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Abstract: The Nuragic civilization (Sardinia, Italy, XVIII–VIII B.C) developed a flourishing bronze
metallurgy with strong connections with other civilizations from the Mediterranean basin. Within
the large bronze production, there are some peculiar representations of human figures, known in the
archaeological environment of Sardinia as bronzetti, depicting warriors, priests, and offerers. In this
paper, an interesting couple of Nuragic statuettes representing offerers, one from the Pigorini Museum
in Rome and another from the Musei Reali in Turin, were analyzed. They have been investigated with
X-ray fluorescence integrated with Monte Carlo simulations (XRF-MC). The combined methodology
provides more accurate results, ranging from the structural characterization to the identification of
the corrosion layers to the estimation of the composition of the alloy of the artifact. One of the most
striking results regards the heads of the offerers: both heads are covered with a thick iron-based layer,
even though the whole artifacts are made of a copper alloy. To understand the reason behind this
peculiar corrosion patina, several hypotheses have been considered, including the possibility that
these iron mineralizations are the consequence of an ancient superficial treatment, intending to confer
a chromatic effect on the figurine’s head.

Keywords: nuragic bronze; NDT; XRF; cultural heritage

1. Introduction

The Nuragic civilization is born on the island of Sardinia, Italy, around 1700 B.C. It
developed a magnificent and original architecture testified by the truncated conical tower
buildings called “nuraghe” (to this day, about eight thousand nuraghi have been discov-
ered). Furthermore, the Nuragic people have also developed a remarkable metallurgic
production, essentially of bronzes [1,2]; reaching its full development by the end of the
Bronze Age and the Early Iron Age. Such craftsmanship comprises not only metallic tools,
such as axes or swords, or the small ship models known as navicelle, but many anthropo-
morphic figurines representing warriors, priests, and offerers as well. Unfortunately, most
of these bronze objects were collected through illegal excavations, making it very difficult
to establish their archaeological context and also the establishment of their provenance.
It also hinders the study of the chronology and geographical evolution of the Nuragic
people’s craftsmanship.

The scarce available information from such objects comes from the object’s alloy
composition and morphological structure. For these reasons, it is primordial to extract
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all information possible from the composition and microstructure of the alloy. Several
non-systematic studies have been performed both with destructive and non-destructive
approaches [2–5]. However, only a few general conclusions were obtained.

In this framework, considering the availability of new analytical techniques, such as
neutron diffraction (ND) and neutron imaging (NI), or X-ray fluorescence (XRF) integrated
with Monte Carlo simulations, a few years ago some of us have started a new systematic
campaign of investigations on Nuragic artifacts [6–8]. In the last year, a new group of
samples, coming from the Museo Nazionale Preistorico Etnografico “Luigi Pigorini” in
Rome and Musei Reali in Turin, have been analyzed. This group of samples includes two
small statuettes representing each a female figure (Figure 1). The women are presented in a
solemn posture with an offer in the left hand and the right hand in a greeting attitude. They
have a long mantle and appear to be a representation of a high-rank person, perhaps an
offerer. Although at a first glance they appear to be made of a typical Nuragic bronze, XRF
measurements have revealed a peculiarity: both heads are covered with a thick iron-based
layer. The remaining parts of the body are covered with a corrosion patina. Both types of
corrosion (from iron and bronze), are due to the interaction of the original material/alloy
with the burial environment. Different sediments composition can produce different types
of corrosion.

Figure 1. Bronze statuettes: (A) Pigorini Museum (#26065) and (B) Musei Reali Museum (#783).

2. Materials and Methods

In the present investigation, two main techniques have been used and combined:
X-ray fluorescence (XRF) and Monte Carlo simulations (MCS). They are discussed in the
following paragraphs independently.

2.1. X-ray Fluorescence

XRF instrumentation is relatively inexpensive and portable, allowing researchers to
perform measurements inside museums and galleries. Furthermore, it is a non-destructive
technique, making it very appealing to the Cultural Heritage field, now being a staple in
almost every investigation.

The XRF technique bases itself on the interaction of X-ray photons with the object
under investigation. This interaction produces an X-ray emission spectrum: a histogram
of the number of photons emitted by the sample (secondary photons) and their energy.
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This spectrum is roughly composed of a background signal on top of which there are
a series of peaks. The energy of each peak can be directly related to the presence of a
specific chemical element, and its integral can be related to that element’s concentration.
However, the peak area depends also on multiple interactions and more in general from
the matrix composition.

XRF is essentially a surface technique where only up to the first 100–200 µm are “seen”,
depending on the composition of the sample. Usually, on polished surfaces, this is not a
limiting factor, but in the case of ancient metallic samples, the surface composition can be
altered by corrosion phenomena as well as by restoration processes [9]. Corrosion plays an
important role in the case of bronze alloys. It is possible to observe superficial enrichment
both of tin and lead [10,11].

A simple XRF measurement can often lead to a wrong estimation of the real bulk alloy
composition. To solve this problem, in the last years, a different approach has been used,
based on the integration of XRF measurements with Monte Carlo simulations.

2.2. Monte Carlo Simulations

MCS are probabilistic statistical mechanical techniques, which are used when a mathe-
matical problem contains several variables that cannot be approximated using traditional
analytical techniques [12]. In our case, a custom fast Monte Carlo code called XRMC [13],
which exploits the Xraylib atomic database, was used [14,15]. XRMC can produce spectra
with the same statistical quality as the measured ones in less than one minute. This ap-
proach allows modeling the sample as a multilayer structure where the inner layer, in this
case representing the bulk of the alloy, is covered by one or more corrosion layers (the
mineralization patina).

Using multi-layered structures it is possible to model the surface enrichment of tin
as well as the presence of a protective layer added in past restorations/interventions,
otherwise not directly detectable by simple XRF measurements. This approach has been
applied in the analyses of many bronzes [16–19]. A recent article further describes the
method applications to a tin enriched sample under a corrosion layer, where a performance
similar to that of destructive techniques such as Neutron Activation Analysis (NAA) and
Atomic Absorption Spectroscopy (AAS) was achieved [5]. Lastly, the method can simulate
more complex structures, such as gradient-like ones.

2.3. Quantification Protocol

The protocol for the XRF-MC estimation can be subdivided into two parts. The first
part regards the modeling of the experimental setup. It is fundamental to obtain a high-
quality reproduction of the X-ray beam under the same conditions as in the real experiment.
Here, the emitted spectrum from the X-ray tube is measured by placing the Rh-anode X-ray
tube in front of the detector, about 1 m far, to minimize dead-time. Then, the measured
spectrum is corrected for the attenuation of air and the response/attenuation of the detector.
After this step, the detector is finally modeled. Lastly, the geometry of the setup is replicated
inside the Monte Carlo code. These preliminary steps are independent of the sample and
can be used theoretically for any measurement with the same setup.

The sample must then be modeled both in composition and structure. The first hypoth-
esis can be obtained by observing characteristics of the surface (morphology, color, etc.),
and eventually by the presence of a protective layer (bright translucent appearance or the
knowledge about a previous restoration intervention).

By means of a simple XRF measurement, it is possible to identify the chemical elements
in the investigated area. The sample composition and structure are the only part of the
entire protocol that will be tuned along with the simulations. A simulation is performed,
then the spectrum obtained is compared to the measured one, and if any differences are
observed, the sample model is updated and a new simulation is started. These three steps
are repeated until an almost-perfect match between the real spectrum and the fit is obtained.
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However, this estimation requires setting the values for a large number of parameters,
such as the number of layers, their compositions, and their thicknesses; driving the problem
to a so-called ill-posed problem where, at first, more than one “good” solution can be
obtained. For this reason, a good approach is to test several models until the best solution
inside a set of good solutions is obtained, by applying a chi-squared test and not only a
visual comparison.

The XRF spectrometer is composed of an Rh-anode X-ray tube working at 40 kV,
between 5–15 µA, 1 mm-wide collimated, and of an SDD detector without any collimation.
The geometry can be changed according to the shape of the sample and its accessibility.
Usually, the detector is placed orthogonal to the sample surface with the detector at
45 degrees.

3. Results and Discussion

The bulk composition estimations obtained with the XRF-MC method for the two
statuettes are summarized in Table 1. The error in the estimated composition is around 5%
of the value reported. This error comes from the errors in the atomic parameters involved
in the quantification.

Table 1. Average alloy composition, expressed in wt%, of the head and body area of samples #26065
and #783.

Inventory Number Area Copper (Cu %) Tin (Sn %) Lead (Pb %)

26065 Head 86.8 8.3 4.5
Body 86.5 8.6 4.7

783 Head 91.0 7.1 1.7
Body 90.6 7.1 2.2

The alloy composition of the statuettes is quite similar. Copper concentration varies
from 86.8% to 91%, tin from 7.1% to 8.6%, and lead from 1.7% to 4.5%. Except for the
lead contents, the other variations are within the experimental errors and intrinsic alloy
variations caused by the melting process. From a more general perspective, both artifacts
are made of a ternary alloy composed of Cu, Sn, and Pb. The presence of Pb, about 2 wt%,
suggests an intentional addition of this element, knowingly used to improve the fluidity
and castability of the molten metal [20–22].

For both artifacts, a bronze alloy with low tin content was used, favoring cold working
annealing [20]. The addition of tin, in concentrations lower than 10 wt%, allows to increase
the mechanical characteristics of the bronze and avoids the formation of the eutectoid
phase, which makes the alloy more brittle and hard and, thus, more prone to fracture [21].
The ternary alloy composed of Cu, Sn, and Pb was common in the Late Bronze Age.
The presence of Pb, in quantities greater than 2 wt%, usually indicates an intentional
addition. Lead, due to its slower solidification (its melting point is around 327.5 °C),
improves the fluidity and castability of the melt [22,23]. Furthermore, Pb, being cheaper
than Cu and Sn, was sometimes also used as a “filler”, even though a high concentration
could make it difficult to process the alloy since Pb is immiscible in Cu-Sn [24].

The #26065 statuette has been examined at the spots indicated in Table 2, upper block.
For each analyzed spot, the surface of the sample was modeled testing several types
of structure, where a three-layer model yielded the best fit. This model is formed by a
protective layer placed by the restorer (probably a Paraloid-like film), a corrosion layer,
and lastly the bulk alloy. The presence of Sn enrichment layers, due to the decuprification
phenomena [10] was also tested, but without any result. The latter hypothesis is consistent
with the level of concentration of Sn estimated. Enrichment layers have been detected
by Monte Carlo simulations in other bronze analyses only where Sn concentrations were
9–10 wt% or higher [5].
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Table 2. Iron concentration at different spots.

Sample Measurement Points Iron (Fe %) Graphic Representation

26065

(a) Right side neck 15.0
(b) Neck 19.7
(c) Nape 26.3
(d) Cloak 0.8
(e) Inner cloak on the left 0.7
(f) Center back 1.0
(g) Chest 0.8
(h) Right hand 0.7
(i) Ankles 1.3

783

(1) Head left 20.0
(2) Nose 22.0
(3) Nape 31.3
(4) Right side neck 10.5
(5) Bust - belt 0.6
(6) Chest 0.8
(7) Right hand back 0.9
(8) Inner cloak on the left 1.0
(9) Ankles 1.0
(10) Back 0.5

Statuette #26065 shows a high presence of Fe all around the head and neck, up to a
depth of 80 µm under the surface itself, at variable concentrations, while at greater depths
only a bronze alloy is detected. The remaining parts of the body are made of a bronze alloy
covered by a corrosion patina. However, the Fe-rich layers show different concentrations
of Sn with respect to the patina and the lack of a tin enriched layer, which can be due to the
“protective” effect of the Fe-based layer, partially stopping the decuprification phenomenon
of the bronze alloy. The simulated XRF spectra superimposed to the measured ones for
both the head and chest are shown in Figure 2.

The #783 statuette analysis shows a similar result, confirming that the head is an
iron-covered bronze, while the body is made of a bronze alloy only, already suggested by
a visual inspection. Even in this case, the bronze under the surface of the head and the
one composing the body did not show significant differences. The simulated XRF and the
measured spectra of the head and chest are reported in Figure 3.

Both patinas from both statuettes present the same set of chemical elements, mainly
S, Ca, Ti, and Fe, indeed very common. However, the relative concentrations of these
elements vary depending on the position over the body. Further, the corresponding zones
between the two statuettes show the same type of variation of concentrations of these
chemical elements. For example, both show a higher concentration of Ca at the ankles or of
S at the head. This may imply a common burial site.

Regarding the thickness of the layers, the protective layer varies from 40 to 70 µm
in thickness, depending on the spot analyzed. While for the bronze patina layer, sample
#26065 has an average thickness of 70 µm in the head area and an average thickness of
35 µm in the body region. It is also evident that the presence of Fe has caused deeper
corrosion. In sample #783, the patina is more uniform in thickness, about 45 µm. Thus, it is
interesting to note that, unlike what was observed at a first glance, the state of conservation
of sample #783 seems better than that of #26065. The reduction of the corrosion layer in
sample #783 is due to previous cleaning interventions, where, as indicated in the restoration
reports, even a mechanical cleaning took place.
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Figure 2. Simulated spectra superimposed to the measured one: sample #26065, (A) nape (B) and chest.

Figure 3. Cont.
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Figure 3. Simulated spectra superimposed to the measured one: sample #783, (A) head (B) and chest.

4. Discussion and Conclusions

Two quite similar statuettes have been investigated with an XRF–MC protocol. Al-
though widely used in previous works, here, its analytical capabilities have been enhanced,
allowing us to obtain pieces of information usually not accessible with standard XRF ap-
proaches. The two statuettes are almost identical in composition and aspect. This implies
their provenience is from one same manufacturing site, even if they are separately pre-
served in two different museums, and their provenience unknown; although they are both
findings from before the 20th century.

However, the most interesting results regard the Fe corrosion on the statues’ heads.
Covering exclusively the head precludes the hypothesis of an interaction with a Fe-rich
environment, as in this case the corrosion should cover the whole body. Moreover, it is
unlikely to be a result of a fusion over the head, due to the lack of technology at the time.
In the Sardinian Early Iron Age, the required melting temperature for iron was hardly
reached. The only possible explication is the use of a decorative layer, maybe Fe-based
paintings, such as ochres. There is no evidence of paintings over bronze objects, only on
rocky walls. This aspect must be thoroughly examined, and at least one of the samples must
be further investigated with neutron spectroscopic/imaging techniques, which perhaps
will give more information. Meanwhile, a systematic search for more statuettes or other
Nuragic bronzes with the same kind of Fe-rich layer must be carried out.
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