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A B S T R A C T   

Purpose: To evaluate the ability of preoperative MRI-based measurements to predict the pathological T (pT) stage 
and cervical lymph node metastasis (CLNM) via machine learning (ML)-driven models trained in oral tongue 
squamous cell carcinoma (OTSCC). 
Materials and methods: 108 patients with a new diagnosis of OTSCC were enrolled. The preoperative MRI study 
included post-contrast high-resolution T1-weighted images acquired in all patients. MRI-based depth of invasion 
(DOI) and tumor dimension—together with shape-based and intensity-based features—were extracted from the 
lesion volume segmentation. The entire dataset was randomly divided into a training set and a validation set, and 
the performances of different types of ML algorithms were evaluated and compared. 
Results: MRI-based DOI and tumor dimension together with several shape-based and intensity-based signatures 
significantly discriminated the pT stage and LN status. The overall accuracy of the model for predicting the pT 
stage was 0.86 (95%CI, 0.78–0.92) and 0.81 (0.64–0.91) in the training and validation sets, respectively. There 
was no improvement in the model performance upon including shape-based and intensity-based features. The 
model for predicting CLNM based on DOI and tumor dimensions had a fair accuracy of 0.68 (0.57–0.78) and 0.69 
(0.51–0.84) in the training and validation sets, respectively. The shape-based and intensity-based signatures have 
shown potential for improving the model sensitivity, with a comparable accuracy. 
Conclusion: MRI-based models driven by ML algorithms could stratify patients with OTSCC according to the pT 
stages. They had a moderate ability to predict cervical lymph node metastasis.   

1. Introduction 

Oral tongue squamous cell carcinoma (OTSCC) is the most common 
malignancy of the oral cavity (OCSCC). Standard treatment methods 
include surgery alone or in combination with adjuvant radiotherapy and 
chemotherapy [1]. 

In order to stage the tumor, the 8th edition of the American Joint 
Committee on Cancer (AJCC) staging manual introduced the depth of 
invasion (DOI) as a determinant key element along with the tumor 

dimension and adjacent sites involved [2]. The DOI has been described 
as the distance between the deepest point reached by tumor infiltration 
and the theoretical healthy mucosal line [3]. It differs from tumor 
thickness—namely the distance between the same deepest point and the 
tumor surface. This distinction allows to include the tumor infiltration in 
the tumor staging to better correlate these measurements to survival 
rates, thus avoiding the bias of bulky or excavating tumors. DOI has 
shown strong correlation to the presence of occult lymph node metas-
tasis, risk of recurrence, and overall survival [4–7]. A correct DOI 
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measurement for early intermediate lesions with no evidence of neck 
nodal metastasis (i.e., cT1–T2 N0) is crucial to selecting patients that 
require a prophylactic neck dissection due to risk of nodal relapse. 

Several studies have suggested a specific cutoff pathological DOIs 
(pDOIs) with the aim of obtaining an optimal risk stratification of pa-
tients with OTSCC postoperatively. An optimal cutoff of 4 mm avoids the 
morbidity associated with unnecessary elective dissection [8]. Thus, an 
accurate pre-treatment assessment of the DOI may contribute to pre-
operative tumor staging, treatment planning, and predicting the 
prognosis. 

Clinical evaluation alone is limited, and thus the information derived 
from imaging techniques is essential to providing a correct preoperative 
assessment of the DOI in OCSCC. Ultrasound, computed tomography 
(CT), and magnetic resonance imaging (MRI) are the most common 
techniques to evaluate the radiological DOI (rDOI) [9]. Ultrasound al-
lows for adequate preoperative evaluation of the tumor and has the 
highest correlation coefficient between rDOI and pDOI in pT1–pT2 tu-
mors. It is more accurate than CT and MRI and tends to overestimate the 
rDOI by approximately 2–3 mm [9,10]. However, it is 
operator-dependent, requires dedicated probes for the oral cavity, and 
has diagnostic accuracy that changes with the location and size of the 
lesion—this in turn can lead to lower accuracy in large tumors (pT3) and 
tumors involving multiple subsites [11]. CT is a valuable modality for 
preoperative tumor staging and is the method of choice in patients who 
cannot undergo MRI. Nevertheless, MRI more accurately evaluates 
submucosal diffusion and invasion of the adjacent structures while 
defining the lymph node (LN) status [12,13]. 

Recent developments in precision medicine have led to significant 
advancements in the diagnosis and prediction of tumor response to 
therapies driven by machine learning (ML) approaches to multimodal 
data analyses [14,15]. A new research field is expanding and is repre-
sented by radiomics based on a sophisticated mathematical approach to 
the analysis of diagnostic images. This approach can extract many 
quantitative non-invasive tumor biomarkers with important potential 
implication for precision medicine across different cancer types 
including OTSCC [16–18]. Intra-tumor heterogeneity can be captured 
by first-order and higher-order textural features and may reflect the 
microstructural tissue characteristics and help clinicians to better 
stratify patients [19]. 

Several associations between pre-treatment radiomic signatures 
(mostly based on CT studies) and tumor biology/treatment outcome 
have already been reported. These offer accurate prognostic models to 
predict loco-regional relapse and/or overall survival although not all 
have been validated on independent patient cohorts [20,21]. Advanced 
MRI techniques, i.e., perfusion-weighted and diffusion-weighted imag-
ing, have shown high potential for predicting treatment response [22]; 
these offer useful information about tissue vascularity and cellularity, 
respectively. The apparent diffusion coefficient (ADC) can be evaluated 
both in tumor and non-tumor tissues and was recently suggested to 
improve the prediction of recurrence and disease-free survival of OTSCC 
[23]. 

Currently, however, only a few investigations have used an MRI- 
based radiomic approach driven by ML algorithms to predict the pT 
stage, the degree of pathological differentiation, and/or cervical lymph 
node metastasis (CLNM) in OTSCC [24–26]. Most studies evaluated 
different tumor sites, i.e., oropharyngeal and nasopharyngeal cancers 
[27]. Thus, the development of MRI-based predictive models for a more 
comprehensive characterization of OTSCC patients may be of interest for 
the scientific community. 

The aim of this study is to evaluate the ability of preoperative MRI- 
based measurements alone or in combination with shape-based and 
intensity-based features derived from post-contrast high-resolution T1- 
weighed images to predict the pT stage and CLNM using ML-driven 
models trained on a large single-institution OTSCC patient population. 

2. Methods and materials 

2.1. Patient population 

This single-institution retrospective study was approved by the 
institutional ethics committee (RS1834/23). The requirement for 
obtaining written informed consent was waived due to the retrospective 
nature of this study. 

The inclusion criteria were: 1) preoperative MRI examination per-
formed within two weeks preoperatively according to the acquisition 
protocol described below, 2) presence of a tumor that could be measured 
on MRI, and 3) availability of the pDOI measurement in the histopath-
ological report. The exclusion criteria were: 1) preoperative chemo- 
radiotherapy, 2) classification as T4a regardless of the pDOI because 
of mandibular infiltration, 3) recurrent disease, and 4) poor MRI quality 
because of motion artifacts and/or image distortion due to dental 
implants. 

2.2. MR Imaging Protocol 

MRI was performed using 1.5 T (Optima MR 450w, GE Healthcare, 
Milwaukee, WI, USA) and 3 T (Discovery MR 750w, GE Healthcare, 
Milwaukee, WI, USA) scan systems using a 16-channel receive-only RF 
head-neck coil. MRI examinations included T2-weighted fast spin-echo 
coronal images (slice thickness, 4 mm), axial T2-weighted fast spin- 
echo images (slice thickness, 3 mm), and pre-contrast axial T1- 
weighted images (slice thickness, 3 mm); both were acquired from the 
skull base to the thoracic inlet. Four post-contrast T1-weighted dynamic 
volumes were acquired using an axial fast-spoiled gradient echo 
sequence after injecting a gadopentetatedimeglumine contrast agent at 
0.1 mmol/kg body weight. The acquisition parameters are indicated in  
Table 1. The examination also included T1-weighted images in the axial 
and coronal planes. 

2.3. Determination of MRI-based DOI 

All scans were imported to a commercial workstation (Advantage 
Workstation ADW, version 4.7, GE Healthcare) for multiplanar visuali-
zation and analyses. The images were reviewed by two radiologists (A.V. 
and F.P.) with more than 10 years of experience in head and neck im-
aging who were blinded to the histopathological data. The average DOI 
measurements (MRI-based DOI) measured by the two radiologists were 
compared with the pDOI. Cases of strong disagreement were reviewed 
and resolved by consensus. 

The MRI-based DOI was measured on the post-contrast T1-weighted 
sequence in the 3rd dynamic volume, which was identified as the vol-
ume with the most tumor contrast versus tissue; the largest sections of 
the tumor in the axial or coronal planes were selected for the mea-
surement. A perpendicular line from the reference line to the deepest 
end of the tumor was drawn to determine the invasive part, and the 
reference line was defined as the line joining the boundary between the 

Table 1 
Acquisition parameters of dynamic multiphase T1-weighted sequence.  

Field Strength 1.5 T 3 T 

Type of Acquisition 3D 3D 
TR/TE (ms) 5.9/2.1 6.6/2.9 
FOV (mm2) 256 × 256 256 × 256 
Acquisition matrix 320 × 224 320 × 256 
Reconstruction matrix 512 × 512 512 × 512 
Pixel size (mm2) 0.8 × 1.1 0.8 × 1.0 
Slice thickness (mm) 2 2 
Slice spacing (mm) 1 1 
Flip angle (◦) 12 12 
Number of phases 5 5 
Temporal Resolution (s) 31 32 
Acquisition time (min) 2 min 32 s 2 min 40 s  
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tumor surface and the normal mucosa. The cT stage was evaluated in 
accordance with the 8th edition of the TNM classification considering 
the MRI-based DOI and maximum tumor diameter (MRI-based dimen-
sion). The exophytic part of the tumor and ulcerated component were 
not included. Supplementary Fig. S1 shows an example of an MRI-based 
DOI measurement. 

2.4. Extraction of shape-based and intensity-based features 

We investigated the added role of shape-based and intensity-based 
features to the MRI-based linear measurements, i.e. DOI and 

dimension, as annotated by the radiologist. Two sequential registration 
steps, an affine transformation and a B-Spline deformable trans-
formation [28], were performed to obtain an optimal alignment be-
tween the pre-contrast dynamic volume (moving volume) and the 3rd 
dynamic volume (reference volume). The affine transformation with 12 
degrees of freedom was applied to the pre-contrast volume to account 
for the global motion relative to the reference volume, while the B-spline 
transformation was used to capture the local image deformations due to 
breathing, swallowing, and/or jaw movements. The difference volume 
was derived by subtracting the registered baseline volume from the 3rd 
dynamic volume using the 3D Slicer filter “Absolute Value Difference 

Fig. 1. Illustration of the sequential steps to extract shape-based and intensity-based features from the dynamic high-spatial-resolution T1-weighted images.  
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Image”. 
The entire tumor volume was then manually delineated, slice by 

slice, on the difference volume via the support of a semiautomatic level- 
tracing segmentation tool by two expert HN radiologists (A.V. and F. 
P.) already involved in the DOI measurement. 

Prior to the quantitative analyses, the images were resampled to 1 
mm isotropic voxel size and were discretized with a fixed bin width of 
25. Shape-based features (n = 12) and intensity-based features (n = 18) 
were extracted from the tumor segmentation mask using the 3D Slicer 
Radiomics Extension based on the Python package Pyradiomics [29]; 
see more detail in Supplementary Table 1. 

The ComBat method was applied to harmonize the intensity-based 
features derived from 1.5 T and 3 T scanners [30] using the package 
neuroCombat in R Studio. 

The image analysis steps are shown in Fig. 1. 

2.5. Surgical procedures and histopathological analysis 

All patients underwent upfront surgical treatment according to the 
preoperative stage. The patients were treated with transoral glossec-
tomy for cT1 and cT2 OTSCC. Neck dissection was performed contex-
tually in patients with cN0 with a cDOI > 4 mm and in those with 
clinical evidence of positive cervical nodes. Patients with cT3 OTSCC or 
those likely to receive adjuvant radiotherapy (clinical extranodal 
extension, cN2 or cN3 nodal disease, nodal disease at level IV or V, 
perineural invasion, vascular invasion, or lymphatic invasion) under-
went transcervical glossectomy, neck dissection, and free-flap recon-
struction of the tongue. 

Tissue samples were formalin-fixed and paraffin-embedded. Sections 
were cut from each FFPE block and mounted on slides. They were 
stained with hematoxylin and eosin and digitally acquired using a 
ScanScope digital scanner (Aperio ePathology Solutions). The pDOI was 
measured by dropping a “plumb line” from the closest adjacent normal 
mucosal basement membrane level to the deepest point of tumor inva-
sion regardless of the presence/absence of ulceration. The surgical 
margins were negative on all sides. Tumors diagnosed before 2017 and 
staged in accordance with the 7th edition of the AJCC were reviewed by 
a pathologist and re-staged according to the 8th edition of the AJCC [2]. 
Supplementary Fig. S1 shows an example of the pDOI- and MRI-based 
DOI measurements. 

2.6. Statistical analyses 

Statistical analyses used an integrated statistical approach based on 
conventional statistical tests and machine learning to improve data 
interpretability and prediction accuracy [31]. The Mann-Whitney or 
Kruskal-Wallis tests were used to compare two or more independent 
groups when the variables were continuous. A chi-squared or Fisher’s 
exact tests were used to determine the relationships between categorical 
variables according to the case. Box-and-whisker plots were used to 
show the distributions of the parameters. The Kappa coefficient was 
used to assess the inter-rater agreement in tumor staging between the 
pathologist and the radiologist. The agreement between pathological 
and MRI-based DOI measurements was assessed by Bland-Altman plots 
as was agreement between pathological and MRI-based tumor di-
mensions. Spearman’s rho correlation test was used to assess the 
strength of the correlation between the two measurements. Statistical 
significance was set at a p-value < 0.05 to be statistically significant. 
Statistical analyses were performed using SPSS software (SPSS version 
21, SPSS Inc., Chicago, IL, USA). 

2.7. Feature selection 

The initial selection of the most significant variables for predicting 
the pathological T (pT) stage and CLNM used the Kruskal-Wallis test or 
the Mann-Whitney test, respectively, with a cutoff for the p-value of 

0.10; a further selection of the remaining variables was obtained from a 
Random Forest classifier [14]. In the case of high correlation between 
the selected features, the one with the highest predictive power was 
chosen. 

Lastly, to mitigate the effect of the different numerical range of the 
selected variables and to improve the performance of the subsequent ML 
modelling, the final datasets were standardized using the z-score 
normalization procedure as described by Haga et al. [32]. 

2.8. ML modelling 

Before building the models for predicting the pT stage and CLNM, the 
entire dataset was randomly divided into a training set (two-thirds, 
n = 72) and a validation set (one-third, n = 36). The goal here was to 
test the possibility of applying the proposed models to a separate patient 
group and obtaining a more reliable estimate of the models’ perfor-
mance according to the international statements to thus promote 
transparency in the design and presentation of a prediction model study 
(TRIPOD) [33]. 

In our dataset, patient groups with different pT stages (T1, T2, and 
T3) and with negative (N0) or positive (Npos) cervical lymph nodes 
were not equally populated; thus, an oversampling technique was used 
to generate synthetic data for the minority class to mitigate the data 
imbalance during the training process [34] using the RSBID package in 
RStudio. 

The model building was next articulated in two main steps: 1) only 
the MRI-based linear measurements, i.e. DOI and dimension (as anno-
tated by the radiologist) were included; 2) the most relevant shape- 
based and intensity-based features were added to determine their abil-
ity to improve the models developed at step 1. 

Before building the proposed models, the performances of different 
ML algorithms (i.e., decision trees, linear discriminants, logistic 

Table 2 
Characteristics of patients and tumors in the entire dataset and the training and 
validation sets.  

Patient and tumour 
characteristics 

Entire set Training 
set 

Validation 
set 

P- 
value  

(n = 108) (n = 72) (n = 36)  
Sex Male 52 (48%) 35 (49%) 17 (47%) 0.946  

Female 56 (52%) 37 (51%) 19 (53%)  
Age (years) mean±SD 63.5 

± 14.3 
64.0 
± 13.9 

62.40 
± 15.3 

0.672 

T-stage T1 17 (16%) 10 (14%) 7 (19%)   
T2 33 (31%) 22 (31%) 11 (31%) 0.738  
T3 58 (54%) 40 (56%) 18 (50%)  

N-stage N0 65 (60%) 44 (61%) 21 (58%)   
N1 10 (9%) 6 (8%) 4 (11%) 0.973  
N2 18 (17%) 12 (17%) 6(17%)   
N3 15 (14%) 10 (14%) 5 (14%)  

Infiltration 
pattern 

expansive 31 (29%) 20 (28%) 11 (31%)   

infiltrative 49 (45%) 32 (44%) 17 (47%) 0.822  
mixed 28 (26%) 20 (28%) 8 (22%)  

Grade G1 5 (5%) 4 (6%) 1 (3%)   
G2 58 (54%) 36 (50%) 22 (61%) 0.509  
G3 45 (42%) 32 (44%) 13 (36%)  

Pathological 
dimension 
(mm) 

median 
[95% CI] 

25 
[20, 25.6] 

25 
[20.3, 
29.3] 

20 
[16.7, 30] 

0.408 

Pathological 
DOI (mm) 

median 
[95% CI] 

12 
[9,12] 

12 
[8, 14.7] 

10.5 
[8,13] 

0.674 

MRI-based 
dimension 
(mm) 

median 
[95% CI] 

30 
[25.4, 
34.1] 

29.5 
[25,35] 

30 
[20.5, 
35.1] 

0.573 

MRI-based 
DOI (mm) 

median 
[95% CI] 

25.0 
[20.0,25.6] 

12.5 
[9.7, 
14.7] 

11 
[8.9, 14.8] 

0.845 

Abbreviations: SD, standard deviation; 95% CI, 95% confidence interval, DOI, 
depth of invasion; MRI, magnetic resonance imaging 
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regression when appropriate, naive Bayes, support vector machines, K- 
nearest neighbor classifiers and ensemble classifiers) were compared in 
both the training and validation sets, given that they had dissimilar 
characteristics in terms of the computational speed, hypotheses on the 
nature of the data, and interpretability [14]. 

The best selection of the hyperparameters of each algorithm was 
obtained via an iterative optimization process employing a stratified 
five-fold cross-validation to reduce overfitting. The accuracy, sensi-
tivity, and specificity overall and for each class were calculated to 
evaluate the model performance together with the confusion matrix. 
Generalization of the area under the receiver operating characteristic 
curve (AUC) for multiple classifications was applied to estimate the AUC 
of the pT stage model [35]. The 95% bootstrap confidence interval (CI) 
for the AUC was calculated using 1000 samples. The mid-p-value 
McNemar test was used to compare the prediction accuracies of 
different models. The MATLAB Statistics and Machine Learning Toolbox 
(Release 2021b, The Mathworks Inc., Natick, Massachusetts) was used 
to build the ML-based models. 

3. Results 

A total of 108 patients with newly diagnosed OTSCC were included 
in the study from January 2013 to September 2022. Table 2 shows the 
population characteristics. There were 65 MRI studies acquired on 1.5 T 
(60.2%) and 43 on a 3 T scanner (39.8%). 

The MRI-based DOI was strongly related to pDOI (Rho = 0.86, 95% 
CI: 0.80–0.90, p < 0.001); MRI-based tumor dimension was also related 

to the pathological tumor dimension, although it had a weaker corre-
lation coefficient (Rho = 0.75, 95% CI: 0.66–0.82, p < 0.0001). The 
mean differences (95% CI) between pathological and MRI-based DOIs 
and between pathological and MRI-based tumor dimensions were − 1.3 
(− 8.2 to 5.7) and − 4.7 (− 21 to 12) mm, respectively. Supplementary 
Fig. S2 shows the relative Bland–Altman plots. The agreement between 
the pT and cT stages was good (Kappa coefficient = 0.66, 95% CI: 
0.53–0.79). 

3.1. Feature selection 

MRI-based DOIs and dimensions could discriminate the pT stage and 
the presence of CLNM; the box-and-whisker plots are indicated in Fig. 2, 
and the summary statistics are reported in Supplementary Table 2. The 
predictor ranks of MRI-based DOI and dimension as well as their supe-
riority compared to the other clinicopathological variables are shown by 
the bar plots in Supplementary Fig. S3. 

Among the shape-based and intensity-based features, 15 of them 
significantly differed between pT stages such as the least/minor/major 
axis length, surface area, mesh volume and flatness, which all increased 
as T stage increased. Whereas the minimum and skewness of signal in-
tensity decreased as T stage increased (see summary statistics in Sup-
plementary Table S3). 

Analogously, 12 shape-based and intensity-based features signifi-
cantly differed between LN-negative patients and patients with CLNM 
such as the least/major axis length, maximum 2D/3D diameter, surface 
area, and mesh volume which increased for patients with positive LN. 

Fig. 2. Box-and-whisker plots of MRI-based tumor dimension (a) and MRI-based DOI (b) according to the pathological tumor stage T1, T2 or T3. P-values are 
obtained from the Kruskal–Wallis test. Box-and-whisker plots of MRI-based tumor dimension (c) and MRI-based DOI (d) according to the negative (N0) or positive 
(Npos) status of cervical lymph nodes. P-values are obtained from the Mann–Whitney test. 
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Fig. 3. An example representation of the evolution of the lesion shape (a,c,e) and signal intensity distribution (b,d,f) for patients with increasing tumor pT stages.  

Fig. 4. An example representation of the different lesion shape and signal intensity distribution for a patient without CLNM (a-d) and a patient with CLNM (e-h).  
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Whereas the sphericity and minimum decreased (see summary statistics 
in Supplementary Table S4). 

When combining all the variables, the predictor ranks obtained from 
the random forest classifier are shown in Supplementary Fig. S4: MR- 
based DOI was the dominant predictor for the pT stage together with 
several shape-based features and some intensity-based features, i.e., 
minimum and skewness. 

The energy and the minimum were the strongest intensity-based 
predictors for CLNM, together with the MR-based DOI and a number 
of highly correlated features measuring the linear dimensions of the 
lesion. 

The heat map showing the strength of correlation between all the 
variables using the Spearman’s rho correlation test is illustrated in 
Supplementary Fig. S5. 

An example representation of the evolution of the lesion shape and 
signal intensity distribution for patients with increasing tumor pT stages 
and for LN-negative/LN-positive patients is shown in Figs. 3 and 4, 
respectively. 

3.2. ML modelling 

Fig. 5 shows the data analysis pipeline. The training and validation 

Fig. 5. Pipeline of the model building for predicting the pT stage and cervical lymph node metastasis (CLNM).  

Table 3 
Performance of the proposed model for predicting the pT stage in the training and validation sets.   

Training Set 

Selected Features Class Sensitivity Specificity Accuracy 
[95% CI] 

AUC 
[95% CI] 

Model1: 
-MR-based DOI 
-MR-based Dimension 

Overall 0.86 0.93 0.86 
[0.78,0.92] 

0.88 
[0.81,0.92] 

By class     
T1 0.95 0.89 0.95  
T2 0.70 0.96 0.70  
T3 0.93 0.94 0.93   
Validation Set 

Selected Features Class Sensitivity Specificity Accuracy 
[95% CI] 

AUC 
[95% CI] 

Model1: 
-MR-based DOI 
-MR-based Dimension 

Overall 0.77 0.89 0.81 
[0.64,0.91] 

0.79 
[0.66,0.88] 

By class     
T1 0.71 0.93 0.71  
T2 0.64 0.92 0.64  
T3 0.94 0.83 0.94  

AUC, area under the curve; CI, confidence interval. 
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sets showed no significant differences (Table 2). 
Among the different types of ML algorithms, the Decision Tree and 

Naïve Bayes classifiers provided the best results in terms of accuracy in 
predicting the pT stage and CLNM, respectively. Supplementary Figs. S6 
and S7 show a comparison of the performances of the different ML al-
gorithms in the training and validation sets. 

The best decision model for predicting the pT stage was obtained 
including only the MRI-based linear measurements, i.e. DOI and 
dimension, as annotated by the radiologist: The overall accuracy was 
0.86 (95%CI, 0.78–0.92) and 0.81 (95%CI, 0.64–0.91) in the training 
and validation sets, respectively. The corresponding AUCs were 0.88 
(95%CI, 0.81–0.92) and 0.79 (95%CI, 0.66–0.88), respectively 
(Table 3). The graphical representation of the trained decision tree is 
illustrated in Supplementary Fig. S8. 

The inclusion of shape-based and intensity-based features did not 
allow an improvement of the pT stage model performance. The best- 
performing classification was obtained by including three features 
(MR-based DOI, flatness, and skewness) but it had an inferior accuracy 
of 0.82 and 0.78 in the training and validation set, respectively, versus 
the previous model. 

The decision model for predicting the CLNM based only on DOI and 
dimension (Model 1) had an accuracy of 0.68 (95%CI, 0.57–0.78) and 
0.69 (95%CI, 0.51–0.84) in the training and validation set, respectively, 
with an AUC of 0.75 (95%CI, 0.63–0.85) and 0.64 (95%CI, 0.50–0.79), 
respectively. The inclusion of shape-based and intensity-based features 
(specifically, energy, maximum 2D diameter and minimum) led to an 
improvement of the model performance in the training set: the accuracy 
of this model (Model 2) was 0.74 (0.63–0.83) with an increase in 
sensitivity from 0.64 to 0.75 compared to Model 1. In the validation set, 
the accuracy of Model 2 was 0.67 (0.49–0.81) with a slight increase in 
sensitivity from 0.55 to 0.60 versus Model 1 (Table 4). There was no 
significant difference between the accuracies of Model1 and Model 2, 
both in the training and validation set (p = 0.26 and p = 0.75, 
respectively). 

Fig. 6 illustrates the confusion matrices relative to the proposed 

models: one model for predicting the pT stage and two models for pre-
dicting the CLNM as described in Tables 3 and 4. 

4. Discussion 

We investigated whether preoperative MRI-based measurements, i. 
e., lesion DOI and dimension—alone or combined with shape-based and 
intensity-based features—can predict the pT stage and cervical lymph 
node metastasis using ML-driven models trained using a single- 
institution OTSCC patient population. 

The MRI-based DOI and feature extraction were determined using 
post-contrast high-spatial-resolution T1-weighted imaging, which was 
suggested as the optimal MRI scan to obtain accurate measurements and 
the best correlation with the pDOI [36,37]. The correlation between 
rDOI and pDOI has largely been documented in the literature, and a 
pooled correlation coefficient of 0.85–0.86 and a mean difference be-
tween the two measurements of 1.8 mm has been reported [9,10]. A 
recent systematic review by Lee et al. [9] showed that the correlation 
coefficient of MRI had an intermediate value of 0.85 between ultrasound 
and CT although the MRI-based DOI showed the largest difference 
(2.6 mm) with respect to the pDOI versus ultrasound and CT-based DOI. 
The potential causes of DOI overestimation on MRI, compared to pDOI, 
may be the effects of edema and peritumoral inflammation of tongue 
tissues on the MRI signal and shrinkage of the specimen when formalin 
treated [38–40]. 

Our findings are consistent with these results and indicate a corre-
lation coefficient between MRI-based DOI and pDOI of 0.87 (95% CI: 
0.81–0.91) with a mean difference of 1.3 mm (95% CI: - 5.7–8.2 mm). In 
view of the strong association between MRI-based DOI and pDOI as well 
as between the MRI-based tumor dimension and the pathological 
dimension (Rho = 0.75, 95% CI: 0.66– 0.82), we hypothesized that a 
ML-driven model based on these radiological parameters would accu-
rately predict the pT stage. 

The best decision model for predicting the pT stage included only the 
MR-based DOI and dimension. In the training set, its overall accuracy 
was good (0.86) with a higher value in predicting the T1 and T3 stages 
(0.95 and 0.93) than the T2 stage (0.70). There was good specificity for 
each class, good to very good sensitivity, and an AUC of 0.88. Good 
performance was also found in the validation set with an overall accu-
racy of 0.81 and an AUC of 0.79. 

A comparison with existing literature is not straightforward because 
most previous papers focused on the strength of the relationships be-
tween rDOI and pDOI or between the cT and pT stage [9,41–43] except 
Tang et al. [37] who reported high AUCs (≥ 0.97) of MRI-based DOI in 
distinguishing the T1 stage form the T2 stage and the T2 stage from the 
T3 stage. Although Tang et al. [37] obtained these results using a similar 
MRI sequence, the discrepancy with our findings may be attributable to 
differences in the characteristics of patients and/or tumors and the 
different approaches to model-building (we preferred to split our dataset 
into a training set and a validation set to test the model performance in a 
separate patient group and provide more realistic evaluations). 

Our decision tree graph indicated a first optimal threshold of 
10.3 mm for MRI-based DOI to discriminate between the T3 stage and 
the T1 or T2 stage and a second optimal threshold of 5.2 mm for MRI- 
based DOIs to discriminate between the T1 stage and the T1 or T2 
stage depending on the MRI-based tumor dimension (< 17.6 or ≥
17.6 mm). The thresholds obtained for the MRI-based DOIs were slightly 
larger but consistent with those used for the pDOI, thus confirming the 
strong association between these two measurements. We found that the 
tumor dimensions may also contribute to further improvement of model 
accuracy particularly in discriminating between the T1 and T2 stages. 
Moreover, the use of ML-driven T staging based on MRI was particularly 
useful to better classify T1-stage tumors, which were frequently mis-
classified as T2-stage tumors— probably because of the larger impact of 
DOI overestimation, compared to pDOI, on measurements of a few 
millimeters [9]. 

Table 4 
Performance of the two proposed models for predicting CLNM in the training 
and validation sets.    

Training Set 

Selected 
Features 

Class Sensitivity Specificity Accuracy 
[95% CI] 

AUC 
[95% CI] 

Model 1: 
MR-based 
DOI 
MR-based 
Dimension 

N0/ 
Npos 

0.64 0.73 0.68 
[0.57,0.78] 

0.75 
[0.63,0.85] 

Model 2: 
-Energy 
-Maximum 
2D 
Diameter 
-Minimum 

N0/ 
Npos 

0.75 0.73 0.74 
[0.63,0.83] 

0.75 
[0.64,0.83]    

Validation Set 

Selected 
Features 

Class Sensitivity Specificity Accuracy 
[95% CI] 

AUC 
[95% CI] 

Model 1: 
-MR-based 
DOI 
-MR-based 
Dimension 

N0/ 
Npos 

0.55 0.81 0.69 
[0.51,0.84] 

0.64 
[0.50,0.79] 

Model 2: 
-Energy 
-Maximum 
2D 
Diameter 
-Minimum 

N0/ 
Npos 

0.60 0.71 0.67 
[0.49,0.81] 

0.66 
[0.50,0.81] 

AUC, area under the curve; CI, confidence interval. 
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The inclusion of shape-based and intensity-based features has not 
improved the pT stage model performance versus the simpler model 
based on MRI-based DOI and dimensions. Nevertheless, a number of 
features were significantly different among the pT stages suggesting a 
correlation between MRI-based signatures and the pathological stage as 
suggested by a recent study of Corti at al. focused on locally advanced 
OCSCC [19]. In particular, the minimum of the signal intensity 
decreased for higher tumor stages suggesting the presence of increasing 
necrosis areas, which previous studies have shown to correlate with 
largest and more aggressive tumors [22,44]. We also found that tumors 
with higher stages were characterized by a decrease in skewness: this 
might be because larger lesions typically also have more extensive 

contrast-enhancing parts, which may grow faster than poor enhan-
cing/necrotic regions causing an asymmetry of the signal intensity dis-
tribution towards the right side. 

Two competitive models were proposed to use MRI-based measure-
ments to correctly identify patients with and without CLNM. The first 
one was based on MRI-measured DOI and dimension. The second one 
had comparable accuracy but better sensitivity and included one 
signature derived from the shape-based family, i.e., a maximum 2D 
diameter, and two features derived from the intensity-based family: the 
energy (a measure of the signal intensity of voxels) and the minimum 
signal intensity already mentioned above. 

The potential of MRI-based DOI to discriminate patients with and 

Fig. 6. Confusion matrices of the training and validation sets, relative to the pT stage and CLNM models: including only MR-based DOI and dimension (a,b) or shape- 
based and intensity-based features (c). 
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without LN metastasis was already reported [4,5] suggesting an optimal 
cutoff between 7 mm and 10.5 mm to predict CLNM based on 
post-contrast T1-weighted imaging. However, this study not indicate a 
threshold value of DOI because we proposed decision models including 
at least two variables, whose combination was found to improve the 
model predictive power versus the DOI measurement alone [45]. 

Only a few studies have performed an MRI texture analysis to 
distinguish LN-negative from LN-positive patients in OCSCC [24,25]. 
Yuan et al. [24] found that the Naïve Bayes classifier was the best in 
accordance with our findings. Various models based on T2-weighetd 
and/or post-contrast T1-weigheted signatures were proposed. All of 
these models achieved comparable accuracies and AUCs to our results 
with fair to good specificity but poor sensitivity. Interestingly, Wang 
et al. [25] suggested analyzing not only the primary tumor volume but 
also the 10-mm peritumoral extension to possibly detect micrometa-
stasis and improve the sensitivity of CLNM predictions. 

This study does have some limitations. The retrospective nature and 
relatively small sample size of this study may have introduced biases and 
confounding factors. We did not extract textural or higher-order signa-
tures, thus we did not fully investigate the potential of MRI-based 
radiomics to predict both the pT stage and CLNM. Furthermore, we 
did not explore the correlation among MRI-based measurements, clini-
copathological factors, and treatment outcomes, i.e., locoregional con-
trol and disease-specific survival. These topics will be considered for 
future investigations. 

5. Conclusions 

MRI-based models driven by ML algorithms provide a good ability to 
stratify patients with OTSCC according to the pT stage and a fair-to-good 
ability to predict CLNM. Several shape-based and intensity-based fea-
tures have shown potential to improve the model sensitivity for pre-
dicting CLNM but the current level of accuracy is still inadequate and 
should be refined by a more sophisticated approach to MRI-based 
radiomics or by introducing other predictors. Further investigations 
with a larger patient population and a robust external validation are 
needed to corroborate our analyses. 
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