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Abstract: Knowledge of field-scale soil variability is essential for sustainable soil 
management. Traditional techniques, based on soil analysis, are costly and time-
consuming. An alternative method would be the use of visible-infrared reflectance 
spectroscopy coupled with multivariate analysis, specifically principal component 
analysis (PCA) and geostatistics.  
In this study, after brief reviews regarding reflectance spectroscopy, PCA, and 
geostatistics, we presented a methodological approach for digital soil mapping in a 
study area of Southern Italy. Reflectance spectra of 240 surface soil samples 
collected at geo-referenced sites, were decomposed by PCA. The first three 
components (PC1, PC2, PC3) explained most (98%) of the total variance of the 
initial data set, therefore, they were considered for the assessment of soil spatial 
variability by variography and kriging (geostatistics). The resulting PC1, PC2 and 
PC3 kriging maps were interpreted in the light of the information contents on 
reflectance spectra and compared with the results of a previous, conventional soil 
survey. The presented strategy seems to be efficient and reliable for mapping soil 
spatial variability.  
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Digital Soil Mapping. 
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1. Introduction 

Soils are rarely homogeneous at different spatial scales (Odlare et al., 2005). Varia-
tions in the soil properties, which are particularly evident over a large scale, may 
occur markedly also within a few hectares of farmland (field scale), due to small 
changes in topography and thickness of parent material layers or the effects of past 
human management (Brady and Weil, 2002). Despite this, soils are traditionally 
treated as homogeneous, with possible adverse effects on crop yield, management 
costs, and the environment. However, these effects can be contained, if not com-
pletely avoided, by adapting soil management to the site’s specific conditions, as 
assessed through the correct knowledge of the within-field variability. This is the 
purpose of the set of agricultural techniques, better known as "precision agriculture". 
A way to investigate within-field soil variability could be the production of detailed 
maps, based on many traditional chemical and physical analyses. However, these 
analyses are expensive and time-consuming. Therefore, this approach is unsuitable 
when soils need to be analysed, as in precision farming. Hence, the need to investi-
gate alternative techniques. Recently, particular interest has been shown towards re-
flectance spectroscopy in the visible and near-infrared visible domain (vis-NIR spec-
troscopy) (Leone et al., 2012). Vis-NIR reflectance spectroscopy is a rapid, cost-
effective, non-invasive, and non-destructive technique that requires only minimal 
sample preparation and does not require the use of hazardous chemicals (Viscarra 
Rossel et al., 2006). Vis-NIR reflectance spectroscopy is defined as the ratio between 
radiation reflected from the surface of a material (the soil, in our case) and the radi-
ation incident on it, at different wavelengths, between 350 and 2500 nm (Drury, 
1993). 

In the above-mentioned spectral region, each soil constituent has specific absorp-
tion properties, due to energy transitions, either electronic (in the visible) or vibra-
tional (in the near-infrared; Leone, 2000a). Therefore, soils with different chemical, 
physical and mineralogical properties show various spectral features. The latter can 
be conveniently analysed to acquire either qualitative or quantitative information on 
these properties (Leone et al., 2012), or to analyse and map the spatial distribution 
of the soil mantle (digital soil mapping) (Odlare et al., 2005; Viscarra Rossel and 
Behrens, 2010), in combination with multivariate and geostatistical data analysis. 
Although promising, the use of vis-NIR spectroscopy, combined with multivariate 
and geostatistical analysis, has been little used, also due to the lack of knowledge 
about the basic concepts of vis-NIR spectroscopy, multivariate statistical and geo-
statistical methods. The present work aims to provide a methodological contribution 
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to digital soil mapping based on soil spectral reflectance measurements, multivariate 
statistical methods, and geostatistics. 

2. Some basic concepts 

2.1 Soil spectral reflectance 

Soil is a semi-infinite medium relative to electromagnetic radiation. In other words, 
electromagnetic radiation incident on the soil is either absorbed within it or is re-
flected from its surface. The latter can be measured and then related to soil properties 
(Irons et al., 1989). The fraction of incident flux that is reflected is referred to as 
spectral reflectance is; it is usually measured in the spectral domains of visible (vis, 
350-780 nm) and near infrared (NIR, 780-2500 nm). For this, the spectral reflectance 
in the 350-2500 nm domain is commonly referred to as vis-NIR reflectance. How-
ever, sometimes, the spectral domain between 700 and 2500 nm is further divided 
into near infrared (NIR, 780-1100 nm) and short-wave infrared (1100-2500 nm). 

The vis–NIR spectral reflectance of a soil is affected by several chemical and 
physical properties, referred to as “chromophores”. A given soil sample consists of 
a variety of chromophores, which vary with environmental conditions. In many 
cases, the spectral signals related to a given chromophore overlap with those of other 
chromophores and thereby hinder the assessment of the effect of a given chromo-
phore (Ben-Dor et al., 1999).  

Water, organic matter, and minerals are the main chemical chromophores of a 
soil. Their influence on soil reflectance is related to vibrational motions and electron 
transitions. The vibrational motions consist of oscillations in the relative positions of 
bonded atomic cores. The oscillations either stretch molecular bond lengths or bend 
interbond angles. Energy level transitions involving nuclear vibrations typically re-
sult in the absorption or emission of radiation within the infrared portion of the spec-
trum (Irons et al., 1989). The electronic transitions involve changes in the energy 
levels of the electrons in soil atoms and molecules. Electronic processes produce 
absorption bands readily distinguishable from these produced by vibrational pro-
cesses based on their appearance, and from their general location in the spectrum. 
These bands occur mostly in the ultraviolet, and extend with diminishing frequency 
into the visible, but rarely appear in the infrared. The usual limit is an iron band near 
1000 nm (Irons et al., 1989; Hunt and Salisbury, 1970). On the other hand, very sharp 
bands in the near-infrared region are also observed. The frequency of occurrence and 
intensity of these bands decreases towards the visible range (Hunt and Salisbury, 
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1970). Below we briefly illustrate the effects of the main chemical chromophores on 
soil reflectance. 

2.1.1 Water 
Reflectance spectra of moist soils show prominent absorption bands centred at 1400 
and 1900 nm. These bands, along with weaker bands at 970, 1200 nm, and 1777 nm, 
are attributable to overtones and combinations of fundamental vibrational frequen-
cies of water molecules in the soil. In addition to absorption bands, increasing mois-
ture content generally decreases soil reflectance across the entire reflectance spec-
trum (Irons et al., 1989). 

2.1.2 Organic matter 
Organic matter has spectral activity throughout the entire VNIR-SWIR region, espe-
cially in the visible region. In general, the spectral reflectance decreases in the entire 
wavelength range between 400–2500 nm as the organic matter content increases 
(Hoffer and Johannsen, 1969). Baumgardner et al. (1970, 1985) observed that or-
ganic matter plays an important role on soil reflectance when its content exceeds 2% 
and that the reflectance spectra of soils rich in organic matter often have a concave 
shape between 500 and 1300 nm, compared with the convex shape of the spectra of 
soils with low organic matter contents. Due to the strong influence of organic matter 
in the visible region, a soil becomes darker with increasing organic matter. However, 
many other soil properties, such as texture, structure, moisture, and mineralogy, can 
influence this (Hummel et al., 2001), implying that darkness would only be a useful 
discriminator within a limited geological variation.  

Absorptions band by organic in the vis–NIR are often weak and not readily ap-
parent to the naked eye (Stenberg et al., 2010). These bands result from the stretching 
and bending of NH, CH, and CO groups (Ben-Dor et al., 1999; Bokobza, 1998; 
Goddu and Delker, 1960). 

Bands around 1100, 1600, 1700 to 1800, 2000, and 2200 to 2400 nm have been 
identified as being particularly important for soil organic carbon (Ben-Dor and 
Banin, 1995; Dalal and Henry, 1986; Krishnan et al., 1980; Henderson et al., 1992; 
Morra et al., 1991; Malley et al., 2000; Stenberg et al., 2010). Clark et al. (1990) 
assigned bands near 2300, 1700, and 1100 nm to combination bands and first and 
second overtones, respectively, of the C–H stretch fundamentals near 3400 nm. 

2.1.3 Minerals 
Clay minerals, iron-oxides, and carbonates are the most important minerals affecting 
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spectral reflectance. 
Kaolinite, smectite, and illite are the most abundant clay minerals in soils, partic-

ularly those from the Mediterranean region (Torrent, 1995). Kaolinite has character-
istic absorption doublets near 2200 and 1400 nm. The absorptions wavelengths near 
1400 nm (1393 and 1415 nm) are due to overtones of the O–H stretch vibration near 
2778 nm, while those near 2200 nm (2165 and 2207 nm) are attributed to Al–OH 
bend and O–H stretch combinations. 

Smectite has sharp characteristics absorptions bands near 1400, 1900, and 2200 
nm. The band near 1400 nm is partly due to the overtone of structural O–H stretching 
in the octahedral layer of this clay mineral. This band, along with that near 1900 nm, 
is also attributed to vibrational motions in the water molecules bound in the interlayer 
lattices, in the form of water adsorbed on particle surfaces and hydrated cations 
(Bishop et al., 1994). Such water is not present in kaolin. Therefore, the presence of 
a weak absorption band near 1900 nm may be used as a diagnostic feature for kao-
linitic dry soils. Illite also shows absorption bands near 1400, 1900, and 2200, which, 
however, are much weaker than those of smectite as well as near 2340 and 2445 nm 
(Post and Noble, 1993). The latter could be used to distinguish between illitic and 
smectitic soils (Post and Noble, 1993). However, they are weak, and especially the 
one near 2445 nm may be confused with absorptions due to organic matter. The 
spectral response of soils is strongly affected by the presence and abundance of iron 
oxyhydroxides (Leone, 2000a, 2000b, 2011). 

Goethite (𝛼–FeOOH) and haematite (𝛼–Fe2O3) are, by far, the most common Fe-
oxide mineral in soils (Torrent et al., 2007; Zhao et al., 2017). Both these minerals 
show broad and smooth absorption features in the visible-near infrared region, due 
to electronic transition. The spectra of goethite exhibit absorption bands in the near-
infrared, near 920 nm and four absorption bands in the visible, near 420, 480, 600 
nm (Leone, 2011). A band near 1700 nm can also be observed (Zheng et al., 2016). 
The spectra of haematite are characterised by three main absorption bands near 520, 
650 and 880 nm (Viscarra Rossel and Behrens, 2010; Viscarra Rossell et al., 2010; 
Leone, 2011). The absorptions in the visible region cause the vivid colours of Fe 
oxides, for example, yellow goethite and red haematite (Stenberg et al., 2010). 

Carbonates have several absorption bands in the short-wave infrared, due to over-
tones and combination bands CO3 fundamental (Clark et al., 1990). The strongest 
band occurs near 2335 nm, but some weaker absorptions occur near 2160, 1990 and 
1870 nm. In addition to chemical chromophores, as discussed above, the reflectance 
of light from the soil surface is dependent on several physical chromophores. Among 
these, soil texture, that is the size distribution of the soil mineral particles, plays a 
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significant role. As reported in Irons et al. (1989), the reflectance generally increases, 
and contrasts of absorption features decrease as particle size decreases. This behav-
iour is characteristic of transparent materials, and most silicate minerals behave 
transparently in the short-wave region. In contrast, the reflectance of opaque materi-
als decreases as particle size decreases. 

In common experience, clayey soils often appear darker than sandy soils even 
though primary clay particles are much smaller than sandy grains. The difference 
may be explained in part by the different mineralogies of clay and particles but may 
also be due to the tendency of clay particles to aggregate. 

2.2 Principal Component Analysis 

For reasons of completeness, we include a brief and modern treatment of principal 
component analysis (PCA). In what follows the main reference is Hastie et al. 
(2009), while references more specifically oriented to the type of problem we are 
dealing with are Odlare et al. (2005) and Viscarra Rossel and Chen (2011). 

Suppose that the normalized spectra have been arranged into a rectangular matrix 
𝑋 ∈ ℝ × , in which 𝑁 represents the number of sampled spatial locations, while 𝑝 
is the number of wavelengths at which the spectra have been sampled. The data ma-
trix is written in extended form as: 

 𝑋 =
𝑥
⋮

𝑥
, (1) 

which can be interpreted as a collection of 𝑁 points embedded into a 𝑝-dimensional 
Euclidean space (𝑝 ≤ 𝑁). We want to represent these data points through the follow-
ing reduced rank (rank 𝑞 ≤ 𝑝) affine model: 

 𝑓(𝜆) = 𝜇 + 𝑉 𝜆, (2) 

where 𝜇 ∈ ℝ , 𝑉 ∈ ℝ ×  and 𝜆 ∈ ℝ  is a q-dimensional parameter. In this repre-
sentation, columns of 𝑉  are assumed to be orthonormal; in other words, they are an 
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orthonormal basis of span(𝑉 ). This affine approximation must be optimal with re-
spect to the Euclidean normalization, minimizing the reconstruction error: 

 min
,{ },

𝑥 − 𝜇 − 𝑉 𝜆 . (3) 

It can be easily proved that a partial solution of the above optimization problem 
is given by the following expression (Hastie et al., 2009): 

 
�̂� = �̅�, 

𝜆 = 𝑉 (𝑥 − 𝑥), 
(4) 

where �̅� ∈ ℝ  is the p-dimensional vector of column means of the data matrix 𝑋. 
This solution is partial in the sense it depends on the orthogonal matrix 𝑉 ; it can be 
proved that an explicit expression for 𝑉  can be obtained exploiting the following 
Singular Value Decomposition (SVD): 

 𝑋 = 𝑈𝐷𝑉 . (5) 

In this decomposition we assume that 𝑋 has been preliminarily centred with re-
spect to column means,  𝑈 ∈ ℝ ×  and 𝑉 ∈ ℝ ×  are matrices with orthonormal 
columns 𝑈 𝑈 = 𝐼 = 𝑉 𝑉 , with 𝐼 ∈ ℝ ×  the identity matrix) and 𝐷 ∈ ℝ ×  is 
a diagonal matrix of non-negative entries. The columns of V are called the right sin-
gular vectors of X and are the eigenvectors of the matrix 𝑋 𝑋 ∈ ℝ ×  associated 
with its non-zero eigenvalues. The columns of U are called the left singular vectors 
of X and are the eigenvectors of the matrix 𝑋𝑋 ∈ 𝑋 ×  that correspond to its non-
zero eigenvalues. The diagonal elements of matrix 𝐷 are called the singular values 
of 𝑋 and are the non-negative square roots of the (common) non-zero eigenvalues of 
both matrix 𝑋 𝑋 and matrix 𝑋𝑋 . We assume that the diagonal elements of D, are 
in decreasing order and this uniquely defines the order of the columns of U and A 
(except for the case of equal singular values). Principal components are the columns 
of the following matrix: 

 ℤ = 𝑋𝑉 = 𝑈𝐷. (6) 

Columns of the ℤ matrix are also known as “scores”, as they represent the coor-
dinates of original spectra re-expressed in a new coordinate system obtained through 
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a rotation of the Euclidean space. Given the rank 𝑞 ≤ 𝑝, the solution 𝑉  is given by 
the first 𝑞 columns of 𝑉, and the columns of 𝑋𝑉  are denoted as PC1, PC2, and so 
on. Orthogonality of principal components is an immediate consequence of orthog-
onality of right singular vectors (Golyandina and Korobeynikov, 2014).  

Let 𝑆ℤ denote the sample variance-covariance matrix of ℤ. The trace of ℤ coin-
cides with the sum v of the variances of the original variables: 

 𝓈 = 𝑠 = 𝑡𝑟𝑎𝑐𝑒(𝑆ℤ), (7) 

in which 𝑠  denotes the sample variance of the i-th principal components. It is also 
well known that 𝑠 ≥ 𝑠 ≥ ⋯ ≥ 𝑠 ; based on this property, if we define the cumu-
lative variance as: 

 𝓈 = 𝑠 , (8) 

the following percentage measures the quota of variance of original variables ex-
plained by the first 𝑞 ≤ 𝑝 principal components: 

 
𝓈
𝓈

× 100%. (9) 

There are several heuristics to select a proper number 𝑞  of principal compo-
nents to retain. The most common consists in taking the first 𝑞  right singular vec-
tors to capture at least a fixed quota f of the total variance (e.g.: f = 0.95 or f = 0.98). 
Other more formal methods do indeed exist, even though they are not used here; the 
interested reader is sent back to the literature on the subject (Cadima and Jolliffe, 
2001; Jolliffe and Cadima, 2016; Orestes Cerdeira et al., 2020). 

A physical interpretation of principal components can be based on right singular 
vectors (or simply eigenvectors) contained in the matrix 𝑉, whose elements are also 
referred to as ‘loadings’. The i-th principal component is a linear combination of 
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original variables, with weights taken equal to the loadings of the corresponding ei-
genvector: 

 𝑋𝑣 = 𝑥 , 𝑥 , ⋯ , 𝑥

𝑣
𝑣

⋮
𝑣

= 𝑣 𝑥 + 𝑣 𝑥 + ⋯ + 𝑣 𝑥 , (10) 

where the data matrix 𝑋 has been written in terms of its p columns (variables). 
By analysing the profile of the loadings associated with each principal component 

it is often possible to reconstruct their meaning, since loadings represents the weight 
assumed by a specific wavelength in contributing to the determination of the corre-
sponding principal component. However, sometimes it may not be easy to extract a 
clear interpretation from loadings, and if additional variables measuring soil compo-
sition are available it is preferable to assess the association between the scores of 
principal components and soil variables. This is the approach followed, for example, 
by Odlare et al. (2005), but see also Viscarra Rossel and Behrens (2010). Sparse 
principal components (Zou et al., 2006) is another interesting possibility to improve 
interpretability, reducing the number of explicitly used variables by artificially set-
ting to zero the loadings having absolute values smaller than a predetermined toler-
ance. 

2.3 Geostatistics 

The objective of this section is to introduce a model that describes the spatial varia-
tion of each principal component 𝑍 , 𝑗 = 1,2, … , 𝑞 , that simultaneously allows to 
predict with minimum mean square prediction error its value at spatial locations that 
have not sampled. For this purpose, each principal component is considered as a 
regionalized variable: 

 𝑍 ≡ 𝑍 (𝑠 ) ;  𝑖 = 1,2, … 𝑁,   𝑠 ∈ 𝐷 ⊂ ℝ , 𝑗 = 1,2, … , 𝑞 . (11) 

where 𝐷 is the study area. In this way, observed principal components are considered 
as a realization of the random function: 

 {𝑍 (𝑠): 𝑠 ∈ 𝐷 ⊂ ℝ }. (12) 

The model used here to describe the spatial variation is the linear model of 
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regionalization (Wackernagel, 2013): 

 𝑍 (𝑠) = 𝜇 (𝑠) + 𝑊 (𝑠) + 𝜀 (𝑠), (13) 

where 𝜇 (⋅) = E(𝑍 (⋅)) is a deterministic function of spatial coordinates and repre-
sents the large scale expected variation, whereas component 𝜀 (⋅) represents the ir-
reducible error, modelled as a spatial White Noise with null expected value and un-
correlated with 𝑊 (⋅). The function 𝑊 (⋅) is an intrinsically stationary random func-
tion, whose increments are second-order stationary, for which it is possible to define 
a semi-variogram: 

 
𝛾 (ℎ) =

1
2
Var 𝑊 (𝑠 + ℎ) − 𝑊 (𝑠) =

=
1
2
E 𝑊 (𝑠 + ℎ) − 𝑊 (𝑠) .

 (14) 

The semi-variogram 𝛾 (ℎ) changes as the length and direction of vector h change, 
but it does not depend on its point of application. If 𝛾 (ℎ) depends on h only through 
its length ||ℎ|| (Euclidean norm), the random function 𝑊 (⋅) is said to be isotropic. 
Properties of theoretical variograms 2𝛾 (⋅) are well known, particularly those for 
whom a function of a spatial increment h is a valid theoretical variogram (Gaetan 
and Guyon, 2010). We will also always assume that the theoretical semi-variogram 
is continuous at zero in the isotropic case. This assumption is equivalent to assume 
that the random function 𝑊 (⋅) is L2-continuous (or mean-square continuous). With-
out insisting on mathematical details, L2-continuity allows to treat 𝑊 (⋅) as a random 
function modelling the local variation on small scale of soil properties, and guaran-
tees the existence of the spatial correlation function as a convenient tool to charac-
terize the soil microstructure (Cressie, 2015). 

The optimal linear predictor 𝑍(⋅) has known expression, either when 𝜇(⋅) =
E 𝑍(⋅) = 𝑏  or when it has a non-stationary structure, such as 𝜇(⋅) = 𝑏 + 𝑏 𝑠 +
𝑏 𝑠 , where 𝑠 = (𝑠 , 𝑠 ) are spatial coordinates. The empirical counterparts of the 
optimal linear predictor, under each one of these two scenarios, correspond to ordi-
nary kriging and universal kriging, respectively. The kriging equations for estimating 
the optimal linear predictor presuppose that the functional form of the semi-vario-
gram is known, except for a finite number of parameters. The theoretical semi-vari-
ogram has therefore to be replaced by a consistent estimate, and this fact causes sev-
eral mathematical difficulties, because we do not have theoretical guarantees that the 
empirical predictor remains optimal in the sense of mean square prediction error 
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(Bivand et al., 2013). A second difficulty is that kriging has not excellent predictive 
performances when the likelihood of the data is not Gaussian. In this case it is often 
convenient to transform the underlying random process, taking for example the log-
arithm of observed values (as principal components can assume negative values, an 
offset might eventually be added to ensure that all scores become strictly positive; 
Varouchakis et al., 2012). 

3. Materials and methods 

3.1 Site description and sampling 

The study covered the entire area (60 ha) of a farm located in the north-western part 
of the Campania region (Fig. 1), within the municipality of Capua (province of Ca-
serta). This area falls within an abandoned meander of the lower course of the F. 
Volturno (Aucelli et al., 2014). The production system is mainly oriented towards 
fruit and cereal growing. The main soil types are Haplic and Fluvic Cambisols and 
Haplic Luvisos (Grilli wt al. 2014; FAO-WRBSR, 2014). 

Figure 1. Localisation of the study area (41°06’09” N, 14°11’20” E). 
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Within the farm, surface soil samples were collected, at a depth of 20-30 cm, at 
240 geo-referenced sites (Fig. 2), more or less regularly spaced, falling approxi-
mately in the centre of a 50 × 50 m grid. After collection, the soil samples were 
transported to the laboratory, air-dried, sieved (2 mm), and finely ground before be-
ing subjected to reflectance measurements. 

 
 

Figure 2. Sampling grid of the investigated field. 

 

3.2 VIS-NIR spectroscopy 

The diffuse vis–NIR spectral reflectance was measured in the laboratory, on a resid-
ual fraction of soil samples, under controlled light conditions, using the procedure 
described in Leone et al. (2019). Noisy portions of the measured reflectance spectra, 
between 350 and 399 nm and between 2451 and 2500 nm, were removed, leaving 
spectra in the range of 400-2450 nm for the analysis. The resulting reflectance spec-
tra were normalized, using the continuum removal approach (Clark and Roush, 
1984), see Fig. 3. To this end, a convex hull was fitted over the original spectral 
curve, and the absorption spectrum was then calculated considering the ratio between 
the original reflectance spectrum and the enveloping curve (de Jong, 1992; van der 
Meer, 1999). 
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Figure 3. Sample soil vis–NIR spectrum displayed as percent reflectance, convex-hull and 
continuum removed reflectance. The plot shows regions of the spectrum that hold important 
information on soil constituents. 

 

3.3 Data pre-processing 

The vis-NIR spectra hold redundant information due to the high degree of correlation 
between neighbouring wavelengths. For this reason, PCA was performed on the nor-
malized spectra, from which their means (centred data) were subtracted (Viscarra 
Rossel and Chen, 2011). The initial data were not standardized to the unit of variance 
since all wavelengths were referred to the same unit, and the differences in their 
variability were relevant in themselves. 

The results of PCA condense the information contained in the spectra. The load-
ings describe how much each variable contributes to a particular principal compo-
nent. The PCA reduces the dimensionality of the data, in this case, the reflectance, 
in a few components, which describe most of the original variance. The first compo-
nent explains most of the variance, while the subsequent components explain a 
smaller, progressively decreasing portion. 
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3.4 Spatial data analysis 

The spatial patterns of the first three principal components were analysed using ge-
ostatistical analysis. For each principal component, a semi-variogram 𝛾 (ℎ) was es-
timated which provides a means of quantifying the spatial variation of a variable by 
measuring the degree of correlation between sampling points separated by a given 
distance (Webster and Oliver, 2007). The typical parameters on which a theoretical 
semi-variogram model depends are nugget, range, and sill (Fig. 4). 

Figure 4. Examples of semi-variograms: I Linear; II Spherical; III exponential; IV Gaussian. 
The model parameters nugget (Co), sill (Co+C) and range (a) are shown. 

 
 

The nugget corresponds to the positive intercept with the y-axis. It is interpretable 
as the effect of measurement errors, also due to the finite scale at which the phenom-
enon is observed. Therefore, it increases as the inaccuracy of the measurements in-
creases, i.e., when the sampling interval is too wide. The range is the minimum sep-
aration distance at which observations no longer exhibit any spatial correlation. The 
sill is the point where the theoretical semi-variogram model reaches a limit value 
(possibly asymptotically) and measures the total variability of the phenomenon. The 
estimation of the parameters of the theoretical model of semi-variogram is carried 
out by placing the model in question next to an empirical semi-variogram calculated 
on data (Cressie, 2015). The estimated theoretical semi-variogram is used to produce 
a digital map in which the phenomenon under study (in this case, the first three main 
components analysed separately) is spatially interpolated even outside the sampling 
sites, through the optimal linear predictor known as kriging. 

All the analyses presented next paragraph were carried out using the R 3.6.3 soft-
ware (R Core Team, 2020). 
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4. Results and discussions 

About 98% of the variance of the original spectral data set is explained by the first 
three principal components (Fig. 5). In particular, PC1 and PC2 are capable to de-
scribe 96.94% of the overall variance, while passing to the first three components 
together, the overall variance increases to 98.34% (against a modest increase to 
99.27% obtained using four components). For this reason, only the scores of the first 
three principal components were used as input for subsequent analyses.  

Figure 5. Variances of the first 10 principal components (a), and percentage of the cumula-
tive variance described by the first 10 principal components. Horizontal bars indicate the 
number of components which reproduce at least 95% or 99% of the original variability of the 
normalized vis–NIR spectra (b). 

 

 
 

The frequency distribution of the scores of the first three principal components is 
shown in Fig. 6; from this figure, it is evident that the scores of PC2 present a mod-
erate degree of negative skewness and kurtosis. This reminds us of the probable need 
for a preliminary logarithmic transformation. It is also evident the presence of some 
presumable anomalous values (particularly in PC2) located in the left tail of the dis-
tribution. 
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Figure 6. Frequency distribution of scores of the principal components PC1, PC2 and PC3. 
The empirical coefficient of asymmetry (Skew) and that of kurtosis (Kurt) is also reported 
above each graph. 

 
 
Figure 7 shows the eigenvectors of the first three principal components. The ei-

genvector of the first principal component showed a steep increase toward the blue 
and ultraviolet wavelengths, mainly due to a strong iron–oxygen charge transfer 
band, associated with the presence of iron–oxides, that extend into the ultraviolet 
(Hunt, 1980). The higher values of loadings in the visible range of the first principal 
component might be partly due to soil organic carbon (McCauley et al., 1993; Shonk 
et al., 1991). The eigenvector of the second principal component was dominated by 
positive loadings near 1400 and 1900 nm, which might be due to 1:1 layer clay min-
erals (mainly, smectite), specifically to structural O–H stretching mode in its octa-
hedral layer (1400 nm) and combination vibrations of water bound in the interlayer 
lattices as hydrated cations and water adsorbed on particle surfaces (1400 and 1900 
nm) (Bishop et al., 1994; Clark et al., 1990).  

Finally, the eigenvector of the third principal component had negative loadings 
near 1400 and 1900 nm (mainly due to smectite, as previously discussed) and near 
2200 nm, due to Al-OH bend in the lattice of 1:2 layer clay minerals (mainly kaolin-
ites) (Clark et al., 1990). Table 1 shows the model parameters of the semi-variograms 
used for the spatialization of the first three principal components. 
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Figure 7. Eigenvectors (loadings) of the first three principal components (PC1, PC2, PC3). 

 
 
The estimated parameters (using the generalized least squares method; Cressie, 

2015) of the theoretical semi-variogram models chosen for the three components 
were reported in Table 1: the empirical semi-variogram was estimated up to 80% of 
the maximum theoretically possible distance within the map being studied. The 
choice of theoretical semi-variogram models, has been largely justified on the basis 
of an assessment of the goodness of adaptation made ‘by eye’, even though more 
sophisticated approaches are indeed possible. To map the information content of the 
main components, we performed the spatial prediction by means of ordinary kriging 
on a regular discrete grid containing about 2.23 x 106 points. 

Table 1. Variogram model parameters of the first three principal components. The Gaussian 
model reaches its sill asymptotically. 

Variable Model Nugget Sill Range C/(C+Co) 
PC1 Spherical 2510 3022 710 0.17 
PC2 Gaussian 1400 2390 590 0.41 
PC3 Gaussian 42 105 600 0.60 

 
Fig. 8 shows the spectral maps resulting from the spatialization of the scores of 

the first three principal components. We have reported the optimal linear forecast 
calculated on the grid (on the left), as well as the corresponding variance of the pre-
diction error (on the right). The quality of the forecasts is somewhat stable across the 
map, and, as expected, only a modest decline towards the edge of the area under 
study is highlighted. 
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Figure 8. On the left: kriging maps of the first three principal components (using variogram 
models as reported in Table 1). On the right: maps of the relative kriging prediction variance. 

 

 

 



Leone A.P., Fragnito F. – Geostatistical analysis of soil reflectance spectra 113

 

The first principal component, as previously discussed, mainly represents the 
content of iron oxides (Fig. 7). Therefore, we can affirm that the soils of the south-
ernmost area of the investigated company surface (higher PC1 scores), morphologi-
cally higher, have higher contents of oxides than iron. This hypothesis is consistent 
with the geochemical dynamics of soil Fe, strongly influenced by the redox condi-
tions of the medium. In oxidizing conditions, more frequent in the morphologically 
higher areas of the study area, Fe tends to become insoluble, forming oxyhydroxides. 
Under reducing conditions, determined by conditions of prolonged water stagnation, 
more frequent in the morphologically more depressed areas of the study area, the 
iron compounds dissolve readily, freeing Fe2+. 

The second principal component represents above all the clay mineral contents 
of the smectite group. Therefore, the northernmost areas (higher values of the scores) 
of the study area are likely to be those with the highest clay mineral contents. The 
third principal component, as already mentioned, is instead inversely related to the 
clay mineral contents, both of the smectite group and the kaolinite group. This result 
further confirms the increasing trend of these minerals and, probably, of the finer 
particle size fractions proceeding from south to north of the company surface. The 
spectral patterns of the maps relating to the first three principal components (Fig. 8) 
are consistent with the variability of the soils and their properties, as previously out-
line in a traditional soil study (Grilli et al., 2014). 

5. Conclusions 

Vis-NIR spectroscopy, coupled with multivariate statistics and geostatistics, is a use-
ful tool for mapping the spatial variability of soils (digital soil mapping). The reflec-
tance spectra in the Vis-NIR domain contain relevant information on the chemical, 
physical and mineralogical properties of soils. Multivariate statistical analysis, par-
ticularly principal component analysis, is an important tool to condense the highly 
interrelated reflectance values into a few synthetic variables (principal components), 
uncorrelated to each other. The geostatistical analysis allows spatializing the princi-
pal components and produces spectral maps, which can be interpreted in the light of 
the known relationships between reflectance and soil properties. 

In this study, the spectral maps of the first three principal components have been 
realized and interpreted. Future studies will be necessary to combine the information 
contained in the principal component maps, possibly in combinations with other 
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digital maps (e.g. morphometric maps) using classification and/or data-fusion meth-
ods, to produce discretized maps of soil variability, most useful for practical uses. 
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