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The interpretability of models has become a crucial issue in Machine Learning because of 
algorithmic decisions’ growing impact on real-world applications. Tree ensemble methods, such 
as Random Forests or XgBoost, are powerful learning tools for classification tasks. However, 
while combining multiple trees may provide higher prediction quality than a single one, it 
sacrifices the interpretability property resulting in “black-box” models. In light of this, we aim 
to develop an interpretable representation of a tree-ensemble model that can provide valuable 
insights into its behavior. First, given a target tree-ensemble model, we develop a hierarchical 
visualization tool based on a heatmap representation of the forest’s feature use, considering the 
frequency of a feature and the level at which it is selected as an indicator of importance. Next, 
we propose a mixed-integer linear programming (MILP) formulation for constructing a single 
optimal multivariate tree that accurately mimics the target model predictions. The goal is to 
provide an interpretable surrogate model based on oblique hyperplane splits, which uses only the 
most relevant features according to the defined forest’s importance indicators. The MILP model 
includes a penalty on feature selection based on their frequency in the forest to further induce 
sparsity of the splits. The natural formulation has been strengthened to improve the computational 
performance of mixed-integer software. Computational experience is carried out on benchmark 
datasets from the UCI repository using a state-of-the-art off-the-shelf solver. Results show that 
the proposed model is effective in yielding a shallow interpretable tree approximating the tree-

ensemble decision function.

1. Introduction

When building Machine Learning (ML) models in supervised learning, it is becoming more and more important to balance 
accuracy and interpretability. There is a growing number of sensitive domains where a detailed understanding of the model and 
the outputs is as important as the accuracy in prediction [10]. Following [14], interpretability is defined as “the ability to explain 
or to present the decision in understandable terms to a human”. Generally, models with high accuracy are more complex and 
less interpretable. This trade-off is evident when comparing Decision trees (DT) and Tree ensembles (TE) (e.g., Random Forests, 
XGBoost). Decision Trees (DT) (see [8,30,31]) have high interpretability since their construction process is simple, intuitive, and 
can be easily visualized. They are white-box models easily explained by Boolean logic; indeed, the prediction made by the tree is 
a conjunction of predicates. The disadvantages are that they often overfit, do not have good out-of-sample predictive capabilities, 
can grow exponentially, and have high variability. On the other hand, Tree Ensemble (TE) models such as Random Forests [6], and 
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XGboost [17][12] constitute one of the most widely used techniques for regression and classification tasks. By aggregating many 
decision trees, tree ensemble techniques substantially increase predictive capabilities. Indeed, including the randomness element and 
the ensemble procedure used to aggregate the individual tree predictions reduces the model variance. Thus, TEs can achieve high 
levels of accuracy at the expense of lower interpretability. Indeed, a TE is a black-box model, not interpretable through parameters 
or its functional form.

TE models are used in many fields, such as medical or financial, where opaque and redundant decisions could be highly harmful, 
and an easily understood interpretation of the model’s predictions could significantly impact the final decision. Hence the ability 
to understand the interactions between predictors and responses used in a TE model is an important issue when undertaking a 
decision-making process.

In [19], a list of desiderata of a surrogate predictive model is reported as follows.

1. Interpretability: to what extent the model and/or its predictions are human-understandable. We adopt as a measure of inter-

pretability the complexity of the predictive model in terms of the model size (depth or the number of leaves) and the sparsity of 
the predictors used to construct the decision rules.

2. Accuracy: to which extent the model accurately predicts out-of-sample instances.

3. Fidelity: to what extent can the model accurately imitate a black-box predictor.

Measures of Accuracy and Fidelity are based on standard KPIs such as error rate, and F1-score having as target values the ground 
truth and the predicted values, respectively.

The paper is organized as follows. In Section 2, we review state of the art in Interpretative models for Tree Ensemble, including 
the main feature’s VI indicators. In Section 3, we focus on our contribution. In Section 4, we state the problem and the main basic 
definitions and tools used. Section 5 is devoted to the description of the visualization toolbox, and Section 6 defines the model for 
the optimal re-built tree. The formulation is strengthened in Section 7. Finally Section 8 reports numerical results on a standard 
benchmark of test problems from the UCI collection.

2. State of the art on interpretative models for tree ensemble

Several tools and methods in the literature are used to visualize and interpret tree ensembles, as the many trees in the forest make 
it difficult to understand the decision path leading to predictions.

In this section, we aim to review only some of the possible approaches, and we refer to the recent survey [1] for a more detailed 
comparison. According to [1], the approaches can be mainly divided into:

• Internal processing, which includes methods that aim to provide a global overview of the model through measures helpful in 
interpreting the results obtained;

• Post-Hoc approaches, which aim to identify a relationship structure among response and predictors and include the construction 
of a single surrogate model that approximates the original TE prediction function.

Internal processing. Among measures for interpreting the prediction results of a TE, the feature importance approach assigns each 
feature 𝑗 a score to indicate its impact on predicting the output 𝑦. These approaches produce a features ranking which is usually 
obtained by modifying in some way the value of each feature at the time and evaluating the impact on the quality of the tree ensemble. 
Mean Decrease accuracy (MDA), Mean Decrease Impurity (MDI) [6,18,27] and Partial Dependence Plot (PDP) [17] provide examples 
of such measures.

A different approach to calculating the importance of variable 𝑗, presented in [24], consists in randomly changing the assignment 
of the samples to the children nodes whenever the variable 𝑗 is used in the splitting rule of a node and evaluating the change in 
the accuracy of the predictions. The more significant the change in the prediction, the more the importance of the variable 𝑗. The 
underlying idea is that a random assignment of samples to nodes at shallower depths leads to more significant perturbations to the 
final assignment of samples to leaves and, thus, in the classification.

In [25], the Minimal Depth (MD) is introduced as an alternative measure of the importance based solely on the structure of the 
trees in the forest rather than the goodness of fit of the prediction. The features’ importance is determined by the level at which they 
are used for splitting in the trees’ nodes, where the more frequent use at shallow depths, the more important. The idea is that the 
higher the probability of a feature appearing in the first levels of the trees, the larger the impact on accuracy and also the importance 
accordingly to the noisy definition in [24]. The Surrogate Minimal Depth, proposed in [33], generalizes MD by using surrogate 
variables, as defined by Breiman in [8], to obtain the minimal depth.

Another way to provide additional information about the tree ensemble is the Proximity measure of pair of samples, which is a 
weighted average of the number of trees in the TE model in which the samples end up in the same leaf. This concept was introduced 
first for Random Forest [7], where weights can be all equal, and later extended to Gradient Boosted Trees [35]. The proximity 
measure takes values between 0 and 1. Associated with proximity, a similarity measure among samples can be defined as TE distance

of pairs of samples. The TE distance is calculated as (1-TE proximity) and is a pseudo-metric [35]. The basic idea is that similar 
observations should be found more frequently in the same terminal nodes than dissimilar observations. Based on this measure, 
training samples can be visualized through a Multi-dimensional Scaling (MDS) plot so that users can intuitively observe data clusters 
2

and outliers identified by the TE model. Other visualization toolkits have been developed to graphically represent the measures 
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shown above specifically for Random Forests: randomForest tool in R [26], ggRandomForests package in R [16], and more recently 
iForest tool that allows interactive visualization of RF in Python [37]. These tools provide visualization of feature importance and 
partial dependence information, ranges of splitting values for each feature, similarities, and structure of decision paths, distribution 
of training data, and an interactive inspection of the model.

Post-Hoc approaches. Another methodology used to aid the interpretability of TEs is represented by post-hoc approaches that aim 
to identify the relationship between the predicted output and the predictors. These include approaches that do size-reduction of the 
forest, those that extract rules, and those that aim for local explainability.

The model we propose in this paper falls into the size-reduction class. These approaches aim to reduce the size of TE while 
maintaining its predictive capability. This is an NP-hard problem [34]; in some cases, the smaller ensemble may even perform better 
[38]. A huge branch of literature is available on these topics, and we refer to [1] and references therein for a recent review of the 
main approaches.

We are interested mainly in the stream of “born-again” trees, which involves building a single decision tree, called representer tree, 
that mirrors the behavior of a pre-existing tree ensemble over all its feature space. Born-again trees were originally proposed in [9]

as the problems of: “giving a probability distribution  on the space of input variables 𝑥, find the tree that best represents 𝑓 (𝑥)” 
where 𝑓 (𝑥) is a given prediction. In [9], TEs are used to manufacture new pairs (𝑥𝑖, 𝑦𝑖), and a representer tree is constructed with 
a prediction accuracy on the manufactured samples close to the tree ensemble’s accuracy rather than the ground truth. However, 
the tree can grow too much and might result in a not interpretable model. From an optimization viewpoint, in [36], a dynamic 
programming algorithm is proposed to build a born-again tree of minimal size that faithfully reproduces the behavior of the tree 
ensemble. Faithfulness is defined as the capacity of the representer tree to reproduce precisely the decision function 𝑓 (𝑥) of the TE on 
the whole space of the features and not only on the samples. In both approaches [9,36], a univariate tree is constructed where the 
depth or number of leaves is controlled by optimizing exactly or approximately the complexity and by post-pruning to reduce the size. 
In [36], it is proved that the problem of determining a faithful optimal decision tree of minimal size (where either depth or number 
of leaves, or any hierarchy of these two are used as complexity measures) is  -hard and that the depth of such an optimal tree is 
bounded above by the sum of the depth of the trees in the forest (the bound is tight). As the Problem is  -hard, the computational 
time of the dynamic programming algorithm proposed in [36] will eventually increase exponentially with the number of features, 
and a heuristic approach is proposed, which is guaranteed to be faithful but not necessarily minimal in size. A post-pruning phase is 
used on the set of six problems studied that seems not to affect the quality of the predictions but to significantly simplify the born-

again trees. Authors observed that born-again decision trees contain many inexpressive regions which do not contribute to effectively 
classifying samples. The purpose of these regions and their contribution to the generalization capabilities of random forests is not 
clear yet.

Recently, in [2], an algorithm is proposed with the aim of representing an ensemble model using a dendrogram-like structure. The 
construction is based on the definition of a dissimilarity matrix, the complement of the proximity measure, to assess the discordance 
of observations with respect to the classifier. It constructs a tree-like structure for a clearer interpretation of the ensemble model.

Optimal classification trees. It is well-known that learning an optimal binary decision tree is an -complete problem [22]. For this 
reason, traditional approaches for building decision trees are based on sequential greedy heuristics, such as CART (Classification and 
Regression Trees) [8]. These approaches produce univariate decision trees where each splitting rule selects a single feature and an 
associate threshold to partition samples among the children nodes to minimize a local impurity function (e.g., the Gini index). While 
these heuristic methods are computationally efficient, their greedy nature can lead to poor generalization performances.

In recent years, thanks to the great improvement in mixed-integer programming (MIP), several works have been devoted to 
defining optimal classification trees (OCTs) using MIP methods. After the very first paper [3], the seminal paper [4] introduced 
mixed-integer linear models for constructing optimal trees both with univariate splits and with multivariate ones. This research 
paved the way for a variety of other formulations, which are reviewed in the comprehensive survey [11]. Among recent papers 
focusing on multivariate OCTs, in [5], a new MILP formulation and a new class of valid inequalities to improve the optimization 
process are presented, and in [13], a new mixed-integer quadratic model based on Support Vector Machine is proposed for building 
optimal trees with maximum margin hyperplanes.

3. Our contribution

Our contribution is twofold and follows the line of research aimed at creating an interpretable representation of a tree-ensemble 
model able to provide valuable insights into its behavior. Following the classification proposed in [1] of interpretative methods for 
Random Forests, we can divide our contribution into two parts interacting with each other.

In particular, given a Tree Ensemble (TE) model, we provide

• VITE: a hierarchical VIsualization tool for TE that depends solely on the structure of the tree and aims to visualize how features 
are used within the forest;

• MIRET: a surrogate Multivariate Interpretable RE-built optimal Tree to gain interpretability on the relation between the input 
3

features and the TE outcomes.
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The visualization tool VITE fits into the framework of the visualization tools developed in the literature to better understand the 
dynamics inside the TE. We drew our inspiration from the concept of Minimal Depth, where the feature’s importance is determined 
by the smallest depth at which it is used in a node’s splitting rule for the first time. Indeed, since variable selection at splitting nodes 
is based on impurity indicators, those more frequently used at high levels produce the most significant impurity decrease. However, 
we are interested in having a hierarchical view of the role of features in the trees composing the TE. Indeed, in a tree, the Minimal 
Depth (MD) of a feature 𝑗 is a nonnegative random variable taking values {0, … , 𝐷}, where 𝐷 is the depth of the tree. MD measures 
the distance from the root node to the root of the closest maximal subtree having 𝑗 as a splitting feature. Essentially, it measures 
how far a sample moves down in the tree before encountering the first split on 𝑗. In this way, the information on how often a feature 
is used in the tree, namely how many subtrees having 𝑗 as root nodes are present, is wholly lost. Indeed, it is possible for a feature 
to appear multiple times at lower levels in the tree after its initial appearance, which defines the Minimum Depth, or conversely, it 
may not appear again after its first appearance. Following this idea, we propose using the frequency of each feature’s usage at each 
node or level in the trees of the TE as a measure of the feature’s importance. This is based on the notion that features appearing more 
frequently at nodes closer to the root are likely to play a significant role in prediction outcomes.

We derive a tool for visualizing TE features’ frequency on a single tree that gives a view at a glance of the hierarchical structure 
of the TE. Our tool is based on the heatmaps construction considering features’ frequency. The TE visualization of VITE is intended 
to be an addition to the existing visualization tools for further facilitation of model interpretation in a graphic fashion. VITE gives 
an immediate glimpse of the overall structure of the forest without the need to analyze individual decision pathways to extrapolate 
what might be the reason for different classifications. In addition, it allows for seeing in a single view which are the features used 
most in the trees of the forest and the split point range of each feature, allowing one to reflect on the different ranges’ effect on the 
predictions.

The Multivariate Interpretable RE-built Tree MIRET fits in the framework of born-again trees, defining an optimal representer 
tree. A representer tree aims to replace a tree ensemble classifier with a newly constructed single tree that can reproduce, in some 
sense, the behavior of the TE. Differently from preceding approaches in [9,36], we propose constructing a tree with fixed depth, thus 
preventing it from growing excessively and becoming difficult to understand. To this aim, we consider surrogate trees with fixed 
depth that uses oblique splits to partially regain the freedom lost by fixing complexity.

More in detail, based on the target TE, we present a mixed-integer linear programming (MILP) formulation for learning a Multivariate 
Interpretable RE-built tree with the same maximum depth 𝐷 of TE, and that accounts for the information derived from the target TE.

To this end, we extract knowledge from the target TE and inject information into our tree model. In particular:

• Following the TE voting procedure, which leads to the prediction, we maximize the fidelity to the TE. Namely, we minimize the 
misclassification of each sample with respect to its predicted class extracted from the ensemble model.

• According to the measures used in the visualization tool, we detect each feature’s usage frequency along the forest’s trees. 
Through penalization in the objective function, we drive the selection of features based on their frequencies. Further, we hand 
to our model only a subset of the most frequent features for each tree level. In this way, we promote selecting the most 
representative features of the TE while further inducing the sparsity of the branching hyperplanes, i.e. sparsity of the features. 
Indeed, sparsity is a core component of interpretability [32], and having sparser decision rules allows the end user to identify 
better the key factors influencing the outcome.

• To encourage the partition of the feature space as performed by the TE, we calculate the proximity of each sample pair in the 
TE. Based on this, we ensure that pairs of samples with proximity greater than a specified threshold are placed in the same final 
leaf of our tree, i.e., in the same final feature space partition.

In section 7, a strengthened MILP formulation is proposed to improve the computational performance of MILP algorithms. This ap-

proach provides a simple yet effective way to interpret the predictions of a complex ensemble model, yielding a shallow interpretable 
tree able to give insights about the features that most affect the classification while approximating the RF decision function.

4. Basic definition and preliminaries

We focus on binary classifiers, and we assume that we are given a training dataset

{(𝑥𝑖, 𝑦𝑖) ∈ℝ| | × {−1,1}, 𝑖 ∈ },

where  is the index set of the features, and w.l.o.g. we normalize the feature values 𝑥𝑖, 𝑖 ∈  to lie inside the interval [0, 1].
The training data is used to construct a predictor 𝑓 (𝑥) ∶ ℝ| | → {−1, 1}. We are interested in Tree (T) and Tree Ensemble (TE) 
models, and in this section, we review the basic concepts of Ts and TEs that are needed in the following sections.

Decision trees yield a partition of the feature space [0, 1]|𝐽 | by applying hierarchical disjunctive splittings. A tree is characterized 
by a maximum depth 𝐷 so that nodes are organized into at most 𝐷 levels in  = {0, 1, … , 𝐷}. A decision tree is composed of branch 
nodes in a set  and leaf nodes in a set . A branch node 𝑡 ∈ applies a splitting rule on the samples in the node, while a leaf node 
𝓁 ∈  acts as a collector of samples. In each leaf node, the same class is assigned to all the samples contained within it using a simple 
rule, such as the majority vote.

The most common decision trees are univariate employing axis-aligned splits [8] where the feature and associated threshold are 
4

chosen so as to decrease child nodes impurity.
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In recent years, multivariate (or oblique) decision trees have been proposed, which may involve multiple features per split [3,4]. 
Each branching rule is defined by hyperplane ℎ𝑡(𝑥) = 𝑎𝑇𝑡 𝑥

𝑖+𝑏𝑡, where 𝑎𝑡 ∈ℝ| | and 𝑏𝑡 ∈ℝ (where the apex 𝑇 denotes transposition of 
the vector). These multivariate splits are much more flexible than univariate ones, at the expense of lower interpretability. However, 
the problem of determining them is much more complicated, and it can be tackled using Mixed Integer Linear Programming. Of 
course, univariate models are a subclass of multivariate ones, thus in general, the splitting rule at a node 𝑡 ∈ can be represented as

if ℎ𝑡(𝑥𝑖)

{
≤ 0 𝑥𝑖 follows the left branch of 𝑡

> 0 𝑥𝑖 follows the right branch of 𝑡
. (1)

The hierarchical tree structure uses hyperplane splits that recursively partition the feature space into disjoint regions, each of 
which corresponds to a leaf node in the tree. The obtained tree is then used to classify unseen data. A root-to-leaf unique path 
(decision path), which is a conjunction of predicates, leads to the prediction 𝑦̂𝑇 ∈ {−1, 1} made by the tree.

We define a Tree Ensemble TE as a collection of tree estimators  with associated weights 𝑤𝑒, with 𝑒 ∈  . The TE decision function 
𝐹𝑇𝐸 ∶ℝ| | → {−1, 1} is obtained as the weighted majority vote of the decision function of its trees (ties are usually broken in favor 
of the smaller index).

5. VITE: a hierarchical VIsualization tool for TE

The underlying idea of our graphical representation has been inspired by the definition of variable importance given by Ishwaran 
[23] and the definition of Minimal Depth [25]. The importance of a variable is related to the level at which it is used as variable 
splitting, assuming that splitting at the root node or nodes at shallower tree levels has a greater impact on variable importance than 
those used at deeper levels. Indeed features that are used overwhelmingly at the shallower depths are those that decrease impurity 
the most and therefore play a greater role in the classification of the samples. We aim to generalize this principle and consider all 
the times a feature is used in the trees, and not just the first appearance. This gives a hierarchical perspective on the role played by 
features in the trees that make up the TE. Indeed, a feature can show up multiple times at lower levels in the tree after its initial 
appearance, which determines its Minimal Depth. On the other hand, it may not reappear after its initial appearance. We aim to gain 
insight into the role of features along all the levels of the trees.

Drawing inspiration from this concept, we consider for each feature the percentage frequency with which it is selected, at each 
level, in the forest’s trees. We define the 𝑗-th feature level frequency for each 𝑑 ∈  as the ratio between the number of times 
the feature 𝑗 is used at level 𝑑 of all the trees in  and the total number of nodes that effectively apply a split at level 𝑑, thus 
not accounting for the possible leaves appearing at level 𝑑 (pruned nodes). In this definition, we must account for the type of TE 
considered. Indeed, as remarked in [35], in Random Forest each tree is generated by an identical and independent process and 
contributes equally to the prediction. However, this is no longer true in boosted trees where individual trees are obtained by a 
boosting process which makes trees not independent and with a different contribution to the overall prediction. This aspect can 
be managed by weighting the contribution of each tree similarly to the approach proposed in [35] for the Proximity measure. 
Furthermore, each decision tree in a TE can be allowed to use only a limited random subset of features as candidates for splitting 
at each node [21]. Again, in this case, a weight can be used to compensate for the bias as proposed for the Minimal Depht in [25]. 
To formally introduce the level frequency of a feature, we assume, for the sake of simplicity, that nodes in each tree are numbered 
according to breadth-first indexing (increasing from left to right at each level 𝑑), starting from the root node, which is numbered 
zero, so that 𝑡 ∈  = {0, 1, 2, … , 2𝐷+1 − 1}. Let us define the indicator function for each 𝑗 ∈  , 𝑡 ∈  , 𝑒 ∈  , as

1(𝑗, 𝑡, 𝑒) =

{
1 if feature 𝑗 is used at node 𝑡 of the tree 𝑒

0 otherwise

and for each tree 𝑒 ∈  , let 𝑒(𝑑) be the set of nodes at level 𝑑 of the tree 𝑒 which effectively apply a splitting rule. Thus, we 
introduce the following definition.

Definition 5.1 (Level Frequency). The frequency 𝑓𝑑,𝑗 of a feature 𝑗 at a level 𝑑 ∈ {0, … , 𝐷 − 1} is

𝑓𝑗,𝑑 =
1∑

𝑒∈
|𝑒(𝑑)| ∑𝑒∈𝑤𝑒

∑
𝑡∈𝑒(𝑑)

1(𝑗, 𝑡, 𝑒), (2)

where 𝑤𝑒 ∀𝑒 ∈  are non-negative weights that take into account (i) the probability of a feature being sampled as a candidate for 
the splitting rule in a level of the tree 𝑒 ∈  and (ii) the contribution of each tree 𝑒 ∈  in predicting the outcome.

According to this definition, we can define the level frequency matrix of dimension respectively | | × 𝐷 with elements 
{𝑓𝑗,𝑑}𝑖∈ ,𝑑∈, rescaled in percentage. Each column of the matrix sums up to 100%.

We represent this matrix with a heatmap where the darker colors represent the more used features at the level 𝑑.

To obtain a deeper view of the features’ use in the TE we can consider a more specific definition of the frequency for each node 
𝑡 in the tree. We define the 𝑗-th feature node frequency for each 𝑡 ∈  as the ratio between the number of times the feature 𝑗 is used 
at node 𝑡 in all the trees in  and the total number of nodes 𝑡 that are splitting nodes in the ensemble. As in Definition 5.1, we can 
5

weigh the contribution of each tree to account for a possible different role in the TE. Thus, we have the following definition.
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Definition 5.2 (Node Frequency). The frequency 𝑓node
𝑡,𝑗 of a feature 𝑗 ∈  at a node 𝑡 ∈  is

𝑓node
𝑡,𝑗 = 1∑

𝑒∈

∑
𝑗∈

1(𝑗, 𝑡, 𝑒)

∑
𝑒∈
𝑤𝑒1(𝑗, 𝑡, 𝑒), (3)

where 
∑
𝑒∈

∑
𝑗∈ 1(𝑡, 𝑗) is equal to the number of times the node 𝑡 is a splitting node in the forest and 𝑤𝑒 ∀𝑒 ∈  are non-negative 

weights that take into account (i) the probability of a feature being sampled as a candidate for the splitting rule in a node of the tree 
𝑒 ∈  and (ii) the contribution of each tree 𝑒 ∈  in predicting the outcome.

We use the node frequency definition to obtain a visualization of the TE in the form of a single tree of depth 𝐷 where for each 
node 𝑡 ∈  we report the heatmap of the features’ node frequency matrix with elements {𝑓node

𝑡,𝑗 }𝑖∈ , rescaled in percentage. Also in 
this case, for each 𝑡 ∈  we have 

∑
𝑗∈ 𝑓

node
𝑡,𝑗 ×100 = 100%. Of course, the leaf nodes which are at level 𝐷 are not represented since 

there are no splits. However, in case a terminal node appears in upper levels, from 0 to 𝐷 − 1, it is reported with values 𝑓node
𝑡,𝑗 = 0

for all 𝑗 ∈  .

As additional information, we recover from the TE the ranges of the threshold 𝑏𝑗 for each feature 𝑗 used in the trees of the TE at 
each node 𝑡 ∈  . This is reported in the visualized tree, as an interval [𝑙𝑗 , 𝑢𝑗 ] near the name of each feature 𝑥𝑗 which is used at node 
𝑡. When 𝑙𝑗 = 𝑢𝑗 , a single value is reported. The interval gives us additional information: for each tree in the TE, whenever a features 
𝑗 is used at node 𝑡 we trivially have that

𝑥𝑖𝑗

⎧⎪⎨⎪⎩
≤ 𝑙𝑗 𝑥𝑖 always goes to the left branch

∈ (𝑙𝑗 , 𝑢𝑗 ] uncertain (grey choice)

> 𝑢𝑗 𝑥𝑖always goes to the right branch

This can give additional insight that can be analyzed by experts in the field under study. Indeed it may allow for identifying easily 
understandable decision paths for samples 𝑥𝑖 whose features 𝑗 fall into the external intervals of the (−∞, 𝑙𝑗 ] or (𝑢𝑗 , +∞) for all 𝑗 ∈  .

It is worth mentioning how the proposed frequency metrics and VITE representations compare to existing metrics for comput-

ing feature importance in TE such as the Mean Decrease Impurity (MDI - Gini importance) and Mean Decrease Accuracy (MDA 
- permutation importance), defined in [6]. The features that most effectively reduce node impurity (and hence have higher MDI) 
are selected early and more frequently in the tree-splitting process, aligning with the underlying greedy algorithm for constructing 
decision trees in a forest. Further, the features selected first and most frequently are decisive for evaluating MDA. Thus, the most 
important features, according to MDI and MDA, align closely with those identified through VITE, which gives similar insight into the 
overall features’ ranking. However, traditional metrics, such as MDI and MDA, provide a ranking of features based on the average 
role they play along the trees in the forest. Instead, VITE provides a visual representation that evaluates the importance of features 
in a distributed manner along different levels of trees throughout the forest, providing a different hierarchical view. Moreover, our 
visualization incorporates the threshold ranges that are applied in the splitting rules, offering insights into how specific features are 
utilized at various depths within the forest. It is worth to note that the MDI metric can be adapted to evaluate the decremental 
impurity contribution of each feature at various levels. Specifically, the vanilla MDI for a given feature is calculated as the total 
sum of impurity reductions across all nodes in each tree where the feature is used, normalized by the total number of trees in the 
ensemble. An interesting approach could be to evaluate the MDI for nodes at a certain level across all trees where the feature is 
employed by the TE, utilizing this measure in the VITE representation instead of the frequency.

We show on a toy example how VITE works for the construction of the heatmap matrices and of the representative tree in 
Fig. 1. Here, we assume to have a simple Random Forest composed of 𝐸 = 3 trees with depth 𝐷 = 3, and samples 𝑥𝑖 ∈ ℝ4, namely 
 = {1, 2, 3, 4}.

In this simple example, features 𝑥1 and 𝑥2 are both used at the root node and stand out as the most frequently used in the TE, 
also at shallower depths. Feature 𝑥3 appears exclusively at the 𝑑 = 1 level, while feature 𝑥4 remains unused in the entire forest. 
From such a representation it would seem reasonable to infer that features 𝑥1 and 𝑥2 are critical for impurity reduction when most 
samples are accessible to a node, and consequently for predictions. Feature 𝑥3 is less important and 𝑥4 is not effective as a predictor. 
The intuitive nature of these visualizations provides simple insights into feature usage, making the model understandable even for 
non-expert users.

We comment on the VITE representation, and the insight gained when applied for the visualization of a Random Forest with 
𝐸 = 100 tree estimators of maximum depth 𝐷 = 3 trained on Cleveland dataset [15], which refers to heart disease classification and 
has 𝑥 ∈ℝ13. In this case, features have been normalized to [0, 1], and we disable random sampling of the features in the construction 
of the RF. We use weights 𝑤𝑒 = 1 in the definitions of frequencies (5.1) (5.2). In Fig. 2, we report the heatmap representing the 
level frequency matrix; in Fig. 3, we report the representative tree of depth 𝐷 = 3 where at each node 𝑡, the node frequency of each 
feature 𝑗 is reported together with the interval [𝑙𝑗 , 𝑢𝑗 ]. In Fig. 4, we report the aggregated metrics MDI and MDA to compare with. 
From VITE visualization, only four features (“thal”, “cp”, “ca” and “thalach”) are used at all the levels of the trees with different 
percentages, being “thal” the one with the prominent role (66%) at the root node. Comparing with rankings of Fig. 4 derived from 
the MDI and MDA, it is evident, as expected, that the most important features “thal”, “cp”, “ca”, align closely with those identified 
6

by VITE.
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Fig. 1. Toy example: construction of the features’ usage heatmap at different depths in the TE.
7

Fig. 2. Cleveland example: features’ level frequency at the three different tree levels of a RF.
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Fig. 3. Cleveland example: features’ node frequency at the nodes of the trees in the RF.
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Fig. 4. Cleveland example: Figure (a) represents the features’ importance by mean decrease impurity (MDI). Figure (b) represents the features’ importance by mean 
decrease accuracy (MDA).

In contrast to the aggregated perspective of these traditional metrics, VITE offers a distributed representation and a view of the 
threshold ranges used at different levels. For example, “thal” is the most prominent feature used in the root node, confirming as 
known from the medical literature, that the Thallium stress test result (thal) is a strong predictor of potential heart disease. Further, 
splitting values for “thal” are always in the same range [0.38, 0.88] at each level of all the trees, providing insight into the values 
used to discriminate among patients in the nodes. In a hierarchic view, at the next level, “oldpeak” and “age” come into play at a 
significant percentage (greater than 5%). On the other hand, some features, e.g. “sex” which is binary, appear in the TE trees only at 
the very last branching nodes, thus showing a role only as a final discriminator.

The source code and the data to use the VITE tool are available at https://github .com /gditeodoro /VITE.

6. MIRET: a Multivariate Interpretable REbuilt optimal Tree

6.1. Introduction

In this section, we proposed a Mixed Integer Linear Programming (MILP) formulation for learning a single optimal multivariate 
tree as a surrogate model of the ensemble classifier.

In more detail, let 𝑇𝐸 be a target Tree Ensemble model, with || tree estimators of maximal depth 𝐷 trained on the given dataset and 
let 𝐹𝑇𝐸 ∶ℝ| | → {−1, 1} be the decision function of 𝑇𝐸.

The aim is to provide a shallow and interpretable surrogate multivariate tree model 𝑇 , of the same maximal depth 𝐷 of 𝑇𝐸, 
with decision function 𝐹𝑇 ∶ℝ| | → {−1, 1}, which is able to reproduce as much as possible the 𝑇𝐸 predictions on the training set. 
Further, we aim to enforce in the splitting hyperplanes the use of the most informative features.

As a first step, we formalize the definition of fidelity we are using.

Definition 6.1 (Training data fidelity). Given a tree ensemble 𝑇𝐸, we say that a multivariate decision tree 𝑇 of depth 𝐷 is faithful to 
training data w.r.t. 𝑇𝐸, when the prediction 𝐹𝑇𝐸 (𝑥𝑖) = 𝐹𝑇 (𝑥𝑖) for all 𝑖 ∈ .

This definition is different from the one proposed in [36], where instead, authors construct a whole faithful representer tree which 
aims to reproduce exactly the decision function on the whole space of the features, namely 𝐹𝑇𝐸(𝑥) = 𝐹𝑇 (𝑥), for all 𝑥 ∈ℝ| |, and not 
only on the training samples 𝑥𝑖, 𝑖 ∈ , or from the one given in [6] where manufactured data are used in the definition of fidelity. 
In those approaches, the complexity (depth and/or number of splits) is minimized, exactly or heuristically, but in principle, it can 
grow exponentially. Instead, in our approach, we aim to find a partition of the space which produces the same classification on the 
available samples keeping the depth of the representer tree fixed to 𝐷, the same as the trees in the 𝑇𝐸. Since depth 𝐷 is fixed, the 
existence of such a faithful 𝑇 on the training data is not straightforward and, in general, cannot be guaranteed. Thus, we chose to 
maximize the fidelity and to include a penalization term to favor sparsity in the splits. According to the taxonomy reported in [10], 
we refer to the following definition of global surrogate fitting model. Giving a loss function 𝑆 ∶ {−1, 1}| | × {−1, 1}| | → ℝ which 
measures the error in binary classification and a penalty function 𝑉 (𝑇 ), which measures the number of features used by the tree 𝑇 , 
we aim to find a tree 𝑇 ∗ in a restricted set of decision trees 𝑇 such that

𝑇 ∗ = arg min
𝑇∈𝑇

(∑
𝑖∈
𝑆(𝐹𝑇 (𝑥𝑖), 𝐹𝑇𝐸 (𝑥𝑖)) + 𝑉 (𝑇 )

)

9

In our approach, trees in the class 𝑇 are characterized by

https://github.com/gditeodoro/VITE
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Fig. 5. Representation of structure and notation for a tree with depth 𝐷 = 3.

• fixed depth 𝐷;

• branching at node 𝑡 according to rule (1) with a multivariate splitting

ℎ𝑡(𝑥) = 𝑎𝑇𝑡 𝑥+ 𝑏𝑡, (4)

with 𝑎𝑡 ∈ℝ𝑛 and 𝑏𝑡 ∈ℝ;

• constraints derived from 𝑇𝐸 information.

The training phase outputs an optimal classification tree 𝑇 ∗ defined by coefficients 𝑎∗𝑡 and 𝑏∗𝑡 for each branching node 𝑡 ∈.

Notation. In order to present our formulation, we introduce the main concepts and notation concerning optimal trees, as first 
described in [4]. Since the tree has fixed depth 𝐷, levels can be numbered as  = {0, … , 𝐷} being 0 the root node and 𝐷 the 
terminal level of the leaf nodes. As usual, nodes are divided into branch and leaf nodes. A branch node 𝑡 applies the multivariate 
splitting rule (4) on the subset of samples 𝑡 ⊆  assigned to it, partitioning them among the left or right branch and hence among 
the two child nodes according to (1). Following [13], branching nodes  at level 𝑑 <𝐷 always apply a split which can be an effective 
or a dummy one. Indeed, if a node 𝑡 at a level 𝑑 < 𝐷 does not need to partition the samples further, we define two dummy children 
anyway such that only one of the two contains all the samples 𝑡. We assume that nodes in the tree are numbered according to 
breadth-first indexing, starting from the root node, which is numbered zero and increasing from left to right at each level 𝑑, so that 

the tree has an overall number of nodes 
𝐷∑
𝑘=0

2𝑘 − 1 = 2𝐷+1 − 2.

We make use of the following notation, which is pictured in Fig. 5:

• : the set of branch nodes where an oblique splitting rule is applied;  are numbered {0, … , 2𝐷 − 2}.

• : the set of leaf nodes where a class is assigned to a sample;  are numbered {2𝐷 − 1, … , 2𝐷+1 − 2}.

• (𝑑) the set of nodes at level 𝑑, numbered as {0, … , 2𝐷 − 2}.;

• ′ =
𝐷−2⋃
𝑑=0

(𝑑): the set of branch nodes not adjacent to the leaves;

• ′′ =(𝐷 − 1): the set of branch nodes adjacent to the leaves;

• (𝑡) the set of leaf nodes in the subtree rooted at node 𝑡 ∈

• 𝐿(𝑡) and 𝑅(𝑡) the set of left and right sub-leaves respectively, i.e. the set of leaf nodes following the left and right branch of 
the subtree rooted at node 𝑡 ∈;

• the class assignment 𝑐𝓁 for each 𝓁 ∈ . Being in a binary classification setting, we pre-assigned a class label to each leaf node, 
labeling as −1 the odd leaves and as +1 the even ones.

Variables. The straightforward variables are the coefficients of the hyperplane ℎ𝑡 for each 𝑡 ∈  which are continuous and w.l.o.g. 
can be assumed to be normalized so that
10

𝑎𝑡 = {𝑎𝑡,𝑗}𝑗∈ ∈ [−1,1]|𝐽 |, 𝑏𝑡 ∈ [−1,1] ∀ 𝑡 ∈.
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Table 1

Overview of decision variables in MIRET.

Variable Description

𝑎𝑡,𝑗 ∈ [−1,1] hyperplane coefficient at node 𝑡 of feature 𝑗

𝑏𝑡 ∈ [−1,1] hyperplane intercept at node 𝑡

𝑠𝑡,𝑗 ∈ {0,1} 1 if feature 𝑗 is selected at node 𝑡, 0 otherwise

𝑧𝑖,𝓁 ∈ {0,1} 1 if sample 𝑖 is assigned to leaf 𝓁, 0 otherwise

As done in traditional OCTs [4], we also need the binary variables 𝑧𝑖,𝓁 for all samples 𝑖 ∈  and leaves 𝓁 ∈, defined as follows:

𝑧𝑖,𝓁 =

{
1 if sample 𝑖 is assigned to leaf 𝓁 ∈

0 otherwise
.

Since we are interested in controlling the use of features along the tree, we introduce other binary variables 𝑠𝑡,𝑗 ∈ {0, 1}, for each 
𝑡 ∈ and 𝑗 ∈  , as follows:

𝑠𝑡,𝑗 =

{
1 if feature 𝑗 is used at node 𝑡 (𝑎𝑡,𝑗 ≠ 0)

0 otherwise
.

Table 1 presents an overview of the variables used in the model.

Tree-structure-based constraints. We need to state constraints to recover the tree structure as in MILP-based OCT formulation for 
multivariate trees (e.g. [4], [13], [5]).

The first set of constraints forces each sample 𝑥𝑖, 𝑖 ∈  to be assigned to one and only one leaf node 𝓁 ∈. Assignment constraints

are stated as follows:∑
𝓁∈
𝑧𝑖,𝓁 = 1 ∀ 𝑖 ∈ . (5)

We further need to model disjunctive conditions on samples that model the routing rules defined in (1) and ensure that the 
hyperplane splits are designed accordingly to the assignment 𝑧 of samples to the leaf nodes. The routing constraints on the sample 𝑥𝑖
are defined at each node 𝑡 ∈ but must apply only to that 𝑖 ∈ 𝑡, which is determined during the optimization process itself.

As in [13], we use the observation that whenever 𝑖 ∈ 𝑡, then 𝑥𝑖 must end up in one of the leaves of the subtree rooted at 𝑡, and more 
specifically, either in the subset of the left or of the right subtree rooted at node 𝑡. This condition is expressed as

either
∑

𝓁∈𝐿(𝑡)
𝑧𝑖,𝓁 = 1 or

∑
𝓁∈𝑅(𝑡)

𝑧𝑖,𝓁 = 1.

Thus, we can write the routing constraints as

𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 ≤𝑀𝐿

(
1 −

∑
𝓁∈𝐿(𝑡)

𝑧𝑖,𝓁

)
∀𝑖 ∈ , ∀𝑡 ∈, (6)

𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 − 𝜀 ≥ −𝑀𝑅

(
1 −

∑
𝓁∈𝑅(𝑡)

𝑧𝑖,𝓁

)
∀𝑖 ∈ , ∀𝑡 ∈ (7)

where 𝜀 > 0 is a sufficiently small positive value to model strict inequalities in (1). In our implementation, we fixed 𝜀 = 0.001 (see 
[4]).

Indeed, if a sample 𝑖 ∉ 𝑡, we have that 
∑

𝓁∈𝐿(𝑡) 𝑧𝑖,𝓁 =
∑

𝓁∈𝑅(𝑡) 𝑧𝑖,𝓁 = 0, and thus both the constraints do not impose any routing 
conditions on sample 𝑖. Instead, if sample 𝑖 ∈ 𝑡 and 

∑
𝓁∈𝐿(𝑡) 𝑧𝑖,𝓁 = 1, thus, only the constraint (6) is activated for sample 𝑖 at node 

𝑡, while (7) is deactivated. Analogous considerations can be done if a sample 𝑖 ∈ 𝑡 follows the right branch.

The Big-M values can be easily obtained because 𝑥𝑖 ∈ [0, 1]| |, 𝑎𝑡 ∈ [−1, 1]| | and 𝑏𝑡 ∈ [−1, 1] for all 𝑡 ∈ . Hence we can set the 
Big-M values to

𝑀𝐿
= | |+ 1 𝑀𝑅

= | |+ 1 + 𝜀.

On the other hand, the choice of the 𝜀 parameter is critical because small values may lead to numerical issues, and large ones may 
cut feasible solutions.

Additionally, we need to include constraints among 𝑠𝑡,𝑗 and 𝑎𝑡,𝑗 to force the conditions 𝑠𝑡,𝑗 = 0 ⟺ 𝑎𝑡,𝑗 = 0. This is easily modeled

by sparsity constraints as
11

−𝑠𝑡,𝑗 ≤ 𝑎𝑡,𝑗 ≤ 𝑠𝑡,𝑗 . (8)



EURO Journal on Computational Optimization 12 (2024) 100084G. Di Teodoro, M. Monaci and L. Palagi

6.2. Incorporating TE-driven information

We embed information derived from the 𝑇𝐸 both in the constraints and in the objective function of the model MIRET. In 
particular, we use

• the proximity measure 𝑚𝑖𝑘 among samples 𝑥𝑖, 𝑥𝑘;
• the frequency 𝑓𝑑,𝑗 of each feature 𝑗 at each level 𝑑;

• the probability 𝑝𝑖 of the 𝑇𝐸 class prediction 𝑦𝑖,

and we report here the definitions needed.

The proximity measure 𝑚𝑖𝑘 of a pair of samples 𝑥𝑖, 𝑥𝑘 in the 𝑇𝐸 is the number of trees 𝑒 ∈  in the 𝑇𝐸 model in which the two 
samples end up in the same leaf. Let us define the indicator function for each pair 𝑖, 𝑘 ∈  and each tree 𝑒 ∈  as

1(𝑖, 𝑘, 𝑒) =

{
1 if samples 𝑥𝑖, 𝑥𝑘 end in the same leaf 𝓁 of the tree 𝑒

0 otherwise

Thus, we have the following definition [7,35]:

𝑚𝑖,𝑘 =
1|| ∑
𝑒∈
𝑤𝑒

∑
𝑒∈

1(𝑖, 𝑘, 𝑒), (9)

where 𝑤𝑒 ∀𝑒 ∈  are non-negative weights that play a similar role as in the definitions (2) and (3).

The proximity measure is considered a measure of the distance in data space. Two samples being in the same leaf in all trees indicates 
that the two samples always belong to the same data space partition. We use it in the constraints.

The level frequency 𝑓𝑑,𝑗 of each feature 𝑗 at each level 𝑑 across the trees in 𝑇𝐸 is calculated according to (2).

In our optimization model, we grow a full tree with depth 𝐷, and all the branch nodes at level 𝑑 are potential splitting nodes. In 
total, nodes are || ⋅ 2𝑑 , where 2𝑑 is the number of nodes at level 𝑑. Since we aim to measure the spread of features among nodes in 
the trees, we use in (2) the denominator equal to || ⋅ 2𝑑 , and we have for all 𝑑 ∈, 𝑗 ∈  :

𝑓𝑑,𝑗 =
1||2𝑑 ∑

𝑒∈
𝑤𝑒

∑
𝑡∈𝑒(𝑑)

1(𝑗, 𝑡, 𝑒). (10)

We use it both in the constraints and in the objective function.

The class probability 𝑝𝑖 of a sample 𝑥𝑖 is the highest estimated probability of the prediction given by 𝑇𝐸. It is calculated as

𝑝𝑖 ∶= max
𝑐∈{−1,1}

𝑝𝑖𝑐 ,

where

𝑝𝑖𝑐 ∶=
1
𝐸

𝐸∑
𝑒=1

𝑁𝓁𝑒,𝑐

𝑁𝓁𝑒

,

with 𝑁𝓁𝑒
the number of samples assigned to leaf 𝓁 in the tree 𝑒 of the 𝑇𝐸 model and as 𝑁𝓁𝑒,𝑐

the number of samples with class label 
𝑐 assigned to the same 𝓁 in 𝑒.
The class probability metric derives from a procedure of soft voting of forest trees and has its roots in [6]. In this paper, Breiman 
introduces the concept of ‘votes’ of individual forest trees, which are essentially used to determine the final label of a sample with a 
majority voting system. In majority voting, the predicted class label of a sample is the class label that represents the majority (mode) 
of the class labels predicted by each individual classifier. This concept is then naturally extended to obtaining class probabilities 
with a soft voting of the forest’s trees, as expressed in [35]. The predicted class probability of an input sample is the average of the 
predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class 
in a leaf. This is how sample class probability is implemented in scikit-learn library for Python [29].

We use it in the objective function.

TE-driven constraints. We use the proximity measure to constrain the data space partitioning of the representative tree to be similar 
to the 𝑇𝐸. To this aim, we define the set 𝑇𝐸 of pairs of samples with proximity measure higher than a given proximity threshold

𝑚𝑇𝐸 ≤ 1 which is a hyperparameter of our model:

𝑇𝐸 (𝑚𝑇𝐸 ) ∶= {(𝑖, 𝑘) ∈  ×  ∶ 𝑖 < 𝑘 ∧ 𝑚𝑖,𝑘≥𝑚𝑇𝐸}, (11)

and we include the proximity constraints:

𝑧𝑖,𝓁 = 𝑧𝑘,𝓁 ∀𝓁 ∈, ∀(𝑖, 𝑘) ∈ (𝑚𝑇𝐸 ) (12)
12

which ensures that pairs of samples with a proximity measure over the threshold are assigned to the same leaf in the model.
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The level frequency 𝑓𝑑,𝑗 is used both to define hard constraints and to drive the selection of the features according to their 
frequency. Let us define the index sets

𝛾 (𝑑) ∶= {𝑗 ∈  ∶ 𝑓𝑑,𝑗 > 𝛾𝑑}, ∀𝑑 ∈, (13)

where 𝛾𝑑 for 𝑑 ∈ are given frequency thresholds and they are treated as hyperparameters of our model.

The frequency constraints force the model to select at level 𝑑 only features in the subset 𝛾 (𝑑) by imposing the following conditions:

𝑎𝑡,𝑗 = 0 ∀𝑗 ∈  ⧵ 𝛾 (𝑑) ∀𝑡 ∈(𝑑), ∀𝑑 ∈, (14)

𝑠𝑡,𝑗 = 0, ∀𝑗 ∈  ⧵ 𝛾 (𝑑) ∀𝑡 ∈(𝑑), ∀𝑑 ∈ (15)

This way, we induce local sparsity of the splitting hyperplanes in a hard way.

6.3. Objective function

The objective function is obtained as a combination of the two terms which measure fidelity and sparsity. In order to measure 
fidelity, we need to define a loss function 𝑆 ∶ {−1, 1}| | × {−1, 1}| | → ℝ to measure the error 𝑆(𝐹𝑇 (𝑥𝑖), 𝐹𝑇𝐸 (𝑥𝑖)). The values 
𝐹𝑇𝐸 (𝑥𝑖) = 𝑦𝑖 are the class label predicted by 𝑇𝐸 for sample 𝑥𝑖, based e.g. on majority voting.

The value 𝐹𝑇 (𝑥𝑖) can be easily obtained as

𝐹𝑇 (𝑥𝑖) =
∑
𝓁∈
𝑐𝓁𝑧𝑖,𝓁

where 𝑐𝓁 is the vector of classes assigned to leaves. Thus

1
2
𝑦𝑖
(
𝑦𝑖 − 𝐹𝑇 (𝑥𝑖)

)
=

{
1 if 𝐹𝑇𝐸 (𝑥𝑖) = 𝐹𝑇 (𝑥𝑖)
0 otherwise

.

We use class probability 𝑝𝑖 of the sample 𝑥𝑖 to weight misclassification with the aim of penalizing more the error on samples 
predicted with high probability by 𝑇𝐸; we define the following loss function

𝑆(𝐹𝑇𝐸 (𝑥𝑖), 𝐹𝑇 (𝑥𝑖)) =
1
2
𝑝𝑖𝐹𝑇𝐸 (𝑥𝑖)

(
𝐹𝑇𝐸 (𝑥𝑖) − 𝐹𝑇 (𝑥𝑖)

)
= 1

2
𝑝𝑖𝑦𝑖

(
𝑦𝑖 −

∑
𝓁∈
𝑐𝓁𝑧𝑖,𝓁

)
.

We also aim to promote the use of sparser hyperplanes, enhancing the interpretability of the tree model. Thus we penalize the 
selection of features according to the level frequencies with which they are used at each level 𝑑 in 𝑇𝐸. In particular, for each feature 
𝑗 ∈  we count how many times it is used in the model at level 𝑑 as 

∑
𝑡∈(𝑑) 𝑠𝑡,𝑗 . At each level 𝑑, the use of feature 𝑗 is weighted by 

the reciprocal of its level frequency 𝑓𝑑,𝑗 , in a way that the more the feature 𝑗 is used at level 𝑑 in the 𝑇𝐸, the less is the penalization 
for using it in the optimal tree. We restrict this penalization only to the most used features per level, namely for 𝑗 ∈ 𝛾 (𝑑). The 
penalization term is

𝑉 (𝑇 ) =
∑
𝑑∈

∑
𝑗∈𝛾 (𝑑)

1
𝑓𝑑,𝑗

∑
𝑡∈(𝑑)

𝑠𝑡,𝑗 .

Thus, the overall objective function is:

min 1
2
∑
𝑖∈
𝑝𝑖𝑦̂𝑖

(
𝑦̂𝑖 −

∑
𝓁∈
𝑐𝓁𝑧𝑖,𝓁

)
+ 𝛼

∑
𝑑∈

∑
𝑗∈𝛾 (𝑑)

1
𝑓𝑑,𝑗

∑
𝑡∈(𝑑)

𝑠𝑡,𝑗 ,

where 𝛼 is a penalty hyperparameter to control the trade-off between the two objectives.

6.4. The basic MILP model of MIRET

The MILP formulation of the basic-MIRET is the following:

(b-MIRET) min
𝑎,𝑏,𝑧,𝑠

1
2
∑
𝑖∈
𝑝𝑖𝑦̂𝑖

(
𝑦̂𝑖 −

∑
𝓁∈
𝑐𝓁𝑧𝑖,𝓁

)
+ 𝛼

∑
𝑑∈

∑
𝑗∈𝛾 (𝑑)

1
𝑓𝑑,𝑗

∑
𝑡∈(𝑑)

𝑠𝑡,𝑗

s.t. 𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 − 𝜀 ≥ −(|𝐽 |+ 1 + 𝜀)

(
1 −

∑
𝓁∈𝑅(𝑡)

𝑧𝑖,𝓁

)
∀𝑡 ∈, ∀𝑖 ∈ ,

𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 ≤ (|𝐽 |+ 1)

(
1 −

∑
𝓁∈𝐿(𝑡)

𝑧𝑖,𝓁

)
∀𝑡 ∈, ∀𝑖 ∈ ,

∑
𝓁∈
𝑧𝑖,𝓁 = 1 ∀𝑖 ∈ ,
13

𝑧𝑖,𝓁 = 𝑧𝑘,𝓁 ∀𝓁 ∈, ∀𝑖, 𝑘 ∈𝑇𝐸 (𝑚𝑇𝐸 ),
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𝑎𝑡,𝑗 = 0, ∀𝑑 ∈, ∀𝑗 ∈  ⧵ 𝛾 (𝑑), ∀𝑡 ∈(𝑑),

𝑠𝑡,𝑗 = 0 ∀𝑑 ∈, ∀𝑗 ∈  ⧵ 𝛾 (𝑑), ∀𝑡 ∈(𝑑),

− 𝑠𝑡,𝑗 ≤ 𝑎𝑡,𝑗 ≤ 𝑠𝑡,𝑗 ∀𝑡 ∈, ∀𝑗 ∈  ,

− 1 ≤ 𝑎𝑡𝑗 ≤ 1 ∀𝑡 ∈ ∀𝑗 ∈  ,

− 1 ≤ 𝑏𝑡 ≤ 1 ∀𝑡 ∈,

𝑧𝑖,𝓁 ∈ {0,1} ∀𝓁 ∈, ∀𝑖 ∈ ,

𝑠𝑡,𝑗 ∈ {0,1} ∀𝑡 ∈, ∀𝑗 ∈  .

Solving this model gives an optimal tree 𝑇 ∗ which for all nodes 𝑡 ∈ at a node 𝑡 has the splits

if 𝑎∗𝑡
𝑇 𝑥+ 𝑏∗𝑡

{
≤ 0
> 0

.

Following the path from the root to leaves gives the decision rules that lead to a classification of a sample. In the next section, we 
slightly modify the formulation in order to gain on the performance of out-of-shell MILP solvers.

6.5. Comparison between other state-of-the-art formulations for multivariate OCTs

In this section, we highlight some technical differences between our MIRET formulation and other recent MIP formulations for 
multivariate trees in the literature. In particular, we address the comparison with the OCT-H model presented in [4] and the S-OCT 
formulation proposed in [5]. The goal of our model is to create a single multivariate surrogate tree that serves as an interpretable 
representer of a more complex tree ensemble classifier. To this aim, we embed specific TE metrics into our model, that are specially 
designed with the aim of creating ‘born-again’ trees. In contrast, OCT-H and S-OCT aim to provide a standalone predictor. In 
principle, TE metrics that have been used in the MIRET model (maximization of the fidelity, proximity and frequency constraints, 
features frequency and class probability driven penalization) could be integrated into any mixed-integer model for multivariate 
optimal trees. For this reason, the comparison below focus solely on technical aspects related to generic tree construction (objective 
function and routing constraints) excluding the TE-based metrics that are a novelty specific to our formulation, but can be applied 
beyond our specific model.

Concerning routing constraints, they involve binary variables, often leading to large and complex mixed-integer models. Aiming 
to reduce the model complexity to obtain a more tractable problem, we mainly follow the modeling approaches for routing and 
assignment constraints used in [13], adapting them to suit our specific tree model. We opted for this approach because it allowed us 
to reduce the number of binary variables and associated constraints. Indeed, as in OCT-H [4], we defined 𝑧 binary variables solely 
over the leaf nodes, resulting in || ⋅ || = || ⋅ 2𝐷 variables. On the other hand, in S-OCT, such binary variables are defined over 
branch and leaf nodes totaling || ⋅ (|| + ||) = || ⋅ (2𝐷+1 − 1). Second, as in [13], we model routing constraints by using the 
sets of left and right sub-leaves 𝑅(𝑡), 𝐿(𝑡), 𝑡 ∈ , generating a total of 2 ⋅ || ⋅ || = || ⋅ (2𝐷+1 − 2) constraints. In OCT-H instead, 
routing constraints are defined for each leaf considering its set of right and left ancestors leading to a higher number of constraints 
(|| ⋅ || ⋅𝐷 = || ⋅ 2𝐷 ⋅𝐷) compared to MIRET formulation. In contrast, in S-OCT, routing constraints are modeled for each branch 
node amounting to 2 ⋅ || ⋅ || = || ⋅ (2𝐷+1 − 2). Additionally, other || ⋅ || = || ⋅ (2𝐷 − 1) constraints are needed to ensure that 
each sample assigned to a branch node 𝑡 is routed to either the left or right child 𝑡. In Table 2, a summary of the number of integer 
variables and routing constraints is presented.

Finally, the objective function in optimal tree model balances a trade-off between the empirical misclassification loss and a 
regularization term usually expressed as a norm of the weights of the hyperplane splits in the tree. In MIRET, the second term 
addresses the local sparsity of the tree model by penalizing the 𝓁1-norm of the weights and uses a linearization using binary 
variables 𝑠, similar to OCT-H. However, in MIRET, each term of the linearization is weighted in the objective function by the 
TE-based frequency (10) of the corresponding feature. In OCT-H, the regularization term does not consider the TE tailored weights. 
On the other hand, in S-OCT, the second term addresses the complexity of the tree, i.e. the number of effective splits in the tree, with 
the use of binary variables that model whether a node applies a split or not.

As a further check to understand the role played by the TE metrics in the construction of the represented tree, we present in 
Appendix A a comparison among the MIRET tree and a simple MIP model excluding TE metrics. The results show that TE metrics 
help in defining a more suitable representer tree and in facilitating the solution.

7. Improving the basic MIRET formulation

7.1. Existence of at least one split

As a first step, we aim to avoid the existence of a feasible solution that does not provide any split, namely a dummy tree. Indeed, 
we observe that there exists a feasible (obviously not optimal) solution with 𝑠𝑗,𝑡 = 0 for all 𝑗 ∈  and 𝑡 ∈ (so that the penalty term 
𝑉 (𝑇 ) = 0) and 𝑎𝑡 = 0 for all 𝑡 ∈ where 𝑏𝑡, 𝑧𝑖,𝓁 can be fixed to any feasible value. All these feasible solutions do not apply a partition 
14

of the samples, thus resulting in a dummy tree. In particular, this also implies that when using a continuous linear relaxation to 
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Table 2

Number of integer variables (modeling assignment of samples) and routing constraints in

MIRET, OCT-H and S-OCT respectively.

Class Size

MIRET OCT-H S-OCT

Integer variables (assignment) ||2𝐷 ||2𝐷 ||(2𝐷+1 − 1)
Routing constraints ||(2𝐷+1 − 2) ||2𝐷𝐷 ||(2𝐷+1 − 2) + ||(2𝐷 − 1)

compute a lower bound, we can obtain a fractional feasible solution 𝑧𝑖,𝓁 ∈ [0, 1] such that the assignment constraints are satisfied 
and 𝑦̂𝑖 =

∑
𝓁∈ 𝑐𝓁𝑧𝑖,𝓁 which is of course optimal for the linear relaxation since the value of the objective function is zero. This gives 

a trivial lower bound.

In order to avoid such a trivial solution, we add the constraint∑
𝑡∈

∑
𝑗∈
𝑠𝑡,𝑗 ≥ 1

which forces at least one branch node in the tree to use at least one feature (the tree has at least one univariate split). Of course, 
we could enforce a more stringent constraint by increasing the right-hand side to a value greater than 1 which is usually the case in 
optimal tree solutions.

7.2. Breaking symmetries

In a MILP model, symmetries refer to the existence of multiple solutions that have the same objective value but differ only in the 
values assigned to a set of integer variables [28]. The presence of symmetries can make it difficult to solve the problem, as they can 
lead to a large number of equivalent solutions, and to a huge branching tree to be explored by the optimization algorithm.

Our basic formulation is affected by this issue in a specific way. Indeed, our classification tree is symmetric in the sense that the 
same value of the objective function is obtained for every solution that permutes components of 𝑧 variables in such a way that

(i) the final partition of samples, and so the final predictions, remains unchanged and,

(ii) the same 𝑠 variables activate, i.e. the same features are used at each level 𝑑 of the tree.

Indeed, in any branch node 𝑡 ∈′, samples assigned to its right and left sub-trees can be swapped using the same setting of the 
variables 𝑠 obtaining equivalent solutions.

However, this is no longer true for nodes at the branching level adjacent to the leaves ′′ due to the pre-assigned labels 𝑐 to leaves. 
Hence, for each node 𝑡 ∈′′, the subset of samples 𝐼𝑡 is forced to follow either the left or the right branch of the node by the leaves 
labels.

In order to avoid the presence of multiple equivalent solutions obtained by swapping branches, we require the following 
symmetry-breaking constraints:

𝑏𝑡 ≥ 0, ∀𝑡 ∈′

This set of constraints enforces a non-negative intercept for the splitting hyperplanes at node 𝑡 ∈ ′ thus avoiding the presence of 
symmetric solutions obtainable by reversing the splitting rules. In this way, we reduce the set of feasible solutions by removing 
redundant solutions which produce the same final partitions of samples using the same features in the tree.

7.3. Adding branching rules

Exploiting the nested tree structure and the routing constraints (6) (7), we introduce for each 𝑡 ∈ ′ and each sample 𝑖 ∈  two 
additional boolean variables 𝑞𝑖

𝐿
(𝑡), 𝑞𝑖

𝑅
(𝑡) ∈ {0, 1} with the constraints

𝑞𝑖𝐿(𝑡) −
∑

𝓁∈𝐿(𝑡)
𝑧𝑖,𝓁 = 0; 𝑞𝑖𝑅(𝑡) −

∑
𝓁∈𝑅(𝑡)

𝑧𝑖,𝓁 = 0.

Hence, we have

𝑞𝑖
𝐿∕𝑅(𝑡) =

{
1 if sample 𝑖 is assigned to a leaf 𝓁 ∈ 𝐿∕𝑅(𝑡)
0 otherwise

,

and routing constraints (7)-(6) become

𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 ≤𝑀𝐿

(
1 − 𝑞𝑖𝐿(𝑡)

)
, ∀𝑡 ∈, ∀𝑖 ∈ 

𝑇 𝑖
(

𝑖
)

15

𝑎𝑡 𝑥 + 𝑏𝑡 − 𝜀 ≥ −𝑀𝑅
1 − 𝑞𝑅(𝑡) , ∀𝑡 ∈, ∀𝑖 ∈ 
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Table 3

Additional decision variables in improved MIRET.

Variable Description

𝑞𝑖
𝐿
(𝑡) ∈ {0,1} if sample 𝑖 is assigned to a leaf 𝓁 ∈ 𝐿(𝑡)

𝑞𝑖
𝑅
(𝑡) ∈ {0,1} if sample 𝑖 is assigned to a leaf 𝓁 ∈ 𝑅(𝑡)

and the assignment constraints (5) are written as

𝑞𝑖𝐿(0) + 𝑞
𝑖
𝑅(0) = 1, ∀𝑖 ∈ .

In the branching procedure, fixing a variable 𝑞𝑖
𝐿
(𝑡) = 0 (or 𝑞𝑖

𝑅
(𝑡) = 0) forces all the 𝑧𝑖,𝓁 = 0 with 𝓁 ∈ 𝐿(𝑡) (or 𝑆𝑅(𝑡)), thus avoiding 

the need to explore branching on the single variables 𝑧𝑖,𝓁 .

Although the large increase in variables and constraints, the numerical experiments that we performed seem to confirm the effec-

tiveness of having such variables.

We also add parenting constraints from node 𝑡 ∈(𝑑) to its children 2𝑡 +1, 2𝑡 +2 ∈(𝑑+1) that connects the 𝑞𝐿 and 𝑞𝑅 variables 
along the subtree rooted at 𝑡. These are || ⋅ |′| conditions expressed as follows

𝑞𝑖𝐿(𝑡) = 𝑞
𝑖
𝐿(2𝑡+ 1) + 𝑞𝑖𝑅(2𝑡+ 1), ∀𝑡 ∈′, ∀𝑖 ∈ ,

𝑞𝑖𝑅(𝑡) = 𝑞
𝑖
𝐿(2𝑡+ 2) + 𝑞𝑖𝑅(2𝑡+ 2), ∀𝑡 ∈′, ∀𝑖 ∈ .

We report in Table 3 the additional variables.

The improved MILP formulation MIRET is the following:

(MIRET) min
𝑎,𝑏,𝑧,𝑠,𝑞𝐿,𝑞𝑅

1
2
∑
𝑖∈
𝑝𝑖𝑦̂𝑖

(
𝑦̂𝑖 −

∑
𝓁∈
𝑐𝓁𝑧𝑖,𝓁

)
+ 𝛼

∑
𝑑∈

∑
𝑗∈𝛾 (𝑑)

1
𝑓𝑑,𝑗

∑
𝑡∈(𝑑)

𝑠𝑡,𝑗

s.t. 𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 − 𝜀 ≥ −(|𝐽 |+ 1 + 𝜀)

(
1 − 𝑞𝑖𝑅(𝑡)

)
∀𝑡 ∈, ∀𝑖 ∈ ,

𝑎𝑇𝑡 𝑥
𝑖 + 𝑏𝑡 ≤ (|𝐽 |+ 1)

(
1 − 𝑞𝑖𝐿(𝑡)

)
∀𝑡 ∈, ∀𝑖 ∈ ,

𝑞𝑖𝐿(0) + 𝑞
𝑖
𝑅(0) = 1 ∀𝑖 ∈ ,

𝑞𝑖𝐿(𝑡) = 𝑞
𝑖
𝐿(2𝑡+ 1) + 𝑞𝑖𝑅(2𝑡+ 1), ∀𝑡 ∈′, ∀𝑖 ∈ ,

𝑞𝑖𝑅(𝑡) = 𝑞
𝑖
𝐿(2𝑡+ 2) + 𝑞𝑖𝑅(2𝑡+ 2), ∀𝑡 ∈′, ∀𝑖 ∈ ,

𝑞𝑖𝐿(𝑡) =
∑

𝓁∈𝐿(𝑡)
𝑧𝑖,𝓁 ∀𝑡 ∈, ∀𝑖 ∈ ,

𝑞𝑖𝑅(𝑡) =
∑

𝓁∈𝑅(𝑡)
𝑧𝑖,𝓁 ∀𝑡 ∈, ∀𝑖 ∈ ,

∑
𝑡∈

∑
𝑗∈
𝑠𝑡,𝑗 ≥ 1,

𝑏𝑡 ≥ 0, ∀𝑡 ∈′,

𝑧𝑖,𝓁 = 𝑧𝑘,𝓁 ∀𝓁 ∈, ∀𝑖, 𝑘 ∈𝑇𝐸 (𝑚𝑇𝐸 ),

𝑎𝑡,𝑗 = 0, ∀𝑑 ∈, ∀𝑡 ∈(𝑑), ∀𝑗 ∈  ⧵ 𝛾 (𝑑),

𝑠𝑡,𝑗 = 0 ∀𝑑 ∈, ∀𝑡 ∈(𝑑), ∀𝑗 ∈  ⧵ 𝛾 (𝑑),

− 𝑠𝑡,𝑗 ≤ 𝑎𝑡,𝑗 ≤ 𝑠𝑡,𝑗 , ∀𝑡 ∈, ∀𝑗 ∈  ,

− 1 ≤ 𝑎𝑡,𝑗 ≤ 1 ∀𝑡 ∈ ∀𝑗 ∈  ,

− 1 ≤ 𝑏𝑡 ≤ 1 ∀𝑡 ∈,

𝑧𝑖,𝓁 ∈ {0,1} ∀𝓁 ∈, ∀𝑖 ∈ ,

𝑠𝑡,𝑗 ∈ {0,1} ∀𝑗 ∈  , ∀𝑡 ∈.

8. Computational experience

In this section, we present different computational results in order to evaluate the performances of the approach proposed. We 
use a Random Forest as 𝑇𝐸, and in particular, we use the RF method as implemented in sklearn.ensemble.RandomForest-
16

Classifier [29] with the following setting:
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Table 4

Characteristics of the datasets.

Dataset || | | Class (%)

Cleveland 297 13 53.9/46.1

Diabetes 768 8 65.1/34.9

German 1000 20 30/70

Heart 270 13 55.6/44.4

IndianLiver 579 10 71.5/28.5

Ionosphere 351 34 35.9/64.1

Parkinson 195 22 24.6/75.4

Sonar 208 60 53.4/46.6

Wholesale 440 7 32.3/67.7

Wisconsin 569 30 37.3/62.7

• maximum depth 𝐷 ∈ {2, 3, 4};

• || = 100;

• random sampling of the features deactivated so that weights 𝑤𝑒 = 1, 𝑒 ∈  in (2) and (9).

We denote the target forest as 𝑅𝐹 . The mixed-integer programming model MIRET is coded in Python and ran on a server Intel(R) 
Xeon(R) Gold 6252N CPU processor at 2.30 GHz and 96 GB of RAM. The MILP is solved using Gurobi 10.0.0 with standard settings. 
We set a time limit of 1 hour for each model optimization.

8.1. Datasets

We selected 10 datasets from UCI Machine Learning Repository [15] related to binary classification tasks, and we normalized the 
feature values of each dataset in the interval 0-1. Information about the datasets considered is reported in Table 4. Each dataset was 
split into training (80%) and test (20%) sets.

In order to have a glimpse view of the role of the 𝑅𝐹 information that we used in the model, we calculate the distribution of 
the proximity measures and of the probability class on the training set, and we plot them using violin plots [20] in Figs. 6 and 7
respectively. As regard the level frequencies, we also calculate them for the 𝑅𝐹 , and we report them together with those used in the 
optimal tree obtained with MIRET in Fig. 8.

8.2. Hyperparameters setting

For hyperparameters 𝛾𝑑 , 𝑑 ∈ , 𝑚𝑇𝐸 and 𝛼, we performed a tailored tuning of the model using a grid search within a 𝑘-fold 
cross-validation with 𝑘 = 4.

In particular, the grid values on the thresholds 𝛾𝑑 in (13) are defined considering a percentage of the frequencies values of features 
used in the level 𝑑 of the 𝑅𝐹 . Let  (𝑑)+ = {𝑓𝑑,𝑗 ∶ 𝑓𝑑,𝑗 > 0, 𝑗 ∈  } be the set of positive level frequencies, then 𝛾𝑑 , 𝑑 ∈  are 
computed as the ℎ-th percentile of  (𝑑)+. Further, we also include the value 𝛾𝑑 = 0, to consider the case when MIRET can use all the 
features used in 𝑅𝐹 , namely any feature in  (𝑑)+.

We perform a grid search using these values:

• penalty parameter 𝛼 ∈ {0.2, 0.4, 0.5, 0.6, 0.8};

• 𝛾𝑑 = 0 and 𝛾𝑑 as the ℎ-th percentile of  (𝑑)+ with ℎ ∈ {100∕2, 100∕3, 100∕4};

• proximity threshold 𝑚
𝑅𝐹

∈ {0.85, 0.90, 1.00}.

We evaluated the average validation fidelity and the average sparsity of the trained model. In the end, we selected hyperparameters 
that provide the best balance between the two objectives. The final hyperparameters setting used in the computational results are 
reported in the Appendix B in Table B.20.

8.3. Results

We analyze both optimization performances, namely the viability and efficiency of using an MILP formulation for finding an 
optimal representative tree 𝑇 ∗ of the random forest 𝑅𝐹 , and the predictive performances. We select depths up to 𝐷 = 4. Indeed, 
aiming to obtain an interpretable tree model and accounting for the fact that we can have multivariate splittings, depth 𝐷 ∈ {2, 3} is 
the most significant to get real interpretability. However, to check scalability in the solution of the model, we also use 𝐷 = 4.

Once an optimal tree 𝑇 ∗ is obtained for 𝐷 ∈ {2, 3, 4} solving the MILP problem MIRET, following [19], we evaluate the performances 
both with respect to the 𝑅𝐹 predictions (fidelity), and with respect to the ground truth labels (accuracy) both on the training and on 
17

the test sets.
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Fig. 6. Distribution of proximity measures of pair of training set samples.
18

Fig. 7. Distribution of predicted probabilities of training set samples.
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Table 5

b-MIRET and MIRET comparison on computational times (s) and MIP Gap values (%); in boldface the winning values.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

Time Gap Time Gap Time Gap

b-MIRET MIRET b-MIRET MIRET b-MIRET MIRET b-MIRET MIRET b-MIRET MIRET b-MIRET MIRET

Cleveland 28.4 44.6 0.0 0.0 3600 1942.2 43.6 0.0 3600 3600 89.8 71.5

Diabetes 3600 1373.3 39.5 0.0 3600 3600 100.0 96.1 3600 3600 100.0 98.6

German 11.8 12.3 0.0 0.0 3600 3600 99.6 73.6 3600 3600 94.6 93.4

Heart 160.0 0.7 0.0 0.0 3600 3600 87.6 73.2 3600 3600 87.4 95.0

IndianLiver 3600 3600 80.5 75.6 3600 3600 83.2 77.1 3600 3600 100.0 98.3

Ionosphere 4.4 3.4 0.0 0.0 107.4 204.4 0.0 0.0 3600 947.6 56.6 0.0

Parkinson 5.6 4.6 0.0 0.0 3600 3600 58.2 33.8 3600 3600 92.6 96.3

Sonar 3600 3600 38.6 12.0 3600 3600 89.3 93.2 3600 3600 97.9 97.1

Wholesale 1.4 0.7 0.0 0.0 70.8 18.0 0.0 0.0 3600 554.2 59.5 0.0

Wisconsin 61.3 8.2 0.0 0.0 814.2 385.5 0.0 0.0 3600 3600 99.5 98.1

Mean 1107.3 864.8 22.7 8.8 3163.4 2415.0 56.2 44.7 3600.0 3030.2 87.8 74.8

Table 6

Predictive performances on the training set. FID-𝑅𝐹 : Fidelity with respect to ̂𝑅𝐹 (%); MIRET ACCURACY and ̂𝑅𝐹
ACCURACY with respect to the ground truth (%).

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

FID-𝑅𝐹 ACCURACY FID-𝑅𝐹 ACCURACY FID-𝑅𝐹 ACCURACY

MIRET 𝑅𝐹 MIRET 𝑅𝐹 MIRET 𝑅𝐹

Cleveland 96.6 81.9 81.9 97.9 85.7 87.8 93.7 85.7 92.0

Diabetes 91.9 73.5 75.4 95.4 75.9 79.2 92.3 76.9 83.2

German 98.0 66.8 66.0 95.4 68.5 71.6 87.8 68.8 78.0

Heart 77.3 74.5 84.3 95.4 86.6 89.4 93.1 87.0 94.0

IndianLiver 97.2 67.6 67.8 95.7 67.2 70.6 93.5 72.1 77.3

Ionosphere 98.6 89.6 91.1 95.0 89.6 94.6 95.0 92.5 96.8

Parkinson 93.6 84.6 88.5 89.1 85.9 95.5 96.2 94.9 98.7

Sonar 86.7 79.5 90.4 83.3 83.3 100.0 81.9 81.9 100.0

Wholesale 99.7 92.6 92.3 99.7 92.6 92.9 97.2 92.3 95.2

Wisconsin 99.1 95.8 96.7 96.9 95.6 98.7 98.5 97.8 99.3

• Fidelity is measured as

FID
𝑅𝐹

= 1 − 1
2|| ∑

𝑖∈
𝐹
𝑅𝐹

(𝑥𝑖)
(
𝐹
𝑅𝐹

(𝑥𝑖) − 𝐹𝑇 ∗ (𝑥𝑖)
)
;

• MIRET accuracy with respect to the ground truth 𝑦𝑖, calculated as

ACCMIRET = 1 − 1
2|| ∑

𝑖∈
𝑦𝑖
(
𝑦𝑖 − 𝐹𝑇 ∗ (𝑥𝑖)

)
.

We also evaluated as a term of comparison the 𝑅𝐹 accuracy with respect to the ground truth 𝑦𝑖, calculated as

ACC
𝑅𝐹

= 1 − 1
2|| ∑

𝑖∈
𝑦𝑖
(
𝑦𝑖 − 𝐹

𝑅𝐹
(𝑥𝑖)

)
.

In Table 5, we compare the optimization performances of the basic MIRET model and the improved MIRET version. For each 
dataset and each 𝐷 (a total of 30 MILP problems), we report the computational time (s) and the optimality gap for solving the 
corresponding MILP. The returned solution 𝑇 ∗ is not always certified as the global optimum of the problem. As expected, problem 
hardness increases with the size of the problem. However, the improved version of MIRET has better performance because it closes 
the gap on four additional problems, improves the gap on 85.0% of the problems not closed by b-MIRET, and improves the time on 
about 70.0% of the closed ones. In particular, for 𝐷 = 2, we obtain gap zero on eight out of the ten datasets; for 𝐷 = 3 optimality 
is certified on four of the ten datasets and finally only on two problems for 𝐷 = 4. Despite the gap is not zero, the quality of the 
solutions in terms of predictive performance on the training set is outstanding, as reported in Table 6.

We report in Table 7 the out-of-sample predictive performances. The average fidelity of MIRET (FID-𝑅𝐹 ) is quite high, meaning 
that it fairly mimics the 𝑅𝐹 classification, with an average of 94.1% at depth 2, 94.1% at depth 3, and 92.4% at depth 4.

Additionally, our model has retained on average the generalization capabilities of 𝑅𝐹 . As a matter of fact, it can be easily seen that 
the accuracy of MIRET is similar to the accuracy of 𝑅𝐹 over all the datasets. Thus, our model gains in interpretability as it provides 
a single optimal tree with more straightforward decision paths while being capable of fairly closely reproducing the predictive 
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performances of the Random Forest.
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Table 7

Predictive performances on the test set: fidelity of the MIRET model with respect to ̂𝑅𝐹 , accuracy with respect 
to the ground truth of the MIRET and ̂𝑅𝐹 models.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

FID-𝑅𝐹 ACCURACY FID-𝑅𝐹 ACCURACY FID-𝑅𝐹 ACCURACY

MIRET 𝑅𝐹 MIRET 𝑅𝐹 MIRET 𝑅𝐹

Cleveland 98.3 78.3 80.0 95.0 76.7 81.7 93.3 76.7 83.3

Diabetes 89.6 75.3 68.8 95.5 77.3 76.6 94.2 78.6 76.6

German 99.0 65.5 65.5 97.0 68.5 67.5 87.0 68.0 72.0

Heart 77.8 77.8 85.2 90.7 79.6 85.2 90.7 79.6 85.2

IndianLiver 94.8 65.5 65.5 94.0 64.7 65.5 96.6 63.8 63.8

Ionosphere 100.0 94.4 94.4 95.8 94.4 93.0 87.3 88.7 93.0

Parkinson 97.4 76.9 79.5 100.0 79.5 79.5 97.4 84.6 82.1

Sonar 90.5 71.4 81.0 83.3 83.3 81.0 88.1 71.4 78.6

Wholesale 97.7 90.9 90.9 96.6 89.8 90.9 97.7 90.9 90.9

Wisconsin 97.4 91.2 93.9 94.7 89.5 94.7 93.0 95.6 95.6

Fig. 8. Level frequency of features in 𝑅𝐹 and MIRET model for 𝐷 ∈ {2,3,4}.

In order to better understand the role of the TE-driven information inserted in the model, we analyze the features’ use and the 
proximity measure among samples, comparing the MIRET tree with respect to the 𝑅𝐹 . In particular, in Fig. 8 we report a one-to-one 
comparison of each problem and for each 𝐷 of the level frequency of the features used in the 𝑅𝐹 and in the MIRET model. For 𝑅𝐹 , 
the feature’s level frequency is calculated as in (10).

For MIRET, the heatmap reports the feature level frequency as the fraction of times a feature is used in a split at level 𝑑; thus, it is 
calculated as

𝑓MIRET𝑑,𝑗 = 1|(𝑑)| ∑
𝑡∈(𝑑)

𝑠∗𝑡,𝑗 .

From this Figure, we can also see at a glance the number of features used at each level which gives a rough view of the multi-

dimension of the splits of the optimal tree. The deeper the 𝑅𝐹 goes, the more features it tends to use with a low frequency. On the 
other hand, MIRET uses fewer features at each level. Thus, the penalization of the features’ use in the objective function allows us to 
reduce the number of features used in the optimal tree, which are less than those used overall in the forest, and encourages the use 
20

of sparse multivariate splits.
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Table 8

Cardinality of 𝑅𝐹 (𝑚𝑅𝐹 ) for both training and test set and the 𝑈𝑅𝐹 (in %) evaluated on the test set. “-” indicates that it is not possible to 
evaluate 𝑈𝑅𝐹 since 𝑅𝐹 (𝑚𝑅𝐹 )=0.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

Train Test Train Test Train Test|𝑅𝐹 (𝑚𝑅𝐹 )| |𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹 |𝑅𝐹 (𝑚𝑅𝐹 )| |𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹 |𝑅𝐹 (𝑚𝑅𝐹 )| |𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹

Cleveland 336 43 100 69 27 100 1014 55 100

Diabetes 1271 74 100 315 3 100 93 0 -

German 1667 105 100 24 3 100 1590 149 100

Heart 1284 78 100 45 100 100 467 22 100

IndianLiver 170 4 100 2606 151 100 8 0 -

Ionosphere 6515 311 100 1887 53 100 8341 401 100

Parkinson 246 5 100 176 4 100 1826 50 100

Sonar 279 5 100 1 0 - 0 0 -

Wholesale 3971 388 100 1743 112 100 12919 1124 100

Wisconsin 26217 1415 100 30427 1485 100 16351 991 100

As regard the proximity measure, we use pair of samples with a proximity higher than 𝑚
𝑅𝐹

in the 𝑅𝐹 to define hard constraints. 
Of course, this implies that these samples end up in the same leaves on the training data. This might not be true on the test set. 
Indeed, the multivariate structure of the splits of MIRET does not allow for replicating the exact partition of the space created by the 
𝑅𝐹 , which uses univariate splits. However, proximity constraints aim to encourage clusters of samples that are more likely to end 
up in the same leaf in all trees of the 𝑅𝐹 , to belong to the same partition of space.

Using definition (9), we consider the proximity sets of samples for both the 𝑅𝐹 and the MIRET tree. Let 
𝑅𝐹

(𝑚
𝑅𝐹

) be the set of 
pairs of samples with proximity measure higher than 𝑚

𝑅𝐹
as defined in (11), and let MIRET be the set of samples defined as:

MIRET ∶= {(𝑖, 𝑘) ∈  ×  ∶ 𝑖 < 𝑘 ∧ 𝑧∗
𝑖,𝓁 = 𝑧∗

𝑘,𝓁 for all 𝓁 ∈}.

Thus, we can calculate the fractions 𝑈
𝑅𝐹

, which measures the percentage of samples that both end up in the same leaf of the 
target tree ensemble 𝑅𝐹 at least 𝑚

𝑅𝐹
% of the times and are assigned to the same leaf in MIRET.

𝑈
𝑅𝐹

=
|
𝑅𝐹

(𝑚
𝑅𝐹

) ∩MIRET||
𝑅𝐹

(𝑚
𝑅𝐹

)|
In Table 8, we report the cardinality of the set 

𝑅𝐹
(𝑚
𝑅𝐹

) both for the training and test set and the value of 𝑈
𝑅𝐹

for the test set. 
The latter metric is not reported for the training set since it is imposed to be maximal with hard constraints in the formulation. The 
higher the values of 𝑈 , the more the MIRET tree mimics the partition of the samples in 

𝑅𝐹
(𝑚
𝑅𝐹

) of the 𝑅𝐹 . We can observe that 
pairs of samples from the test set that belong to 

𝑅𝐹
(𝑚
𝑅𝐹

) consistently end up in the same leaf of the surrogate model. This suggests 
that the imposed proximity constraints seem to guide the model in imitating the behavior of the 𝑅𝐹 , even for out-of-sample data.

As a final example of the MIRET model, in Fig. 9 we report the tree generated with 𝐷 = 3 on the Cleveland problem, which we 
visualized using VITE with the same setting of 𝑅𝐹 in Fig. 3. We observe the actual depth of the tree is 2 although 𝐷 = 3. Indeed the 
nodes at level 2 generate only dummy children that are used only to define the class of all the samples. Thus we have the following 
classification function

𝑇 ∗(𝑥) =

{
1 if (𝑥12 ≤ 0 ∧ −0.009𝑥2 − 0.003𝑥11 ≤ −0.01) ∨ (𝑥12 > 0 ∧ −𝑥7 + 𝑥11 > −0.641)
−1 if (𝑥12 ≤ 0 ∧ −0.009𝑥2 − 0.003𝑥11 > −0.01) ∨ (𝑥12 > 0 ∧ −𝑥7 + 𝑥11 ≤ −0.641)

It happens on several problems that the MIRET tree has an actual depth smaller than the maximum depth 𝐷 of 𝑅𝐹 . This can be 
easily derived from Fig. 8, where the presence of a level 𝑑 with no “colored” features in the MIRET level frequency plot means that 
𝑓MIRET
𝑑,𝑗

= 0 ∀𝑗 ∈  , i.e. none of the nodes at level 𝑑 applies a splitting rule. Thus, the size of the MIRET tree is often smaller than the 
maximum possible, leading to more interpretable trees.

The MIRET methodology is versatile and compatible with Random Forests and boosted ensemble techniques. While we focus 
largely on the former, we also extend the evaluation to XGBoost models to assess the performances of MIRET when it is applied to 
identify an optimal representer tree 𝑇 ∗ of an XGBoost target model (𝑋𝐺𝐵). We report these results in the Appendix A.2.

9. Conclusion

The paper falls in the field of interpretable representation of a tree-ensemble model, which aims to provide valuable insights into 
the relationship between the input features and the TE outcomes. Our contribution is twofold. Firstly, we propose a visualization 
tool VITE for ensemble tree models, which allows the user to capture the hierarchical role of features in determining predictions by 
showing the features’ frequency use in the forest. The proposed tool is an addition to the existing visualization tools by helping to 
21

understand how features are used in the black-box tree-ensemble model.
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Fig. 9. Optimal Tree obtained by Miret with 𝐷 = 3 on Cleveland. For each node, we report the number of samples in the class defined by the ground truth: [# 
negative labels, # positive labels].

Further, we present a mixed-integer linear formulation for learning an interpretable re-built tree (MIRET) from a target tree 
ensemble model (TE). MIRET is a multivariate tree with assigned depth 𝐷, which optimizes a weighted combination of fidelity to 
the TE and the number of the features used across the tree, gaining in interpretability at a fixed complexity of the tree. In order 
to improve consistency with the TE, we extracted information from it, such as level frequencies, proximity measures, and class 
probabilities, and we embed them into the MILP model. In this paper, we fixed the depth 𝐷 of the MIRET tree to the one of the target 
TE. However, in principle, by adapting the definition of level frequencies, we can develop optimal trees with any desired depth.

Results on benchmark datasets show that the proposed model is effective in feature selection and yields a shallow interpretable 
tree while accurately approximating the tree-ensemble decision function. The MIRET model offers improved interpretability yielding 
a single optimal tree with intuitive decision paths, which fairly closely replicates the predictive capabilities of the target random 
forest model.
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Appendix A. Additional results

In this section we present additional computational results of MIRET.

A.1. Comparison between MIRET and a pure multivariate tree approach

In the following analysis, we test MIRET against a “pure” multivariate tree model that corresponds to MIRET without the TE-

driven information (proximity, features frequency, and class probability) introduced in the formulation. This comparison is aimed 
at evaluating the added value brought by these metrics in guiding the optimal tree formulation and optimization to imitate the tree 
ensemble.

The benchmark model is denoted as MT (Multivariate optimal Tree) and it is a MILP model to build an optimal tree trained 
on the class labels predicted by the 𝑇𝐸 in a binary classification setting. Its objective function minimizes a trade-off between the 
misclassification cost and the sum of the features used across the splits in the tree.

In this analysis, we compare MT and MIRET applied to the target 𝑅𝐹 . The hyperparameters used are the ones reported in 
22

Table B.20 and a time limit of 1 hour was set for all experiments.
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Table A.9

Comparison between MT and MIRET models on computational times (s) and MIP Gap values (%) for RF models; in boldface the 
winning values.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

MT MIRET MT MIRET MT MIRET

Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap

Cleveland 3600 85.7 44.6 0.0 3600 90.9 1942.2 0.0 3600 95.0 3600 71.5

Diabetes 3600 99.1 1373.3 0.0 3600 98.7 3600 96.1 3600 98.6 3600 98.6

German 3600 85.7 12.3 0.0 3600 98.1 3600 73.6 3600 99.2 3600 93.4

Heart 3600 90.0 0.7 0.0 3600 90.9 3600 73.2 3600 95.7 3600 95.0

IndianLiver 3600 95.8 3600 75.6 3600 97.8 3600 77.1 3600 98.7 3600 98.3

Ionosphere 3600 91.7 3.4 0.0 3600 92.9 204.4 0.0 3600 94.4 947.6 0.0

Parkinson 3600 83.3 4.6 0.0 3600 88.9 3600 33.8 3600 91.7 3600 96.3

Sonar 3600 93.7 3600 12.0 3600 95.8 3600 93.2 3600 97.4 3600 97.1

Wholesale 284.6 0.0 0.7 0.0 3600 75.0 18.0 0.0 3600 94.7 554.2 0.0

Wisconsin 3600 85.7 8.2 0.0 3600 88.9 385.5 0.0 3600 85.7 3600 98.1

Table A.10

Comparison between MT and MIRET models with 𝐷 = 2 on predictive performances on the training and test 
set. FID-𝑅𝐹 : Fidelity with respect to 𝑅𝐹 (%); MIRET ACCURACY and 𝑅𝐹 ACCURACY with respect to the 
ground truth (%); in boldface the winning values.

Dataset 𝐷 = 2

FID-𝑅𝐹 ACCURACY

MT MIRET MT MIRET 𝑅𝐹

Train Test Train Test Train Test Train Test Train Test

Cleveland 100.0 96.7 96.6 98.3 81.9 83.3 81.9 78.3 81.9 80.0

Diabetes 96.9 92.9 91.9 89.6 76.2 70.8 73.5 75.3 75.4 68.8

German 100.0 98.5 98.0 99.0 66.0 66.0 66.8 65.5 66.0 65.5

Heart 100.0 92.6 77.3 77.8 84.3 81.5 74.5 77.8 84.3 85.2

IndianLiver 99.4 96.6 97.2 94.8 67.2 63.8 67.6 65.5 67.8 65.5

Ionosphere 100.0 91.5 98.6 100.0 91.1 85.9 89.6 94.4 91.1 94.4

Parkinson 100.0 92.3 93.6 97.4 88.5 76.9 84.6 76.9 88.5 79.5

Sonar 100.0 76.2 86.8 90.5 90.4 66.7 79.5 71.4 90.4 81.0

Wholesale 100.0 98.9 99.7 97.7 92.3 89.8 92.6 90.9 92.3 90.9

Wisconsin 100.0 95.6 99.1 97.4 96.7 93.0 95.8 91.2 96.7 93.9

The first comparison is on the optimization performances. Table A.9 provides running time and MIP Gap values of the two 
analysed models. It is evident that MIRET consistently outperforms MT in terms of optimization performances. Indeed, at 𝐷 = 2,

MIRET certifies the optimal solution in 8 out of 10 datasets, whereas MT does so only in one case. Further, MIRET closes the gap in 4 
problems at 𝐷 = 3 and in 2 at 𝐷 = 4, while MT fails to certify the optimal solution at both depths in all of the problems. These results 
show some of the advantages brought by the TE-based techniques embedded into MIRET. In particular, the frequency constraints 
(14), (15) play a crucial role in diminishing the problem size by reducing the feature space at each node. Similarly, proximity 
constraints (12) also contribute to making the problem easier to solve by constraining some binary variables to be equal. In this 
way, some clusters of points are forced to end up in the same leaf, limiting the set of feasible solutions. Therefore, TE-based metrics 
not only make MIRET easier to solve compared to MT but also indicate the model’s adaptability and effectiveness in constructing a 
surrogate tree.

Tables A.10, A.11, A.12 show the comparison on fidelity and accuracy performance between MT and MIRET for 𝐷 = 2, 𝐷 = 3
and 𝐷 = 4, respectively. Focusing on fidelity in the training set, it is possible to see MT beats MIRET in all cases. Despite this, when 
looking at fidelity in the test set, MIRET’s performances are strictly higher than MT’s ones in 70% of cases and equals in two problems. 
This indicates that MT overfits on training data and does not generalize well on out-of-sample data. On the other hand, if we focus 
on the accuracy of the two models with respect to ground truth, the pattern seems to replicate itself, though less sharply. On the 
training data MT outperforms MIRET in each case, but on the test set MIRET has better accuracy on 11 of the 30 (36.7%) problems 
and the same performance on 5 of them (16.7%). While the accuracy in the test set of MT is better than or equal to that of MIRET

in 46.6% of the cases, and thus there might seem to be no clear winner. However looking at the number of features used in the 
splitting-rules, it becomes clear that MT does not meet the goal for which MIRET was proposed. Table A.13 reports the cardinality of 
the set  of different features used overall in MT and in MIRET and the cardinality of the multi-set ̂ of all features used in the tree, 
counted as many times as it is used at each node. It is immediately noticeable that MT uses a considerably larger number of features 
than those used by MIRET, losing interpretability. The number of features used then becomes larger the deeper the tree. Indeed, the 
goal of the MIRET formulation is to mimic the behavior of the forest with a single tree, making it interpretable. A decision path with 
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multivariate decision rules involving too many features cannot be viewed as truly interpretable.
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Table A.11

Comparison between MT and MIRET models with 𝐷 = 3 on predictive performances on the training and test set. 
FID-𝑅𝐹 : Fidelity with respect to ̂𝑅𝐹 (%); MIRET ACCURACY and ̂𝑅𝐹 ACCURACY with respect to the ground 
truth (%); in boldface the winning values.

Dataset 𝐷 = 3

FID-𝑅𝐹 ACCURACY

MT MIRET MT MIRET 𝑅𝐹

Train Test Train Test Train Test Train Test Train Test

Cleveland 100.0 90.0 97.9 95.0 87.8 81.7 85.7 76.7 87.8 81.7

Diabetes 98.7 89.6 95.4 95.5 78.5 72.7 75.9 77.3 79.2 76.6

German 97.8 97.0 95.4 97.0 70.4 68.5 68.5 68.5 71.6 67.5

Heart 100.0 85.2 95.4 90.7 89.4 81.5 86.6 79.6 89.4 85.2

IndianLiver 99.4 93.9 95.7 94.0 70.0 64.7 67.2 64.7 70.6 65.5

Ionosphere 99.6 90.1 95.0 95.8 94.3 88.7 89.6 94.4 94.6 93.0

Parkinson 100.0 89.7 89.1 100.0 95.5 84.6 85.9 79.5 95.5 79.5

Sonar 100.0 78.6 80.1 83.3 100.0 78.6 80.1 83.3 100.0 81.0

Wholesale 100.0 97.7 99.7 96.6 92.9 88.6 92.6 89.8 92.9 90.9

Wisconsin 100.0 93.9 96.9 94.7 98.7 97.4 95.6 89.5 98.7 94.7

Table A.12

Comparison between MT and MIRET models with 𝐷 = 4 on predictive performances on the training and test 
set. FID-𝑅𝐹 : Fidelity with respect to 𝑅𝐹 (%); MIRET ACCURACY and 𝑅𝐹 ACCURACY with respect to the 
ground truth (%); in boldface the winning values.

Dataset 𝐷 = 4

FID-𝑅𝐹 ACCURACY

MT MIRET MT MIRET 𝑅𝐹

Train Test Train Test Train Test Train Test Train Test

Cleveland 100.0 88.3 93.7 93.3 92.0 78.3 85.7 76.7 92.0 83.3

Diabetes 96.4 91.6 92.4 94.2 80.0 74.7 76.9 78.6 83.2 76.6

German 95.3 85.5 87.8 87.0 75.8 72.5 68.8 68.0 78.0 72.0

Heart 99.1 88.9 93.1 90.7 93.1 81.5 87.0 79.6 94.0 85.2

IndianLiver 98.1 94.8 93.5 96.6 75.4 65.5 72.1 63.8 77.3 63.8

Ionosphere 100.0 88.7 95.0 87.3 96.8 87.3 92.5 88.7 96.8 93.0

Parkinson 100.0 97.4 96.2 97.4 98.7 84.6 94.9 84.6 98.7 82.1

Sonar 100.0 78.6 81.9 88.1 100.0 76.2 81.9 71.4 100.0 78.6

Wholesale 99.4 95.5 97.2 97.7 95.2 90.9 92.3 90.9 95.2 90.9

Wisconsin 100.0 93.9 98.5 93.0 99.3 96.5 97.8 95.6 99.3 95.6

Table A.13

Comparison between MT and MIRET models on the number of features selected.  is the set of unique features used 
in the tree and ̂ is the multi-set of features used in the tree. A feature is present in the multiset as many times as 
it is used at each node; in boldface the winning values.

Dataset | | 𝐷 = 2 𝐷 = 3 𝐷 = 4

MT MIRET MT MIRET MT MIRET| | |̂ | | | |̂ | | | |̂ | | | |̂ | | | |̂ | | | |̂ |
Cleveland 13 5 7 3 3 6 11 4 5 11 20 4 5

Diabetes 8 7 15 3 6 8 37 4 7 8 30 3 6

German 20 7 7 2 2 17 29 2 2 20 57 2 2

Heart 13 9 10 1 1 8 11 4 4 11 19 4 4

IndianLiver 10 7 14 5 5 10 31 5 9 10 32 5 8

Ionosphere 34 10 12 2 2 12 12 2 2 15 18 3 4

Parkinson 22 6 6 1 1 9 9 1 1 10 12 5 6

Sonar 60 16 16 3 3 20 24 3 4 32 38 5 5

Wholesale 7 3 4 2 3 3 4 2 3 7 14 2 2

Wisconsin 30 7 7 3 3 9 9 2 2 7 7 3 3

In Table A.14, we report the cardinalities of the set 
𝑅𝐹

(𝑚
𝑅𝐹

) on the test set, along with the corresponding  for both MIRET
and MT. These results show that MIRET, differently from MT, consistently assigns pairs of data points with a proximity higher than 
𝑚
𝑅𝐹

to the same leaf, thereby aligning more closely with 𝑅𝐹 . It is important to point out that our primary goal is not only to 
replicate the 𝑅𝐹 predictions using a single interpretable tree but also to mirror specific characteristics of 𝑅𝐹 , such as encouraging 
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Table A.14

Cardinality of 𝑅𝐹 (𝑚𝑅𝐹 ) for the test set and comparison between MT and MIRET models on the 𝑈𝑅𝐹 (in %) evaluated on the test 
set. - indicates that it is not possible to evaluate 𝑈𝑅𝐹 since 𝑅𝐹 (𝑚𝑅𝐹 )=0.; in boldface the winning values.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4|𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹 |𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹 |𝑅𝐹 (𝑚𝑅𝐹 )| 𝑈𝑅𝐹

MT MIRET MT MIRET MT MIRET

Cleveland 43 100.0 100.0 27 100.0 77.8 55 100.0 80.0

Diabetes 74 100.0 64.9 3 100.0 100.0 0 - -

German 105 100.0 99.0 3 100.0 100.0 149 100.0 67.8

Heart 78 100.0 65.4 1 100.0 100.0 22 100.0 100.0

IndianLiver 4 100.0 100.0 151 100.0 96.8 0 - -

Ionosphere 311 100.0 98.1 53 100.0 83.0 401 100.0 66.8

Parkinson 5 100.0 100.0 4 100.0 100.0 50 100.0 100.0

Sonar 5 100.0 40.0 0 - - 0 - -

Wholesale 388 100.0 100.0 112 100.0 100.0 1124 100.0 96.7

Wisconsin 1415 100.0 100.0 1485 100.0 96.4 991 100.0 96.0

Table A.15

MIRET models in computational times (s) and MIP Gap values (%) for 
XGBoost models.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

Time Gap Time Gap Time Gap

Cleveland 2.3 0 36.6 0 3600 92.6

Diabetes 0.8 0 3600 92.8 3600 99.5

German 3600 96.1 3600 98.9 3600 98.0

Heart 168.6 0 138.6 0 3600 77.2

IndianLiver 55.8 0 27.00 0 3600 98.3

Ionosphere 21.3 0 151.2 0 714.5 0

Parkinson 21.5 0 124.3 0 543.6 0

Sonar 108.4 0 3600 96.9 3600 98.7

Wholesale 0.9 0 4.4 0 3600 87.1

Wisconsin 7.4 0 3600 28.6 245.0 0

A.2. MIRET applied to XGBoost target models.

In the following analysis, we assess MIRET performance when applied to gradient boosting methods, using a target XGBoost model 
(𝑋𝐺𝐵). In particular, we use the XGBoost method as implemented in xgboost.XGBClassifier with the following settings:

• maximum depth 𝐷 ∈ {2, 3, 4};

• || = 100;

• weights 𝑤𝑒, 𝑒 ∈  as defined in [35].

To select the set of hyperparameters, we performed a grid-search within a 4-fold cross-validation for 𝑚𝑇𝐸 , 𝛾𝑑 , 𝑑 ∈, and 𝛼, as in 
the case of Random Forest indicated in subsection 8.2.

Table A.15 presents the computational time and MIP Gap values results. Similarly to the results obtained applying MIRET to 𝑅𝐹 , we 
can certify optimality for all but one problem at 𝐷 = 2, and for the majority of problems at 𝐷 = 3. At 𝐷 = 4, optimality is certified for 
three out of the ten problems examined. This is still a noteworthy achievement, given that the scalability of optimal trees diminishes 
as their maximum depth increases. Further, Tables A.16 and A.17 reveal that MIRET maintains a high level of fidelity to the 𝑋𝐺𝐵
models across various depths, with an average fidelity score for the training set of 90.0% at 𝐷 = 2, 91.6% at 𝐷 = 3 and 89.2% 
at 𝐷 = 4 and with an average fidelity score for the test set of 89.3% at a 𝐷 = 2, 91.4% at 𝐷 = 3 and 89.6% at 𝐷 = 4. Regarding 
performance metrics, it is evident that MIRET’s accuracy mirrors that of 𝑋𝐺𝐵 models quite well across all datasets, particularly in 
the test set. This suggests that our model retains the generalization capabilities of the target ̂𝑋𝐺𝐵 and offers the added advantage of 
improved interpretability. Table A.18 reports the metrics based on proximity measure, as described in Section 8.3. We can observe 
that pairs of samples from the test set in 

𝑋𝐺𝐵
(𝑚
𝑋𝐺𝐵

) are also assigned to the same leaf of the surrogate model in most of the cases. 
The high values of 𝑈

𝑋𝐺𝐵
suggest that the proximity constraints imposed in MIRET seem to guide the model in imitating the behavior 
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Table A.16

Predictive performances on the training set: fidelity of the MIRET model with respect to ̂𝑋𝐺𝐵, accuracy with respect to 
the ground truth of the MIRET and ̂𝑋𝐺𝐵 models.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

FID-𝑋𝐺𝐵 ACCURACY FID-𝑋𝐺𝐵 ACCURACY FID-𝑋𝐺𝐵 ACCURACY

MIRET 𝑋𝐺𝐵 MIRET 𝑋𝐺𝐵 MIRET 𝑋𝐺𝐵

Cleveland 94.5 85.2 89.0 97.0 86.1 88.2 87.8 84.8 95.4

Diabetes 89.1 76.1 80.8 87.9 77.4 82.2 88.8 84.8 92.7

German 84.9 76.5 86.1 86.1 77.6 89.8 78.8 74.3 94.3

Heart 93.5 85.6 88.4 90.3 83.8 87.0 87.5 83.8 92.6

IndianLiver 82.1 74.9 88.1 90.5 74.7 79.0 83.8 76.5 89.6

Ionosphere 94.3 93.2 98.9 95.4 95.4 100.0 92.1 91.8 99.6

Parkinson 90.4 90.4 98.7 96.2 96.2 100.0 92.3 92.3 100

Sonar 78.3 78.3 100.0 83.1 82.5 99.4 90.4 90.4 100.0

Wholesale 94.3 91.5 97.2 94.6 94.0 99.4 93.5 93.5 100.0

Wisconsin 98.5 97.8 99.3 95.2 95.2 100.0 96.7 96.5 99.8

Table A.17

Predictive performances on the test set: fidelity of the MIRET model with respect to ̂𝑋𝐺𝐵, accuracy with respect to the 
ground truth of the MIRET and ̂𝑋𝐺𝐵 models.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

FID-𝑋𝐺𝐵 ACCURACY FID-𝑋𝐺𝐵 ACCURACY FID-𝑋𝐺𝐵 ACCURACY

MIRET 𝑋𝐺𝐵 MIRET 𝑋𝐺𝐵 MIRET 𝑋𝐺𝐵

Cleveland 90.0 78.3 88.3 90.0 81.7 85.0 91.7 85.0 86.7

Diabetes 90.3 76.6 81.2 91.6 77.9 78.6 83.1 73.4 76.0

German 80.5 73.0 74.5 85.0 71.5 76.5 84.5 72.5 75.0

Heart 92.6 87.0 90.7 94.4 88.9 90.7 94.4 88.9 90.7

IndianLiver 84.5 67.2 74.1 91.4 69.0 69.0 85.3 69.0 68.1

Ionosphere 91.5 88.7 85.9 93.0 90.1 88.7 88.7 84.5 93.0

Parkinson 92.3 84.6 87.2 94.9 92.3 92.3 94.9 87.2 92.3

Sonar 78.6 76.2 92.9 81.0 81.0 90.5 78.6 76.2 88.1

Wholesale 95.5 90.9 90.9 95.5 92.0 89.8 97.7 88.6 90.9

Wisconsin 93.9 95.6 98.2 97.4 94.7 97.4 97.4 99.1 98.2

Table A.18

Cardinality of 
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

) for both training and test set and the 𝑈
𝑋𝐺𝐵

(in %) evaluated on the test set. “-” indicates that it is not possible to evaluate 𝑈
𝑋𝐺𝐵

since 
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)=0.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

Train Test Train Test Train Test|
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| |
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| 𝑈
𝑋𝐺𝐵

|
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| |
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| 𝑈
𝑋𝐺𝐵

|
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| |
𝑋𝐺𝐵

(𝑚
𝑋𝐺𝐵

)| 𝑈
𝑋𝐺𝐵

Cleveland 1093 54 100 449 31 100 31 9 100

Diabetes 7062 495 100 398 18 94.4 68 2 100

German 166 14 100 17 - - 23 0 -

Heart 321 15 100 200 9 100 155 5 100

IndianLiver 741 62 96.8 2088 157 100 70 30 100

Ionosphere 3328 80 98.8 10255 248 99.6 5108 154 100

Parkinson 1137 38 100 1810 68 100 1475 50 100

Sonar 117 2 100 31 1 100 63 0 -

Wholesale 17606 1262 100 13657 1108 100 6001 713 100

Wisconsin 31491 2048 99.9 26855 1630 100 20.964 1702 100

Appendix B. Additional tables

In this section we present additional tables. Table B.21 presents a summary of all the notation of sets, parameters, and hyperpa-

rameters adopted in the paper, and Tables B.19 and B.20 report hyperparameters selected with the 4-fold cross validation for the 

𝑅𝐹 and 𝑋𝐺𝐵 target models respectively.
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Table B.19

Hyperparameters for MIRET on 𝑅𝐹 selected with the 4-fold cross-validation. The apex ∗ indi-

cates that we set 𝛾𝑑 = 0.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

ℎ 𝛼 𝑚𝑅𝐹 ℎ 𝛼 𝑚𝑅𝐹 ℎ 𝛼 𝑚𝑅𝐹

Cleveland 100/3 0.2 1.00 100/3 0.5 1.00 100/3 0.5 0.85

Diabetes 100/2 0.2 1.00 100/3 0.2 1.00 100/3 0.5 1.00

German 100/2 0.2 1.00 100/4 0.8 1.00 100/4 0.5 0.85

Heart 0∗ 0.2 0.85 100/2 0.2 1.00 100/3 0.5 0.85

IndianLiver 0∗ 0.2 1.00 100/2 0.2 0.90 100/2 0.2 1.00

Ionosphere 100/3 0.2 1.00 0∗ 0.5 1.00 100/2 0.4 0.85

Parkinson 100/4 0.5 1.00 100/3 0.5 1.00 0∗ 0.2 0.85

Sonar 0∗ 0.2 0.85 100/4 0.5 1.00 0∗ 0.2 1.00

Wholesale 100/4 0.2 1.00 100/2 0.2 1.00 0∗ 0.4 0.85

Wisconsin 100/3 0.2 1.00 100/3 0.5 0.90 100/2 0.2 1.00

Table B.20

Hyperparameters for MIRET on ̂𝑋𝐺𝐵 selected with the 4-fold cross-validation. The apex ∗ indicates 
that we set 𝛾𝑑 = 0.

Dataset 𝐷 = 2 𝐷 = 3 𝐷 = 4

ℎ 𝛼 𝑚
𝑋𝐺𝐵

ℎ 𝛼 𝑚
𝑋𝐺𝐵

ℎ 𝛼 𝑚
𝑋𝐺𝐵

Cleveland 0∗ 0.1 0.85 100/5 0.2 0.90 100/3 0.6 0.85

Diabetes 100/3 0.5 0.85 100/2 0.5 0.85 100/3 0.2 0.90

German 0∗ 0.2 0.90 0∗ 0.2 0.90 100/20 0.5 0.85

Heart 100/3 0.2 0.85 100/2 0.5 0.85 100/2 0.5 0.85

IndianLiver 100/3 0.4 0.85 100/2 0.5 0.85 0 0.1 0.85

Ionosphere 100/3 0.2 0.85 100/3 0.2 0.85 100/3 0.6 0.85

Parkinson 100/3 0.2 0.85 100/3 0.2 0.85 100/3 0.6 0.85

Sonar 0∗ 0.8 0.85 100/3 0.2 0.90 100/3 0.1 0.85

Wholesale 100/3 0.2 0.85 100/2 0.2 0.85 100/3 0.2 0.85

Wisconsin 100/3 0.2 0.85 100/3 0.6 0.85 100/3 0.4 0.85

Table B.21

Notation: sets, parameters and hyperparameters.

Notation Description

Sets

 Tree levels

 Tree estimators of the 𝑇𝐸

 Branch nodes

 Leaf nodes

(𝑑) Branch nodes at level 𝑑 of the tree

′ Branch nodes not adjacent to leaves

′′ Branch nodes adjacent to leaves

(𝑡) Sub-leaves, i.e. leaf nodes of the subtree rooted at node 𝑡 ∈

𝐿(𝑡) Left sub-leaves, i.e. leaves under the left branch of 𝑡 ∈

𝑅(𝑡) Right sub-leaves, i.e. leaves under the right branch of 𝑡 ∈

 Index set of data samples

𝑡 Index set of data samples assigned to node 𝑡 ∈

 Index set of features

𝛾 (𝑑) Index set of features with a level frequency at 𝑑 in 𝑇𝐸 greater than 𝛾𝑑
 (𝑚𝑇𝐸 ) Pairs of samples with a proximity measure in 𝑇𝐸 greater than 𝑚𝑇𝐸
Parameters

𝑝𝑖 Class probability of sample 𝑖 predicted by 𝑇𝐸

𝑓𝑑,𝑗 Frequency of feature 𝑗 at level 𝑑 in 𝑇𝐸

𝑐𝓁 Class label pre-assigned to leaf node 𝓁
𝜀 Parameter to model the closed inequality in routing constraints

𝑚𝑖,𝑘 Proximity measure between the pair of samples (𝑥𝑖, 𝑥𝑘)

Hyperparameters

𝐷 Maximal depth of the tree

𝛼 Penalty parameter for the feature selection

𝛾𝑑 Frequency threshold used to determine 𝛾 (𝑑)
𝑚 Proximity threshold used to determine  (𝑚 )
27

𝑇𝐸 𝑇𝐸



EURO Journal on Computational Optimization 12 (2024) 100084G. Di Teodoro, M. Monaci and L. Palagi

References

[1] M. Aria, C. Cuccurullo, A. Gnasso, A comparison among interpretative proposals for random forests, Mach. Learn. Appl. 6 (2021) 100094.

[2] M. Aria, A. Gnasso, C. Iorio, G. Pandolfo, Explainable ensemble trees, Comput. Stat. (2023) 1–17.

[3] K.P. Bennett, Decision tree construction via linear programming, in: Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society 
Conference, 1992, pp. 97–101.

[4] D. Bertsimas, J. Dunn, Optimal classification trees, Mach. Learn. 106 (7) (2017) 1039–1082.

[5] J.J. Boutilier, C. Michini, Z. Zhou, Shattering inequalities for learning optimal decision trees, in: Integration of Constraint Programming, Artificial Intelligence, 
and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20–23, 2022, Proceedings, Springer, 2022, pp. 74–90.

[6] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.

[7] L. Breiman, A. Cutler, Random forests–classification manual (website accessed in 1/2008), 2008.

[8] L. Breiman, J. Friedman, C.J. Stone, R. Olshen, Classification and Regression Trees, Chapman and Hall/CRC, 1984.

[9] L. Breiman, N. Shang, Born again trees, University of California, Berkeley, Berkeley, CA, Technical Report, 1(2):4, 1996.

[10] N. Burkart, M.F. Huber, A survey on the explainability of supervised machine learning, J. Artif. Intell. Res. 70 (2021) 245–317.

[11] E. Carrizosa, C. del Rio, D. Romero Morales, Mathematical optimization in classification and regression trees, Top 29 (1) (2021) 5–33, Published online: 17. 
Marts 2021.

[12] T. Chen, C. Guestrin, XGBoost, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2016.

[13] F. D’Onofrio, G. Grani, M. Monaci, L. Palagi, Margin optimal classification trees, Comput. Oper. Res. 161 (2024) 106441, https://doi .org /10 .1016 /j .cor .2023 .
106441.

[14] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv preprint, arXiv :1702 .08608, 2017.

[15] D. Dua, C. Graff, UCI machine learning repository, 2017.

[16] J. Ehrlinger, ggRandomForests: exploring random forest survival, preprint, arXiv :1612 .08974, 2016.

[17] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Stat. 29 (5) (2001) 1189–1232.

[18] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, Variable selection using random forests, Pattern Recognit. Lett. 31 (14) (2010) 2225–2236.

[19] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models, ACM Comput. Surv. (CSUR) 
51 (5) (2018) 1–42.

[20] J.L. Hintze, R.D. Nelson, Violin plots: a box plot-density trace synergism, Am. Stat. 52 (2) (1998) 181–184.

[21] T.K. Ho, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 832–844.

[22] L. Hyafil, R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Inf. Process. Lett. 5 (1976) 15–17.

[23] H. Ishwaran, Variable importance in binary regression trees and forests, Electron. J. Stat. 1 (2007) 519–537.

[24] H. Ishwaran, U.B. Kogalur, E.H. Blackstone, M.S. Lauer, Random survival forests, Ann. Appl. Stat. 2 (3) (2008) 841–860.

[25] H. Ishwaran, U.B. Kogalur, E.Z. Gorodeski, A.J. Minn, M.S. Lauer, High-dimensional variable selection for survival data, J. Am. Stat. Assoc. 105 (489) (2010) 
205–217.

[26] A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2 (3) (2002) 18–22.

[27] G. Louppe, L. Wehenkel, A. Sutera, P. Geurts, Understanding variable importances in forests of randomized trees, Adv. Neural Inf. Process. Syst. 26 (2013).

[28] F. Margot, Symmetry in Integer Linear Programming, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 647–686.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. 
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[30] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81–106.

[31] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[32] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, C. Zhong, Interpretable machine learning: fundamental principles and 10 grand challenges, Stat. Surv. 16 
(2022) 1–85.

[33] S. Seifert, S. Gundlach, S. Szymczak, Surrogate minimal depth as an importance measure for variables in random forests, Bioinformatics 35 (19) (2019) 
3663–3671.

[34] C. Tamon, J. Xiang, On the boosting pruning problem, in: Machine Learning: ECML 2000: 11th European Conference on Machine Learning Barcelona, Catalonia, 
Spain, May 31–June 2, 2000 Proceedings 11, Springer, 2000, pp. 404–412.

[35] S. Tan, M. Soloviev, G. Hooker, M.T. Wells, Tree space prototypes: another look at making tree ensembles interpretable, in: Proceedings of the 2020 ACM-IMS 
on Foundations of Data Science Conference, FODS ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 23–34.

[36] T. Vidal, M. Schiffer, Born-again tree ensembles, in: International Conference on Machine Learning, PMLR, 2020, pp. 9743–9753.

[37] X. Zhao, Y. Wu, D.L. Lee, W. Cui, IForest: interpreting random forests via visual analytics, IEEE Trans. Vis. Comput. Graph. 25 (1) (2018) 407–416.
28

[38] Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1) (2002) 239–263.

http://refhub.elsevier.com/S2192-4406(24)00001-7/bibD20F49EEC01CCF09F1003B8A6BB7F19Es1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib99238189A4FB8B83DBCC7E068A406222s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib029D884AF91565CBC5089D6D02450D68s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib029D884AF91565CBC5089D6D02450D68s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibFDC1B94FFB8F1AFED1B1CBAEEEED1802s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib36B70B1E3664C761795105BF4052EB81s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib36B70B1E3664C761795105BF4052EB81s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibAD63BC6E3C36DF844D32998319271336s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib2F47E7FEACE74098FC9233FE8C26F134s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib17984ABD4E81511612883181661CF424s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib809F6620DF91FC422A08CABAFCC8E9C5s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib2F4B4B9F7AD9A5ED2EE0383C5EBE4F9Bs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib2F3A53C6D611AB7A24C45CEB25ED754As1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib2F3A53C6D611AB7A24C45CEB25ED754As1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib2CCC32A24876873FBCB1033A4EBC27A8s1
https://doi.org/10.1016/j.cor.2023.106441
https://doi.org/10.1016/j.cor.2023.106441
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibDC3AAC8CF6281D97283E3B426596E7F4s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib701999984E463D2F4118BCE3C59078DAs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib1773DBCCEDD369A20602F66CEB6A0D50s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib17AB77B6A18D1B20D87A9508A34FA7A8s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib033FAE35537C54AC193BD58DC826174Ds1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib615BBDF4FB78C920393822795E756722s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib615BBDF4FB78C920393822795E756722s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibACC954D3D8424D58CCDF50AD1C9A5E78s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib5B441DEA6120326E260D56F2B6E0919Ds1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib8A94D786D0910B1A422DFB638B42CF30s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib745E0F9F3DF92DA349014E44A8B2FC14s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib6A6168DCBBB733D2F0ECEB71D77B20F8s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibC5D9CAFCFAA5EE0EDCAEE3E61C12AE04s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibC5D9CAFCFAA5EE0EDCAEE3E61C12AE04s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibB399F8F45E921B9E4094AA70FF936C6Ds1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib77D1AF17953C4119461055E5B0FCBF08s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib11846DC1C819EBE0AD7ACF5CE0B83881s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib23EEF27F297F3BD4F71554AF673C1957s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib57DA894F370C1807C040CCE136C77A5Ds1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib02802E09F25EDE4A0D2E512F71AF955Bs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib02802E09F25EDE4A0D2E512F71AF955Bs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibC2D3660DE4276DC5F892F358E232CA58s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibC2D3660DE4276DC5F892F358E232CA58s1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib482CC4587E41A0C7DF0AF8CA5522EA7As1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib482CC4587E41A0C7DF0AF8CA5522EA7As1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibEEB0FB1E198444D5EAAB1FE6671EEA9Es1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibEEB0FB1E198444D5EAAB1FE6671EEA9Es1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibED98F0D6F354C996714A1819FF909C0Bs1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bib49A228C8916E5E68D25C3CABD6FF368Es1
http://refhub.elsevier.com/S2192-4406(24)00001-7/bibA1D842F394C0AB5FF1F9AD5155B0BFA4s1

	Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree
	1 Introduction
	2 State of the art on interpretative models for tree ensemble
	3 Our contribution
	4 Basic definition and preliminaries
	5 VITE: a hierarchical VIsualization tool for TE
	6 MIRET: a Multivariate Interpretable REbuilt optimal Tree
	6.1 Introduction
	6.2 Incorporating TE-driven information
	6.3 Objective function
	6.4 The basic MILP model of MIRET
	6.5 Comparison between other state-of-the-art formulations for multivariate OCTs

	7 Improving the basic MIRET formulation
	7.1 Existence of at least one split
	7.2 Breaking symmetries
	7.3 Adding branching rules

	8 Computational experience
	8.1 Datasets
	8.2 Hyperparameters setting
	8.3 Results

	9 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Additional results
	A.1 Comparison between MIRET and a pure multivariate tree approach
	A.2 MIRET applied to XGBoost target models.

	Appendix B Additional tables
	References


