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1. Introduction

There is a growing interest in devising exact methods for multi-
objective integer programming (MOIP) as it is underlined by recent 
contributions in this respect (see, e.g. [2,6–9,21]). This is partly due 
to the fact that MOIPs represent a flexible tool to model real-world 
applications. Such models appear in works on finance, manage-
ment, transportation, design of water distribution networks, biol-
ogy [18,23–26]. MOIPs are intrinsically nonconvex, implying that 
the design of exact and efficient solution methods is particularly 
challenging and requires global optimization techniques [13]. In 
this paper, we focus on biobjective nonlinear integer programming 
problems of the following form

min ( f1(x), f2(x))T

s.t. x ∈ X ∩Zn,
(BOIP)

where X ⊆Rn and f1, f2 :Rn →R are continuous functions. The 
image of the feasible set X ∩ Zn under the vector-valued func-
tion f : Rn → R2 represents the feasible set in the criterion space, 
or the image set. When dealing with problem (BOIP), one wants to 
detect the so called efficient solutions x∗ ∈ X ∩Zn . Those are feasi-
ble points such that there exists no other feasible point x ∈ X ∩Zn

for which f j(x) ≤ f j(x∗), j = 1, 2 and f (x) �= f (x∗). The images 
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f (x) of efficient points x ∈X ∩Zn are called non-dominated points. 
Furthermore, a point x̄ ∈ X ∩ Zn is called a weakly efficient point 
of (BOIP) if there is no x ∈ X ∩ Zn with f (x) < f (x̄), where < is 
meant componentwise. The images f (x) of weakly efficient solu-
tions x ∈X ∩Zn are called weakly non-dominated points. We aim to 
solve (BOIP) exactly in the sense that we aim to detect its complete 
set of non-dominated points, also called the non-dominated set or 
Pareto front. In the following, we will denote the non-dominated 
set by YN .

Regarding general purpose methods able to give correctness 
guarantees, the focus is most of all on multiobjective linear integer 
problems and we refer to [19] for a survey. A class of algorithms 
developed is the class of so called criterion space search algorithms, 
i.e., algorithms that work in the space of the objective functions 
(see, e.g. [16,21,22]). Such algorithms find non-dominated points 
by solving a sequence of single-objective linear integer program-
ming problems. After computing a non-dominated point, these al-
gorithms remove the dominated parts of the criterion space (based 
on the obtained non-dominated point) and look for not-yet-found 
non-dominated points in the remaining parts.

Criterion space algorithms usually rely on scalarization tech-
niques. This means that the multiobjective problem is replaced 
with a parameter-dependent single-objective integer optimization 
problem. In order to find several non-dominated solutions, a se-
quence of single-objective integer optimization problems has to be 
handled considering different values of the parameters. A typical 
issue is how to choose the parameters so that the method can 
guarantee the detection of the complete non-dominated set. Crite-
rion space algorithms have been extended to deal with nonlinear 
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problems, even if this clearly adds difficulties both from a theoret-
ical and a numerical point of view. In case of (BOIPs), an approach 
that can be followed to deal with nonlinearities is the one pro-
posed in [8]. There, the Frontier Partitioner Algorithm (FPA), relying 
on the use of the weighted-sum scalarization, has been proposed.

It is the purpose of this paper to use the ideas developed in [8]
to define an exact criterion space algorithm based on another 
scalarization technique, the ε-constraint method. The ε-constraint 
method produces single-objective subproblems adding further con-
straints to the original feasible set. More specifically, given (BOIP), 
the ε-constraint method minimizes single-objective optimization 
problems of the following form:

min f2(x)
s.t. f1(x) ≤ ε

x ∈ X ∩Zn.

(Pε)

The parameter ε varies between min{ f1(x) | x ∈ X ∩ Zn} and 
f1(x̂) − δ with x̂ ∈ argmin{ f2(x) | x ∈X ∩Zn}. Thereby, δ is a posi-
tive step size which influences the decrease of the upper bounds ε. 
As it will be clarified in the next section, the role of the step size δ

is crucial to detect the complete non-dominated set of a (BOIP). 
The role of f1 and f2 in the definition of Problem (Pε) can be 
interchanged. We refer to [5,12,17] for some examples on contri-
butions on the ε-constraint method.

The paper is organized as follows. In Section 2, we recall the γ -
positivity assumption introduced in [8] and we establish our main 
result. Under specific assumptions, we prove that the ε-constraint 
method is able to detect the complete Pareto front of a (BOIP) af-
ter having addressed a finite number of single-objective problems. 
In Section 3, we report our numerical experience. We compare the 
performance of FPA∗ [8], which is an improved version of FPA, with 
the ε-constraint method devised on portfolio optimization prob-
lems.

2. The γ -positivity assumption and the exactness of the 
ε-constraint method

The scheme of the ε-constraint method applied to (BOIP) is re-
ported in Algorithm 1. As already mentioned, at every iteration k
of the algorithm, the following single-objective integer subproblem 
needs to be addressed

min f2(x)
s.t. f1(x) ≤ εk

x ∈ X ∩Zn,

(Pk
ε)

with εk ∈ R properly set. Recall that by [11, Proposition 4.3] any 
optimal solution of (Pk

ε) is a weakly efficient solution of (BOIP). 
Moreover, by [11, Theorem 4.5], for any efficient point x∗ of (BOIP)
there exists an upper bound εk ∈ R such that x∗ is an optimal 
solution of (Pk

ε). However, we cannot solve (Pk
ε) for an infinite num-

ber of upper bounds εk . Thus, the question is whether and how 
we can find a finite number of upper bounds for which we have 
to solve (Pk

ε) such that we can still find all non-dominated points 
of (BOIP). In the following we discuss assumptions and an algo-
rithm which guarantee such a finiteness result.

As a first assumption, we ask for the availability of a solver 
for (Pk

ε).

Assumption 2.1. There exists an oracle that either returns an op-
timal solution of (Pk

ε) or certifies its infeasibility for any choice of 
εk ∈R.

Note that there exists a number of solvers able to deal with 
single-objective nonlinear integer programming problems such as, 
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e.g., BARON [20] or SCIP [14], so that Assumption 2.1 holds for 
many classes of (BOIP). In our computational experience, we will 
consider BOIPs having quadratic objective functions and a polyhe-
dral set X and we will use GUROBI [15] as a solver.

Algorithm 1: Scheme of the ε-constraint method.
Input: (BOIP), δ > 0, k = 1;
Output: the Pareto front YN of (BOIP);
Compute x∗ ∈ argminx∈X∩Zn f1(x)
Compute x̂ ∈ argminx∈X∩Zn f2(x)
Set M = { f (x̂)}
Set ε1 = f1(x̂) − δ

while εk ≥ f1(x∗) do
Compute xk ∈ argminx∈X k∩Zn f2(x), with 
X k = X ∩ {x ∈Rn : f1(x) ≤ εk}

Set M = { f (xk)} ∪M
Set εk+1 = f1(xk) − δ

Set k = k + 1
end
Apply a filtering procedure to M to obtain YN

Return YN

In the definition of FPA (and FPA∗) in [8] some basic assump-
tions on Problem (BOIP) had to be made. Here we make the same 
assumptions, reported in the following.

Assumption 2.2 (Existence of the ideal point). We assume that the 
ideal objective values f id

i := minX∩Zn f i(x), i = 1, 2, and thus the 
ideal point f id := ( f id

1 , f id
2 ) ∈R2, exists.

The crucial assumption that we make in order to prove the ex-
actness of the ε-constraint method is the so called positive gap 
value assumption. We need to assume that a positive value ex-
ists that underestimates the distance between the image of two 
integer feasible points of (BOIP), componentwise.

Definition 2.3 (Positive γ -function). Let γ > 0. A function g : X →
R is a positive γ -function over X ∩Zn if it holds |g(x) − g(z)| ≥ γ
for all x, z ∈X ∩Zn with g(x) �= g(z).

Assumption 2.4. The functions f i : Rn → R, i = 1, 2 in Prob-
lem (BOIP) are positive γ -functions as in Definition 2.3 for some 
γ > 0.

Assumptions 2.2 and 2.4 imply that the non-dominated set YN
of (BOIP) is finite (see Proposition 2.7 in [8]). Thus, we know that 
there exists a finite number of upper bounds εk for which we have 
to solve (Pk

ε) to find the complete Pareto front. The question is how 
to find this parameter set, and Algorithm 1 proposes an answer for 
that. Note that there exist a number of classes of functions that 
easily satisfy Assumption 2.1 and Assumption 2.4, such as linear 
or quadratic functions defined over Qn , or polynomials with ratio-
nal coefficients over Zn as long as they have no roots in Zn . Table 
1, in Section 4.3 in [8], shows some classes of functions for which 
Assumption 2.4 holds and reports how to compute γ . The follow-
ing example shows a case where only Assumption 2.2 holds, while 
Assumption 2.4 does not.

Example 2.5. Let X ∩ Z = {x ∈ Z | x ≥ 0}, f1(x) = arctan(x) and 
f2(x) = (x − 1)2. We have that f id = (0, 0), so that Assump-
tion 2.2 is verified. However, it is not possible to find γ > 0, γ ∈R
such that | arctan(x) − arctan(y)| ≥ γ for all x, y ∈ X ∩ Z with 
arctan(x) �= arctan(y). Therefore, Assumption 2.4 does not hold.

We further want to underline that it is common to assume X
to be bounded so that X ∩ Zn and f (X ∩ Zn) are finite sets. In 
this case, Assumption 2.4 trivially holds.
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Remark 2.6. In the context of the ε-constrained method, Assump-
tion 2.4 can be relaxed, requiring that only the function that is 
moved to the constraints (that is f1 in (Pk

ε)) is a positive γ -
function. Indeed, in all the proofs presented here, we need the 
positive γ -function property only for f1. Moreover, since there are 
no two different non-dominated points with the same first com-
ponent, the proof in [8, Proposition 2.7] can be adapted to show 
that the non-dominated set YN of (BOIP) is still finite.

Let Assumption 2.4 hold for f1 and f2 with γ > 0. Let δ > 0
be the input parameter for Algorithm 1. Two different scenarios 
occur:

• δ > γ : in this case the ε-constraint method could miss some 
points of the Pareto front YN , since the step size δ may be 
wider than the distance between two non-dominated points;

• δ ≤ γ : the ε-constraint algorithm is able to detect the com-
plete Pareto front YN as shown in the following.

As already mentioned, according to [11, Proposition 4.3], any 
optimal solution of (Pk

ε) is a weakly efficient solution of (BOIP). For 
ε0 := f1(x̂) the point x̂ is an optimal solution of (P0

ε) by construc-
tion and thus weakly efficient. Note that we cannot prove that a 
solution of (Pk

ε) is efficient, since a point x̃ ∈ X k ∩ Zn may exist 
such that f1(x̃) < f1(xk) and f2(x̃) = f2(xk). Hence, before the fil-
tering step, the set

M = { f (xk−1), f (xk−2), . . . , f (x1), f (x̂)}
may contain points which are just weakly non-dominated with-
out being non-dominated. We will show in the next lemmata that 
it holds YN ⊆ M. The filtering step excludes those points z ∈ R2

from M for which there exists some y ∈ M with yi ≤ zi , i = 1, 2
and y �= z. Such a filtering procedure is cheap thanks to the fact 
that the points are already sorted w.r.t. increasing first component 
and all points in M are already weakly non-dominated. In prac-
tice, we scroll the list M and, in case the distance with respect to 
the first component of two subsequent points is less than or equal 
to 10−5, we remove the first point. For finite sets the domina-
tion property holds, i.e., f (X ∩Zn) ⊆YN +R2+ . Hence, we can use 
the same argumentation as in [8, Proposition 2.7] and get that for 
any weakly non-dominated point z in M which is not also non-
dominated, a point y ∈ YN ⊆ M exists with y ≤ z, y �= z. Thus, 
any point z ∈ M with z /∈ YN is in fact filtered out. It remains to 
show that YN ⊆M.

First, we prove that the ε-constraint method can find, at ev-
ery iteration, a not-yet detected weakly efficient solution of (BOIP). 
We also show that no non-dominated point is missed in-between, 
where in-between refers to the sorting w.r.t. the first component, 
i.e. f1(xk−1), f1(xk−2), . . . , f1(x1), f1(x̂). For the following, recall 
that x0 := x̂ is weakly efficient and is the point detected at ‘itera-
tion’ k = 0 to ε0 := f1(x̂).

Lemma 2.7. Let Assumption 2.4 hold with γ > 0. Assume that δ ≤ γ
in Algorithm 1, k ≥ 1, and that the point xk−1 is the point detected 
at iteration k − 1. Then, at step k, Algorithm 1 finds a weakly non-
dominated point f (xk) and no non-dominated point y with y �= f (xk), 
y �= f (xk−1) and with f1(xk) ≤ y1 ≤ f1(xk−1) exists.

Proof. Let xk ∈ argminx∈X k∩Zn f2(x) where X k = X ∩ {x ∈ Rn :
f1(x) ≤ εk} and with εk = f1(xk−1) − δ. By [11, Proposition 4.3] the 
point xk is, as well as xk−1, a weakly efficient solution of (BOIP). 
Assume that there exists an efficient point x̃ ∈ X ∩ Zn with 
f1(xk) ≤ f1(x̃) ≤ f1(xk−1). By Assumption 2.4 we have either 
f1(x̃) = f1(xk−1) or f1(x̃) ≤ f1(xk−1) − γ .
358
First, let f1(x̃) = f1(xk−1). As xk−1 was obtained by solving 
(Pk−1

ε ) and as x̃ is feasible for this problem we have f2(x̃) ≥
f2(xk−1). As x̃ is efficient we derive f (x̃) = f (xk−1). Second, let 
f1(x̃) ≤ f1(xk−1) − γ . As −γ ≤ −δ it follows f1(x̃) ≤ f1(xk−1) − δ. 
Then x̃ is feasible for (Pk

ε) and as a consequence f2(xk) ≤ f2(x̃). As 
x̃ is efficient and we have assumed that f1(xk) ≤ f1(x̃) we derive 
f (xk) = f (x̃). �

As a consequence of Lemma 2.7, we have that y ∈ M for any 
non-dominated point y ∈ YN with y1 ∈ [ f1(xk−1), f1(x̂)]. By the 
definition of x̂ there is no y ∈ YN with y1 > f1(x̂). Next we show 
that we miss no non-dominated point y with y1 < f1(xk−1) by 
stopping the while loop based on εk = f1(xk−1) − δ < f1(x∗), or in 
case we do not start the while loop at all, based on ε1 = f1(x̂) −
δ < f1(x∗).

Lemma 2.8. Let Assumption 2.4 hold with γ > 0. Assume that δ ≤ γ in 
Algorithm 1 and that the algorithm stopped at some iteration k. Then, 
there is no non-dominated point y with y1 < f1(xk−1) in case k ≥ 2, 
and with y1 < f1(x̂) in case k = 1.

Proof. First, we consider the case k ≥ 2. Then the algorithm 
stopped due to εk = f1(xk−1) − δ < f1(x∗). Assume y is a non-
dominated point with y1 < f1(xk−1). By Assumption 2.4 we have 
y1 ≤ f1(xk−1) −γ and hence y1 ≤ f1(xk−1) − δ < f1(x∗) which is a 
contradiction to the definition of x∗ . Next, let k = 1, i.e., the while 
loop did not start at all due to ε1 = f1(x̂) −δ < f1(x∗). Assume y is 
a non-dominated point with y1 < f1(x̂). Then we obtain with As-
sumption 2.4, as before, that y1 ≤ f1(x̂) − γ ≤ f1(x̂) − δ < f1(x∗), 
which is again a contradiction to the definition of x∗ . �

By Lemma 2.7 and Lemma 2.8 we have YN ⊆ M. However, 
there may exist weakly non-dominated points that cannot be 
found by our algorithm, as the following example shows:

Example 2.9. Let X ∩ Z = {1, 2, 3, 4}, f1(x) = 5 − x and f2(x) = 1
for all x ∈ X ∩ Z. Thus we have γ = 1. All feasible points x are 
weakly efficient, but only x = 4 is efficient. We apply Algorithm 1
with δ = 0.5 ≤ γ . Let x∗ = 4, x̂ = 1 and thus ε0 = f1(x̂) = 4. For 
ε1 = 3.5 we may compute x1 = 4 and the algorithm would stop 
without finding the remaining weakly efficient solutions.

On the other hand, it may happen that the ε-constraint method 
needs to compute all weakly non-dominated points before detect-
ing the complete Pareto front.

Example 2.10. Let X = {x ∈ R2 | 100x2 ≥ −x1 + 100, 0 ≤ x1 ≤
100, 0 ≤ x2 ≤ 1} and let f1(x) = x1 and f2(x) = x2. Note that 
YN = {(0, 1)T , (100, 0)T }. After having detected the non-dominated 
point (100, 0)T , the ε-constraint method may need to address 100 
more single-objective integer linear programming problems. In-
deed, it may find the 99 weakly non-dominated points (y1, 1)T

with y1 = 99, 98, 97, . . . , 2, 1 before detecting (0, 1)T and with this 
additional point the complete Pareto front.

It is important to note that the choice of δ has no impact on the 
number of iterations needed by the algorithm to stop. This means 
that using δ1 ≤ γ or δ2 ≤ γ with 0 < δ1 < δ2 ≤ γ leads to the 
same. So there is no need to find the largest possible value for γ
but any γ for which Assumption 2.4 is satisfied will be enough. It 
is just important that δ is not chosen larger than any possible γ .

Lemma 2.11. Let Assumption 2.4 hold with γ > 0. Assume that 0 <
δ1 < δ2 ≤ γ and that the point xk−1 is the point obtained by solv-
ing (Pk−1

ε ). Then a point x̄ is an optimal solution of (Pk
ε) with εk =
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f1(xk−1) − δ1 if and only if x̄ is an optimal solution of (Pk
ε) with εk =

f1(xk−1) − δ2 .
Moreover, for any optimal solution x̄ of (Pk

ε) with εk = f1(xk−1) − δ for 
some δ ∈ (0, γ ] it holds f1(x̄) ≤ f1(xk−1) − γ .

Proof. First, let x̄ be an optimal solution of (Pk
ε) with εk =

f1(xk−1) − δ2. Then x̄ is feasible for the problem with εk =
f1(xk−1) −δ1. Assume x̄ is not optimal for that problem. Then there 
exists x′ feasible for the problem with εk = f1(xk−1) − δ1 with 
f2(x′) < f2(x̄). As f1(x′) ≤ f1(xk−1) − δ1 we have f1(x′) < f1(xk−1)

and we get by Assumption 2.4 f1(x′) ≤ f1(xk−1) −γ . Thus f1(x′) ≤
f1(xk−1) − δ2 and x′ is feasible for (Pk

ε) with εk = f1(xk−1) − δ2. 
Thus f2(x′) ≥ f2(x̄) which is a contradiction.

Next, let x̄ be an optimal solution of (Pk
ε) with εk = f1(xk−1) −

δ1. Thus f1(x̄) < f1(xk−1) and we get by Assumption 2.4 f1(x̄) ≤
f1(xk−1) − γ . Thus f1(x̄) ≤ f1(xk−1) − δ2 and x̄ is feasible for (Pk

ε)
with εk = f1(xk−1) − δ2. As the feasible set for (Pk

ε) for δ2 is a 
subset of the feasible set for δ1, we obtain that x̄ is also optimal 
for the problem with δ2. This also shows that any optimal solution 
x̄ of (Pk

ε) with εk = f1(xk−1) − δ and δ ∈ (0, γ ] satisfies f1(x̄) ≤
f1(xk−1) − γ . �

Based on the previous lemmata we are able to prove the fol-
lowing result.

Theorem 2.12. Let Assumptions 2.1, 2.2 and 2.4 hold. Let δ ≤ γ . Al-
gorithm 1 finds the complete Pareto front YN of (BOIP) after having 
addressed a finite number of single-objective integer programs.

Proof. By Lemma 2.7 and Lemma 2.8 we have YN ⊆ M and 
after the filtering step, as discussed above, we obtain exactly 
the set YN . Thanks to Assumption 2.4 we have that the while
loop will take at most m′ = ⌊ (

f1(x̂) − f1(x∗)
)
/δ

⌋
iterations. Based 

on Lemma 2.11 it makes no difference within the while loop 
how δ ∈ (0, γ ] is chosen and thus the upper bound is m =⌊ (

f1(x̂) − f1(x∗)
)
/γ

⌋
iterations. Then, considering the two single-

objective integer programs tackled at the beginning of Algorithm 1
for the computation of x∗ and x̂, the total number of single objec-
tive integer programs addressed by Algorithm 1 is m + 2. �

Note that the generated set M contains weakly non-dominated 
points only and in each step of the while loop in Algorithm 1 a 
not-yet detected weakly non-dominated point of (BOIP) is found. 
For that reason, the while loop will take at most as many it-
erations as the number of weakly non-dominated points. However, 
we have no guarantee that the set of weakly non-dominated points 
of (BOIP) is finite. But using the same arguments as in the proof 
of [8, Proposition 2.7.] we have that the number of weakly non-
dominated points y with f1(x∗) ≤ y1 ≤ f1(x̂) is finite and that 
thus the number of iterations is finite. This is another possibil-
ity to prove Theorem 2.12 above. Moreover, in case there are no 
weakly non-dominated points which are not at the same time 
non-dominated, we need to solve exactly |YN | + 1 single-objective 
integer programs.

3. Numerical results

In our computational experiments, we consider bi-objective 
nonlinear integer instances arising from portfolio selection prob-
lems. Let μ ∈ Rn be the expected return and Q ∈ Rn×n be the 
covariance matrix with respect to a specific set of assets. We con-
sider the following model
359
min (−μT x, xT Q x)T

s.t. aT x ≤ b
x ≥ 0
x ∈ Zn,

(1)

where the elements of a ∈Rn are the prices of the financial secu-
rities, b ∈ R is the budget of the investor and the non-negativity 
constraint rules out short sales. The decision variable xi ∈ Z, i =
1, . . . , n stands for the amount of unit of a certain asset the in-
vestor is buying. Note that for this model Assumption 2.1 is satis-
fied, as the single-objective integer subproblem built from problem 
(1) is an integer quadratic problem that can be addressed by e.g.
GUROBI [15].

As benchmark data set, we used historical real-data capital 
market indices from the Eurostoxx50 index that were used in [4,
3] and are publicy available at https://host .uniroma3 .it /docenti /
cesarone /DataSets .htm. This data set was used for solving a Lim-
ited Asset Markowitz (LAM) model. For each of the 48 stocks the 
authors obtained 264 weekly price data, adjusted for dividends, 
from Eurostoxx50 for the period from March 2003 to March 2008. 
Stocks with more than two consecutive missing values were disre-
garded. Logarithmic weekly returns, expected returns and covari-
ance matrices were computed based on the period March 2003 
to March 2007. By choosing stocks at random from the 48 avail-
able ones, we built portfolio optimization instances of different 
sizes with μ ∈Qn and Q ∈Qn×n . We decided to generate 60 dif-
ferent instances by considering n = 5, 10, 25, 30 stocks. For every 
n, 15 different instances have been generated. Hence, we got the 
covariances matrices, the expected returns and the prices for ev-
ery combination by picking the proper information from the files 
provided. As in [1], for every instance, we set b = 10 

∑n
i=1 ai , rep-

resenting the budget of the investor. We compare the ε-constraint 
method with FPA∗ . This is an improved version of FPA which uses 
the so called custom weighted-sum scalarization. It is able to de-
tect the complete Pareto front after having solved |YN | + 2 integer 
programs (see [8] for further details). In order to run FPA∗ and 
the exact version of the ε-constraint method, we need a proper 
value γ > 0 so that the γ -positivity assumption is satisfied. There-
fore, we had to pre-process the data. We trimmed the number of 
decimal digits to four and multiplied the entries by 103. As a con-
sequence, we obtained γ ≥ 0.1. Note that, since the entries of Q
and μ are in Q, the value γ can be defined as 1/r, where r ∈ N
is the least common multiple of the denominators of the rational 
coefficients (see [8, Proposition 4.14]).

Both in the implementation of FPA∗ and of the ε-constraint 
method, we considered the linear objective −μT x as the func-
tion defining the additional constraint in the single-objective in-
teger subproblems. Consequently, both FPA∗ and the ε-constraint 
method have to deal with a sequence of single-objective convex 
quadratic integer problems with linear constraints. In our Python 
implementation of the two algorithms, we used the MIQP solver 
of GUROBI [15]. All experiments have been executed on an In-
tel Core i5-6300U CPU running at 2.40 GHz and all running times 
were measured in cpu seconds.

In Table 1 and Table 2 we report, for each instance, the CPU 
time and the number of iterations (itFPA∗ and iteps) needed by 
FPA∗ and the ε-constraint method to detect the non-dominated 
set. Note that the total number of single-objective subproblems 
solved by FPA∗ and ε-constraint method is itFPA∗ + 2 and iteps + 2, 
respectively. FPA∗ and the ε-constraint method have very simi-
lar performances, as the number of subproblem addressed by the 
two algorithms resulted to be very close in practice. However, the 
number of subproblems solved by the ε-constraint method can be 
larger than |YN | + 2, which is the number of subproblems solved 
by FPA∗ .

We further compare FPA∗ and the ε-constraint algorithm using 
performance profiles as proposed by Dolan and Moré [10]. Given 

https://host.uniroma3.it/docenti/cesarone/DataSets.htm
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Table 1
Results on instances with n = 5 and n = 10 variables.

Instance n = 5 n = 10

FPA∗ itFPA∗ ε-const iteps FPA∗ itFPA∗ ε-const iteps

p1 24.99 7381 24.60 7381 238.65 34890 234.75 34915
p2 6.69 1465 6.55 1467 78.24 10395 76.97 10390
p3 34.13 6103 32.89 6105 60.35 6047 60.55 6053
p4 1.89 402 1.81 402 47.17 6972 46.36 6978
p5 6.02 1208 5.86 1208 182.29 32894 180.58 32953
p6 3.09 709 3.03 709 50.24 6268 49.40 6272
p7 8.77 1676 8.56 1677 17.28 2372 17.17 2375
p8 4.61 845 4.20 846 230.24 23700 220.50 23714
p9 1.73 412 1.59 413 102.46 13544 96.96 13548
p10 2.09 428 1.95 430 93.25 8469 88.34 8471
p11 7.79 1547 7.29 1550 103.55 14987 98.22 14989
p12 4.44 837 4.13 840 69.71 7779 66.24 7784
p13 40.04 7257 37.41 7262 57.35 5057 54.45 5058
p14 5.45 1258 5.06 1259 305.46 26330 291.58 26339
p15 10.73 1869 10.00 1874 48.47 4990 46.50 4995

Table 2
Results on instances with n = 25 and n = 30 variables.

Instance n = 25 n = 30

FPA∗ itFPA∗ ε-const iteps FPA∗ itFPA∗ ε-const iteps

p1 1300.58 64896 1265.80 64978 10068.92 168679 10137.36 168963
p2 3111.57 91538 3145.79 91595 3684.09 57207 3682.69 57209
p3 974.07 77143 989.09 77136 5381.17 85015 5416.53 85033
p4 543.68 35835 549.17 35850 9712.74 134844 9906.55 134681
p5 807.29 46351 821.02 46353 5226.97 87750 5311.91 87784
p6 737.88 36444 747.85 36438 7284.13 111329 7465.47 111349
p7 1723.60 126491 1733.17 126556 7036.66 131154 7121.33 131180
p8 954.39 39077 948.63 39085 6923.09 112315 6908.47 112349
p9 899.33 38413 884.50 38411 9984.14 139199 9973.19 139205
p10 631.12 28747 619.97 28755 7683.15 120145 7682.36 120152
p11 2326.07 84459 2305.43 84429 7489.53 121898 7480.73 121920
p12 1882.48 66347 1864.43 66359 4452.29 68145 4396.06 68150
p13 2234.69 105386 2201.69 105393 7281.69 128790 7164.96 128912
p14 1551.69 88263 1539.97 88210 4510.21 67305 4500.24 67342
p15 2224.76 112773 2182.22 112685 5657.23 87619 5647.94 87588

Fig. 1. Comparison between FPA∗ and the ε-constraint method on all the 60 instances.
a set of solvers S and a set of problems P , the performance of a 
solver s ∈ S on problem p ∈ P is compared against the best per-
formance obtained by any solver in S on the same problem. The 
performance ratio is defined as rp,s = tp,s/ min{tp,s′ | s′ ∈ S}, where 
tp,s is the measure we want to compare, and we consider a cu-
mulative distribution function ρs(τ ) = |{p ∈ P | rp,s ≤ τ }|/|P|. The 
360
performance profile for s ∈ S is the plot of the function ρs . We re-
port in Fig. 1 the performance profiles of FPA∗ and the ε-constraint 
algorithm with respect to the CPU time considering all the 60 in-
stances. Note that the value τ needed to have both ρε-const(τ ) = 1
and ρF P A∗ (τ ) = 1 is very small (τ = 1.116), confirming that the 
two algorithm share very similar performance.
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