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A B S T R A C T

A data-based reduced-order model (ROM) is developed to accelerate the time integration of stiff chemically
reacting systems by effectively removing the stiffness arising from a wide spectrum of chemical time scales.
Specifically, the objective of this work is to develop a ROM that acts as a non-stiff surrogate model for the
time evolution of the thermochemical state vector (temperature and species mass fractions) during an otherwise
highly stiff and nonlinear ignition process. The model follows an encode-forecast-decode strategy that combines
a nonlinear autoencoder (AE) for dimensionality reduction (encode and decode steps) with a neural ordinary
differential equation (NODE) for modeling the dynamical system in the AE-provided latent space (forecasting
step). By means of detailed timescale analysis by leveraging the dynamical system Jacobians, this work shows
how data-based projection operators provided by autoencoders can inherently construct the latent spaces by
removing unnecessary fast timescales, even more effectively than physics-based counterparts based on an
eigenvalue analysis. A key finding is that the most significant degree of stiffness reduction is achieved through
an end-to-end training strategy, where both AE and neural ODE parameters are optimized simultaneously,
allowing the discovered latent space to be dynamics-informed. In addition to end-to-end training, this work
highlights the vital contribution of AE nonlinearity in the stiffness reduction task. For the prediction of
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homogeneous ignition phenomena for H2-air and C2H4-air mixtures, the proposed ROM achieves several orders-
of-magnitude increase in the integration time step size when compared to (a) a baseline CVODE solver for the
full-chemical system, (b) statistical technique – principal component analysis (PCA), and (c) computational
singular perturbation (CSP), a vetted physics-based stiffness-reducing modeling framework.
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1. Introduction

High-fidelity numerical simulations of turbulent reacting flows are
one of the most demanding computational tasks due to (i) a large num-
ber of reactive scalar variables which translates into a large number of
transport equations, and (ii) the wide range of spatio-temporal scales
arising from chemical reactions and transport phenomena [1–4]. The
Kolmogorov scales and flame thickness dictate the spatial resolution
requirements, and the detailed chemical kinetic mechanism imparts
complex nonlinear reaction source terms with a range of timescales
from pico- to a few seconds arising from different elementary reaction
rates. Such temporal stiffness is truly a major challenge that cannot be
easily resolved by the common parallel computing framework.

According to the method of lines, the system of conservation equa-
tions are cast into a large number of coupled ordinary differential
equations (ODEs). To address the disparities between the chemical
and transport timescales, reacting flow simulations often resort to
operator splitting strategies that decouple the effects of chemistry from
transport, such that a larger simulation time step is used for integrating
the transport processes (convective and diffusive timescales), while
the stiff chemical source terms are integrated with a dedicated time
integrator. This approach not only needs to deal with splitting errors
carefully [5] but also does not eliminate the stiffness associated with a
large spectrum of chemical timescales. For this, implicit schemes based
on backward differentiation formula (e.g., CVODE [6]) are commonly
used at a substantial computational overhead required for the operation
of a large Jacobian matrix. Hardware-oriented acceleration pathways
have been developed in recent years to alleviate this cost, such as
GPU-optimal treatment of chemical source term evaluations [7,8] and
load-balanced strategies for GPU-based time integration [9–11]. To
achieve high-fidelity reacting flow simulations at large scales, however,
advanced model-oriented solutions that accelerate chemical time in-
tegration by many orders of magnitude, without loss of fidelity, are
needed.

Common approaches to accelerate chemistry computations are cate-
gorized as follows: (1) mechanism simplification by removing species/
reactions, (2) tabulation of chemical source terms via composition-
space partitioning or neural network-based strategies, and (3) reduced-
order models (ROMs) to alleviate the stiffness in chemical timescales.
It should be noted that conventional modeling approaches in all of
these categories can be either physics-based or data-based [3]. Data-
based methods benefit from being able to model highly complex physics
present in either experimental or numerical high-fidelity datasets di-
rectly, albeit at the cost of a potentially expensive training stage. In
recent years, the class of ‘‘physics-informed’’ data-based models has
emerged, attempting to combine the two pathways to reduce model
dependence on the training stage and physical configuration [12]. In
case the model speedup benefit outweighs this training cost, data-
driven methods based on machine learning have shown considerable
promise over purely physics-based models in many reacting flow appli-
cations [13].

The first class of models consists of mechanism simplification strate-
gies that seek to reduce the number of species and reactions in the de-
tailed kinetic mechanisms, based on optimally preserving some macro-
scopic quantity of interest (e.g., ignition delay time). These ‘‘skeletal’’
kinetic mechanisms can be generated upfront [14–18] or on the fly [19]
by eliminating certain species that are deemed less significant or neg-
ligible in the overall reaction process. Though the number of ODEs is
reduced, the simplified system does not explicitly guarantee a reduction
2

in chemical stiffness, since both fast and slow chemical pathways are
typically retained. As such, chemical time integration often remains
expensive even when skeletal mechanisms are utilized.

The second class of models accelerates evaluations of the expensive
chemical source term using tabulation strategies. Physics-based ap-
proaches in this category, such as in-situ adaptive tabulation (ISAT) [20]
and the PRISM approach [21], tabulate the thermochemical state space
using chemical source term characterizations. For example, in ISAT, the
region of influence of a tabulation point is governed by an ellipsoid
defined by a singular value decomposition of the Jacobian of the chem-
ical source term. Data-based tabulation approaches typically leverage
artificial neural networks (ANNs) for memory-efficient accelerated
source term tabulation [22–24], with recent efforts leveraging unsuper-
vised data-based partitioning strategies (e.g., local principal component
analysis [17,25], random forests [26], and K-means clustering [27]) to
guide localization of tabulation strategies and other models.

The third class of models (ROMs or similar surrogates) leverage
projection operations to transform the original dynamical system into
an alternative representation that is easier to integrate by utilizing the
reduction of dimensionality or stiffness, or both. A popular approach
is the principal component analysis (PCA), in which linear projection
operators derived from data are used to produce a low-dimensional
latent representation of the thermochemical state [28,29]. These latent
representations can then be integrated using the projected governing
equations or data-based prognostic models. Autoencoders (AEs), a non-
linear generalization of PCA, have also been successfully used in recent
work for similar dimensionality reduction and ROM tasks [30,31]. Still,
conventional PCA and AE-based projections do not guarantee stiffness
reduction, as the PCA method has no knowledge of the temporal
dynamics and therefore cannot be expected to act on intrinsic system
timescales.

On the other hand, surrogates based on temporal dynamics, such
as the quasi-steady state assumption (QSSA) [32], directly reduce both
the stiffness and size of the chemical system by replacing the ODEs for
the fast variables with algebraic relations. Successful implementation
f QSSA relies on user expertise in identifying the fast variables, and
hus, the method cannot be generalized for larger systems. This issue
as successfully addressed by the computational singular perturbation

CSP) technique [33,34], and similarly by the intrinsic low dimensional
anifold (ILDM) approach [35]. By constructing CSP basis vectors of

he Jacobian matrix of the local chemical source terms [36–38], the fast
ime scales originating from the chemical source terms are segregated
y projecting the dynamics onto its local slow invariant manifold (SIM),
herefore constructing a slow reduced-order model. The resulting non-
tiff (algebraically constrained to the SIM) equations can be solved
sing an explicit ODE solver with a much bigger time step size, typically
qual to the fastest of the slow intrinsic time scales. However, one of
he major issues in this method is that the calculation of the projection
asis becomes increasingly expensive for larger mechanisms. Machine
earning strategies have recently been used to tabulate the evaluation
f the CSP projection basis to reduce this cost [39], but ultimately,
fficient computation of a local basis remains a challenge in achieving
ccelerated computing.

Earlier application of deep neural networks (DNNs) was mainly to
redict the chemical source terms by taking the thermochemical state
s an input [22]. In this approach, the training dataset consists of the
hermochemical state and the corresponding source terms. The fully
rained network is integrated with the flow solver and advanced in
ime using an explicit ODE solver. Due to the strong nonlinearities,
owever, the errors in the chemical source term predicted by the DNN
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accumulate over time and often result in failure of time integration.
Recently, sequence models were used to improve stiff ODE integration
and time evolution of the thermochemical state. In this regard, con-
tinuous time echo state networks are used to model the stiff chemical
kinetics [40] and predict the thermochemical state at any time instant
by adaptively changing the time step size. Alternatively, Ji et al. [41]
proposed a PINN-based framework for the solution of chemical kinetics,
where QSSA is employed for neural network training.

In the meantime, a different approach referred to as the neural ODEs
(NODE) [42] have been adopted to solve the stiff chemistry ODEs [43].
The NODE replaces the memory-intensive backpropagation step with
an adjoint sensitivity method, which results in efficient neural network
training (with multiple parameters). This approach has been used [43]
to solve the chemistry ODEs by assigning each chemical state with a
neural network, as the native NODE implementation has difficulties in
handling stiff systems, because solving an adjoint system as a final value
problem results in instability during the training. To overcome this, Kim
et al. [44] introduced a forward mode adjoint sensitivity method, but
its computational cost hinders its feasibility for larger neural networks.
These methods primarily focus on modeling stiff chemical systems
without altering the degree of stiffness, thus still requiring small time
step sizes or needing to rely on implicit ODE solvers. As an alternative
to a stiff ODE solution, Dikemann et al. [30] combined autoencoder and
neural ODE with a stiffness-based regularizer. This approach enhanced
accuracy and achieved a maximum speedup of 3.1× for a perfectly
stirred reactor model.

The above pioneering studies laid the foundation for employing
data-driven methods for the accelerated solution of stiff chemical sys-
tems while preserving fidelity. In contrast to traditional techniques
such as QSSA and CSP, which are theoretically founded and explicitly
target reduced-order models by actively eliminating fast time scales,
data-driven methods were able to learn global nonlinear coordinate
transformations from the data that are capable of significantly reducing
the stiffness of the system. However, questions such as how the data-
driven methods achieve stiffness removal and nonlinear dimensionality
reduction, and how the two objectives are inter-related, need to be
better understood.

Motivated by the above, this study aims to develop a stiffness-
eliminating data-based ROM that fits within the class-(3) above, by
leveraging machine learning to simultaneously learn (a) a nonlinear
mapping between the full-order thermochemical space and a low-
dimensional latent space with larger characteristic timescales, and (b)
a surrogate model for the dynamical system in this discovered non-stiff
latent space. This is accomplished with a combination of autoencoders
(AEs) and neural ODE (NODE) [42]. The goal is to ensure that the
learned projection operator results in a latent space that eliminates
unnecessarily fast timescales. In contrast to CSP, this work obtains a
global stiffness-elimination basis from data through a dynamics-informed
training strategy. In this context, dynamics-informed means that the
dimensionality reduction process is informed by the latent dynamical
evolution rule during the training procedure.

To this end, we train an autoencoder with neural ODE (AE+NODE)
architecture to develop a non-stiff ROM for integrating the stiff chem-
istry ODEs. Employing the H2-air [45] and C2H4-air [46] mechanisms
and zero-dimensional homogeneous ignition reactor datasets, we exam-
ine: (1) the time integration accuracy of the obtained ROM compared
to a classic implicit ODE solver (i.e., Cantera-based CVODE [47]), (2)
the computational gain in terms of time step requirement compared to
CVODE, PCA, and the CSP solver, (3) the intrinsic timescales developed
by the model in the latent space, and (4) the mechanism of stiffness
removal using the evolution of the state variables in the latent space.
Furthermore, we explore the relationship between the dimensionality
reduction method (linear vs. nonlinear AE), latent space dimension,
number of hidden layers, and simultaneous vs. two-step training of AE
and neural ODE on stiffness removal and computational gain.
3

The rest of the manuscript is organized as follows: Section 2 de-
scribes the computational methodology employed in two parts (theory
and neural network architecture). The results are presented in Section 3
with a discussion of the important contributions of the present study.
Finally, Section 4 summarizes the work and suggests possible future
directions.

2. Methodology

This section describes the computational methodology in two sub-
sections. The first part reviews the definition of stiffness in chemi-
cal kinetics, followed by the description of the CSP theory and PCA
analysis. The second part discusses the neural network architecture
employed, which is further organized into three subsections to describe
(a) autoencoders and their working principles, (b) the concept of neural
ODE as a direct integration by approximating the latent source terms,
and (c) the neural network architecture combining autoencoders and
neural ODE.

2.1. Stiffness, CSP, and PCA

2.1.1. Stiffness in chemical kinetics
A system of differential equations is considered stiff if it constitutes

a wide range of time scales. Since the fast and slow chemical timescales
act on the solution variables in a highly coupled manner, it is difficult
to define and distinguish the fast and slow characteristics of different
chemical species in a realistic system. Consider a linearized ODE system
(Eq. (4)) in a given state point, 𝜓 ′ = 𝐉𝜓 , where 𝐉 is the Jacobian matrix
of the chemical source term given by
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having dimension
(

𝑁𝑠𝑝 + 1
)

×
(

𝑁𝑠𝑝 + 1
)

. The local dynamics of the
system are characterized by the eigenvalues and eigenvectors of 𝐉, ob-
tained by its spectral decomposition. The reciprocals of the eigenvalues
𝜆𝑗 of 𝐉 represent the intrinsic timescales of the reacting system. The
stiffness, 𝑆, of the system is defined as the ratio of the maximum (fastest
scale) to the minimum (slowest scale) eigenvalues of 𝐉:

𝑆 =
max𝑗{|𝑅𝑒(𝜆𝑗 )|}

min𝑗{|𝑅𝑒(𝜆𝑗 )|}𝜆𝑗≠{0}
=
𝜏𝑠𝑙𝑜𝑤𝑒𝑠𝑡
𝜏𝑓𝑎𝑠𝑡𝑒𝑠𝑡

(2)

The stiff nature of the chemical kinetics yields a large value of 𝑆. In
many complex combustion systems, the fastest time scale may be as
small as 10−12 s, several orders of magnitude smaller than that of the
transport processes. Nonetheless, typical chemical kinetic systems fall
under a different class of ODE systems called the singularly perturbed
system [48], where the fast and slow dynamics are largely separated
into two groups. The fundamental approach to treating such multi-
scale dynamics is to use a suitable coordinate transformation, which
decouples the fast and slow dynamics. Then, computing the decay of
fast motions aids in identifying an attractive slow invariant manifold
(SIM), over which the slow dynamics evolve and thereby present an
opportunity for a simplified treatment of the ODE problem. Such SIMs
are well approximated by the eigenspaces of the linearized system.
In the high-fidelity simulation of reacting flows, a different approach
called operator splitting is employed to improve the overall time step
size and is described as follows.

In an operator splitting framework [49], chemistry is separated
from transport (convection + diffusion), and sub-cycling is employed
to solve chemistry ODEs. This was commonly implemented in the
direct numerical simulation (DNS), such as KAUST adaptive reacting
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Fig. 1. Constant-pressure homogeneous ignition of H2-air mixture at P = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K. Time evolution of (a) eigenvalues of 𝐉 and temperature (b) number
of exhausted modes (M) and temperature. Eigenvalues associated with the fast/slow modes are shown in gray/green, (M+1)-th eigenvalue is shown in blue. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
flow solver (KARFS) [50,51], and the speedup obtained by employing
operator splitting with chemistry sub-cycling has been demonstrated.
However, integrating these ODEs using an implicit solver consumes a
significant portion of computational time (approximately 30% to 50%)
and is limited by the time step size. The state variables governing the
operator split chemistry are given by [52]:

𝜑 =
[

𝑇 , 𝑌1, 𝑌2,… , 𝑌𝑁𝑠𝑝
]⊺

(3)

and the nonlinear ODEs governing the time evolution of the above state
variables are given by:

𝑓 =
𝜕𝜑
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(5)

and 𝑇 is temperature, 𝜌 is the mixture density, 𝑐𝑝 is the mixture-
averaged constant pressure specific heat, 𝑌𝑘, ℎ𝑘, 𝑊𝑘, �̇�𝑘 are the mass
fraction, enthalpy, molecular weight, net production/consumption rate
due to chemical reactions, respectively, of the 𝑘th species, and 𝑁𝑠𝑝 is
the number of species and 𝑡 is time.

2.1.2. CSP theory
The CSP method [53] is a widely known technique used to approx-

imate local slow manifolds and, therefore, characterize the spectral
behavior of kinetic systems. In the CSP method, the vector field is
decomposed into
𝜕𝜑
𝜕𝑡

= 𝑓 = 𝑎1ℎ
1 +⋯ + 𝑎𝑀ℎ𝑀 + 𝑎𝑀+1ℎ

𝑀+1 +⋯ + 𝑎𝑁ℎ𝑁 (6)

where the CSP modes 𝑎𝑖 can be approximated with leading order
accuracy by the right eigenvectors of 𝐉 and the mode amplitudes ℎ𝑖
are defined as ℎ𝑖 ∶= 𝑏𝑖 ⋅ 𝑓 , with 𝑏𝑖 being the left eigenvectors of
𝐉. By definition, the right and left eigenvectors are orthonormal to
each other such that 𝑏𝑖 ⋅ 𝑎𝑗 = 𝛿𝑖𝑗 = 𝐈, where 𝛿𝑖𝑗 is Kronecker delta
and 𝐈 is the identity matrix, thus satisfying the equality in Eq. (6).
Each mode amplitude in Eq. (6) evolves according to an exponential
decay/growth exhibiting a time scale 𝜏𝑖 = 1∕|𝜆𝑖|. Based on the time
scale magnitude, we arrange the terms in ascending order, given as
𝜏1 < ⋯ < 𝜏𝑀 ≪ 𝜏𝑀+1 < ⋯ < 𝜏𝑁 . The CSP technique identifies [54]
the spectral gap between 𝜏𝑀 and 𝜏𝑀+1, therefore separating a fast
subspace spanned by the eigenvectors {𝑎𝑖}𝑖=1,…,𝑀 , and a slow subspace,
spanned by {𝑎𝑖}𝑖=𝑀+1,…,𝑁 . The fast (exhausted) modes are defined as
the modes having a vanishing amplitude within a (𝜏𝑀+1) time frame,
thus establishing a set of 𝑀 algebraic constraints ℎ𝑖(𝜑) ≈ 0 that define
4

a (𝑁−𝑀)-dimensional SIM in the thermo-chemical composition space.
Consequently, a slow submodel 𝜕𝜑

𝜕𝑡
|

|

|𝑠𝑙𝑜𝑤
≈

∑𝑁
𝑀+1 𝑎𝑖ℎ

𝑖 evolves over the
SIM with a driving (fastest of the slow) timescale of order 𝜏𝑀+1.

The CSP method exploits a local (linearized) coordinate transfor-
mation that projects the physical variables 𝜑, affected by the coupled
fast/slow processes, into the intrinsic CSP variables 𝜂𝑖 ∶= 𝑏𝑖 ⋅ 𝜑. Each
linear combination 𝜂𝑖 is decoupled in time from the others, being either
a fast or a slow variable, with simple dynamics given by 𝑑

𝑑𝑡 𝜂𝑖 = 𝜆𝑖𝜂𝑖. To
draw a parallel with other projection-based methods, the CSP slow vari-
ables {𝜂𝑖}𝑖=𝑀+1,…,𝑁 can be thought of as the latent variables in the slow
embedding. However, because of the non-linearity of the vector field
in the ODE system (Eq. (4)), the eigendecomposition of its linearized
version varies slowly along a trajectory, implying that the local tangent
space also rotates moving along the SIM so that the linear combinations
defining the latent variables change as well. Fig. 1a shows the 10
eigenvalues1 {𝜆𝑖}𝑖=1,…,𝑁𝑠𝑝+1 computed along an ignition trajectory of a
hydrogen-air mixture in a constant-pressure homogeneous reactor. The
eigenvalues are plotted in the form 𝑙𝑜𝑔10(𝑎𝑏𝑠[𝜆𝑟𝑒𝑎𝑙])×𝑠𝑖𝑔𝑛(𝜆𝑟𝑒𝑎𝑙) in order
to visualize both the magnitudes and signs simultaneously.

As expected, the eigenvalues are not constant but vary in time
because of the nonlinearity of 𝑓 , although they become nearly con-
stant when the system approaches the equilibrium point. One positive
eigenvalue shows up in the pre-ignition part of the trajectory, denoting
an explosive character of the system. The CSP decomposition allows
the separation of the eigenvalues associated with fast (gray) and slow
(green) modes by recognizing the number 𝑀 of fast modes. Therefore,
the (M+1)-th eigenvalue (blue) denotes the fastest eigenvalue of the
slow subspace. The temporal variation of the fast subspace dimension
𝑀 implies that the slow manifold dimension (N-M) changes along the
system trajectory. A smaller 𝑀 implies that a smaller number of modes
are exhausted and fast, and a larger number of modes are active and
slow, and because of this, the driving time scale 𝜏𝑀+1 is faster, i.e., the
dynamics on the SIM is faster and higher-dimensional. Fig. 1b shows
that this happens around 𝑡 = 0.2 ms when only 2 modes are exhausted
and the slow dynamics advances with a time scale of (10−6𝑠) over
a 4-dimensional SIM. Note the presence of a positive eigenvalue in
the initial part of the ignition trajectory. Likewise, a larger 𝑀 implies
that most of the degrees of freedom are exhausted and the slow dy-
namics are lower-dimensional. When the ignition phase is concluded
(𝑡 > 0.2 ms), the system approaches its equilibrium and the modes
progressively turn fast/exhausted, until the slow dynamics become one-
dimensional (only 1 mode is active) towards the equilibrium point, with

1 the actual number of non-zero eigenvalues is 𝑁𝑠𝑝 +1−𝑁𝑒 −1 because the
𝑁𝑒 atomic conservation laws and the enthalpy conservation of this specific
model problem reveal themselves as zero eigenvalues. Therefore, we have 6
degrees of freedom.
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a leading (unique) time scale of (10−4𝑠). In summary, the dynamics of
he hydrogen ignition problem, with a total of 6 degrees of freedom,
volves on a SIM whose dimension varies from 4 to 1.

As will be shown later, we resort to data-based projections using
uto-encoders to identify an abstract latent space, which can reduce
he system dimensionality and simultaneously eliminate the stiffness.

.1.3. Principal component analysis (PCA)
Principal component analysis (PCA) is a statistical technique used

o decrease the dimensionality of a system by identifying a reduced
et of uncorrelated variables, called principal components (PCs), with

minimum loss of information [55]. The principal components are
inear combinations of the original 𝑄 variables, and the first 𝑞 PCs (with
𝑞 < 𝑄) allow for a low-dimensional representation of the system as they
contain most of the information present in the original data. The scores
of each PC are then transported in a numerical simulation, leading to
a reduced set of equations [28].

Starting from a centered and scaled input data matrix 𝐗, consisting
of 𝑛 observations of 𝑝 variables, the PCs are obtained by means of an
eigenvalue decomposition of the system’s covariance matrix 𝐒:

𝐒 = 1
𝑛 − 1

𝐗𝑇𝐗 (7)

𝐒 = 𝐀𝐋𝐀𝑇 . (8)

The columns of the basis matrix 𝐀 represent an orthonormal basis of
eigenvectors (the PCs) and the diagonal elements of 𝐋 are the associated
eigenvalues. Thereafter, the original variables are recast into a new
set of uncorrelated variables, the principal component scores 𝐙 = 𝐗𝐀.
Those scores represent the latent variables in the PCA lower dimen-
sional space. Given the orthonormality of 𝐀 (𝐀𝑇 = 𝐀−1), it is possible
to uniquely recover the original variables from the latent variables,
𝐗 = 𝐙𝐀𝑇 . The system dimensionality is reduced by truncating 𝐀, i.e., by
retaining only the first 𝑞 PCs (with 𝑞 < 𝑄). Using the truncated basis
matrix (𝐀𝑞), a reduced set of latent variables (scores) can be obtained
𝑞 = 𝐗𝐀𝑞 , and the original variables can be reconstructed from the

reduced dimensionality space 𝐗 ≊ 𝐗𝑞 = 𝐙𝑞𝐀𝑇𝑞 . The quality of the
reduction is assessed by means of the low-rank approximation error
‖𝐗𝑞 − 𝐗‖2.

In essence, PCA discovers a new set of coordinates wherein the first
coordinate exhibits the highest variance, and each subsequent coordi-
nate has the maximum possible variance while being uncorrelated with
the preceding ones.

We note that the manifolds discovered by the CSP and PCA projec-
tions are substantially different in principle. CSP is a dynamics-based
local (pointwise) projection that exploits scale separation, while PCA
is a global data-based projection that exploits correlations among the
state variables. A stiffness reduction in the PCA projection is not
expected, albeit possible due to fortuitous correlations between fast and
slow processes, i.e. fast variables that are slaved to the slow dynamics,
as in the case of SIMs. Nonetheless, the global and linear nature of
the PCA projection contrasts with the search for a curvilinear SIM.
In the present study, we explore autoencoders to inject non-linearity
in the discovery of latent spaces from data analysis, with the final
goal of driving the learning process with information from the system’s
dynamics.

2.2. Neural network-based models

2.2.1. Autoencoders (AE)
An autoencoder (AE) is a multilayer perceptron (MLP) that trans-

forms the variables from an input space to a representational space,
referred to as the latent space, with minimal distortion [56]. Fig. 2
shows the schematic of a single layer AE which consists of two com-
ponents: (i) a feedforward encoder that maps/transforms the physical

̂
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space variables (𝐘 ∈ 𝑁𝑝) to latent space variables (𝐘 ∈ 𝑁𝐿) and (ii) 𝑦
Fig. 2. Schematic representation of a single layer autoencoder.

a decoder which reconstructs the original input space variables from
the latent space, both using a set of special operations. These special
operations are through piece-wise non-linear activation functions, such
that the decoder is not an inverse operation of the encoder.

Therefore, autoencoders decrease the dimension of the input state
by projecting it onto a latent space with a dimension 𝑁𝐿 < 𝑁𝑝.
This property of AE has made them prevalent in the development
of reduced-order models [57]. The reduced set of variables from the
encoder is used to develop the surrogate models, which can reduce
computational costs significantly.

This work focuses on a stacked autoencoder with a fully connected
MLP architecture for both the encoder and decoder. Consider an input
matrix 𝐘 ∈ R𝑁𝑝×𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , whose columns are the input vectors. The
output of the AE (�̃�) is constrained to minimize the reconstruction
error (‖𝐘 − �̃�‖22) to match the input data 𝐘. Note that an autoencoder
with linear activation functions along with a single hidden layer is
closely related to PCA, although the latent coordinates are correlated
and are not sorted in descending order of variance [58]. The main
drawback of AE is that the latent space dimension has to be fixed
during the training phase, unlike PCA which has the flexibility to
choose the required number of latent dimensions a posteriori. As will
be shown later, however, the non-linear AE has a strong advantage of
discovering highly complex projections, which is not possible in any
constrained/unconstrained linear projection techniques.

2.2.2. Neural ODE (NODE)
We propose to use neural ODE to approximate the latent source

terms and integrate the ODEs in the latent space. Here, we briefly
describe the working principle of the neural ODE architecture em-
ployed in this work. Neural ODE [42,59] is a deep learning-based
framework used to approximate the continuous-time dynamics of a
system governed by the ODE of the form:
𝑑𝑦(𝑡)
𝑑𝑡

= 𝐟 (𝑦(𝑡), 𝑡) (9)

mploying any standard numerical method (e.g., Euler’s method) to
olve Eq. (9), time integration has to be performed from an initial
ime to the final time, for which 𝐟 has to be evaluated as a function
f both 𝑦 and 𝑡 given by the conservation equation. In the neural
DE framework, however, the hidden state 𝑦(𝑡) is the solution to the

nitial-value problem (IVP) and is governed by:
𝑑𝑦(𝑡)
𝑑𝑡

= 𝐟𝛽 (𝑦(𝑡), 𝑡) (10)

here 𝐟𝛽 denotes the dynamics of the hidden state and is modeled using
neural network with parameters 𝛽. Given an initial condition 𝑦(𝑡 = 0),
q. (10) can be integrated using any numerical ODE solver to obtain
he solution 𝑦(𝑡) at the desired time 𝑡 and to a required accuracy:

, 𝑦 ,… , 𝑦 = ODESolve(𝐟 , 𝑦 , (𝑡 , 𝑡 ,… , 𝑡 )) (11)
1 2 𝑁 𝛽 0 0 1 𝑁
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Fig. 3. Schematic representation of AE+neural ODE architecture.
To minimize the loss function with neural network parameters, neural
ODE employs the backpropagation algorithm with an adjoint sensitivity
method. The augmented system of the adjoint state along with the
constraint and the modeled neural network function, 𝐟𝛽 , is integrated
backward in time (final value problem) to compute the gradients. This
results in memory-efficient training of the neural network.

2.2.3. Combined AE and neural ODE architecture
Fig. 3 shows the neural network architecture under study, where an

AE is integrated with NODE. As explained in Section 2.2.1, the variables
(T and 𝑌 ′

𝑘𝑠) are mapped from a physical to a latent space using an
encoder. Then the neural ODE approximates the chemical source terms
in the latent space and advances the latent state space from 𝑌 𝑛 to 𝑌 𝑛+1.
We adopted the fourth-order Runge–Kutta (RK45) method for time
integration in this study. Finally, the decoder recovers the variables
(𝑌 𝑛+1𝑘 ) in the physical space. The dimension of the input and output
vectors of the encoder is given by 𝑁𝑝 and 𝑁𝐿, respectively, and vice
versa for the decoder. Therefore, 𝑁𝐿 latent variables are integrated
within the neural ODE algorithm.

In the present study, the reduced latent state with 𝑁𝐿 variables and
its evolution is given by,

�̂� =
[

𝑌1, 𝑌2,… , 𝑌𝑁𝐿
]⊺

(12)

𝑓 =
𝜕�̂�
𝜕𝑡

=

[

𝜕𝑌1
𝜕𝑡
,
𝜕𝑌2
𝜕𝑡
,… ,

𝜕𝑌𝑁𝐿
𝜕𝑡

]⊺

(13)

where the latent variables 𝑌𝑘’s are obtained by a nonlinear combination
of physical space variables in Eq. (3), using an encoder. Therefore, the
one-to-one correspondence of Eqs. (3) and (12) and Eqs. (4) and (13)
is not guaranteed. The resulting Jacobian in the latent space is given
by,

𝐽𝑖,𝑗 =
𝜕𝑓𝑖
𝜕𝑌𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 ̂̇𝜔1
𝜕𝑌1

𝜕 ̂̇𝜔1
𝜕𝑌2

... 𝜕 ̂̇𝜔1
𝜕𝑌𝑁𝐿

𝜕 ̂̇𝜔2
𝜕𝑌1

𝜕 ̂̇𝜔2
𝜕𝑌2

... 𝜕 ̂̇𝜔2
𝜕𝑌𝑁𝐿

. . ... .
𝜕 ̂̇𝜔𝑁𝐿
𝜕𝑌1

𝜕 ̂̇𝜔𝑁𝐿
𝜕𝑌2

...
𝜕 ̂̇𝜔𝑁𝐿
𝜕𝑌𝑁𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

whose dimension is 𝑁𝐿 ×𝑁𝐿.
The PyTorch [60] implementation of neural ODEs [61] is used to

train the neural network consisting of 5 hidden layers with one input
and one output layer in each encoder, decoder, and neural ODE. Each
hidden layer consists of 100 neurons with the exponential linear unit
(ELU) activation to model the nonlinear reaction rates. In this entire
study, the feed-forward neural network with fully connected layers
is used without any additional dropout or regularization techniques
(L1/L2 penalties, etc.). Linear activation units are used in the bot-
tleneck/output layers of the encoder, decoder, and neural ODE. The
6

parameters of the network are optimized with the Adam optimizer. The
total loss function is given by

𝐿𝑜𝑠𝑠 = 𝜀11 + 𝜀22 + 𝜀33 (15)

where 1 = ‖𝑌 − 𝑌 ‖22 is the combined encoder+NODE+decoder re-
construction error, 2 = ‖𝑓𝛾 (𝑓𝜃(𝑌 )) − 𝑌 ‖22 is the encoder+decoder
error without NODE, and 3 = ‖𝑓𝜃(𝑌 ) − 𝑌 ‖1 is the encoder+NODE
error without decoder, and all the weights 𝜀 are set to 1 (i.e., 𝜀1 =
𝜀2 = 𝜀3 = 1). 1 minimizes the error between ground truth (𝑌𝑘) and
the AE+NODE predictions (𝑌𝑘). The additional loss terms 2 and 3
ensure the mapping of the encoder and decoder is bijective (one-to-one
correspondence) or unique. This implies the trajectories of the physical
variables can be reproduced uniquely from the latent state. A similar
loss function has been incorporated in Ref. [31].

The loss functions 1 and 2 are minimized by evaluating mean
squared error (MSE) between the ground truth and the prediction,
which is given by Eq. (16). However, 3 is minimized by evaluating
the 𝐿1-norm, which sparsify the latent variables and improves the rate
of convergence. Furthermore, in the results section, the MSE combined
with the relative root mean squared error (RRMSE) [62], given by
Eq. (17), are used to validate the accuracy of the AE+NODE-based ROM
predictions (�̃�) against the data obtained from Cantera simulation (𝜑)
with 𝑛 number of observations.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1

(

𝜑𝑖 − �̃�𝑖
)2 (16)

𝑅𝑅𝑀𝑆𝐸 =

√

1
𝑛
∑𝑛
𝑖=1

(

𝜑𝑖 − �̃�𝑖
)2

1
𝑛
∑𝑛
𝑖=1 𝜑𝑖

× 100 (17)

3. Results and discussions

This section describes the predictions from the AE+NODE-based
ROM, analyzed in terms of accuracy and performance compared to
direct, physics-based, and data-driven integration methods. The main
objective is to provide an understanding of the underlying mechanism
of the computational gain obtained in time step size by employing the
AE+NODE framework. The results are presented in five subsections: (i)
the data acquisition and training of the neural network are explained;
(ii) results obtained from the present neural network architecture are
validated with Cantera; (iii) the computational gain obtained in the
time step size is described using eigenspectrum analysis; (iv) a com-
parison between linear and nonlinear AE with NODE is made using the
eigenvalue analysis; and (v) the impact of the latent space dimension
(𝑁𝐿) and the number of hidden layers (𝐻) in the nonlinear AE on the
stiffness reduction and time step gain is presented.
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Fig. 4. Time evolution of physical state variables during the constant-pressure homogeneous ignition of H2-air mixture (𝑃 = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K): Cantera (circle)
and E2E nonlinear AE+NODE (solid line).
Fig. 5. Time evolution of physical state variables during the constant-pressure homogeneous ignition of C2H4-air mixture (𝑃 = 10 atm, 𝜙 = 1.0, and Tinit = 2000 K): Cantera
(circle) and E2E nonlinear AE+NODE (solid line).
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Table 1
Thermodynamic conditions used to compute the constant-pressure homogeneous
ignition curve data for training, validation, and testing.

Mixture P [atm] Tinit [K] 𝜙

H2-air 1 (Fixed) 1000 – 2000
𝛥T = 100

0.5 – 1.5
𝛥𝜙 = 0.02

C2H4-air 10 (Fixed) 1500 – 2000
𝛥T = 100

1.0 – 1.4
𝛥𝜙 = 0.02

3.1. Data generation and training

To generate the training data, two different chemical mechanisms
are considered: (i) H2-air (10 species and 27 reactions) [45] and
ii) C2H4-air (30 species and 231 reactions) [46,63]. As a reference,
he equations for each mixture are integrated using a homogeneous
onstant-pressure batch reactor to obtain ignition trajectories, using
antera [47].

Table 1 shows the initial conditions employed to generate the
raining dataset, where 𝛥 is the sampling interval in the initial tem-
erature/composition space. 561 and 126 datasets are generated for
2-air and C2H4-air mixtures, respectively, covering the range specified

n Table 1. The overall computational cost required to generate the
raining datasets is 35.793 s for H2-air, and 74.507 s for C2H4-air.
he datasets from these simulations consist of temperature and species
ass fraction profiles, which are accessed randomly to generate the

ncoder input matrix. Furthermore, these datasets are split in the
atio 75:15:10 for training, testing, and validation, respectively, and
ormalized (by subtracting the mean and dividing by the standard
eviation) to accelerate the training process. The inert species, N2 and
r for the H2-air mixture and N2 for the C2H4-air mixture, are not

ncluded in the training/testing/validation datasets.
Two different AE+NODE training frameworks are tested for the
7

erformance comparison: (i) end-to-end (E2E) training with linear and g
onlinear AE, which involves simultaneous optimization of the AE
nd NODE parameters from a random initialization and (ii) step-by-
tep (SBS) training with a nonlinear AE, in which the parameters of
n AE are first optimized to obtain the latent variables, and subse-
uently used as input for NODE parameters optimization (two-step
raining/optimization). For this initial comparison, the bottleneck size
latent space dimension) is fixed to 𝑁𝐿 = 5 and 𝐻 = 5. The train-
ng was performed using double precision floating point on a single
VIDIA Quadro RTX 4000 GPU and each of these training frameworks
onsumed about 5 to 8 h of computational time to reach the optima.

.2. Validation of AE+NODE architecture

As a first step, we validate the E2E-trained nonlinear AE+NODE
redictions against the Cantera results. Figs. 4 and 5 compare the 𝑇
nd 𝑌𝑘 profiles for H2-air (P = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K)
nd C2H4-air (P = 10 atm, 𝜙 = 1.0, and Tinit = 2000 K) mixtures,
espectively, obtained from the integration of constant pressure batch
eactor. Similarly, Tables 2 (H2-air) and 3 (C2H4-air) list the MSE
Eq. (16)) and the RRMSE (Eq. (17)) compared to the baseline Cantera
olution. These conditions are not part of the training dataset.

The solutions obtained by the Cantera and AE-NODE (𝑁𝐿 = 5 and
= 5) integration are nearly identical for both mixtures shown in

igs. 4 and 5 and reveal that the newly proposed ROM is able to
ccurately reproduce the ignition phenomena. Tables 2 and 3 further
how a maximum RRMSE of ∼4.5% and ∼9%, respectively, which are
ithin acceptable limits.

.3. Computational efficiency

Now we discuss the computational efficiency gain in terms of time
tep size (𝛥𝑡) by using AE+NODE (𝑁𝐿 = 5 and 𝐻 = 5). The ex-
licit fourth-order Runge–Kutta with error control (RK45) ODE inte-
rator [64] is used in all three different training methods with absolute
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Fig. 6. Time evolution of the 𝛥t during the constant-pressure homogeneous ignition phase for various methods/ROMs (a) P = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K using H2-air
ixture (b) P = 10 atm, 𝜙 = 1.0, and Tinit = 2000 K using C2H4-air mixture.
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Table 2
MSE and RRMSE of predicted thermochemical state from nonlinear AE+NODE (E2E)
compared to Cantera — for the constant-pressure homogeneous ignition of H2-air at
𝑃 = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K.

T/Y𝑘 T [K] H2 H2O OH HO2

MSE 26.42 1.668e−08 6.638e−07 7.745e−09 1.830e−13
RRMSE [%] 0.201 1.759 0.494 0.420 4.596

Table 3
MSE and RRMSE of predicted thermochemical state from nonlinear AE+NODE (E2E)
compared to Cantera — for the constant-pressure homogeneous ignition of C2H4-air at
𝑃 = 10 atm, 𝜙 = 1.0, and Tinit = 2000 K.

T/Y𝑘 T [K] CH4 CO2 CO CH3CO

MSE 18.31 6.587e−11 1.497e−07 2.529e−07 1.969e−16
RRMSE [%] 0.160 4.162 0.697 0.646 9.124

error 𝜀𝑎𝑏𝑠 = 10−5 and relative error 𝜀𝑟𝑒𝑙 = 10−3. It is worth mentioning
hat the AE+NODE integrates the transformed ODEs in the latent space
nd the integrated variables are not the same as the physical state.
he AE+NODE time step size is then compared against that used in
hree different integration methods: (1) the intrinsic 𝛥𝑡𝐶𝑉 𝑂𝐷𝐸 provided
y the CVODE solver (in its Cantera implementation) using tolerances
𝑎𝑏𝑠 = 10−16 and 𝜀𝑟𝑒𝑙 = 10−9, (2) 𝛥𝑡𝐶𝑆𝑃 = 𝜏𝑀+1, the fastest timescale of
he slow modes used in the CSP solver along with RK4 [39], and (3)
𝑡𝑃𝐶𝐴 estimated by CVODE while integrating the first 8 PCA scores2.

Figs. 6a and b compare the evolution of the 𝛥𝑡 for the H2-air and
2H4-air mixtures, respectively, obtained from Cantera, CSP, PCA, and
he three different AE+NODE training frameworks. During the ignition
hase (𝑡 ≈ 0.2 ms for H2-air and 𝑡 ≈ 1 μs for C2H4-air), 𝛥𝑡 becomes
ignificantly small due to the inherent stiffness of the system. The
inimum 𝛥𝑡 for different integration methods are tabulated in Table 4.
s the CVODE or PCA-based methods do not inherently reduce the
ystem’s stiffness, the required 𝛥𝑡 is very small and approaches the
astest time scale of the system. On the other hand, CSP uses a local
inear projection to eliminate fast time scales, resulting in nearly two
rders-of-magnitude larger 𝛥𝑡 compared to the CVODE solver. Among
he AE+NODE methods, the E2E-trained nonlinear AE+NODE ROM
chieves the best performance, with 𝛥𝑡 approximately two orders-of-
agnitude larger compared to the CSP solver, the best analytical ROM.
oth E2E linear and SBS nonlinear integrators perform comparably
ith the CSP solver up to the point of ignition, while requiring an
rder-of-magnitude smaller 𝛥𝑡 in the post-ignition phase, although the

2 At least 8 components out of 10 were required for this system to obtain
n accurate solution
8

Table 4
Comparison of time step size during the constant-pressure homogeneous ignition phase
for different time integration methods.

Mixture Cantera
(CVODE)
(or) PCA

CSP AE+NODE (𝑁𝐿 = 5 and 𝐻 = 5)

E2E nonlinear E2E linear SBS nonlinear

H2-air 1e−8 s 1e−6 s 1e−4 s 1e−6 s 1e−6 s
C2H4-air 1e−10 s 1e−8 s 1e−6 s 1e−7 s 1e−7 s

E2E linear integrator performs better in the simpler H2-air mixture. In
summary, the E2E nonlinear AE+NODE integrator shows the overall
best performance, significantly better than the theoretically optimized
CSP solver.

It is remarkable to find that the E2E training with nonlinear trans-
formation is most effective in eliminating the stiffness without resorting
to rigorous analysis of characteristic time scales (as in CSP) and without
loss of solution fidelity. This leads to two important postulates about
the AE+NODE process. First, the E2E training with the tolerance con-
straints results in an intelligent selection of the latent space dynamics
while abandoning unnecessary fast-time dynamics. This process is re-
ferred to as a dynamics-informed construction of latent space. In other
words, the data-based projection of variables onto the latent space
undergoes a process equivalent to constraining the latent variables onto
a slow manifold that is necessary to capture the essential dynamics. Sec-
ondly, within the E2E training, the nonlinear transformation is crucial
in eliminating the stiffness. An important finding of the present study
is that the performance gain achieved using nonlinear AEs with E2E
training is enabled by the nonlinear projection capable of identifying a
non-stiff curved SIM (latent space), equivalent to the one obtained with
the rotation of the CSP basis vectors, which cannot be retrieved using
linear AEs. The exact physical and mathematical reasoning behind the
effect of the nonlinear AEs needs further investigation.

The stiffness reduction in the latent space can also be visualized by
examining the evolution of the eigenvalue spectrum of 𝐉 and �̂�. Figs. 7a
nd b compare the eigenvalues of the chemical Jacobian in both
hysical (𝐉, Eq. (1)) and latent (�̂�, Eq. (14), and 𝑁𝐿 = 5) spaces. The

largest eigenvalue in the CSP slow mode, CSP (M+1), is also overlaid.
These eigenvalues are plotted in the form 𝑙𝑜𝑔10(𝑎𝑏𝑠[𝜆𝑟𝑒𝑎𝑙]) × 𝑠𝑖𝑔𝑛(𝜆𝑟𝑒𝑎𝑙),
which represents the inverse of the intrinsic timescales. A wider range
of the eigenvalue magnitudes implies a greater degree of stiffness. The
largest eigenvalue (in absolute value) corresponds to the 𝛥𝑡 employed
by an explicit time integrator. It is seen that the range of the eigenvalue
spectrum shrinks/narrows in the latent space compared to the physical
space. During the ignition phase, the range of eigenvalues is stretched
in the physical space, but this behavior is attenuated in the latent space.
The maximum latent eigenvalue is always found to be smaller than
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Fig. 7. Eigenspectrum of the chemical Jacobian in physical space (𝐉) vs. latent space (�̂�) (E2E nonlinear AE (𝑁𝐿 = 5)+NODE) during the constant-pressure homogeneous ignition
of (a) H2-air at P = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K (b) C2H4-air at P = 10 atm, 𝜙 = 1.0, and Tinit = 2000 K.
Fig. 8. Time evolution of variables in the latent space for the constant-pressure homogeneous ignition of (a) H2-air (𝑃 = 1 atm, 𝜙 = 1.0 and Tinit = 1000 K) and (b) C2H4-air (P
= 10 atm, 𝜙 = 1.0, and Tinit = 2000 K) mixtures during the ignition run – E2E-trained nonlinear AE (𝑁𝐿 = 5)+NODE.
that in the physical space, as well as the (M+1)-th CSP eigenvalue.
This further confirms that the AE-NODE training process compresses
the range of eigenvalues and smoothens their temporal evolution in the
latent space.

Therefore, it is concluded that the E2E training with nonlinear
dimensionality reduction is the preferred choice in developing a ROM
for accelerated computation of the dynamics arising from nonlinear
chemical reactions.

Figs. 8a and b plots the evolution of solution variables (𝑁𝐿 = 5)
in the latent space for H2-air and C2H4-air mixtures, respectively, with
the E2E nonlinear AE+NODE. It is visually evident that the variables
evolve much more smoothly in the latent space, without sharp peaks
or troughs, compared to the physical space (see Figs. 4 and 5 for com-
parison). Despite the significantly smaller number of latent variables,
the ignition dynamics were reproduced accurately with a significant
time step gain. This implies the data-based construction of latent space
is able to capture the essential system dynamics with a significantly
smaller number of degrees of freedom and a lower stiffness.

3.4. Impact of linear vs. nonlinear AE with NODE

This section quantitatively compares the effect of the number of
hidden layers (𝐻) in the encoder and decoder on stiffness reduction,
in order to provide guidelines for designing autoencoders using the
E2E training in chemically reacting systems. Fig. 9 plots the eigenval-
ues for the different hidden layers generated by linear and nonlinear
AE+NODE during the ignition of H2-air mixture. For a linear AE+NODE
(Figs. 9a and b), the range of eigenvalues becomes narrower in latent
space compared to physical space, while the level of compression barely
changes with 𝐻 = 1 and 5. It is observed that the positive maximum
eigenvalue in physical and latent spaces coincide, whereas the largest
negative values are reduced in the latent space. This behavior suggests
9

that although linear AEs are effective in reducing stiffness (as seen in
Fig. 6), using a single hidden layer results in higher prediction errors.

In contrast, Figs. 9c–f compares the eigenvalues for 1–4 hidden
layers, respectively, with the use of a nonlinear AE+NODE. With 𝐻 = 1,
nonlinear AE behaves similarly to linear AE. However, an increase in
the number of hidden layers from 2 to 4 successively reduces the range
of the eigenvalues, resulting in a less stiff latent space. The nonlinear
AE with 𝐻 = 4 shows much better performance in stiffness removal
compared to the linear AE with 𝐻 = 5, demonstrating the superior
performance of the nonlinear reduction. Adding more hidden layers in
a linear AE will produce the same effect of 𝐻 = 1 as all the layers can
be collapsed into one due to the linearity. Contrarily, in a nonlinear AE,
adding an additional hidden layer produces a different outcome due to
the nonlinearity as explained above. Therefore, the number of hidden
layers should be chosen to achieve better accuracy and a maximum
degree of stiffness reduction. In the following subsection, the impact of
the number of hidden layers on the solution accuracy is systematically
studied.

3.5. Effect of latent dimension and hidden layers on time step size

The effect of latent space dimensions and the number of hidden
layers on stiffness removal is further assessed by using the E2E-trained
nonlinear AE with NODE. This exercise was performed for the H2-
air mixture at 𝑃 = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K. Fig. 10
compares the time steps size evolution during the ignition sequence
of H2-air mixture for (a) varying latent dimension (𝑁𝐿 = 2, 4, 6, and
8) for a fixed 𝐻(=5) and (b) varying the number of hidden layers
(𝐻 = 1 to 4) for a constant 𝑁𝐿(=5). Fig. 10a shows that different
latent space dimension has little effect on 𝛥𝑡, while a smaller latent
dimension results in a larger prediction error as shown in Table 5.
Therefore, the latent space dimension has to be chosen to minimize
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Fig. 9. Time evolution of eigenvalues in the latent space (�̂�, black) vs physical space (𝐉, gray) for the constant-pressure homogeneous ignition of H2-air mixture at 𝜙 = 1.0, Tinit =
1000 K. Top row — linear AE+NODE with (a) 𝐻 = 1 and (b) 𝐻 = 5; middle row — nonlinear AE+NODE with (c) 𝐻 = 1 and (d) 𝐻 = 2; bottom row — nonlinear AE+NODE with
(e) 𝐻 = 3 and (f) 𝐻 = 4.

Fig. 10. Time evolution of 𝛥𝑡 during the constant-pressure homogeneous ignition of H2-air at P = 1 atm, 𝜙 = 1.0, and Tinit = 1000 K using nonlinear AE+NODE with (a) varying
latent space dimension (𝑁𝐿) with 𝐻 = 5 and (b) varying hidden layers (𝐻) with 𝑁𝐿 = 5.
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Table 5
RRMSE[%] of the predicted thermochemical state from nonlinear AE+NODE (E2E) (for
varying 𝑁𝐿 and fixed 𝐻 = 5) compared to Cantera — for H2-air mechanism at 𝑃 = 1
atm, 𝜙 = 1.0, and Tinit = 1000 K.
𝑁𝐿 RRMSE

T [K] 𝑌H2
𝑌H2O 𝑌OH 𝑌HO2

2 0.900 6.425 1.603 1.783 12.489
4 0.115 0.840 0.191 0.300 2.559
5 0.201 1.759 0.494 0.420 4.596
6 0.091 0.651 0.177 0.254 1.832
8 0.174 1.883 0.515 0.433 0.515

Table 6
RRMSE[%] of the predicted thermochemical state from nonlinear AE+NODE (E2E) (for
varying 𝐻 and fixed 𝑁𝐿 = 5) compared to Cantera — for H2-air mechanism at 𝑃 = 1
atm, 𝜙 = 1.0, and Tinit = 1000 K.
𝐻 RRMSE

T [K] 𝑌H2
𝑌H2O 𝑌OH 𝑌HO2

1 1.220 4.050 0.856 1.099 54.543
2 0.270 2.968 0.949 0.734 9.216
3 0.305 2.174 0.727 0.710 4.809
4 0.142 0.872 0.220 0.301 2.433
5 0.201 1.759 0.494 0.420 4.596

the prediction error. In contrast, the different number of hidden layers
(𝐻) has a larger impact on 𝛥𝑡 as shown in Fig. 10b. AE with one
idden layer performs similarly as the CSP solver, whereas a large

AE shows a significant improvement in 𝛥𝑡 compared to CVODE
((4)) and CSP ((2)) solvers. The prediction errors (RRMSE) associated
with the varying hidden layers are tabulated in Table 6, which shows
that although a shallow AE provides the computational gain over the
CVODE/CSP solvers, the resulting prediction errors may be large. This
suggests that deeper networks with optimum latent space dimension
are required to disentangle the complex representation and result in a
significant computational gain. However, the effect of other important
aspects such as the learning rate, activation function, batch size, etc.
will be investigated in the follow-up work.

4. Conclusions and future work

An efficient data-based reduced-order model is developed by com-
bining an autoencoder (AE) with neural ODE (NODE) to integrate
stiff chemistry ODE systems. The AE+NODE framework was used to
integrate the homogeneous reactor consisting of two different fuel–air
mixtures. The resulting AE+NODE predictions were found to be in good
agreement with the Cantera-based results, exhibiting adequate mean
squared error and relative root mean squared error.

The computational gain (in terms of 𝛥𝑡) obtained using AE+NODE
has been studied using both linear and nonlinear AE combined with
NODE for end-to-end and step-by-step training methods. Among vari-
ous options, the end-to-end trained nonlinear AE with neural ODE was
found to be most effective in accelerated integration with the maximum
level of stiffness removal. With the same level of solution fidelity, the
integration time step size obtained from the E2E-trained nonlinear AE
with neural ODE was found to be four and two orders of magnitude
larger compared to the CVODE and CSP solvers, respectively. In com-
parison, the E2E-trained linear AE+NODE and SBS-trained nonlinear
AE+NODE resulted in moderate improvements, with 𝛥𝑡 comparable to
or somewhat larger than that with the CSP solver.

The strong performance by the E2E-trained nonlinear AE+NODE
is attributed to the inherent characteristics of a dynamics-informed
construction of the latent space, identifying an appropriate SIM with-
out rigorous analytical computation. The analysis of the eigenvalue
spectrum of the chemical Jacobian further confirmed that an E2E-
trained nonlinear AE, effectively compresses and smoothens the eigen-
value spectrum in the latent space, leading to an effective stiffness
11
removal. The more detailed parametric analysis yielded that the E2E-
trained nonlinear AE+NODE with five hidden layers provides an opti-
mal combination for eliminating stiffness. The latent space dimension
in the E2E-trained nonlinear AE+NODE was found to have little effect
on the stiffness removal, while it needs to be chosen to minimize
the prediction error. In contrast, the number of hidden layers was
found to affect 𝛥𝑡 significantly, with a larger number of hidden layers
progressively removing the stiffness further. For a larger number of
species ∼ (103) and reactions ∼ (104), the time required to ob-
tain the training datasets and training costs increases and demands
a distributed computing framework for training. However, the com-
putational gain achieved using the AE+NODE ROM is expected to
far outweigh the training cost requirements, leading to significant
improvement in overall computational efficiency.

As final remarks, the present study provided explanations about
how the data-driven ROM for stiff ODE solvers eliminates fast timescales
For some test cases under study, it was found to outperform the
physics-based CSP solver. However, one must not hasten to conclude
that the AE approach is absolutely superior and makes the rigorous
analytical approach obsolete. For one, the overall work required for
the AE+NODE as a comprehensive predictive tool for a wide range
of conditions can be highly demanding. More importantly, considering
the performance difference between the linear and nonlinear AE in the
present study, it is postulated that the improved performance is mainly
attributed to the nonlinear mapping process, which is most effective
during the induction period of ignition when the nonlinearity in the
physical dynamics is large. This implies that the CSP solver may also be
able to enhance its performance by employing nonlinear mapping into
the algorithm. The generalization of the present AE+NODE approach
to more complex systems of partial differential equations and chemical
reactions, along with a more systematic assessment of its performance
against the analytical approach, needs to be further investigated.
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