in Eq. (1).

In Corte, however, since the wind was almost absent, and
therefore the unitary energy consumption was almost the same
for all the wind sectors, SINGLE prefers shorter routes, if not
the shortest, to save energy. Comparing the results when the
payload changes, also in this case the energy saved is more
when the payload to carry is less.
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4) Multi-line Scenario: In Figure 10, we focus on the ML
case on both EW (first row) and RW (second row) scenarios.
On each plot, in the x-axis we report the ith randomly
generated delivery point Pi. The plots to the left report the
energy, while the ones to the right report the length of the
routes. The used parameters are ωs = 20m/s, κ = 6kg.
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Fig. 10. SL-EW/RW scenarios: MULTI vs MULTI-ST.

In Figure 10, when considering the ML-EW scenario (first
row) with all the winds ωd, in the y-axis we report the
average ratio (along with the 95% confidence interval) of
the performance between MULTI-ST and MULTI in terms of
energy (left plot) and length of paths (right plot). We can
observe that on average, the energy saving of the 20 deliveries,
when the drone’s speed υd = 10m/s, is pretty stable. The
distribution of the deliveries shows that the ratio is between 1
and 2, which means that, considering all the winds, the shortest
trajectory is not that bad. However, when the drone’s speed
increases to υd = 20m/s, the same distribution of points is
more variable. On average, the ratio is around 3, but many
values are close to 5. In these cases, the wind helps in saving
energy. About the length of the paths, the ratio is between the
length of the paths of MULTI and the length of the paths of
MULTI-ST. It is interesting to see that when υd = 20m/s, for
the randomized delivery P5 the energy saved was really large,
and the length of the path is more than twice the shortest one.
On average, for this speed, the paths are around 50% longer
than the shortest ones. In Figure 10, when considering the
RW scenario (second row), in the y-axis we report the same
ratios just explained for the first row but considering all the
real winds evaluated from 10 consecutive days in Corsica. The
saving is high when υd = 20m/s. This trend also impacts the
length of the paths (second row, right plot).

5) Feasibility Analysis: In Figures 11–12, we focus on the
feasibility analysis in the SL/ML-EW scenario.

In Figure 11, we report the in the x-axis the relative wind
of the truck φ(r), while in the y-axis the value Pmax which
depends on the relative wind. Here, we consider ωs = 10m/s
and κ = 6kg, while we vary the size of the battery 5MJ to
the left, and 10MJ to the right. Not surprisingly, the values
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Fig. 11. SL-EW scenario: furthest deliveries that can be served in presence
of wind (SINGLE) and in absence of wind (SINGLE-ST) given φ(r).

of Pmax with twice the battery are doubled because having
more energy available means flying more distance. About the
case with 5MJ of energy, the farthest distance that the drone
can reach is around 10km whose pair of take-off and landing
angles is (54, 53) when φ(r) = 0 (in orange). On the same
relative wind, the drone could have gone at a maximum of
7km far away from the truck’s road exploiting the shortest
trajectory (in blue). We did not report the pairs of angles to
the plot on the right since they match the ones on the left.
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Fig. 12. ML-EW scenario: status of deliveries.

In Figure 12, we report the in the x-axis the status of the
deliveries taking into account Pmax and Pmin, while in the y-
axis the number of deliveries for that particular status, in the
ML-EW scenario. Here, we consider the size of the battery
B = 2.5MJ to the left, and 5MJ to the right. A delivery can
have one of the following status: always feasible (AF), if it
is closer than Pmin; always non-feasible (AN), if it is farther
than Pmax; unknown (U), otherwise. It is really interesting to
observe the number of U and AF when comparing MULTI and
MULTI-ST. In fact, when relying on MULTI it is possible to
perform at least 35% of deliveries more than those done with
MULTI-ST. Moreover, the number of non-feasible deliveries
dramatically drops down when performing MULTI.

C. Simulation Evaluation

For evaluating our algorithms on a simulated environment,
we rely on BlueSky. BlueSky is an open Air Traffic Simulator
(ATS), and is meant as a tool to perform research on Air
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Traffic Management and Air Traffic Flows [29]. At the best
of our knowledge, BlueSky is the only simulator in which
it is possible to simulate the flight of different aircraft by
injecting the presence of the wind. Although BlueSky can
model aircraft under the effect of the wind, there is not any
available option that computes the actual energy consumption
of them. So, we created an ad-hoc plug-in for BlueSky (still at
a very preliminary stage though) that can estimate the energy
consumed when a drone flies. When a flight simulation is done,
BlueSky creates a log file (in CSV format) in which each
line comprises different fields, like GPS coordinates, drone’s
speed, global wind, and so on. Basically, we parse the log
file and for each two consecutive lines, we extract the two
GPS coordinates, so that we can compute the actual flown
distance and the drone’s heading. Accordingly, knowing the
wind experienced by the drone, we can then precisely estimate
the energy consumption of it by using Eq. (10) in [10] (for
completeness, reported in Eq. (10) in Section A). Note that,
the equation in [10] considers the current wind (i.e., t = 90)
and so the energy consumption calculation is much accurate
(and slower to compute) than our proposed model.
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Fig. 13. The simulated algorithms under BlueSky: S stands for SINGLE.

In Figure 13, we report the in the x-axis the wind direction,
while in the y-axis the energy consumption per unit of distance
(i.e., kJ/m). The energy per unit of distance is calculated
through the ratio total flown distance to total energy consumed.
Here, we have to specify two different cases: the results
shown under the suffix “model” are determined exactly as done
before in the numerical evaluation, while the ones under the
suffix “sim” are determined inside the BlueSky simulator. The
drone’s altitude is 40m above the ground. We set the other
parameters with respect to the settings in Section VI-A.

The simulated results confirm the numerical ones. The
difference among the simulated and ideal perpendicular paths
(SINGLE-ST model and sim) is almost zero, while slightly
different is the situation with the non-perpendicular ones. We
also observe that the largest energy consumption per meter
occurs when the wind and the drone’s speed match (i.e.,
ωs = υd). In general, one can observe that the saved energy is

less in the simulated environment than in the ideal numerical
environment. Except the case with ωs = υd = 10m/s, the gap
in terms of required energy per unit of distance is ≤ 0.1kJ/m
in favor of the ideal numerical model. This is because the
simulator uses more complicated trajectories for the aircraft
while flying between two points. We have indeed observed that
the drone does turning maneuvers when changing its direction.

VII. CONCLUSIONS

For the first time, to the best of our knowledge, we adapt the
trajectory of a drone to the wind. We consider a truck-drone
tandem delivery system. The drone actively reacts to the wind
by adopting the “most tailwind” available trajectory between
the truck’s path and the delivery. Two solutions are proposed
for solving MDP, i.e., when the truck moves on a line (e.g., a
highway) in front of the deliveries, and when the truck moves
on a polygon that delimits a convex area where the deliveries
take place. Currently, our proposed model presents some
limitations. For instance, if the wind dynamically changes
during a delivery, the drone does not update its path in order
to save energy. Moreover, the discretization in multiple wind
classes determines approximated angles if we worked in the
continuous space, and sometimes the energy estimations differ
from the actual ones. Nevertheless, our proposed model has
the undoubted value of showing the positive role that the wind
can play in the drone flight.

In the future, we would like to confirm our findings by using
other simulators, and eventually extending our investigation to
a test-bed made by off-the-shelf drones. We will also include
discussions on what can go wrong, e.g., time of day/night
when winds can be unstable and how to include flight time
scheduling to manage different winds at different hours.

APPENDIX
DRONE-WIND ENERGY MODEL

The motion of drones is regulated by physical proper-
ties [10]. The total required thrust is T = Wg + FD, where
W is the total weight of the drone, g is the gravitational
constant, and FD = 1

2ρ a
2
s CDA is the total drag force, where

ρ is the air density, as is the drone’s air speed (see Eq. (1)),
A = πR2 is the cross sectional area (R is the rotor radius),
and CD is the drag coefficient. Having computed T, we
estimate the required power P for a steady flight, which is
P = T(υd sin(α) + si), where α = arctan (FD/Wg) is the
pitch angle, and si, which is the induced velocity required
for a given thrust T, can be obtained by solving the implicit
equation [30] si = s2h/

√
(υd cos(α))2 + (υd sin(α) + si)2,

where sh =
√
T/2ρA is the induced velocity at hover [30].

Note that, FD and so α and P depend on the drone’s direction
γr. So, fixed ω = (ωd, ωs), the unitary energy µ(γr) of travel
along a segment r with direction γr is calculated as follows:

µω(γr) = P/υd. (9)

Therefore, the energy consumed for traversing one edge γr of
length λ(γr) can be expressed as:

dω(γr) = µω(γr)λ(γr). (10)
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