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Models of Jacobians of curves
By David Holmes at Leiden, Sam Molcho at Zürich, Giulio Orecchia at Lausanne and

Thibault Poiret at Cambridge

Abstract. We show that the Jacobians of prestable curves over toroidal varieties always
admit Néron models. These models are rarely quasi-compact or separated, but we also give
a complete classification of quasi-compact separated group-models of such Jacobians. In par-
ticular, we show the existence of a maximal quasi-compact separated group model, which we
call the saturated model, and has the extension property for all torsion sections. The Néron
model and the saturated model coincide over a Dedekind base, so the saturated model gives an
alternative generalization of the classical notion of Néron models to higher-dimensional bases;
in the general case we give necessary and sufficient conditions for the Néron model and satu-
rated model to coincide. The key result, from which most others descend, is that the logarithmic
Jacobian of [S. Molcho and J. Wise, The logarithmic Picard group and its tropicalization,
preprint 2018] is a log Néron model of the Jacobian.

1. Introduction

1.1. Néron models. Let X ! S be a prestable curve (this means that X=S is proper,
flat, finitely presented, and the geometric fibers are reduced and connected of pure dimen-
sion 1 and with at worst ordinary double point singularities; for example, a stable curve) over
a scheme S , smooth over a schematically dense open subscheme U � S . The Jacobian Pic0XU
is then an abelian scheme over U which (in general) admits no extension to an abelian scheme
over all of S . Néron suggested that one should look instead for a Néron model of Pic0XU ;
a smooth algebraic space N over S , such that

N �S U D Pic0XU ;

satisfying the Néron mapping property.
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Néron mapping property. For any smooth map T ! S of schemes, the natural restric-
tion map N.T /! Pic0.T �S U/ is a bijection.1)

Néron models are unique when they exist, and inherit a group structure extending that of
the Jacobian. When S is Dedekind, the existence of a Néron model was proven by Néron and
Raynaud [27, 34]; in this case, a Néron model is automatically separated and quasi-compact.

When the base S is higher dimensional, a separated, quasi-compact Néron model rarely
exists. In [12], Holmes showed that over a regular base S , existence of such a model implies
a delicate relation between the smoothing parameters of the nodes of X , which he called align-
ment. He also proved that alignment is sufficient if the total space X is also regular. In [31],
Orecchia refines this into a necessary and sufficient condition when X is smooth over the
complement of a normal crossings divisor D ! S , but not necessarily regular. In [33], Poiret
constructs the Néron model assuming any smooth S -scheme is locally factorial (e.g., S is reg-
ular), and shows that a more restrictive version of alignment, strict alignment, is necessary and
sufficient for it to be quasi-compact and separated.

The main result of this paper is that without the extra conditions of separatedness and
quasi-compactness, a Néron model of the Jacobian exists whenever the base is a toroidal variety
(or more generally a log regular scheme, see Section 6.2).

Theorem 1.1 (Corollary 6.13). Let S be a toroidal variety with U � S the open com-
plement of the boundary divisor, and letX=S be prestable curve, smooth over U . Then a Néron
model N=S for Pic0XU exists and is quasi-separated.

The Néron model admits a modular interpretation coming from logarithmic geometry: if
one endowsX and S with suitable logarithmic structures, one obtains the notion of logarithmic
line bundle on X in the sense of [26]. The Néron model is then the algebraic space sLPic0X=S
(on the category of schemes) representing the functor of log line bundles of degree zero; we call
it the strict logarithmic Jacobian. We postpone further discussion of the log geometric side of
the story to Section 1.5 of this introduction. If X is regular, then a more concrete description of
the Néron model can be given as a quotient of the relative Picard functor of X=S , generalizing
the approach of Raynaud when dimS D 1; see Section 9.

1.2. Separated, quasi-compact models of the Jacobian. We have seen that Néron
models always exist, but they are rarely separated or quasi-compact. A model of Pic0XU =U is
an algebraic space G=S which restricts to Pic0XU =U over U . Our next result gives a complete
classification of separated, quasi-compact group models of the Jacobian Pic0XU =U in terms of
subgroups of the tropical Jacobian. In the setting of Theorem 1.1 we define the strict tropical
Jacobian sTPic0X=S to be the quotient of the Néron model by its fiberwise-connected component
of identity Pic0XU =U . The quotient sTPic0X=S is an étale group algebraic space over S , and is
trivial over U . If S is local Dedekind, then the group sTPic0X=S .S/ is exactly the classical
component group of the Néron model.

Suppose we are given ‰=S an étale group space, and ‰ ! sTPic0X=S a group homomor-
phism. One obtains by fiber product a smooth group space G .‰/ WD ‰ �sTPic0

X=S
sLPic0X=S . If

‰U D 0, then the restriction G .‰/U is identified with the Jacobian Pic0XU =U .
1) The classical definition over Dedekind schemes and in [12] requires Néron models to be separated. When

the base is a Dedekind scheme and the generic fiber is a group scheme, this is automatic by [5, Theorem 7.1.1]



Holmes, Molcho, Orecchia and Poiret, Models of Jacobians 117

Theorem 1.2 (Proposition 7.3, Corollary 7.10). The map ‰ 7! G .‰/ induces a bijec-
tion of partially ordered sets from the set of quasi-finite open subgroups of sTPic0X=S to the set
of smooth, separated, quasi-compact S -group models of the Jacobian Pic0XU =U .

As an application, we consider the case S DMg;n the moduli stack of stable curves, and
we take X=S the universal curve. One shows that the strict tropical Jacobian is torsion-free in
this case; an immediate consequence of Theorem 1.2 is:

Corollary 1.3 (Lemma 5.5). The universal Jacobian Pic0X=Mg;n
admits a unique smooth,

separated group model over Mg;n, namely the generalized Jacobian Pic0
X=Mg;n

parametrizing
line bundles of multidegree .0; 0; : : : ; 0/.

In particular, this shows the non-existence of a smooth separated group scheme (or space)
G over Mg;n whose every fiber Gs is isomorphic to the special fiber of the Néron model of
the Jacobian of a regular 1-parameter smoothing of Xs ,2) as such a space would be a model
of Pic0X=Mg;n

. A question about the existence of such “universal Néron models of the Jacobian”
over a compactification of Mg was asked by Chiodo in the introduction of [8]. Caporaso inves-
tigates in [6] the analogous problem where, instead of Jacobians, one tries to fit into a universal
family the special fibers of the Néron models of the PicdY s=T s , where Y s=T s is a regular
1-parameter smoothing of Xs .

1.3. The saturated model. We define the saturated model of the Jacobian Pic0XU =U
to be the smooth separated quasi-compact group model which is maximal for the relation of
inclusion.

Corollary 1.4 (Theorem 7.11). The saturated model exists, and can be constructed as
G .‰/ for ‰ the torsion subgroup of sTPic0X=S .

When dimS D 1, the Néron model and the saturated model coincide, so that the saturated
model may be viewed as an alternative generalization of the Néron model to base schemes
of higher dimension. The saturated model has the advantage of being separated and quasi-
compact, but has a weaker extension property:

Corollary 1.5. Let x W U ! Pic0XU =U be a torsion section. Then x extends uniquely to
a section of the saturated model.

The saturated model admits a modular interpretation: it represents the “saturated Jacob-
ian” functor sPicsat of log line bundles of degree zero on X which become line bundles after
taking a suitable integer power.

1.4. The saturated model and the Néron model. The papers [12, 31, 33] present cri-
teria for the existence of quasi-compact and separated models of Pic0XU =U when the base is
regular. When put together, our main results yield the following criterion, valid even over some
non-regular bases.

2) This means a flat morphism of schemes Y ! T where T is a trait and Y=T has smooth generic fiber;
together with an isomorphism between Xs=s and the special fiber of Y=T .
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Theorem 1.6 (Theorem 8.5). Let S be a toroidal variety with U � S the open com-
plement of the boundary divisor, and let X=S be prestable curve, smooth over U (or more
generally, a log smooth curve over a log regular base). Then the following are equivalent:

(i) The strict tropical Jacobian sTPic0X=S is quasi-finite over S .

(ii) The Néron model of Pic0XU is separated over S .

(iii) The Néron model of Pic0XU is quasi-compact and separated over S .

(iv) The saturated model and the Néron model of Pic0XU are equal.

1.5. Log geometric interpretation. Although many of our results concern classical
algebraic geometry, they become more natural in the context of logarithmic geometry. To
explain the connection, suppose that X ! S is a family of logarithmic curves (see Defini-
tion 2.1). In [26], following ideas of Illusie and Kato, the authors constructed the analogue
of the Picard scheme in the category of logarithmic schemes, the logarithmic Picard group
LogPicX=S . This is the sheaf of isomorphism classes of the stack which parametrizes the loga-
rithmic line bundles alluded to above, that is, certain3) torsors under the associated group M gp

X

of the log structure.
The logarithmic Picard group is a group, is log smooth and proper over S , and on the

locusU of S where the log structure is trivial it coincides with the ordinary Picard group PicXU .
Furthermore, logarithmic line bundles have a natural notion of degree, extending the notion of
degree for ordinary line bundles, and LogPicX=S splits into connected components according
to degree. Thus, the logarithmic Jacobian LogPic0X=S provides a “best possible” extension of
the Jacobian Pic0XU =U . The caveat is that the logarithmic Jacobian is a sheaf on the category
of log schemes, not schemes, and it is in general not algebraic – i.e., it is not representable
by an algebraic space with a log structure. In fact, it is “log algebraic”, that is, it satisfies the
analogous properties that algebraic spaces enjoy, but only in the category of log schemes; for
instance, it has a logarithmically étale cover by a log scheme. See Example 3.60 for the case of
the Tate curve.

Nevertheless, properness of LogPic0X=S suggests that it is close to a Néron model for
Pic0XU =U . For example, in the simplest case when S is a trait4), the valuative criterion tells
us that every line bundle L on XU extends uniquely to a log line bundle on X . In fact, this
“limit bundle” is simply the pushforward j�L� of the O�-torsor associated to L along the
inclusion j W XU ,! X . Remarkably, the description of the limit goes through whenever S is
a log regular scheme, showing that the logarithmic Jacobian satisfies the logarithmic version of
the Néron mapping property:

Theorem 1.7 (Theorem 6.11). Let S be a log regular scheme. Then LogPic0X=S satisfies
the Néron mapping property for log smooth morphisms.

In the case where S is Dedekind this answers positively for Jacobians of curves a question
of Eriksson, Halle, and Nicaise in [9], who asked for the existence of a log Néron model.

To connect Theorem 1.7 with classical algebraic geometry, we have to bring the problem
back from the category of log schemes to the category of schemes. There is a standard proce-

3) The torsors must satisfy a condition called bounded monodromy – see Section 3 for details.
4) The spectrum of a discrete valuation ring.
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dure to do so: the category Sch=S embeds into LSch=S by giving T ! S its pullback (“strict”)
log structure, and we may thus restrict the functor LogPic0X=S to Sch=S . We denote the result-
ing functor, the “strict” log Jacobian, by sLPic0X=S . It is an immediate consequence that the
strict logarithmic Jacobian sLPic0X=S satisfies the classical Néron mapping property. The func-
tors LogPic0X=S and sLPic0X=S are very different in nature: good properties of LogPic0X=S such
as properness, or even quasi-compactness, are generally lost in passing to sLPic0X=S . This is
however compensated by the following positive result:

Theorem 1.8 (Theorem 4.4). Let X=S be a vertical log curve. The functor sLPic0X=S is
representable by a quasi-separated, smooth algebraic space over S .

If S is log regular (e.g., a toroidal variety with divisorial log structure), then sLPic0X=S is
the Néron model of Pic0XU =U .

The strict tropical Jacobian sTPic0X=S , defined above as a quotient, also has a natural log
geometric interpretation. The log Picard group LogPicX=S has a “tropicalization” TroPicX=S ,
an essentially combinatorial object which determines the features of LogPicX=S which are not
present in the Jacobian Pic0X=S of X=S . Restricting the tropical Jacobian TroPic0X=S – that is,
the degree 0 part of TroPicX=S – to schemes by giving a scheme its pullback log structure,
as before, produces sTPic0X=S . The tropical Jacobian plays an important role in the theory of
compactifications of the universal Jacobian. It was essentially shown in [16, 17] that subdivi-
sions of TroPic0X=S correspond to toroidal compactifications of Pic0X=S . Theorem 1.2 provides
a complementary view of the role of TroPicX=S : the quasi-finite open subgroups of its strict
locus determine the quasi-compact, smooth, separated group models of Pic0X=S .

2. Background

Here we collect for the convenience of the reader the necessary facts that we will use,
especially from the paper [26].

2.1. Log schemes. All our log schemes are fine and saturated. For a log scheme S we
denote by S the underlying scheme. We denote by LSch=S the category of log schemes over S ,
and by .LSch=S/Ket the (big) strict étale site over S ; the small strict étale site is denoted SKet.

We write MS for the log structure of a log scheme S , MS for its characteristic monoid
MS=O

�
S (these are sheaves on SKet). For a map of log schemes f W X ! S we denote byMX=S

the relative characteristic monoid MX=f �MS DMX=f
�1MS .

Let S be a log scheme; we define the logarithmic and tropical multiplicative groups on S
to be the sheaves of abelian groups on .LSch=S/Ket given by

Glog
m;S W .T ;MT /!M

gp
T .T /;

Gtrop
m;S W .T ;MT /!M

gp
T .T /:

2.2. Log curves.

Definition 2.1. A log curveX ! S is a proper, vertical, integral, log smooth morphism
of log schemes with connected and reduced geometric fibers of pure dimension 1.
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The underlying morphism of schemes X ! S is a prestable curve as in [37, Tag 0E6T].
Our definition is the same as that of [20] except that we have added the assumption that the
morphism be vertical; this means that the characteristic sheaf MX=S is a sheaf of groups, or
equivalently that it is supported exactly on the non-smooth locus Xnsm of X over S .

2.3. Sites, constructibility and representability. We leave for a moment the category
of log schemes. For a scheme X , we write XKet for the small étale site and .Sch=X/Ket for the
big étale site.

There is a morphisms of sites i W .Sch=X/Ket ! XKet given by the inclusion of categories
XKet ! .Sch=X/Ket. We have functors between the categories of sheaves

i� W Sh.Sch=X/Ket ! Sh.XKet/I i�F .U=X/ D F .U /;(2.3.1)

i� W Sh.XKet/! Sh.Sch=X/Ket(2.3.2)

defined by setting i�F .j W T ! X/ to be j �F .T /.

Definition 2.2. A sheaf F 2 Sh.Sch=X/Ket is locally constructible if the natural map
i�i�F ! F is an isomorphism.

Representability reduces to local constructibility via the following well-known lemma:

Lemma 2.3 ([3, VII, 1.8]). Let S be a Noetherian scheme. A sheaf F on .Sch=S/Ket is
locally constructible if and only if it is representable by a (quasi-separated) étale algebraic
space over S .

Remark 2.4. The original statement of Lemma 2.3 in [3] states the equivalence for étale
locally separated algebraic spaces; however an étale algebraic space is automatically locally
separated as its diagonal is an open immersion ([37, Tag 05W1]). Moreover, an étale algebraic
space over a locally noetherian base is automatically quasi-separated, as it is easily seen by
combining [37, Tag 03KG] and [37, Tag 01OX].

2.4. Functors between the categories of log schemes and schemes. Fix a log scheme
S D .S;MS / and consider the functors

f W LSch=S ! Sch=S; T 7! T ;

s W Sch=S ! LSch=S; .g W T ! S/ 7! .T; g�MS /:

The first forgets the log structure; the second endows an S -scheme with the strict (pullback)
log structure from S .

The functor f is the left adjoint of s: for X 2 LSch=S and Y 2 Sch=S , we have

Hom.X; Y / D Hom.X; .Y; g�MS //:

We write Sh.LSch=S/Ket (resp. Sh.Sch=S/Ket) for the category of sheaves on the strict étale
site on LSch=S (resp. the étale site on Sch=S ). The functors f and s give rise to pushforward
functors f� and s� on the categories of sheaves:

Sh.Sch=S/Ket
f�
�! Sh.LSch=S/Ket;

Sh.LSch=S/Ket
s�
�! Sh.Sch=S/Ket:

https://stacks.math.columbia.edu/tag/0E6T
https://stacks.math.columbia.edu/tag/05W1
https://stacks.math.columbia.edu/tag/03KG
https://stacks.math.columbia.edu/tag/01OX
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The functor s takes étale coverings to strict étale coverings, and commutes with fibered prod-
ucts. Therefore, s� admits a left adjoint

s� W Sh.Sch=S/Ket ! Sh.LSch=S/Ket

by [37, Tag 00WX].
Since the counit f ı s! 1Sch is an isomorphism, s�f� is isomorphic to the identity. One

then obtains by adjunction a morphism of functors s� ! f�.

Lemma 2.5. The map of functors s� ! f� is an isomorphism. In particular, f� is exact.

Proof. Let F be a presheaf on Sch=S , and G a presheaf on LSch=S. For any log scheme
X ! S with underlying scheme X we have a canonical factorization X ! sX ! S . Thus,
for any map of presheaves f�F ! G and X 2 LSch=S, the map f�F .X/ WD F .X/! G .X/

factors as F .X/! G .sX/ WD s�G .X/! G .X/, i.e., f� is left adjoint to s�.

Remark 2.6. We write Ab.�/ for the category of sheaves of abelian groups on a site.
Both s and f are continuous and cocontinuous functors (see [37, Tag 00XJ], [37, Tag 00WV]);
it follows that the pushforwards

s� W Ab.LSch=S/Ket ! Ab.Sch=S/Ket; f� W Ab.Sch=S/Ket ! Ab.LSch=S/Ket

are exact, by [37, Tag 04BD].

The tropical multiplicative group satisfies the following useful property (not shared by
its logarithmic counterpart Glog

m;S ):

Lemma 2.7. Consider the sheaf Gtrop
m;S on .LSch=S/Ket. We have a canonical isomor-

phism s�G
trop
m;S D i�M

gp
S of sheaves on .Sch=S/Ket, where i� is the functor from (2.3.1). In

particular, s�G
trop
m;S is locally constructible.

Proof. Let g W T ! S be a morphism of schemes. Then

s�G
trop
m;S .T / D Gtrop

m;S .sT / D g
�1M

gp
S .T / D i�M

gp
S .T /:

Corollary 2.8. The sheaves s�G
trop
m;S and s�G

log
m;S are representable by quasi-separated

group algebraic spaces, respectively étale and smooth.

Proof. The statement for s�G
trop
m;S follows by Lemma 2.3. Then we conclude by exact-

ness of the sequence
0! Gm;S ! s�G

log
m;S ! s�G

trop
m;S ! 0:

3. Tropical notions on the big site

In this section we develop the necessary tools to introduce the tropical and logarithmic
Jacobian of [26]. We carefully define the sheaf of lattices H1;X=S of first Betti homologies of
the dual graphs of the fibers. Then we construct the tropical Jacobian as a global quotient of
a tropical torus Hom.H1;X=S ;G

trop
m;S /

� by the sheaf of lattices H1;X=S ; this will facilitate the

https://stacks.math.columbia.edu/tag/00WX
https://stacks.math.columbia.edu/tag/00XJ
https://stacks.math.columbia.edu/tag/00WV
https://stacks.math.columbia.edu/tag/04BD
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proof of the representability of the strict tropical Jacobian in Section 4. The original definition
of Molcho and Wise is slightly different but we show it to be equivalent to ours.

3.1. Tropicalization. A graph consists of finite sets V of vertices andH of half-edges,
with an ‘attachment’ map r W H ! V from the half-edges to the vertices, and an ‘opposite
end’ involution � W H ! H on the half-edges. To be consistent with our convention that log
curves are vertical, we require this involution � to have no fixed points; because our curves have
connected geometric fibers we also require our graphs to be connected. An edge is an unordered
pair of half-edges interchanged by the involution, and we denote the set of them by E.

LetM be a sharp monoid. A tropical curve metrized byM is a graph .V;H; r; i/ together
with a function ` W E !M n ¹0º.

Let S be a geometric logarithmic point5), and let X=S be a log curve. The associated
tropical curve (tropicalization) X ofX has as underlying graph the usual dual graph ofX (with
a vertex for each irreducible component and a half-edge for each branch at each singular point).
To define the labelling ` W H !MS .S/ we recall from [20] that the stalk of the log structure
at a singular point x has characteristic monoid MX;x ŠMS .S/˚N N2, where the coproduct
is over the diagonal map N ! N2, and a map N !MS .S/. If e is the edge corresponding
to x then we set `.e/ to be the image of 1 in MS .S/; this is independent of the choice of
presentation.

A map of monoids ' WM ! N determines a “contracted” tropical curve X' , whose
graph is obtained from the graph underlying X by contracting all edges e whose length `.e/
maps to 0 via ', and with length of the remaining edges induced by '. Molcho and Wise
define a tropical curve over an arbitrary log scheme S as the data of a tropical curve for each
geometric point of S , together with contraction maps between them compatible with geometric
specializations, but we will not use this notion.

If S is a log scheme (but not necessarily a log point) and X=S a log curve, the edge-
labellings of the tropicalization of X at various geometric points of S vary nicely in families,
as a consequence of the following proposition:

Proposition 3.1. Let � W X ! S be a log curve and ˛ W Xnsm ! S the structure mor-
phism of the non-smooth locus of � . The category of cartesian squares

X S

X 0 S 0,

where X 0 ! S 0 is a log curve and S ! S 0 induces the identity on underlying schemes (with
obvious morphisms) has a terminal object

X S

X# S#,

where the log structure M #
S on S# satisfies M

#
S D ˛�N (and N denotes the constant sheaf

with value N on Xnsm).
5) A log scheme whose underlying scheme is the spectrum of an algebraically closed field.
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Proof. This is [29, Theorem 2.7], combined with the observation that X=S is special in
the sense of [29, Definition 2.6] if and only if MS D ˛�N.

3.2. Subdivisions. Given a tropical curve X D .V;H; r; i; `/ with edges marked by
a monoid M , and an edge e D ¹h1; h2º, one can define a new tropical curve

X0 D .V 0;H 0; r 0; i 0; `0/

as follows: V 0 is obtained from V by adjoining a new vertex v, H 0 is obtained by adding two
half-edges 1; 2 with r.1/ D r.2/ D v. Then we set i 0.h1/ D 1 and i 0.h2/ D 2. Finally,
we choose lengths `0.1/ and `0.2/ so that their sum is `.h1/. On the remaining edges and
vertices r 0; i 0; `0 are set to agree with r; i; `.

Definition 3.2. A tropical curve X0 constructed from X as in the paragraph above is
called a basic subdivision of X. A subdivision of X is a tropical curve obtained by composing
a finite number of basic subdivisions.

We state a few simple facts regarding the behavior of subdivisions with respect to con-
tractions.

Fact 3.3. Let X be a tropical curve metrized by a monoid M , let ' WM ! N be a map
of monoids, and let X' be the contraction of X induced by ' as in Section 3.1. Let Y be
a subdivision of X. Then the contraction Y' is a subdivision of X' .

Fact 3.4. Let S be a log scheme with log structure MS and X=S a log curve. Let
. N�/! .Ns/ be an étale specialization of geometric points, with induced morphism of character-
istic monoids ' WM Ns !M N� (see [7, Appendix A] for the notion of étale specialization). Let
XNs;X N� be the tropicalizations of XNs; X N�. Then X N� is the contraction X

'
Ns of XNs induced by '.

Fact 3.5. Let X ! S be a log curve, and Y ! X a logarithmic modification such that
Y ! S is a log curve. For every log geometric point t ! S , the tropicalization of Yt is a sub-
division of the tropicalization of Xt . Moreover, for an étale specialization . N�/! .Ns/ as above,
the subdivision of X N� is Y' , where Y is the subdivision of XNs over s.

Lemma 3.6 ([26, 2.4.3]). Let Ns ! S be a geometric point and Y a subdivision of XNs .
Then there exist an étale neighborhood V of Ns, a log curve Y=V and a logarithmic modification
Y ! X �S V inducing the subdivision Y! XNs .

3.3. The tropical Jacobian over a point. Let X be a tropical curve over a monoid M .
After choosing an orientation on the edges we have a boundary map ZE ! ZV , whose kernel
is the first homology group H1.X;Z/. Molcho and Wise define an intersection pairing

(3.3.1) H1.X;Z/ �H1.X;Z/!M
gp
;

and then define the Jacobian of X to be

Hom.H1.X;Z/;M
gp
/�=H1.X;Z/;

where the symbol � denotes the subgroup of elements of bounded monodromy, see [26, Defi-
nition 3.5.5], or Section 3.8.
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For a log curve X=S , Molcho and Wise then define the tropical Jacobian to be the data
of the Jacobians of the tropicalizations of Xs for every geometric point of s, together with their
étale specialization maps (see [7, Appendix A]). However, for our purposes it is important to
upgrade the groups ZE and ZV , and thereby H1.X;Z/ and the tropical Jacobian, to sheaves
of abelian groups on the big étale site of S . The definitions become slightly intricate, because
a choice of orientation on the tropicalization does not exist in families, and because locally
constructible sheaves of abelian groups are not isomorphic to their duals.

3.4. The sheaf ZE . Let S be a scheme and � W X ! S a prestable curve. Here we
define a sheaf ZE on .Sch=S/Ket which on each geometric point is isomorphic to the sheaf ZE

from above. Our sheaf is not of the form Hom.E;Z/ for some sheaf E on .Sch=S/Ket, though
it is locally of that form. Recall that i W .Sch=X/Ket ! X Ket is the morphism of sites induced by
the inclusion of categories X Ket ! .Sch=X/Ket.

Definition 3.7. Equipping X=S with the minimal log structure, we define the sheaves

(3.4.1) Gtrop
m;X=S

D i�M
gp
X=S and ZE

D ��G
trop
m;X=S

:

3.4.1. Branches, half-edges and orientations.

Definition 3.8. We define E (the sheaf of edges) to be the sheaf on .Sch=S/Ket repre-
sented by the non-smooth locus ˛ W Xnsm ! S . We will use the notations E and Xnsm inter-
changeably, depending on context.

If we denote by ¹?º the final object in the category of sheaves of sets on .Sch=Xnsm/Ket,
then E is ˛Š¹?º. Then

(3.4.2) ZE
WDHomS .E;Z/DHomS .˛Š¹?º;Z/D ˛�HomXnsm.¹?º; ˛�Z/D ˛�ZXnsm

but in general this is not isomorphic to ZE due to the non-existence of global choices of
orientations on the tropicalizations of the fibers; we expand on this in what follows.

Definition 3.9. The base change X 0 WD X �S Xnsm ! Xnsm along the finite unrami-
fied morphism Xnsm ! S admits a natural section a W Xnsm ! X �S X

nsm (a closed immer-
sion). Let Y denote the blowup of X 0 along a, and define the scheme of branches

(3.4.3) Xbr
WD Xnsm

�X 0 Y:

Remark 3.10. (i) The projection Xbr ! Xnsm is finite étale of degree 2; in fact, it is
a Z=2Z-torsor.

(ii) The projection Xbr ! S is finite unramified; in particular, after replacing S by an
étale cover, both Xnsm ! S and Xbr ! S are disjoint unions of closed immersions, so that
locally on S we have Xbr Š Xnsm tXnsm as schemes over X .

Definition 3.11. We say that X ! S has split branches if

� Xnsm ! S is a disjoint union of closed immersions, and

� Xbr Š Xnsm tXnsm over X .
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Remark 3.12. A choice of section of the torsor Xbr ! Xnsm is equivalent to a choice
of compatible orientations of the tropicalizations of the fibers of X ! S .

Example 3.13. Let k be a field and let X be the prestable irreducible curve

X WD Proj kŒx; y; z�=.y2z � x3 � x2z/;

with the involution � W X ! X given by y 7! �y. Consider the prestable curve

Y WD X �k X ! X:

Let P be a Z=2Z-torsor on X , and consider the twisted form of Y given by

Y P WD Y ˝Z=2Z P ! X;

where Z=2Z acts on Y=X by � . Then the scheme of branches of Y P =X is canonically iso-
morphic to the torsor P ! X . In particular, for P whose class in H 1.XKet;Z=2Z/ D Z=2Z is
non-zero, the curve Y P does not have split branches.

Definition 3.14. We define the sheaf of half-edges H 2 Sh..Sch=Xnsm/Ket/ to be Xbr.
We will use the notations H and Xbr interchangeably. We will use the same notation for the
pushforward (left adjoint to pullback) to Sh..Sch=S/Ket/.

The sheaf H comes with a natural involution � overXnsm and hence over S . Composition
induces an involution � on ZH WD HomS .H ;Z/, and we find that:

Lemma 3.15. We have

(3.4.4) ZE
D .ZH /� and ZE

D .ZH /��

(respectively the invariants for � and for ��).

Proof. The equality ZE D .ZH /� is clear. Writing ˇ W Xbr ! X , the locally-free rank 1
Z-module ˇ�M

gp
X=S has a canonical generating section m0 coming from generating sections

of the ideal sheaves of the preimages of the node on the two branches. The equality ˇ D ˇ ı �
induces an isomorphism ��ˇ�M

gp
X=S

�
�! ˇ�M

gp
X=S , which takes ��m0 to �m0.

There is a natural isomorphism

(3.4.5) � W ˇ�M
gp
X=S

�
�! ZXbr ; m0 7! 1:

The involution � induces an automorphism � W ˇ�ZXbr
�
�! ˇ�ZXbr . We then define a map

M
gp
X=S ! ˇ�ZXbr

sending m to �.ˇ�m/. Now �.�.ˇ�m// D ��.ˇ�m/, so this map factors via the inclusion
.ˇ�ZXbr/�� ,! ˇ�ZXbr . Locally on Xnsm the induced map M

gp
X=S ! .ˇ�ZXbr/�� is a map of

free rank-1 Z-modules, and is easily checked to be an isomorphism, from which the second
equality is immediate.

Lemma 3.16. The sheaves ZE and ZE are isomorphic étale locally on S .

Proof. Étale locally on S the curve X has split branches, so we conclude by (3.15).
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3.4.2. Representability.

Lemma 3.17. The sheaf ZE on .Sch=S/Ket is representable by a quasi-separated étale
group algebraic space on S .

Proof. Working étale locally on S , we reduce to the case where E ! S is a finite dis-
joint union of closed immersions. We may then assume i W E ! S is a closed immersion with
E connected, and with complement j W U ! S . The constant sheaf ZS is representable by an
étale algebraic space, and so is its open subgroup jŠZU . So the quotient HomS .E;Z/ D i�ZE

is representable by an étale algebraic space. For quasi-separatedness, we may reduce to S
locally noetherian because E is finitely presented, and then use Remark 2.4.

Combining Lemmas 3.16 and 3.17 yields:

Lemma 3.18. The sheaf ZE is representable by a quasi-separated étale group algebraic
space over S .

3.5. The sheaf ZV . For any site † we denote by ZŒ � W Sh.†/! Ab.†/ the functor
taking a sheaf of sets F to the sheafification of the presheaf ZPShŒF � of free abelian groups
with basis F . Note that ZŒ � is left adjoint to the forgetful functor Ab.†/! Sh.†/; indeed,
for any sheaves F of sets and G of abelian groups, we have

HomSh.†/.F ;G / D HomPSh.†/.F ;G /

D HomPAb.†/.ZPShŒF �;G /

D HomAb.†/.ZŒF �;G /:

Definition 3.19. Let X=S be a prestable curve. We define the sheaf of relative irre-
ducible components IrrX=S WD �0.Xsm=S/ by sending T ! S to the set of XT -isomorphism
classes of open immersions U � XT such that

(i) for every geometric point Nt of T , the fiber UNt is irreducible.

(ii) up to isomorphism, U ! XT is maximal among open immersions with property (i).

Remark 3.20. In [36], Romagny studies relative irreducible components in more detail
and generality. He shows that IrrX=S is representable by a finitely presented étale algebraic
space over S .

Definition 3.21. We define the sheaf ZV WD ZŒIrrX=S � on .Sch=S/Ket.

Remark 3.22. The sheaf ZV is the Néron–Severi group of X=S . If S is a geometric
point, then there is a natural isomorphism ZV ��! ZV , motivating the notation.

Remark 3.23. We emphasize that the sheaf ZV should not be confused with the sheaf
ZIrrX=S D Hom.IrrX=S ;Z/ on .Sch=S/Ket. For example, if S is a strictly henselian discrete val-
uation ring and X=S a prestable curve, smooth over the generic point, and whose special fiber
has two irreducible components, then the global sections of ZŒIrrX=S � form a free abelian group
of rank 2, and those of ZIrrX=S a free abelian group of rank 1.
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Lemma 3.24. The sheaf ZV on .Sch=S/Ket is representable by a quasi-separated étale
group algebraic space over S .

Proof. As IrrX=S is of finite presentation, we may assume S is locally Noetherian. By
Lemma 2.3 it suffices to prove that ZV is locally constructible. From Remark 3.20 we know
that IrrX=S is locally constructible, in other words is of the form i�J for some sheaf J on the
small étale site of S . Then

ZŒIrrX=S � D ZŒi�J � D i�ZŒJ �;

where for the last equality we use that the functors i� and ZŒ � commute, which follows in turn
from the easy observation that their right adjoints (i� and the forgetful functor from sheaves of
abelian groups to sheaves of sets) commute.

Lemma 3.25. Let X ! S be a prestable curve. Then the sheaves Irr WD IrrX=S and
ZV D ZŒIrr� on .Sch=S/Ket are generated by global sections étale-locally6) on S .

Proof. It suffices to prove Irr is generated by global sections étale-locally on S , which
follows from [10, Lemma 18].

3.6. The tropical boundary map. If X is a tropical curve with a choice of orientation
on the edges, there is a boundary map

(3.6.1) ı W ZE ! ZV

sending an edge E to its endpoint minus its startpoint. We will define an analogous map
ı W ZE ! ZV , independent of choices.

Remark 3.26. As pointed out in Section 3.4.1, choices of orientations compatible with
specialization maps cannot in general be made in families, motivating our definition of ZE as
��G

trop
m;X=S

instead of as ZE .

Since both ZE and ZV are locally constructible, it suffices to define ı on the small étale
site of S . In what follows, we work exclusively on small étale sites, implicitly applying the
functor i� wherever necessary. Working locally on SKet, we may assume that X=S has split
branches.

Write Xnsm=S as a disjoint union of closed immersions
F
i Zi

˛i
�! S , and for each i put

Zbr
i WD X

br
�Xnsm Zi :

Let Hi be Zbr
i , seen as a sheaf on .Zi /Ket. We have

ZE
D

M
i

ZE
i ;

where ZE
i is the subgroup of .��/-invariants of .˛i /�ZHi . We will construct natural maps

ZE
i ! ZV , and sum them. Pick some i and put Z WD Zi , ˛ WD ˛i . Here ˛ is a closed immer-

6) For a sheaf F on S , this means that every geometric point of S admits an étale neighborhood U such that
the natural map from the constant sheaf on F.U / to the restriction F jU is surjective.
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sion, and we use the notation from [24, Proposition II.3.14] for pushing and pulling along
˛ of sheaves on the small étale site. Denote by j the open immersion U WD S nZ ! S . By
[24, Proposition II.3.14], ˛� is left adjoint to the functor ˛Š W Ab.SKet/! Ab.ZKet/ taking a sheaf
to (the pullback of) its subsheaf of sections supported on Z. Explicitly, for a sheaf F on S ,
˛ŠF is the kernel of ˛�F ! ˛�j�j

�F . We deduce

(3.6.2) HomZKet..Z
Hi /.��/; ˛ŠZV / D HomSKet.Z

E
i ;Z

V /:

There is a natural map of S -algebraic spaces

(3.6.3) b W Xbr
! IrrX=S ,! ZV

sending a point to the irreducible component of the normalization of its fiber on which it
lies. Writing ˇ W Zbr ! Z, the map b induces a global section of ˇ�˛�ZV , i.e., a morphism
ZZbr ! ˇ�˛�ZV . We have ˇ�ZZbr D ZHi . Since ˇ is a disjoint union of isomorphisms, it
follows that ˇ� is simultaneously the left and right adjoint of ˇ�. By adjunction and after
restricting to the .��/-invariants, we get a map B 2 HomZKet..Z

Hi /��; ˛�ZV /. The image of B
consists of sections supported on Z, so B factors through ˛ŠZV , and yields a map ZE

i ! ZV

by (3.6.2). Summing over i , we get the desired map ı W ZE ! ZV . The fact that ı does not
depend on the chosen expression of Xnsm ! S as a disjoint union of closed immersions is
clear from the construction.

Definition 3.27. The tropical boundary map is the map

ı W ZE
! ZV

constructed above.

Remark 3.28. If S is a log point we have a canonical isomorphism ZV D ZV (cf.
Remark 3.22). A choice of orientations of the edges of the tropicalization of X=S provides an
isomorphism ZE D ZE , which identifies ı with the boundary map of (3.6.1).

Definition 3.29. We denote by H1;X=S the kernel of ı. It is a sheaf of abelian groups
whose stalks are free and finitely generated. Its value at a geometric point s of S is isomorphic
to the first homology group H1.Xs;Z/, cf. Remark 3.28.

Remark 3.30. Prompted by a request from an anonymous referee, we give an alter-
native interpretation of the map ı, via the interpretation of ZV as the Néron–Severi group of
X=S (see Remark 3.22). For this remark, we work in the sites .Sch=X/Ket and .Sch=S/Ket. Let
X st be X with the log structure pulled back from S . We restrict sheaves naturally defined on
.LSch=Xst /Ket, .LSch=X/Ket, .LSch=S/Ket to .Sch=X/Ket, .Sch=S/Ket without additional decora-
tions, to avoid overcrowding the notation. Recalling that ZE D ��G

trop
m;X=S

, the cohomology
of the short exact sequence

(3.6.4) 0! Glog
m;X st ! Glog

m;X ! Gtrop
m;X=S

! 0

gives a canonical map

(3.6.5) ZE
D ��G

trop
m;X=S

! R1��G
log
m;X st :
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We also have an exact sequence

(3.6.6) 0! Gm;X ! Glog
m;X st ! ��1Gtrop

m;S ! 0;

which splits after base changing to a strict étale cover S 0 ! S . Choosing a splitting gives a map
Glog
m;X st

S0
! Gm;XS0 , and taking cohomology gives a map

(3.6.7) R1��G
log
m;X st

S0
! R1��Gm;XS0 D PicXS0=S 0 :

This map depends on the choice of splitting, but we claim that the composite with the natu-
ral map to the Néron–Severi group PicXS0=S 0 =Pic0XS0=S 0 does not depend on this choice. In
particular, the composite descends to a canonical map

(3.6.8) R1��G
log
m;X st ! PicX=S =Pic0X=S :

The claim may be proven assuming S 0 D S . The difference between two choices of
splittings is measured by a map

(3.6.9) F W ��1Gtrop
m;S ! Gm;X ;

which by adjunction is the same as a map G W Gtrop
m;S ! ��Gm;X D Gm;S (the latter equality

since X=S is proper with reduced and connected geometric fibers). Then we have a map

(3.6.10) R1���
�1G W R1���

�1Gtrop
m;S ! R1���

�1Gm;S ;

and composing with the canonical map ��1Gm;S ! Gm;X yields a map

(3.6.11) R1���
�1Gtrop

m;S ! R1��Gm;X D PicX=S I

we must show that this map factors via Pic0X=S . Writing ˇ W ��1Gm;S ! Gm;X for the natural
inclusion, we find that F D ˇ ı ��1��F , and so

(3.6.12) R1��F W R
1���

�1Gtrop
m;S ! R1��Gm;X D PicX=S

factors as

(3.6.13) R1���
�1Gtrop

m;S ! R1���
�1Gm;S ! PicX=S ;

and
R1���

�1Gm;S ! PicX=S

factors through Pic0X=S . Indeed, the fiber of T WD R1����1Gm;S over a geometric point
s ! S is the torus part of Pic0Xs=s .

This shows the existence of a slight refinement of ı; we defined it as a map from ZE to the
Néron–Severi group ZV D PicX=S =Pic0X=S , but it comes naturally from a map to the quotient
PicX=S =T by the “torus part of PicX=S”. We do not know if this lift has any application.

3.7. The monodromy pairing. If X is a tropical curve over a monoid M , there is
a map E �E !M

gp
sending .e; f / to `.e/ if e D f and 0 otherwise. This induces a map

ZE � ZE !M
gp

, which, after choice of an orientation on E, restricts to a pairing

(3.7.1) H1.X;Z/ �H1.X;Z/!M
gp
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called the monodromy pairing. We will define an analogous map

(3.7.2) f�H1;X=S � f�H1;X=S ! Gtrop
m;S ;

where f� is the functor Ab.LSch=S/Ket ! Ab.Sch=S/Ket introduced in Section 2.4.
LetX=S be a log curve. We write ˛ W Xnsm ! S and ' W Xbr ! Xnsm. On .Sch=Xnsm/Ket,

we have a sheaf of abelian groups '�ZXbr D HomXnsm.Xbr;Z/ which is locally free of rank 2
and endowed with the involution �. We write .'�ZXbr/�� for the invariants under ��; this is
a locally free rank 1 sheaf of abelian groups, hence self-dual. Pushing forward the natural
pairing .'�ZXbr/�� � .'�ZXbr/�� ! Z via ˛, we get a pairing

(3.7.3) ZE
�ZE

! ˛�Z:

Next, we compose (3.7.3) with the natural map ˛�Z! i�M
gp
S of Proposition 3.1, to

obtain a pairing

(3.7.4) ZE
�ZE

! i�M
gp
S D s�G

trop
m;S ;

where the last equality is Lemma 2.7.

Definition 3.31. The monodromy pairing is the pairing

f�H1;X=S � f�H1;X=S ! Gtrop
m;S

obtained by adjunction from (3.7.4) and restriction to H1;X=S , and the fact that s� D f�
(Lemma 2.5)

3.8. The condition of bounded monodromy. In order to define a tropical Jacobian
for X=S , we would like to take the quotient of the tropical torus Hom.f�H1;X=S ;G

trop
m;S / by

the group of periods f�H1;X=S D s�H1;X=S , where the action is given by the monodromy
pairing. However, the sheaf Hom.f�H1;X=S ;G

trop
m;S / does not behave as we would like with

respect to generization. Indeed, if s; � are two geometric points of S such that � is a generization
of s, a homomorphismH1.Xs/!M

gp
S;s does not induce a homomorphismH1.X�/!M

gp
S;�.

As a consequence, formal elements of the sheaf do not integrate to elements over complete
noetherian algebras. This has the consequence that the sheaf

s�Hom.s�H1;X=S ;G
trop
m;S / D Hom.H1;X=S ; s�G

trop
m;S /

is not representable by an S -algebraic space, since it fails to satisfy one of Artin’s axioms
([2, Theorem 5.3, 2’]). The authors in [26] introduce the condition of bounded monodromy
which fixes this issue. We recall it now.

Definition 3.32. Let M be a sharp fs monoid, and a; b elements of M
gp

. We say a is
bounded by b if there exist integers n;m such that nb � a � mb (for the partial order induced
by M ). The elements bounded by b form a subgroup of M

gp
.

Definition 3.33. Let X be a tropical curve marked by a monoid M . A homomorphism
' W H1.X/!M

gp
is of bounded monodromy if for every  2 H1.X/, './ is bounded by the

length of  , i.e., the self-intersection of  under the monodromy pairing.
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Remark 3.34. The length ` is a map H1.X/!M
gp

which factors through M . If two
elements ;  0 of H1.X/ have disjoint support, then we have `. C  0/ D `./C `. 0/.

This notion extends naturally to the relative setting:

Definition 3.35. Let X ! S be a log curve. We define the morphism

` W f�H1;X=S ! Gtrop
m;S

as the composition of the monodromy pairing with the diagonal

f�H1;X=S ! f�H1;X=S � f�H1;X=S :

Definition 3.36. Let X ! S be a log curve. We will use the name bounded mon-
odromy subsheaf, and we write Hom.f�H1;X=S ;G

trop
m;S /

�, for the open subgroup sheaf of
Hom.f�H1;X=S ;G

trop
m;S / obtained by sheafifying the sub-presheaf of morphisms

' W f�H1;X=S .T /!M
gp
T

such that for every  2 f�H1;X=S .T /, './ is bounded by `./.

Remark 3.37. Suppose S is a log point, and fix an orientation of the edges of the
tropicalization X ofX at s (i.e., an isomorphism ZE D ZE ). Then we recover the usual notions
of length and bounded monodromy on the tropical curve X.

Remark 3.38. It will follow from Section 3.10 that Hom.f�H1;X=S ;G
trop
m;S /

� is pre-
cisely the open subgroup sheaf of Hom.f�H1;X=S ;G

trop
m;S / consisting of morphisms that have

bounded monodromy at every strict geometric log point s of S .

One immediately checks that the morphism

f�H1;X=S ! Hom.f�H1;X=S ;G
trop
m;S /

induced by the monodromy pairing factors via the bounded monodromy subgroup.

3.9. The tropical Jacobian.

Definition 3.39. The tropical Jacobian of X=S is the sheaf on .LSch=S/Ket

TroPic0X=S D Hom.f�H1;X=S ;G
trop
m;S /

�=f�H1;X=S :

For s a geometric point of S , a choice of an orientation of the graph Xs induces an
isomorphism

TroPic0X=S .s/ Š Hom.H1.Xs/;M
gp
S;s/

�=H1.Xs/:

If X=M is a tropical curve, we write

TroPic0.X=M/ D Hom.H1.Xs/;M
gp
S;s/

�=H1.Xs/:

As explained in [26], for � a generization of s, any homomorphism of bounded mon-
odromy

H1.Xs/!M
gp
S;s
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induces a unique homomorphism (of bounded monodromy)

H1.X�/!M
gp
S;�I

moreover, an orientation of Xs induces a unique orientation of its contraction X�. There is
therefore an induced generization map

(3.9.1) TroPic0X=S .s/! TroPic0X=S .�/:

The original definition of TroPic0X=S in [26] is slightly different than the one we gave and
relies on the generization maps defined above. The rest of this section is devoted to verifying
that the two definitions are actually equivalent.

3.10. Equivalence with the definition of Molcho and Wise. All our log schemes are
fine and saturated, so in particular they have étale-local charts by finitely presented monoids.
This allows for the following convenient definitions of finiteness conditions for log schemes.

Definition 3.40. We say that a log scheme is of finite type, resp. locally of finite type,
resp. Noetherian, resp. locally Noetherian if its underlying scheme is.

We say that a morphism of log schemes is locally of finite type, resp. of finite type, resp.
locally of finite presentation, resp. of finite presentation if the underlying scheme map is.

Remark 3.41. Any log curve is of finite presentation. In particular, any log curve is the
base change of a log curve over a log scheme locally of finite type.

Definition 3.42. Let � W X ! S be a log curve. We say that S is nuclear (with respect
to �) if:

(1) the stratification of S induced by the log structureMS has only one closed stratum Z, Z
is connected, and every connected component of every stratum specializes to Z,

(2) MS is generated by global sections (in particular, there exists a surjection ZJ ! i�M
gp
S

where J is a set),

(3) X=S has split branches,

(4) the sheaf ZV is generated by global sections.

We say that S is pre-nuclear if it satisfies (2), (3) and (4). We say that S is a nuclear neighbor-
hood of a geometric point t of S if S is nuclear and t maps to the closed stratum.

Remark 3.43. Conditions (2), (3) and (4) are stable under strict étale base change. In
particular, so is pre-nuclearity.

Remark 3.44. Suppose S is locally Noetherian and satisfies condition (2), and let Z
be a stratum of S for the stratification induced by MS . Then the sheaves MS and M

gp
S are

étale-locally constant on Z by definition of the stratification, and they are generated by global
sections, so they are constant on each connected component of Z.

Lemma 3.45. If X=S is a log curve, then S admits a strict étale cover by pre-nuclear
schemes. If in addition S is locally Noetherian, then any geometric point has a nuclear strict
étale neighborhood.
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Proof. First we show that S has a cover by pre-nuclear schemes. By Remark 3.43, it
suffices to show that conditions (2), (3) and (4) individually hold locally on S for the strict
étale topology. We can assume that S meets condition (3) by Remark 3.10; condition (4) by
Lemma 3.25; and condition (2) by the existence of étale local charts for log schemes.

Now, assume S is locally Noetherian and let t be a geometric point of S . We will show
that t has a nuclear strict étale neighborhood. Shrinking, we may assume that S is pre-nuclear
and Noetherian. In particular, the connected components of strata (of the stratification induced
by MS ) form a partition of S into finitely many locally closed subschemes. If the closure Y
of a piece Y does not meet t , take out Y from S . The resulting S is a nuclear neighborhood
of t .

Lemma 3.46. Let X=S be a log curve with S locally Noetherian and pre-nuclear. Let
Z be a connected component of a stratum of S (for the stratification induced byMS ). Then for
any two geometric points t; t 0 in Z, there is a canonical isomorphism X.t/ D X.t 0/ of tropical
curves over MS .Z/.

Proof. The sheaf MS is constant on Z by Remark 3.44. Since Z is locally Noetherian,
t and t 0 can be joined by a sequence of geometric points

t0 D t  �0 t1  �2 � � � tn D t
0;

where the squiggly arrows denote étale specialization, and all points land in Z. Every special-
ization �i  tj induces an edge contraction Xtj ! X�i , which is an isomorphism of tropical
curves over MS .Z/. The automorphism of Xt induced by any such étale path from t to itself
must be trivial: it sends every vertex to itself since IrrX=S is generated by global sections, and
every half-edge to itself since X=S has split branches. Therefore, the isomorphism Xt ! Xt 0

is independent of the choice of étale path.

Corollary 3.47. If we assume the hypotheses and notations of Lemma 3.46, then the
sheaf Hom.f�H1;XZ=Z ;G

trop
m;Z/

� is constant. In particular, TroPic0X=S is constant onZ as well.

Proof. By base-change, we can reduce to the following claim: if S is connected and
MS constant, then for any strict geometric point s ! S , the restriction map

Hom.f�H1;X=S ;G
trop
m;S /

�.S/! Hom.f�H1;X=S ;G
trop
m;S /

�.s/

is an isomorphism. Under the hypotheses of the claim, the sheaves ZE , ZV and s�G
trop
m;S are

constant on S , so H1;XS=S is constant as well. In particular, we have

(3.10.1) Hom.f�H1;X=S ;G
trop
m;S /.S/ D Hom.f�H1;X=S ;G

trop
m;S /.s/:

Let ' be a global section of Hom.f�H1;X=S ;G
trop
m;S /. If ' has bounded monodromy, then

its image 's in Hom.f�H1;X=S ;G
trop
m;S /.s/ also does. Conversely, suppose 's has bounded

monodromy. Since

f�H1;XS=S .S/ D f�H1;XS=S .s/
�
�! H1.Xs/;

for every  2 f�H1;X=S .S/, the image './ is bounded by the length of  inMS .S/DMS .s/.
Hence, ' has bounded monodromy. Thus, the isomorphism (3.10.1) respects the bounded
monodromy subgroups, and the claim follows.
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Lemma 3.48. Let X=S be a log curve with S locally Noetherian and nuclear. Let s be
a geometric point of the closed stratum of S . Then the restriction map

TroPic0X=S .S/! TroPic0X=S .s/

is an isomorphism.

Proof. Since E D Xnsm ! S is a disjoint union of closed immersions, and s lies in
the unique closed stratum, the map ZE.S/! ZE.s/ is an isomorphism. Because X=S has
split branches, we can make a choice of isomorphism � W ZE Š ZE , so the restriction map
ZE.S/! ZE.s/ is an isomorphism. Since additionally ZV .S/ D ZV .s/, it follows that the
restriction H1;X=S .S/ D H1;Xs=s.s/ is an isomorphism.

Next, we show that the restriction map

Hom.f�H1;X=S ;G
trop
m;S /

�.S/! Hom.f�H1;Xs=s;G
trop
m;s/

�.s/

is an isomorphism. By adjunction, the map above is the map

Hom.H1;X=S ; s�G
trop
m;S /

�
! Hom.H1;Xs=s; s�G

trop
m;s/

�

of Hom groups between sheaves on .Sch=S/Ket. The two sheaves H1;X=S and s�G
trop
m;S D i�M

gp
S

are both locally constructible. To give a morphism H1;X=S ! s�G
trop
m;S it suffices therefore

to give a morphism i�H1;X=S !M
gp
S of sheaves on the small étale site. We are reduced to

proving that

(3.10.2) Hom.i�H1;X=S ;M
gp
S /
�
! Hom.H1.Xs/;M

gp
s /
�

is an isomorphism.
To give a map ' W i�H1;X=S !M

gp
S , it suffices to give, for every stratumW � S , a map

'W between the restrictions to W , subject to the following compatibility condition: for every
two strata W;W 0 such that W 0 is contained in the closure of W , let U D W [W 0 (a locally
closed in S ) and h W W 0 ,! U , j W W ,! U , respectively a closed and open immersion. Then
the diagram

h�H1;XU =U h�M
gp
U

h�j�j
�H1;XU =U h�j�j

�M
gp
U

'W 0

h�j�'W

should commute.
For every connected component W of a stratum, we choose a point �W . Remember that

we have made a global choice of isomorphism ZE D ��G
trop
m;X=S

Š ZE and that H1;X=S is
constant on connected components of strata. Thus H1;XW =W is identified with the constant
sheaf with value H1.X�W /. Similarly, M

gp
W is the constant sheaf with value M

gp
�W

, this time
by condition (2) of Definition 3.42.

Let then t be a point of S and let � be a generization of t . We show that for every map of
bounded monodromy ˛t W H1.Xt /!M

gp
t , the solid diagram

H1.Xt / M
gp
t

H1.X�/ M
gp
�

˛



Holmes, Molcho, Orecchia and Poiret, Models of Jacobians 135

admits a unique dashed arrow ˛� making the diagram commute. The uniqueness is due to the
surjectivity of the left vertical map. For the existence part, a dashed arrow exists if ˛ sends
the kernel K of the left vertical map into the kernel K 0 of the right vertical map, i.e., if any
cycle  2 H1.Xt / with length `./ vanishing in M

gp
� maps to zero in M

gp
� . This holds by the

bounded monodromy condition, which completes the proof of existence. We write .� s/�˛t
for the unique map ˛� just constructed.

We omit the easy check that for every diagram of generizations

� �1

�2 t

and map of bounded monodromy ˛t W H1.Xt /!M
gp
t , the maps .� �1/

�.�1 t /�˛t and
.� �2/

�.�2 t /�˛t coincide.
Call Z the closed stratum of S . The above discussion, combined with condition (1) of

the definition of nuclearity, shows that an arbitrary

' 2 Hom.H1.Xs/;M
gp
s /
�
D Hom.i�H1;XZ=Z ;M

gp
Z /
�

fits in a unique compatible system of bounded monodromy maps i�H1;XW =W !M
gp
W , where

W ranges through the connected components of strata, i.e., ' comes uniquely from an element
of Hom.i�H1;X=S ;M

gp
S /
�, which shows that

Hom.f�H1;X=S ;G
trop
m;S /

�.S/! Hom.f�H1;Xs=s;G
trop
m;s/

�.s/

is an isomorphism.
Summarizing, we have shown that the composition

Hom.f�H1;X=S ;G
trop
m;S /

�.S/=f�H1;X=S .S/! TroPic0X=S .S/! TroPic0X=S .s/

is an isomorphism. In particular, the restriction map TroPic0X=S .S/! TroPic0X=S .s/ is surjec-
tive. We will show that it is also injective. Let � be an element of its kernel. It suffices to prove
that � vanishes in the étale stalk TroPic0X=S .Spec OetS;�/ D TroPic0X=S .�/ at any geometric point
� of S . LetW be the stratum containing �. Over some generic point ofW , there is a geometric
point �W specializing to both � and a point of Z. By Corollary 3.47 we know TroPic0X=S is
constant on strata, so the restriction map

TroPic0X=S .S/! TroPic0X=S .�W / D TroPic0X=S .�/

factors via the “generization map”

TroPic0X=S .s/! TroPic0X=S .�W /

of (3.9.1). In particular, � maps to 0 in TroPic0X=S .�/, which concludes the proof.

Definition 3.49. LetX=S be a log curve. We define a sheaf of sets FX=S on .LSch=S/Ket
as follows. If S is locally of finite type and T=S is of finite type, then FX=S .T / is a system
of elements a 2 TroPic0.t/, one for each geometric point t ! T , and compatible with the
generization maps (3.9.1). For general T , F .T / is the sheafification of the presheaf taking
T to the colimit of the FX=S .T0/, taken over all T ! T0 ! S with T0 of finite type. For
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general S , by Remark 3.41 we can pick a cartesian square

X S

X0 S0

with S0 locally of finite type and define FX=S as the pullback of FX0=S0 . This is independent
from the choice of cartesian square, and the formation of FX=S commutes with base change.
When there is no ambiguity, we will write F instead of FX=S .

This is the way in which the tropical Jacobian is defined in [26].

Lemma 3.50. The sheaves TroPic0X=S and F are canonically isomorphic.

Proof. If S is locally of finite type and T is a S -log scheme of finite type, there is
a natural map

ˆ.T / W TroPic0.T /! F .T /

taking ˛ 2 TroPic0.T / to the system ¹i�˛ 2 TroPic0.t/ºi Wt!T , where i W t ! T are all geo-
metric points of T . Now, let T be an arbitrary S -log scheme. Since H1;X=S is locally free and
finite over S , we find that locally on T , TroPic0X=S .T / is the colimit of the TroPic0X=S .T0/,
taken over all T ! T0 ! S with T0 of finite type. Combining this with the fact that the for-
mation of TroPic0X=S commutes with strict base change, we get a morphism of abelian sheaves
ˆ W TroPic0X=S ! F for any log curve X=S .

We will show that ˆ is an isomorphism. We may do so assuming that S is of finite type.
Then, working locally, it suffices to show that ˆ.T / is an isomorphism when T is nuclear.

Let x be a geometric point of T landing in the closed stratum Z. Consider the natural
map

 W F .T /! TroPic0.x/:

The composition  ıˆ.T / is the restriction map TroPic0.T /! TroPic0.x/, which is an iso-
morphism by Lemma 3.48. It suffices therefore to show that  is injective (in order to conclude
that it is an isomorphism, and that therefore ˆ.T / is an isomorphism as well).

The argument is essentially the same as the end of the proof of Lemma 3.48. Let y ! T

be any geometric point, W0 the stratum containing y, and W the connected component of W0
containing y. By condition (1) in the definition of nuclearity there exists an étale specialization
� � with � in W and � in Z. By Corollary 3.47, we obtain a canonical map

TroPic0.x/ D TroPic0.�/! TroPic0.�/ D TroPic0.y/:

The compatibility condition forces all elements of the system F .T / to be determined by the
element belonging to TroPic0.x/. This proves the injectivity.

3.11. The logarithmic Jacobian. Let S D .Spec k;M/ be a logarithmic geometric
point, with chart by a monoid M , and � W X ! S a log curve. We consider M gp

X -torsors on X
for the strict étale topology. Given such a torsorL, we denote byL the image of its isomorphism
class via H 1.X;M

gp
X /! H 1.X;M

gp
X /.

There is a natural surjective map

Hom.H1.X/;M
gp
/ D H 1.X; ��1M

gp
/! H 1.X;M

gp
X /:
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The first equality is because M
gp

is torsion-free. Surjectivity is due to the fact that M
gp
X=S is

supported on Xnsm and therefore H 1.X;M
gp
X=S / D 0.

We say that L has bounded monodromy if some (equivalently, any) preimage of L in
Hom.H1.X/;M

gp
/ has bounded monodromy as in Definition 3.33.

Let now � W X ! S be a log curve over a general log base; we say that an M gp
X -torsor

L has bounded monodromy, if for every strict geometric point s ! S , the restriction Ls has
bounded monodromy. Such a torsor is called a logarithmic line bundle.

Definition 3.51. The logarithmic Picard stack is the stack LogPicX=S on .LSch=S/Ket
with sections

LogPicX=S .T / D ¹log line bundles on XT D X �S T º:

The logarithmic Picard sheaf LogPicX=S � R
1��G

log
m;X is the sheafification of the functor of

isomorphism classes of LogPicX=S .

Remark 3.52. To any line bundle L on a log curve X ! S with associated O�X -tor-
sor L�, one can associate the torsor L� ˝O�X

M
gp
X . Since its image in H 1.X;M

gp
X / vanishes,

this has bounded monodromy and is therefore a log line bundle. There is therefore a natural
map f�PicX=S ! LogPicX=S .

Consider the diagram

f�PicX=S LogPicX=S

ZŒIrrX=S � Z,

deg

†

where PicX=S is the Picard stack, the left vertical map is the multidegree map, † is the sum,
and the top horizontal map associates to a O�X -torsor L the log line bundle L˝O�X

M
gp
X . It is

shown in [26, 4.5] that there is a unique degree map making the diagram commute.

Definition 3.53. We define LogPic0X=S to be the substack of LogPicX=S of logarithmic
line bundles of degree zero, and similarly for the sheaf LogPic0X=S � LogPicX=S , which is
called logarithmic Jacobian.

For the convenience of the reader we recall from [26] a list of properties of the logarithmic
Picard and Jacobian that we will use.

Property 3.54 ([26, Section 4.14]). There is a natural morphism

LogPic0X=S ! TroPic0X=S ;

the “tropicalization”, which fits into a short exact sequence

(3.11.1) 0! f� Pic0X=S ! LogPic0X=S ! TroPic0X=S ! 0;

where Pic0X=S is the generalized Jacobian, i.e., the sheaf of line bundles of degree zero on
every irreducible component, which is representable by a semiabelian scheme on S . Moreover,
f� Pic0X=S is representable by a semiabelian scheme with pullback log structure from S .
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Property 3.55 ([26, Proposition 4.3.2]). The bounded monodromy condition has the
following concrete interpretation: anM gp

X -torsor has bounded monodromy if and only if, étale-
locally on S , there exist log modifications S 0 ! S and Y ! X �S S

0 such that Y ! S 0 is
a log curve and the induced M gp

Y -torsor can be represented by a line bundle on Y .

Property 3.56 ([26, Corollary 4.4.14.1]). If Y ! X is a log modification such that Y=S
is a log curve, the induced maps LogPic0X=S ! LogPic0Y=S and TroPic0X=S ! TroPic0Y=S are
isomorphisms. Although the statement for TroPic0 is not explicitly stated in [26], this follows
from [26, Corollary 4.4.14.1] together with the fact that Pic0X=S ! Pic0Y=S is an isomorphism
and the exact sequence (3.11.1).

Property 3.57 ([26, Section 4.4]). The stack LogPicX=S is a stack in the (strict) étale
topology. However, if the base S is logarithmically regular, LogPicX=S is also a stack on the
small log étale site of S , and in fact on the site generated by the small log étale site and arbitrary
root stacks (perhaps of order not prime to the characteristic).

Property 3.58 ([26, Theorem 4.10.1]). The stack LogPicX=S satisfies the valuative cri-
terion for properness for log schemes: it has the unique lifting property with respect to valuation
rings R whose log structure is the direct image of a valuative log structure on the fraction field.

Property 3.59 ([26, Theorem 4.13.1]). The stack LogPicX=S is logarithmically smooth
over S , meaning that it is locally of finite presentation and satisfies the infinitesimal lifting
criterion for strict square 0 extensions, as in the original definition of [21].

In general, LogPicX=S (resp. LogPicX=S ) is not representable by a log algebraic stack
(resp. log algebraic space), as the following example shows:

Example 3.60 ([17, Section I]). Let K be a complete discrete valuation field, with
ring of integers OK , � 2 mK a uniformizer, q D �2 and Eq the corresponding Tate elliptic
curve. Any proper log smooth model Eq of Eq over OK gives the same logarithmic Jacobian
LogPic0Eq , and comes by Theorem 1.7 with a unique (birational) morphism Eq ! LogPic0Eq .
The minimal regular model Eminq has two irreducible components over the residue field; blow-
ing down any of them to a point gives two log smooth models E1q ;E

2
q . As both E1q and E2q map

to LogPic0X=S , we see that if the latter were a log algebraic space, its closed fiber would have
to be a point, contradicting the log smoothness.

4. Strict log and tropical Jacobian and representability

Definition 4.1. Let X ! S be a log curve. Recall the functor s� from Section 2.4. We
define the strict logarithmic Jacobian sLPic0X=S to be s� LogPic0X=S , a sheaf on the big étale
site .Sch=S/Ket.

Similarly, we define the strict tropical Jacobian sTPic0X=S to be s� TroPic0X=S

Although these are sheaves on .Sch=S/Ket, they do not depend only on the prestable curve
X=S but also on the log structure MS (see Example 4.7).
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Remark 4.2. The article [26] is by no means the first time the term “logarithmic
Jacobian” appears in the literature. To our knowledge the earliest appearances of the term are
in [15, 16, 19]; a notion of logarithmic Jacobian was then studied, among others, by Olsson
in [30] and Bellardini in [4]. Their notion is from the beginning a notion for schemes, and thus
closer to our strict log Jacobian than to the log Jacobian of [26]. However, even so there are
differences – for instance, in Olsson’s and Bellardini’s work the log structure on S is restricted,
and the subset ofM gp

X torsors they consider is different from the subgroup of all bounded mon-
odromy torsors. In particular, the objects constructed by Bellardini and Olsson will in general
not satisfy the Néron mapping property over higher-dimensional bases.

There is an obvious modular interpretation for sLPic0X=S , as the sheafification of the
functor associating to a map of schemes a W T ! S the set

¹log line bundles L on X �S sT of degree zero º=Š:

By exactness of the functor s�, the exact sequence (3.11.1) yields an exact sequence

(4.0.1) 0! Pic0X=S ! sLPic0X=S ! sTPic0X=S ! 0:

Lemma 4.3. Let X=S be a log curve and f W T ! S a morphism of schemes. Then

sTPic0X=S �ST D sTPic0XsT =sT

and
sLPic0X=S �ST D sLPic0XsT =sT

:

Proof. We have sT D f�T , so s�sT D T . The formation of the tropical Jacobian com-
mutes with base change and therefore

(4.0.2) TroPic0X=S �SsT D TroPic0XsT =sT
:

Now the right adjoint functor s� commutes with products, and applying it to (4.0.2) yields the
result. The same proof works for sLPic0X=S .

Recall that the stack LogPic0X=S is proper and log smooth over S (Property 3.58 and
Property 3.59), but in general not algebraic. The main purpose of this section is to prove the
following:

Theorem 4.4. Let X=S be a log curve. Then:

(i) sTPic0X=S is representable by a quasi-separated étale algebraic space over S .

(ii) sLPic0X=S is representable by a quasi-separated smooth algebraic space over S .

Proof. Part (ii) of the theorem is immediate from part (i) and the exact sequence (4.0.1),
as it realizes sLPic0 as a Pic0-torsor over sTPic0, which makes it representable by a smooth sep-
arated algebraic space over sTPic0. Let us prove part (i). Representability by a quasi-separated
algebraic space is étale local on the target, and X=S is of finite presentation, so we reduce via
Lemma 4.3 to the case where S is a log scheme of finite presentation (in particular Noetherian).

We reduce by virtue of Lemma 2.3 to checking that the sheaf F D TroPic0X=S is locally
constructible, i.e., that the canonical morphism ˛ W i�i�F ! F is an isomorphism.
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It suffices to show that for any morphism T ! S of schemes, the restriction of ˛ to the
small étale site over T is an isomorphism. That is, that for any T ! S and any geometric
point t of T , the map

colim
t!V!T

i�i�F .V /! colim
t!V!T

F .V /

is an isomorphism, where the colimits are over factorizations t ! V ! T with V ! T étale.
The right-hand side is F .t/, by Lemma 3.48 and the fact that factorizations such that V (with
pullback log structure from S ) is a nuclear neighborhood of t form a cofinal system. The left
hand side becomes

colim
t!V!T

colim
V!W!S

F .W /;

where V ! T andW ! S are étale. This can in turn be replaced by the colimit of F .W / over
the diagrams of the form

t V T

W S

with V ! T and W ! S étale, where t ! T and T ! S are fixed and the remainder is
allowed to vary. But this is simply the colimit over the factorizations t ! W ! S withW ! S

étale. Since those factorizations withW a nuclear neighborhood of t in S form a cofinal system,
by Lemma 3.48 the colimit is equal to F .t/.

4.1. Examples of strict logarithmic Jacobians.

Example 4.5. Let S be the spectrum of a discrete valuation ring with divisorial log
structure, and X=S a log curve. Call � the generic point of S . The closed fiber of the strict
tropical Jacobian is identified with the finite étale group scheme of components of the Néron
model of Pic0X�=�, and sLPic0X=S is the Néron model itself. This will be shown in greater gener-
ality in Corollary 6.13. Another explicit description of the Néron model is known in this case:
after a finite sequence of log blowups of X , we obtain a new log curve X 0=S whose nodes
all have length 1 2 N DMS .S/. By [5, 9.5, Theorem 4], the Néron model of Pic0X�=� is the
quotient of the Picard group of degree 0 line bundles Pictot0

X 0=S
by the closure of its unit section.

The relation between sLPic0X=S and quotients of Picard spaces is explored further in Section 9.

Example 4.6. Let S D Spec kŒŒu; v��, let D � S be defined by uv D 0, and let

j W U D S nD ,! S:

Let E=S be the degenerate elliptic curve in P2S with equation

y2z D x3 C x2z C uvz3

We make E ! S into a log smooth morphism by putting the log structures associated to the
divisors D and E �S D onto S and E respectively. Let s be a geometric point of S ; there are
essentially three possible structures for the tropical curve Xs and for TroPic0.Xs/:

� if s lands in U , then Xs consists of a single vertex and TroPic0.Xs/ D 0,

� if s lands in D n ¹u D 0; v D 0º, then MS;s Š N and Xs consists of a vertex and a loop
labelled by 1 2 N; then TroPic0.Xs/ D 0,
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� if s maps to .0; 0/, then MS;s Š N2 and Xs consists of a vertex and a loop labelled by
.1; 1/ 2 N2; then TroPic0.Xs/ Š Z.

It follows that sTPic0X=S is an étale group space with fiber Z at the closed point of S and 0 every-
where else. In particular, sLPic0X=S is not quasi-compact. It will follow from Proposition 7.3
that it is not separated either.

Example 4.7. Note that the tropical Jacobian of a log curve depends on the log struc-
tures on C=S , and not only on the underlying scheme map C=S . Keeping the notations of
Example 4.6, E=S comes via base-change from a log curve E0=S0, where S0 is S with log
structure given by

.kŒŒu; v��/� ˚Nuv ! kŒŒu; v��:

The tropical Jacobian of E=S at the closed point is a free abelian group of rank 1, while that
of E0=S0 is trivial. In this example, E0 ! S0 coincides with the log curve E# ! S# provided
by Proposition 3.1.

5. The saturation of Pic0 in sLPic0

We have seen in Example 4.6 that the étale algebraic space sTPic0X=S does not in gen-
eral have finite fibers, and that consequentially sLPic0X=S is not in general quasi-compact. In
this section we introduce a new quasi-compact quasi-separated (qcqs) smooth algebraic space
naturally associated to the log curve X=S and sitting in between Pic0X=S and sLPic0X=S .

Consider the subsheaf on .LSch=S/Ket of the tropical Jacobian

TroPictor
X=S � TroPic0X=S

of torsion elements, and its strict version sTPictor
X=S
WD s� TroPictor

X=S
of torsion elements.

Definition 5.1. Define the saturated Jacobian Picsat
X=S

to be the preimage of TroPictor
X=S

via the map LogPic0X=S ! TroPic0X=S .
Similarly, we define the strict saturated Jacobian sPicsat

X=S
to be the preimage of sTPictor

X=S

via the map sLPic0X=S ! sTPic0X=S .

The exact sequence (3.11.1) restricts to an exact sequence

0! f� Pic0X=S ! Picsat
X=S ! TroPictor

X=S ! 0:

We apply the exact functor s� to find an exact sequence in Sh.Sch=S/Ket

0! Pic0X=S ! sPicsat
X=S ! sTPictor

X=S ! 0:

Remark 5.2. The strict saturated Jacobian has the following modular interpretation: it
is the sheafification of the presheaf of abelian groups on .Sch=S/Ket whose T -sections are the
isomorphism classes of log line bundles L of degree zero on X �S sT such that some positive
power of L is a line bundle. This line of thought is pursued further in [14].

Lemma 5.3. The inclusion sTPictor
X=S
! sTPic0X=S is an open immersion; in particu-

lar sTPictor
X=S

is representable by a quasi-separated S -étale group algebraic space. Moreover,
sTPictor

X=S
is quasi-finite over S .
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Proof. Denoting by sTPicŒn�X=S the subsheaf of n-torsion elements, for the first part of
the statement it suffices to show that for every n 2 Z the map j W sTPicŒn�X=S ! sTPic0X=S is
an open immersion. We have a pullback square

(5.0.1)

sTPicŒn�X=S S

sTPic0X=S sTPic0X=S .

j 0

n

Since sTPic0X=S =S is étale, the zero section S ! sTPic0X=S is an open immersion, hence
so is j .

Now sTPictor
X=S

is open in sTPic0X=S =S , and the latter is quasi-separated by Theorem 4.4,
hence sTPictor

X=S
is quasi-separated.

To prove that sTPictor
X=S
! S is quasi-finite, we will show that it is quasi-compact with

finite fibers. For s 2 S a geometric point, the restriction of sTPic0X=S to s has, by Lemma 4.3, as
group of s-points the quotient Hom.H1.Xs/;M

gp
s /
�=H1.Xs/. This is finitely generated since

M
gp
s is finitely generated, hence its torsion part is finite.

For quasi-compactness, the question being local on the base, we assume that S is affine
and thatMS has a global chart from an fs monoid. Then the stratification of S induced byM

gp
S

has only finitely many strata Zi , and these strata are affine. Therefore, it suffices to show that
for each i , the preimage of Zi in sTPictor

XZi =Zi
is quasi-compact.

On each stratum Z, the sheaf Hom.H1;XZ=Z ; s�G
trop
m;Z/

� is locally constant by Corol-
lary 3.47, so sTPic0XZ=Z is locally constant as well. Its torsion part sTPictor

XZ=Z
is then a locally

constant sheaf of finite abelian groups and in particular a finite étale scheme over Z. It is
therefore quasi-compact.

Corollary 5.4. The inclusion sPicsat
X=S
! sLPic0X=S is an open immersion, and sPicsat

X=S

is representable by an S -smooth group algebraic space of finite presentation.

Proof. The first part of the statement follows from Lemma 5.3 and base change. The
representability then follows from Theorem 4.4.We deduce that sPicsat

X=S
is qcqs because it is

a torsor over the quasi-finite and quasi-separated sTPictor
X=S

, under the quasi-compact separated
group scheme Pic0X=S .

Lemma 5.5. Let S DMg;n, the moduli stack of genus g stable curves with n marked
points. Let Xg;n be the universal curve. Endow both stacks with the divisorial log structure so
as to make the universal curve into a log curve. Then sPicsat

Xg;n
D Pic0Xg;n

.

Proof. For s a geometric point of Mg;n, the tropicalization X of the fiber has each edge
labelled by a distinct base element of the free monoid MS;s . It follows that TroPic0.X/ is
torsion-free.

6. The Néron mapping property of LogPic

In this section we prove the Néron mapping property for the logarithmic Jacobian, under
the assumption that the base is log regular.
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6.1. Classical and log Néron models. For comparison, we briefly recall the definitions
of classical, non-logarithmic Néron models.

Definition 6.1. Let S be a scheme, U � S a schematically dense open, and N =S a cat-
egory fibered in groupoids over Sch=S . We say that N =S has the Néron mapping property
with respect to U � S if for every smooth morphism of schemes T ! S , the restriction map
N .T /! N .T �S U/ is an equivalence.

If in addition N is an algebraic stack and is smooth over S , we say N is a Néron model
of its restriction NU =U .

Remark 6.2. Note that the definition of Néron models in [12] and the classical one
over Dedekind schemes require them to be separated. When the base is a Dedekind scheme
and the generic fiber is a group scheme this is automatic by [5, Theorem 7.1.1]. However,
over higher-dimensional bases this is not true, and non-separated Néron models exist in much
greater generality than separated ones (the author of [12] did not realize this at the time). From
this perspective, [12] should be seen as investigating the existence of separated Néron models.

This definition extends naturally into the logarithmic setting:

Definition 6.3. Let S be a log scheme, U � S strict schematically dense open, and
N =S a category fibered in groupoids over LSch=S . We say that N =S has the Néron map-
ping property with respect to U � S if for every log smooth morphism T ! S , the map
N .T /! N .T �S U/ is an equivalence.

Remark 6.4. In order to qualify as a Néron model, the functor N should not only satisfy
the Néron mapping property, but also be a sheaf for a suitable topology, and be representable in
some suitable sense. Requiring representability as an algebraic space or stack with log structure
is too restrictive; the log Jacobian does not satisfy these criteria, and in general the log Néron
model will not exist as an algebraic space or stack with log structure. The most appropriate
notions of representability are perhaps:

(i) for the functor, that it is a sheaf for the strict log étale topology, has diagonal representable
by log schemes, and admits a log étale cover by a log scheme,

(ii) for the stack, that it is a sheaf for the strict log smooth topology, it has diagonal repre-
sentable in the sense of (i), and admits a log smooth cover by a log scheme.

The Log Picard space and stack do satisfy these additional conditions. This is shown in [26],
except for verifying that LogPic is a stack for the log smooth topology ([26] only verify it for
the log étale topology), but this will be proven in the forthcoming [25]).

One consequence of imposing the above assumptions is that Néron models are unique,7)

by analogous descent arguments to those for the classical case. For example, suppose that N

and N 0 are log Néron models, and let V ! N be a log étale cover by a log scheme; then the
map VU ! NU

�
�! N 0U extends uniquely to a map V ! N 0 by the universal property of the

latter, and a further application of uniqueness and the sheaf property shows that this descends
to a map N ! N 0.

7) Either up to unique isomorphism, for the functor, or up to 1-isomorphism which is itself unique up to
a unique 2-isomorphism, in the stack case.
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Remark 6.5. In classical algebraic geometry the distinction between the smooth and
étale topologies is often not so important since every smooth cover can be refined to an étale
cover (see [37, Tag 055V]). In the logarithmic setting this is no longer true; for example the
map

(6.1.1) Gm �A1 ! A1; .x; t/ 7! xtp;

where Gm;A1 have their toric log structure is a log smooth cover, but does not admit a refine-
ment by a log étale cover in characteristic p. It does admit a refinement by a Kummer cover,
and this is in fact a general phenomenon; one can show using the results of [1] that every log
smooth cover can be refined by a cover that is a composite of log étale covers and Kummer
maps.

Remark 6.6. Suppose N =S is a functor on .LSch=S/ with the log Néron mapping
property with respect to U � S . Then s�N has the Néron mapping property with respect to
U � S since, for every smooth morphism of schemes g W T ! S , the morphism

.T; g�MS /! S

is log smooth.

6.2. Log regularity. We will show that the logarithmic Jacobian ofX=S is a log Néron
model when S is log regular, a notion which we now recall.

Definition 6.7 ([22, 28]). Let S be a locally Noetherian fs log scheme. For a geometric
point s of S , we denote the ideal generated by the image of MS;s nO�S;s ! OS;s by IS;s . We
say that S is log regular at s if OS;s=IS;s is regular and dim OS;s D dim OS;s=IS;s C rkM

gp
S;s .

We say that S is log regular if it is log regular at all geometric points.

Remark 6.8. Any toric or toroidal variety with its natural log structure is log regular.
In particular, a regular scheme equipped with the log structure from a normal crossings divi-
sor is log regular. If S is log regular then the locus on which the log structure is trivial is
schematically8) dense open.

Lemma 6.9 ([28, Lemma 5.2]). Let S be a log regular scheme. Then the underlying
scheme of S is regular if and only if the characteristic sheaf MS is locally free. In this case,
the log structure on S is the log structure associated to a normal crossings divisor on S .

Lemma 6.10 ([22, Theorem 11.6]). Let S be a log regular scheme, and U ,! S the
dense open locus where the log structure is trivial. Then

MS D j�O
�
U �j�OU OS

and
M

gp
S D j�O

�
U ;

where j W U ! X is the inclusion.
8) Log regular schemes are reduced, so density is equivalent to schematic density.

https://stacks.math.columbia.edu/tag/055V
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6.3. The log Jacobian is a log Néron model.

Theorem 6.11. Let X=S be a log curve over a log regular scheme, and U ,! S the
dense open locus where the log structure is trivial. The stacks LogPicX=S and LogPic0X=S on
.LSch=S/Ket are log smooth over S and have the Néron mapping property with respect to U
(hence likewise for their sheafifications LogPicX=S , LogPic0X=S ).

Proof. The log smoothness is Property 3.59. We check the Néron mapping property. For
any log smooth morphism T ! S , the restriction map LogPicX=S .T /! LogPicX=S .T �S U/
is obtained, locally on T , from LogPicX=S .T /! LogPicX=S .T �S U/ by taking isomor-
phism classes on both sides. Hence, if the stack LogPicX=S has the mapping property, then so
does the sheaf LogPicX=S . Likewise, LogPic0X=S has the Néron mapping property if LogPic0X=S
does. Since the constant sheaf Z on LSch=S has the Néron mapping property, the same prop-
erty for LogPicX=S implies it for the kernel LogPic0

X=S of the degree map.
It remains to prove the property for LogPicX=S . Let T ! S be a log smooth map,

V D T �S U . Let i W V ! T , j W XV ! XT denote the inclusions. We want to prove that
the map

(6.3.1) LogPicX=S .T /! LogPicXU =U .V / D PicXU =U .V /

given by P 7! j �P is an equivalence. We start with full faithfulness: let P;Q be log line
bundles on X �S T . It suffices to show that the map Isom.P;Q/! j�Isom.j �P; j �Q/ of
isomorphism sheaves is itself an isomorphism. The natural mapM gp

XT
! j�O

�
XV

is an isomor-
phism by log regularity of XT and Lemma 6.10. Hence the natural map P ! j�j

�P is a map
of M gp

XT
-torsors, hence is an isomorphism (and similarly for Q). The map

Aut.P /! j�Aut.j
�P /

is simply the natural map M gp
XT
! j�O

�
XV

, hence is also an isomorphism. The map

Isom.P;Q/! j�Isom.j �P; j �Q/

is then a map of M gp
XT

-pseudotorsors, so it suffices to show that Isom.P;Q/ is non-empty
whenever j�Isom.j �P; j �Q/ is. But given an isomorphism j �P ��! j �Q, taking j� gives
an isomorphism

P D j�j
�P ��! j�j

�Q D Q

(the above argument can be summarized by saying that j� is a quasi-inverse to j �).
We now prove essential surjectivity. Letting L be a, O�XV -torsor on XV , we will exhibit

an M gp
XT

-torsor P of bounded monodromy such that j �P D L. The torsor P will simply be
j�L; as a priori this is only a pseudotorsor under j�O�XV DM

gp
XT

, and, if it is a torsor, it is
not obvious that it has bounded monodromy, we will give a geometric construction of P , using
the invariance of LogPic under log blowups and taking root stacks. Let D be a Cartier divisor
on XV representing L. By [1, Theorem 4.5], there is a cover u W T 0 ! T , which is a composi-
tion of a log blowup and a root stack, such that u restricts to an isomorphism over V , and a log
modification p W X 0 ! XT 0 D X �T T

0 withX 0 ! T 0 semistable ([1, Definition 2.2]). In par-
ticular,X 0 ! T 0 is a log curve, and the total space ofX 0 is regular. The schematic closureD of
D in X 0 is therefore a Cartier divisor, and O.D/ is a line bundle whose associated O�X 0-torsor
extends L. By Property 3.56, it follows that there is a M gp

XT 0
-torsor P 0 of bounded monodromy

on XT 0 such that j �P 0 D L. Then, by the full faithfulness of (6.3.1) and the fact LogPicX=S
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is a stack for the log étale topology (Property 3.57), this P 0 descends to anM gp
XT

-torsor P with
bounded monodromy.

Remark 6.12. It will be shown in the work [25] that, when S is logarithmically smooth,
LogPicX=S is a stack, not only for the log étale topology, but for the topology generated by all
logarithmically flat morphisms, from which it follows that LogPicX=S and LogPic0X=S are in
fact the Néron models of their restrictions to U .

Corollary 6.13. Let X=S be a log curve over a log regular scheme. The smooth alge-
braic spaces sLPicX=S and sLPic0X=S are Néron models of PicX=S and Pic0X=S respectively.

Proof. This follows from Theorem 6.11 together with Remark 6.6.

Corollary 6.14. The strict saturated Jacobian sPicsat
X=S

satisfies the Néron mapping
property for torsion sections. That is, for every T ! S smooth and L W TU ! Pic0X=S of finite
order, there exists a unique extension to a map T ! sPicsat

X=S
. In particular, for every prime l

Tl sPicsat
X=S D j�Tl Pic0XU =U

as sheaves on the étale site over S , where j W U ! S is the inclusion and Tl indicates the
l-adic Tate module.

Proof. By Theorem 6.11, L extends uniquely to L in sLPic0X=S .T /. As the image of L

in sTPic0X=S .T / is torsion, L actually lies in sPicsat
X=S

.

7. Models of Pic0

We saw in Section 6 that the logarithmic Jacobian and its strict version are Néron models.
However, while LogPic0X=S is proper (in a suitable sense), its strict version sLPic0X=S is in
general neither quasi-compact, separated, nor universally closed.

In this section we undertake the study of smooth separated group-models of Pic0XU . We
establish a precise correspondence between such models and subgroups of the strict tropical
Jacobian sTPic0X=S .

7.1. A tropical criterion for separatedness. We start by considering a tropical curve
X D .V;H; r; i; `/ metrized by a sharp monoid M . For a given a monoid homomorphism
' WM ! N we denote by X' the induced tropical curve metrized by N . We recall that by
assumption all monoids we work with are fine and saturated.

Lemma 7.1. Let X be a tropical curve metrized by a sharp monoidM and ' WM ! N

a map of monoids not contracting any edge of X. The induced homomorphism of tropical Picard
groups TroPic0.X/! TroPic0.X'/ has free kernel.

Proof. The map ' induces an isomorphism H1.X/! H1.X'/. By the snake lemma,
the kernel of the map of tropical Jacobians is equal to the kernel of the map

Hom.H1.X/;M
gp
/� ! Hom.H1.X/; N

gp
/�
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induced by 'gp WM
gp
! N

gp
. Because M is fine and saturated, M

gp
is free, hence so is

Hom.H1.X/;M
gp
/ and any subgroup of it.

Lemma 7.2. Let X be a tropical curve metrized by a sharp monoid M , let ‰ be an
abelian group, and let ˛ W ‰ ! TroPic0.X/ be a homomorphism. The following are equivalent:

(i) ˛ is injective and ‰ is finite.

(ii) For every monoid P and homomorphism ' WM ! P not contracting any edge of X, the
composition ‰ ! TroPic0.X/! TroPic0.X'/ is injective.

(iii) For every monoid homomorphism ' WM ! N not contracting any edge of X, the com-
position ‰ ! TroPic0.X/! TroPic0.X'/ is injective.

Proof. .i/) .ii/ The kernel of TroPic0.X/! TroPic0.X'/ is free by Lemma 7.1.
Since ‰ is finite, the intersection of the kernel with ‰ is zero.

.ii/) .iii/ is clear.

.iii/) .i/ We first establish the existence of a monoid homomorphism ' WM ! N
not contracting any edge of X: since M is fine and saturated, it is the intersection of a cone
� � P gp ˝R with P gp for a finitely generated lattice P gp. Then any integral element in the
interior of the dual cone �_ � Hom.P gp;R/ will not contract any non-zero element of M and
thus gives rise to such a map. Injectivity of ˛ thus follows. Now TroPic0.X'/ is finite since it is
the cokernel of the homomorphismH1.X'/! Hom.H1.X'/;Z/ induced by the monodromy
pairing, which is injective by [26, Corollary 3.4.8]. Hence, ‰ is finite as well.

We fix a log curve X=S with S locally noetherian. We introduce the category Et whose
objects are pairs .‰; ˛/ of an étale group algebraic space ‰=S and a homomorphism

˛ W ‰ ! sTPic0X=S :

Similarly, we let Sm be the category of pairs .G ; ˛/ of a smooth group algebraic space G=S

and a homomorphism ˛ W G ! sLPic0X=S .
There is an obvious base change functor

F W Et! Sm; .‰ ! sTPic0X=S / 7! .‰ �
sTPic0

X=S

sLPic0X=S ! sLPic0X=S /:(7.1.1)

Recall the functor f� introduced in Section 2.4. Notice that for an object .‰; ˛/ of Et, we
have a natural map f�‰ ! f� sTPic0 ! TroPic0 and similarly for an object of Sm.

The next proposition is the key statement of the section.

Proposition 7.3. Let X=S be a log curve with S locally noetherian. Let .‰; ˛/ 2 Et,
with G ! sLPic0X=S its image under the functor F . Consider the two conditions:

(i) ˛ W ‰ ! sTPic0X=S is an open immersion and ‰=S is quasi-finite,

(ii) G=S is separated.

Then (i) implies (ii). Moreover, if .S;MS / is log regular and ‰ has trivial restriction to the
dense open U � S whereMS vanishes, then (ii) implies (i) as well, and the two conditions are
equivalent to

(iii) G=S is separated and quasi-compact.
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Remark 7.4. The restriction of sLPic0X=S to U is naturally identified with Pic0XU =U ,
and therefore sTPic0X=S restricts to ¹0º. The fact that ‰U D ¹0º implies that GU D Pic0XU =U .

Proof. We prove that (i) implies (ii). Since S is locally noetherian, it follows that ‰=S
is quasi-separated, hence so is its base change G=S . By [37, Tag 0ARI] we may check the
valuative criterion for a strictly henselian discrete valuation ring V ; we write � for its generic
point and s for its closed point. Fix a map a W �! G and two lifts to b; b0 W V ! G ; using the
group structure of G , we may assume b0 D 0 and therefore a D 0.

Denote by d the map from V to S ; we endow � with the log structure M� pulled back
from S , and we write MV for the maximal extension of M� to a log structure on V . We obtain
a commutative diagram

.�;M�/ .�;M�/ f�G LogPic0X=S

.V;MV / .V; d�MS / S S .

0

b

0

Let Xs (resp. XV ) denote the tropicalization of Xs metrized by MS;s (resp. MV;s).
Notice that the mapMS;s !MV;s of characteristic monoids does not contract any edge of Xs ,
since d�MS !MV is a map of log structures and therefore sends non-units to non-units.
As V is strictly henselian, we have by Lemma 3.48 that TroPic0.V;MV / D TroPic0.XV / and
TroPic0.V; d�MS / D TroPic0.Xs/. Consider the commutative diagram whose rows are exact
sequences:

0 // Pic0X=S .V / //

��

f�G .V; d
�MS / //

��

f�‰.V; d
�MS /

��

// 0

0 // Pic0X=S .V / //

��

LogPic0X=S .V; d
�MS / //

��

TroPic0.Xs/

��

// 0

0 // Pic0X=S .V / // LogPic0X=S .V;MV / // TroPic0.XV / // 0.

The element b lies in f�G .V; d
�MS /. The following three facts imply that b D 0:

� By properness of LogPic0X=S , the image of b in LogPic0X=S .V;MV / is the trivial log line
bundle, so b maps to 0 in TroPic0.XV /.

� Combining the assumption that (i) holds with Lemma 7.2 yields that the composition

f�‰.V; d
�MS / D ‰.V /! sTPic0.V / D TroPic0.V; d�MS /! TroPic0.V;MV /

is injective.
� If b 2 f�G .V; d

�MS / lies in the image of Pic0X=S .V /, then b D 0 since Pic0X=S is sepa-
rated.

We move on to the next part of the statement, so from now on we suppose that S is log
regular and that ‰U D ¹0º. This in particular implies that GU D Pic0XU =U . It is clear that (iii)
implies (ii); if we show that (ii) implies (i), then we immediately obtain (ii)) (iii). Indeed,
quasi-finiteness of ‰ together with the fact that Pic0X=S is quasi-compact, implies that G=S is
quasi-compact.

https://stacks.math.columbia.edu/tag/0ARI
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It remains to prove that (ii) implies (i). Write K for the kernel of ‰ ! sTPic0X=S . It
is étale, and since ‰U D 0, K also vanishes over the open dense U � S . Moreover, K is
identified with the kernel of G ! sLPic0X=S ; as G=S is separated, so is K, hence K is trivial.
This shows that ‰ ! sTPic0X=S is an open immersion.

Now let t ! S be a geometric point, with image s 2 S . Because S is locally noetherian,
by a special case of [11, 7.1.9] there exists a morphismZ ! S from the spectrum of a discrete
valuation ring such that the closed point is mapped to s and the generic point to U . Now
consider the composition ! W Zsh ! Z ! S with the strict henselization induced by t ! s. G

is a smooth, separated model of Pic0XU and therefore !�G is a Zsh-smooth separated model of
!� Pic0XU . The restriction of the latter to the generic point of Zsh is an abelian variety, which
therefore admits a Néron model of finite type N =Zsh by [5, Corollary 1.3.2]. We claim that the
natural map ˆ W !�G ! N is an open immersion. In the case of schemes this would follow
immediately from [5, Proposition 7.4.3]. The same proof shows for algebraic spaces that the
natural map on identity components !�G 0 ! N 0 is an isomorphism. This implies that ˆ is
flat, hence is an open immersion by Lemma 7.5.

In particular, the map of fibers Gt ! Nt is an open immersion. As Nt is of finite type
(and S is locally noetherian), so is Gt . Then by descent ‰t is of finite type as well; as it is
moreover étale, it is finite over k.t/. In particular, the map ‰t ! sTPic0t factors via sTPictor

t

(which is quasi-finite by Lemma 5.3); it follows that the open immersion ‰ ! sTPic0 factors
via the open immersion sTPictor

! sTPic0. The resulting open immersion ‰ ! sTPictor is
quasi-compact (indeed sTPictor is locally noetherian since S is). This proves that‰=S is quasi-
finite.

Lemma 7.5. Let f W X ! Y be a flat, separated, locally finitely presented morphism
of algebraic spaces. Let U � Y be open such that f is an open immersion over U and such
that f �1U is schematically dense in X . Then f is an open immersion.

Proof. We follow [23, Lemma 2.0]. Replacing Y by the open image of f , we may
assume f is faithfully flat. Base-changing along f , the assumptions are preserved and we may
assume f has a section e W Y ! X . Since f is separated, the section e is a closed immersion.
But the open immersion j W f �1U ! X factors via e, so schematic density of j implies that
e is an isomorphism.

The image of sTPictor
X=S

under the functor F is sPicsat
X=S

, yielding:

Corollary 7.6. Let X=S be a log curve with S locally noetherian. Then sPicsat
X=S

is
separated.

7.2. Equivalence of categories. From this point until the end of the section we will
assume that S is log regular and denote by U � S the open dense where MS is trivial. Recall
that the étale algebraic space sTPic0X=S has trivial restriction to U while sLPic0X=S is a smooth
group space whose restriction to U is naturally identified with Pic0XU =U .

We consider the full subcategory of Et

Etı WD ¹.‰; ˛/ with ‰ ! S an étale group-algebraic space
such that ‰U D ¹0º; ˛ W ‰ ! sTPic0X=S a homomorphismº:
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and the full subcategory of Sm

Smı WD ¹.G ; ˇ/ with G ! S a smooth quasi-separated group algebraic space;
with fiberwise-connected component of identity G 0 separated over S;
ˇ W G ! sLPic0X=S a homomorphism such that ˇU W GU ! Pic0XU =U
is an isomorphismº:

The fiberwise connected-component of identity G 0 is an open subgroup space of G con-
taining the identity section and whose geometric fibers G 0s are the connected component of
identity of Gs . See Appendix A for details on G 0.

Lemma 7.7. Let .G ; ˇ/ be in Smı. Then G 0 is naturally identified with Pic0X=S .

Proof. Over U there is already a natural identification GU D G 0U D Pic0XU . For every
point s of S of codimension 1, the restriction of Pic0X=S to OS;s is the identity component
of its own Néron model. By [5, 7.4.3], the same holds for G 0. Now by [35, XI, 1.15], the
isomorphism G 0U ! Pic0XU extends uniquely to an isomorphism G 0 ! Pic0X=S .

Because of the Néron mapping property of sLPic0X=S (Corollary 6.13) there is a natural
equivalence between Smı and the category with objects

¹.G ; '/ with G ! S a smooth quasi-separated group-algebraic space;
with fiberwise-connected component of identity G 0 separated over S;
' W GU ! Pic0XU =U an isomorphismº;

so we will not distinguish between the two.
We obtain by restriction of the functor F of (7.1.1) a functor

F ı W Etı ! Smı:

We are going to construct a quasi-inverse to F ı. We denote by �0.G / the étale algebraic
space G=G 0 of Definition A.2. By the universal property of G=G 0 for maps to étale spaces
(Lemma A.4), together with the fact that �0.sLPic0X=S / D sTPic0X=S (Lemma A.5), we obtain
a functor

…0 W Smı ! Etı; .G ; ˇ W G ! sLPic0X=S / 7! .�0.G /; �0.ˇ/ W �0.G /! sTPic0X=S /:

Lemma 7.8. The functor F ı WEtı! Smı is an equivalence with…0 as a quasi-inverse.

Proof. Let ‰ ! sTPic0X=S be in Etı, with image G ! sLPic0X=S via F ı. The surjec-
tive map G ! ‰ factors by the universal property via an étale surjective map �0.G /! ‰.
It remains to show that its kernel K vanishes. We obtain a commutative diagram of exact
sequences

0 G 0 G �0.G / 0

0 Pic0X=S G ‰ 0.

D

By Lemma 7.7, the left vertical map is an isomorphism and we conclude.
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Conversely, let G 2 Smı. Because the functor F ı is defined as a fiber product there is
a natural map f W G ! F ı.…0.G // D �0.G / �sTPic0 sLPic0, and we obtain a commutative
diagram of exact sequences

0 G 0 G �0.G / 0

0 Pic0X=S �0.G / �sTPic0 sLPic0 �0.G / 0,

h

pıf

f

p

where the rightmost vertical map is the identity and the leftmost vertical map h is the induced
map ker.p ı f /! ker.p/. Since f restricts over U to the identity of Pic0XU , so does h. It
follows that h is the isomorphism of Lemma 7.7, and that f is an isomorphism as well.

As a corollary of Proposition 7.3 we refine the equivalence F ı.

Definition 7.9. We let Etqf;mono to be the full subcategory of Etı of those .‰; ˛/ with
˛ a monomorphism (i.e., an open immersion) and ‰=S quasi-finite. We let Smqc;sep be the full
subcategory of Smı of those .G ; '/ with G ! S separated and quasi-compact.

Both Etqf;mono and Smqc;sep are equivalent to partially ordered sets. For Etqf;mono this is
clear, and for Smqc;sep we observe that, for an object .G ; ' W G ! sLPic0X=S / of Smqc;sep, ' is
the base change of �0.G /! sTPic0X=S , by Lemma 7.8. The latter is an open immersion by
Proposition 7.3, so ' is an open immersion.

The following corollary allows us to describe all possible smooth separated group models
of Pic0XU in terms of open subgroups of the strict tropical Jacobian.

Corollary 7.10. The equivalence F ı W Etı ! Smı restricts to an order-preserving
bijection F � W Etqf;mono ! Smqc;sep.

Proof. This is immediate by Proposition 7.3.

The partially ordered set Etqf;mono has a maximal element, namely the quasi-finite étale
group space sTPictor

X=S
representing the torsion part of the sheaf sTPic0X=S . From Corollary 7.10

we deduce:

Theorem 7.11. LetX=S be a log curve over a log regular base S , and U � S the open
where the log structure is trivial. The partially ordered set of smooth separated group-S -models
of finite type of Pic0XU has

F �.sTPictor
X=S / D sPicsat

X=S

as maximum element. Namely, any other such model has a unique open immersion to sPicsat
X=S

.

7.3. Possible extensions to the case of log abelian varieties. It is natural to ask which
of the results of this paper remain valid when the Jacobian of a curve is replaced by an arbitrary
abelian variety. Suppose that we have a log regular log scheme S , and a log abelian variety
Alog=S (which is necessarily an abelian variety AU over the open locus U � S on which the
log structure is trivial). Now Alog is a sheaf on .LSch=S/ét which has a tropicalization Atrop

over S . We can restrict Alog and Atrop to sheaves on the strict étale site .Sch=S/ét to obtain
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algebraic spaces sAlog and sAtrop. The tropicalization sAtrop can equivalently be defined as the
quotient

sAtrop
D sAlog=sA0

of sAlog by the (semiabelian) fiberwise connected component of the identity sA0, and, as
described in detail in [18, 4.1.2] also has an explicit combinatorial description étale locally
in S as Hom.X;M

gp
S /.Y /=Y for lattices X and Y ; the subscript .Y / indicates a subgroup of

Hom.X;M
gp
S / (see [18, 3.1]), analogous to the bounded monodromy subgroup of the Jacobian.

Conjecture 7.12. The log abelian variety Alog has the log Néron mapping property
(Definition 6.3) with respect to U .

Conjecture 7.12 would in particular imply that sAlog is always a Néron model for AU ,
but is rarely separated: it is separated if and only if sAtrop is finite. At the moment, we do not
have a proof of Conjecture 7.12. Our proof for the Jacobian uses the geometry of the curve to
produce the extension. On the other hand, the proof that abelian varieties are their own Néron
models goes by extending line bundles on the dual abelian variety. This argument would extend
to the case of logarithmic abelian varieties if we had a theory of log Picard functors for higher
dimensional logarithmic schemes which satisfies analogues of Property 3.55, Property 3.56,
Property 3.57, and the usual duality axioms.

Conditional on Conjecture 7.12, our proof of Theorem 1.2 goes through verbatim to show
that there is a bijection between quasi-finite open subgroups of sAtrop and smooth, separated,
quasi-compact S -group models of AU .

8. Alignment and separatedness of strict log Pic

For X=S a log curve over a log regular base S with U � S the largest open where the
log structure is trivial, we have shown in Corollary 6.13 that sLPic0X=S is the Néron model
of Pic0XU =U . It is worth stressing the fact that classically, the term Néron model is reserved for
separated, quasi-compact models satisfying the Néron mapping property. The strict logarithmic
Jacobian fails in general to satisfy these properties, as observed in Example 4.6.

In the papers [12, 31, 33], several criteria were introduced for the Jacobian of a prestable
curveX=S (or for an abelian variety in [32]) to admit a separated, quasi-compact Néron model.
They are all closely related to the general notion of log alignment that we introduce here:

Definition 8.1. Let M be a sharp fs monoid. The 1-dimensional faces of M ˝Z R�0
are called the extreme rays of M .

Definition 8.2. A cycle in a graph is a path that begins and ends at the same vertex,
and which otherwise repeats no vertices. A subset S of the edges of a graph is called cycle-
connected if for every pair e, e0 2 S of distinct edges there exists a cycle in S containing e
and e0. It is shown in [13, Lemma 7.2] that the maximal cycle-connected subsets (which are
there called circuit-connected) form a partition of the edges of the graph.

Definition 8.3. We say that a tropical curve X metrized by a sharp fs monoid M is log
aligned when for every cycle  in X, all lengths of edges of  lie on the same extreme ray
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of M . Let X ! S be a log curve. We say that X=S is log aligned at a geometric point Ns of S
when the tropicalization of X at Ns is log aligned. We say that X=S is log aligned if it is log
aligned at every geometric point of S .

Lemma 8.4. Let M be a sharp fs monoid, X a tropical curve metrized by M and Y

a subdivision of X. Then Y is log aligned if and only if X is.

Proof. It suffices to treat the case where Y is a basic subdivision of X. Suppose it is,
and call e the subdivided edge: it is replaced in Y by a chain of two edges e1; e2 of the same
total length. There is a canonical bijection between cycles of X and of Y. Let  be a cycle
of X. It suffices to show that the lengths of edges of  in X lie on the same extreme ray ofM if
and only if the lengths of edges of  in Y do. If  does not contain e, this is clear. Otherwise,
it follows from observing that the length of e is in an extreme ray R of M if and only if the
lengths of e1 and e2 are both in R.

Theorem 8.5. Let X=S be a log curve. Consider the following conditions:

(i) X=S is log aligned,

(ii) sTPic0X=S is quasi-finite over S ,

(iii) sLPic0X=S is separated over S .

Then we have .i/, .ii/) .iii/. If S is log regular and U � S is the largest open where
the log structure is trivial, we additionally have (iii)) (ii), and the conditions above are
equivalent to the following two:

(iv) sLPic0X=S is a separated Néron model of finite type for Pic0XU .

(v) Pic0XU =U admits a separated Néron model of finite type over S .

Proof. First, Proposition 7.3 for .‰; ˛/ D .sTPic0X=S ; Id/ gives .ii/) .iii/ and if S is
log regular also .iii/) .ii/. If sLPic0X=S is separated then by Proposition 7.3 it is also quasi-
compact, hence of finite type. The equivalence of (iii), (iv) and (v) in the log regular case then
follows from Theorem 6.11 and the uniqueness of Néron models.

It remains to prove .i/, .ii/. By Theorem 7.11, sTPictor
X=S

is the maximum open quasi-
finite subgroup of sTPic0X=S . Condition (ii) is then equivalent to sTPictor

X=S
D sTPic0X=S , which

in turn is equivalent to sTPic0X=S having finite fibers. We immediately reduce to the case
where S is a geometric log point, and we write M WDMS .S/. Denote by X the tropicaliza-
tion of X=S , and by X1; : : : ;Xn the maximal cycle-connected components of X. We have
a canonical isomorphism

H1.X/ D

nM
iD1

H1.Xi/:

Suppose first that X=M is log aligned, so that for every 0 � i � n there is an irreducible
element �i of an extremal ray ofM such that all edges of Xi have length in N�i . Thus Xi can be
seen as a tropical curve metrized by N�i , and any bounded monodromy map H1.Xi /!M

gp

factors uniquely through the inclusion Z�i !M
gp

. We get isomorphisms

Hom.H1.X/;M
gp
/� D

nM
iD1

Hom.H1.Xi/;M
gp
/� D

nM
iD1

Hom.H1.Xi/;Z�i /
�;
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where the first equality holds since bounded monodromy can be checked separately on each Xi
by Remark 3.34. Quotienting by H1.X/, we obtain

TroPic0.X=M/ D

nM
iD1

TroPic0.Xi=M/ D

nM
iD1

TroPic0.Xi=N�i /:

The right-hand side is finite, as the rank of Hom.H1.Xi /;Z�i / is equal to the rank of H1.Xi /.
For the reverse implication, suppose X=S is not log aligned; we will show

TroPic0.X=M/ D Hom.H1.X/;M
gp
/�=H1.X/

is not finite, by showing its rank is at least 1. Note that if M !M
0

is a finite index homo-
morphism, a homomorphism ' W H1.X/!M

gp
has bounded monodromy if and only if its

composition with M
gp
!M

0gp
has bounded monodromy. Thus, the rank of TroPic0.X=M/

is equal to the rank of TroPic0.X;M
0
/ for any finite index inclusion M !M

0
. Let `.e/ 2M

denote the length of the edge e in X. As the extreme rays ofM spanM over Q, and we are free
to replace M by finite index extensions, we can assume that each length `.e/ can be written
as a sum of elements in M that lie on the extreme rays of M . We may then subdivide X so
that each edge in the subdivision has length along the extreme rays of M . Using Lemma 8.4
and the invariance of the tropical Jacobian under subdivisions of X, we may then assume that
each edge of X has length which lies along an extreme ray of M . Pick a spanning tree T of X.
The edges e1; : : : ; er not in T correspond to cycles 1; : : : ; r forming a basis of H1.X/. By
hypothesis, X is not log aligned, so one of the i , for example 1, has length not belonging to
an extremal ray of M

gp
. Therefore, there exists an edge e in 1 of length along an extreme ray

of M different than the ray containing the length of e1.
We claim that the intersection pairings of the family .e; e1; : : : ; er/ are independent

bounded monodromy maps H1.X/!M
gp

. The fact that intersection pairing with an edge
has bounded monodromy is general: for any edge e, and any cycle  2 H1.X/, the inter-
section pairing e: evidently has length bounded by the length of  . To see that the pairings are
independent, notice that ei :j is ıij `.ei / where ıij is the Kronecker delta. Consider a linear
combination b D ae C

P
aiei with coefficients in Z, and suppose the intersection pairing of b

is trivial. Then a`.e/C a1`.e1/ D b:1 D 0, combined with the fact e and e1 have indepen-
dent lengths, yields a D a1 D 0. Hence for j > 1 we have aj `.ej / D b:j D 0, from which
we deduce aj D 0.

From this, we obtain

rank.Hom.H1.X/;M
gp
/�/ � r C 1 > r D rank.H1.X//:

Thus, TroPic0.X=M/ D Hom.H1.X/;M
gp
/�=H1.X/ is not finite.

9. The strict logarithmic Jacobian and the Picard space

Over a Dedekind base S , Raynaud constructed the Néron model of the Jacobian of a
curve X=S as the quotient of the relative Picard space by the closure Ne of the unit section (see
[5, Section 9.5]). When dimS > 1, the closure Ne is in general neither S -flat nor a subgroup,
and so this quotient is not representable. In [12] and [31], necessary and sufficient conditions
for the flatness of Ne are given, proving the existence of separated Néron models when these
conditions hold. In this section we show that Raynaud’s approach can be extended over higher-
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dimensional bases even when Ne is not S -flat, simply by replacing Ne by its largest open subspace
Ne Ket which is étale over S . This allows us to describe the Néron model (constructed above as
the algebraic space sLPic0) as the quotient of the Picard space by Ne Ket, under somewhat more
restrictive assumptions onX=S . The construction of the Néron model in [33] is done by gluing
local models of this form.

Letting � W X ! S be a log curve, we write Pictot0 for the kernel of the composition

PicX=S �! ZŒIrrX=S �
†
�! Z:

There is a canonical map Pictot0
X=S
! sLPic0X=S taking a line bundle to the associated log line

bundle.
Write Ne for the schematic closure of the unit section in Pictot0

X=S
. If U , V ,! Ne are open

immersions étale over S , then the same is true of their union. Hence Ne has a largest open sub-
scheme which is étale over S , which we denote by Ne Ket, a locally closed subscheme of Pictot0

X=S
.

Theorem 9.1. Suppose that S is log regular. Then:

(i) The map f W Pictot0
X=S
! sLPic0X=S has kernel Ne Ket.

(ii) If in addition X is regular, then f is surjective.

Remark 9.2. By Property 3.56, a log modification X 0 ! X induces an isomorphism
sLPic0X=S ! sLPic0X 0=S . On the other hand Pictot0

X=S
! Pictot0

X 0=S
is an open immersion but in

general not an isomorphism. When S is log regular and regular, we can always find, étale
locally on S , a log modification of X=S with regular total space. To see this, note that since
S is locally Noetherian, it has an étale cover by nuclear schemes by Lemma 3.45, so we can
assume that S is nuclear. Let X denote the tropicalization of X over the closed stratum. As S
is log regular and regular, every edge of X is marked by an element of a free monoid Nr . Put
X0 D X. As long as X0 has an edge whose length is not one of the generators of Nr , replace
X0 by any basic subdivision at that edge. The process terminates, and provides a maximal
subdivision of X. This subdivision lifts to a log modification X 0 ! X whose total space is
regular: X 0 is evidently log regular, and the log structure around a node of length a generator
of Nr is isomorphic to Nr ˚N N2 Š NrC1. Combining this observation with Theorem 9.1,
we obtain a local description of sLPic0X=S as a quotient of a Picard space.

Corollary 9.3. Let X=S be a prestable curve over a toroidal variety, smooth exactly
over the complement of the toroidal boundary, and assume X is regular. Then the quotient
Pictot0

X=S
= Ne Ket is the Néron model of the Jacobian of X .

Proof of Theorem 9.1. (i) We write ‰ for the kernel of the summation map ZV ! Z;
this is étale as it is the kernel of a map of étale group spaces. The multidegree map Pictot0

X=S
! ‰

is the cokernel of the open immersion Pic0X=S ! Pictot0
X=S

. We obtain a commutative diagram
with exact rows

0 Pic0X=S Pictot0
X=S

‰ 0

0 Pic0X=S sLPic0X=S sTPic0X=S 0,

f g
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where K WD kerf is equal to kerg by the snake lemma. The map g is a map of étale group
spaces (Theorem 4.4), hence its kernel is étale, i.e., K is étale.

Note that the locus U ,! S over which the morphismX ! S is smooth is schematically
dense by our log regularity assumption. One checks immediately that K is trivial over U ,
hence the mapK ! Pictot0

X=S
factors via the closure Ne of the unit section (sinceK ! S is étale,

so the pullback of U � S is schematically dense in K). The map K ! Ne is a quasi-compact
immersion. To show that it is open, we may pick a geometric point p 2 K and restrict to the
strict henselization of S at p. There is a unique section S ! K through p, which by Lemma 9.4
is open in Ne. Thus K ! Ne is open, and factors through an open immersion K � Ne Ket.

The reverse inclusion is easier: the map Ne Ket ! sLPic0X=S is zero when restricted to U , so
by the Néron mapping property of sLPic0X=S (Theorem 6.11), the map Ne Ket ! sLPic0X=S is zero
and therefore Ne Ket � K.

(ii) Note that since S is log regular, so is X ; thus, if in addition X is regular, its log
structure is locally free. Since the log structure of S is isomorphic to the log structure ofX away
from the singular points of the fibers, the log structure on S must therefore also be locally free,
and thus S must also be regular. As the Néron model N D sLPic0X=S of Pic0XU =U is smooth
over S , it follows that XN is regular as well. The canonical isomorphism

NU D Pic0XU =U

corresponds to a line bundle L on XNU , represented by a Cartier divisor D. The scheme-
theoretical closure D of D in XN is Cartier by regularity of the latter. Thus the line bundle
O.D/ provides a lift of L under the natural morphism Pictot0

X=S
! N , which is therefore surjec-

tive.

Lemma 9.4. Let S be the spectrum of a local ring, let U ,! S be open, and letX ! S

be a morphism such that XU ! U is an isomorphism, and XU is schematically dense in X .
Let � W S ! X be a section. Then � is open.

Proof. Writing s for the closed point of S , let �.s/ 2 V ,! X be an affine open neigh-
borhood; then � factors via V (the preimage of V via � is open and contains s). We write
� 0 W S ! V for the factored map.

Since V ! S is separated, the map � 0 W S ! V is a closed immersion. On the other
hand, its image contains the schematically dense VU ,! V , hence � 0 is an isomorphism.

A. The functor of connected components of a smooth quasi-separated
group algebraic space

Throughout this appendix, S denotes a scheme and G=S a group algebraic space with
unit section e 2 G.S/. We extend some results of Romagny [36] to the case where G=S is
smooth and quasi-separated, avoiding the quasi-compactness assumptions of [36].

Lemma A.1. Suppose that G=S is quasi-separated, flat, locally of finite presentation,
and has reduced geometric fibers. Then there is a unique open subspace G0 of G such that
each fiber Gs;0 of G0=S is the connected component of Gs containing e.s/. Moreover, G0 is
a subgroup of G.
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Definition A.2. We call G0 the fiberwise-connected component of identity in G. The
sheaf quotient G=G0 is a group algebraic space by [5, Proposition 8.3.9], which we call the
group of connected components of G.

Proof of Lemma A.1. The assertion that G0 is a subgroup of G is immediate from the
continuity of the multiplication and inversion operations. The first part of the statement is also
immediate, from [36, Proposition 2.2.1], if in addition G=S is quasi-compact.

We will prove the general case by reduction to the quasi-compact case. We define a subset
jG0j of the underlying topological space jGj ofG to be the union of theGs;0 as s runs over jS j.
It suffices to show that jG0j is open in jGj. Given s 2 S and x 2 G0;s , let U ! G be an
étale map from an affine scheme with x and e.s/ in its topological image W � jGj; the latter
is open and we let W be the corresponding open subspace of G. Base-changing to an open
neighborhood of s in S , we can assume e factors through W . Then by [36, Proposition 2.2.1]
we obtain an open subspace W0 ! W through which e factors and whose fibers over S are
connected components of the fibers of W .

Since any connected group scheme over a field is irreducible, for any s 2 S the con-
nected component of identity Gs;0 is irreducible. Then the intersection Gs;0 \Ws is connected
and therefore coincides with W0;s . This shows that jW0j D jW j \ jG0j. In particular, we have
x 2 jW0j � jG0j with jW0j open in jGj.

Lemma A.3. Suppose that G=S is smooth and quasi-separated. Then the structure
morphism G=G0 ! S is étale.

Proof. We prove this locally at x 2 G=G0. Since G=G0 ! S is smooth we can choose
S 0 ! S étale and a section S 0 ! G=G0 through x. Translating by this section, we may assume
x lies in the image of the unit section u0 W S ! G=G0. It then suffices to show thatG=G0 ! S

is étale in an open neighborhood of the unit section, but the unit section is itself open (as the
image G0=G0 of the open G0 ,! G).

Lemma A.4. Suppose that G=S is smooth and quasi-separated, and let T ! S be an
étale algebraic space. Then any S -morphism G ! T factors uniquely via G ! G=G0.

Proof. Fix an S -morphism f W G0 ! T , and write e W S ! T for the map induced by
the unit section of G0. By the universal property of the quotient G=G0, it suffices to show that
the following diagram commutes:

(A.0.1)
G0 T .

S

f

e

If S is the spectrum of a separably closed field then T is a scheme (e.g., by Lemma 2.3),
e is an open and closed immersion, and G0 is connected, so the result is clear. In the general
case it follows that the diagram on k-points commutes for any separably closed field k. By
descent, we may replace T by an étale cover and assume it is a scheme. Since the diagonal of
T is an open immersion, the equalizer of f and G0 ! S ! T is open in G. Since this open
subspace contains all geometric points, it is G0.
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Lemma A.5. Let X=S be a log curve and G D sLPic0X=S . Then G0 D Pic0X=S .

Proof. The natural map G=G0 ! sTPic0X=S coming from the universal property (Lem-
ma A.4) induces a commutative diagram of exact sequences

0 G0 G G=G0 0

0 Pic0X=S G sTPic0X=S 0.

By the snake lemma, the left vertical map is injective, and its cokernel is identified with the
kernelK of the right vertical map. As the latter is étale, so isK. However, Pic0X=S has connected
geometric fibers, hence the map Pic0X=S ! K is constantly zero.
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