
PHYSICAL REVIEW A 108, 022807 (2023)

Limits to the observation of Unruh radiation via first-quantized hydrogenlike atoms
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We consider ionized hydrogenlike atoms accelerated by an external electric field to detect Unruh radiation.
By applying quantum field theory in the Rindler space-time, we show that the first-quantized description for
hydrogenlike atoms cannot always be adopted. This is due to the frame-dependent definition of particles as
positive and negative frequency field modes. We show how to suppress such a frame-dependent effect by
constraining the atomic ionization and the electric field. We identify the physical regimes with nonvanishing
atomic excitation probability due to the Unruh electromagnetic background. We recognize the observational
limits for the Unruh effect via first-quantized atomic detectors, which appear to be compatible with current
technology. Notably, the nonrelativistic energy spectrum of the atom cannot induce coupling with the thermal
radiation, even when special relativistic and general relativistic corrections are considered. On the contrary, the
coupling with the Unruh radiation arises because of relativistic hyperfine splitting and the Zeeman effect.
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I. INTRODUCTION

Accelerated detectors probe noninertial quantum effects.
Unruh and DeWitt [1–3] originally considered a single par-
ticle with acceleration α interacting with a scalar field via
monopole coupling. In the noninertial frame, the detector
reveals a thermal background [1,4,5] with temperature T =
h̄α/2πckB, where c is the speed of light and kB the Boltzmann
constant. Similar descriptions have been used in more recent
works to describe accelerated atoms as Unruh-DeWitt detec-
tors [6–8].

More refined models, including a uniform external force as
a dynamical source for the acceleration, superseded the origi-
nal idealized description [9,10]. Furthermore, fully relativistic
detectors have been considered [1,11].

Here we study accelerated atomic detectors by first princi-
ples within the relativistic Dirac theory in curved space-time
for hydrogenlike atoms. In the nonrelativistic limit [12,13],
we outline overlooked relativistic corrections and fundamen-
tal subtleties such as the frame dependence of the particle
number.

Despite that the atom is initially prepared in the inertial
laboratory frame as a nonrelativistic bound state with a fixed
number of electrons and nuclear particles, in the comoving
accelerated frame, the energy and the number of the quan-
tum particles are different [13]. A single electron appears
as a superposition of states with varying energy and particle
numbers, and the electronic and nuclear structure is radically
modified. The frame-dependent nature of particles—at the
origin of the Unruh effect [4]—not only alters the background
electromagnetic vacuum but also the electron and nuclear
fields.

Such frame dependence poses limits to adopting the famil-
iar first-quantization description of the hydrogenlike atom in
its proper frame and brings up difficulties in understanding
light-matter interaction with noninertial observers. Lowering
the acceleration suppresses the effect on the electrons and

the other nuclear particles; however, this may also suppress
the Unruh background electromagnetic vacuum, with the
consequent decrease in the temperature. For a nonvanishing
measurement of the Unruh effect, one needs an energy gap
�E such that �E � kBT . Hence the atomic spectrum must
have a sufficiently fine structure to absorb the low-energy
Unruh thermal photons.

Is it possible to suppress the frame-dependent effect on
the electron while still detecting the electromagnetic thermal
background? We give a positive answer to this question by a
rigorous analysis based on the quantum field theory in curved
space-time. Notwithstanding the suppressed frame-dependent
effect for electrons, hyperfine splitting provides the energy
gap to reveal the Unruh radiation. We identify a specific pa-
rameter region in terms of the nuclear charge number Z and
the electric field E for the detection via first-quantized atomic
detectors.

The paper is organized as follows. In Sec. II we use quan-
tum field theory in curved space-time to describe electrons
in inertial and accelerated frames and to show the frame-
dependent particle content of the field. The conditions for
suppressing such a frame-dependent effect are detailed in
Sec. III. In Sec. IV we discuss the atomic stability by studying
the interaction with the accelerating field and the nuclear
electric field. In Sec. V we investigate the physical regimes
to detect Unruh radiation, and we show that the relativistic
hyperfine splitting is responsible for the coupling between
the atom and the Unruh radiation. Conclusions are drawn
in Sec. VI. Detailed calculations and proofs are provided in
Appendixes A, B, and C.

II. ELECTRON FIELD IN INERTIAL
AND ACCELERATED FRAME

Throughout the paper we consider the following scenario.
We assume that the atom is ionized with one electron and
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Z > 1 protons and that the electron is prepared in the lab-
oratory frame as a nonrelativistic particle. We consider a
uniform electric field �E = E �ez, with E > 0, that produces an
acceleration α along �ez such that α = (Z − 1)eE/M, with
e the elementary charge and M the atomic mass. Both the
nucleus and electric field �E are treated classically, while the
electron is treated via quantum field theory of Dirac fields.
In this section we study the electron field in the inertial and
the accelerated frames, and we discuss the frame-dependent
particle content of the field.

The inertial laboratory frame (t, �x) is defined by the
Minkowski metric ημν = diag(−c2, 1, 1, 1). By using the in-
teraction picture [12], we separate the free field theory from
the interaction Lagrangian. The free electron field in the
Minkowski frame ψ̂ (t, �x) reads

ψ̂ (t, �x) =
2∑

s=1

∫
R3

d3k[us(�k, t, �x)ĉs(�k) + vs(�k, t, �x)d̂†
s (�k)],

(1)
where ĉs(�k) and d̂s(�k) are annihilation operators for the par-
ticle and antiparticle with momentum �k and spin number s.

us(�k, t, �x) and vs(�k, t, �x) are the positive and negative fre-
quency modes such that

us(�k, t, �x) = (2π )−3/2e−iω(�k)t+i�k·�xũs(�k), (2a)

vs(�k, t, �x) = (2π )−3/2eiω(�k)t−i�k·�x ṽs(�k), (2b)

with ω(�k) =
√

(mc2/h̄)2 + c2|�k|2 as the mode frequency. The
spinors ũs(�k) and ṽs(�k) are the orthonormal solutions of the
Dirac equations in momentum space:[

ω(�k)γ 0 − kiγ
i − mc

h̄

]
ũs(�k) = 0, (3a)

[
ω(�k)γ 0 − kiγ

i + mc

h̄

]
ṽs(�k) = 0, (3b)

ũ†
s (�k)ũs′ (�k) = ṽ†

s (�k)ṽs′ (�k) = δss′ , (3c)

ũ†
s (�k)ṽs′ (−�k) = 0, (3d)

where γ μ are the Dirac matrices [12–14].

The comoving accelerated frame (T, �X ) is described by the Rindler metric gμν (T, �X ) = diag(−c2e2aZ , 1, 1, e2aZ ), with a =
α/c2. We study the electron field by quantum field theory in Rindler space-time (see Ref. [14] for the details). The free electron
field �̂ν (T, �X ) is

�̂ν (T, �X ) =
2∑

s=1

∫ ∞

0
d�

∫
R2

d2K⊥[Uνs(�, �K⊥, T, �X )Ĉνs(�, �K⊥) + Vνs(�, �K⊥, T, �X )D̂†
νs(�, �K⊥)], (4)

where Ĉνs(�, �K⊥) and D̂νs(�, �K⊥) annihilate the electron and the positron of the ν wedge with spin number s, frequency �, and
transverse momentum �K⊥ represented by the positive and negative frequency modes:

Uνs(�, �K⊥, T, �X ) = ei �K⊥· �X⊥−i�T W̃νs(�, �K⊥, Z ), (5a)

Vνs(�, �K⊥, T, �X ) = e−i �K⊥· �X⊥+i�T W̃νs(−�,− �K⊥, Z ), (5b)

with

W̃νs′ (�, �K⊥, Zν (z)) = 1

2π2

√
κ ( �K⊥)

ca
cosh

(
β

2
�

) ∑
σ=±

Kσ sν i�/ca−1/2

(
κ ( �K⊥)

esνaZ

a

)

×
[ −sν ic

κ ( �K⊥)
γ 0

(
K1γ

1 + K2γ
2 + mc

h̄

)](1−σ )/2

W̃νs(�, �K⊥), (6)

and where sν is the sign of the wedge (i.e., sL = −1 and sR = 1), κ ( �K⊥) =
√

(mc/h̄)2 + | �K⊥|2 is the reduced momentum, Kζ (ξ )
is the modified Bessel function of the second kind, and W̃νs(�, �K⊥) are orthonormal bases for the eigenspace of cγ 0γ 3 with
eigenvalue 1, i.e.,

cγ 0γ 3W̃νs(�, �K⊥) = W̃νs(�, �K⊥), (7a)

W̃†
νs(�, �K⊥)W̃νs′ (�, �K⊥) = δss′ . (7b)

In Ref. [14] we reported the following Bogoliubov transformation relating the Minkowski particle creator ĉs(�k) to Rindler
operators:

ĉs(�k) =
∑

ν={L,R}

2∑
s′=1

∫
R

d�

∫
R2

d2K⊥αν (�k,�, �K⊥)ũ†
s (�k)W̃νs′ (�, �K⊥)[θ (�)Ĉνs′ (�, �K⊥) + θ (−�)D̂†

νs′ (−�,− �K⊥)], (8)
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with

αν (�k,�, �K⊥) = 1

π
δ2(�k⊥ − �K⊥)

√
κ (�k⊥)

2πca
cosh

(
π�

ca

) ∑
σ=±

[
sν i

ω(�k) + ck3

cκ (�k⊥)

](σ−1)/2 ∫
R

dzθ (sνz)e−ik3zKσ sν i�/ca−1/2(sνκ ( �K⊥)z),

(9)

and we showed the following representation of the Minkowski vacuum in the Rindler space-time:

|0M〉 ∝ exp

⎛
⎝−i

∑
ν={L,R}

sν

2∑
s=1

2∑
s′=1

∫ +∞

0
d�

∫
R2

d2K⊥e−π�/caW̃†
νs(�, �K⊥)W̃ν̄s′ (−�, �K⊥)Ĉ†

νs(�, �K⊥)D̂†
ν̄s′ (�,− �K⊥)

⎞
⎠|0L, 0R〉,

(10)

where |0M〉 is the Minkowski vacuum, ν̄ is the opposite of ν (i.e., ν̄ = L if ν = R and ν̄ = R if ν = L), and |0L, 0R〉 is the
Rindler vacuum state. By using Eqs. (8) and (10), one can see that any nonrelativistic single electron prepared in the inertial
frame appears as a superposition of states with varying energy and particle number in the accelerated frame.

III. SUPPRESSING THE FRAME-DEPENDENT
EFFECT ON THE ELECTRON

In the previous section we showed the frame-dependent
particle content of the electron field, which is responsible
for the appearance of electron states with varying energy and
particle number in the accelerated frame. In this section we in-
vestigate the conditions under which such a frame-dependent
effect is suppressed.

It is already known that in the case of scalar fields, the
frame-dependent effect is suppressed when the acceleration
α is sufficiently low and the particle state is localized in
the approximately Minkowskian region of the Rindler space-
time, i.e., where gμν (T, �X ) ≈ ημν [13]. Any nonrelativistic
Minkowski single particle appears as a nonrelativistic Rindler
particle in the accelerated frame if α is such that

h̄a

mc
� ε3/2 (11)

and the localization in �x in such that

|az − 1| � ε, (12)

where ε = h̄�/mc2 is the nonrelativistic parameter, defined as
the ratio between the nonrelativistic energy h̄� and the mass
energy mc2. The resulting Rindler single particle is created
over the Unruh background |0M〉, which is in a superposition
of Rindler particles. These background particles are mostly
localized far from the region (12) and close to the Rindler
horizon; hence they can be ignored for the local detection of
the Unruh effect.

Here we find that the results obtained for scalar fields are
also applicable to the case of Dirac fields. When h̄a/mc �
ε3/2, |az − 1| � ε, and |�|/ca � 1, the Bessel functions ap-
pearing in Eq. (9) are approximated as [15]

K±i�/ca−1/2(κ ( �K⊥)z) ≈ 0, (13)

and when h̄a/mc � ε3/2, h̄| �K⊥|/mc � ε1/2, |az − 1| � ε, and
|�|/ca 
 1, as√

cosh

(
π�

ca

)
K±i�/ca−1/2(κ ( �K⊥)z)

≈ π

(
h̄a√
2mc

)1/3

Ai

((√
2mc

h̄a

)2/3[(
h̄| �K⊥|√

2mc

)2

+ az − h̄�

mc2

])
, (14)

where Ai(ξ ) is the Airy function. By using Eqs. (13) and (14)
one can prove that the electron is seen as a nonrelativistic
single particle in both frames if the acceleration is constrained
by Eq. (11) and the electron is localized in the region given by
Eq. (12). See Appendix A for the complete proof.

IV. AVOIDING COMPLETE IONIZATION

In this section we discuss the interaction between the
electron and the classic electromagnetic field. We obtain the
conditions under which the atom is not completely ionized by
the electric field �E . We show that such conditions not only
guarantee the atomic stability but also suppress the frame-
dependent effect described in the previous sections.

The classic electromagnetic field affecting the electron is
made by the potential energy Vext due to the external elec-
tric field �E and the potential energy Vnuc due to the nuclear
Coulomb interaction. In the comoving frame, Vext is

Vext(Z ) = 1 − e−2aZ

2

eE

a
(15)

(see Appendix B). The nuclear potential energy Vnuc is

Vnuc(R) = −ε
1/2
QED

h̄c

R
, (16)

where R = | �X | is the radial coordinate, εQED = (Zα0)2 is the
quantum electrodynamics (QED) coupling, and α0 the fine-
structure constant.

The electron is pulled away from its orbit by Vext while it
is dragged by the accelerating nucleus via Vnuc. If E is suffi-
ciently large, the electron escapes from the nuclear Coulomb
barrier via quantum tunneling, compromising the atomic sta-
bility. To avoid complete ionization, we require a small E such
that

|Vext(R0)| � ∣∣E (0)
0

∣∣, (17)
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with E (0)
0 = −εQEDμc2/2 as the ground state of Vnuc, μ =

(m + MN)/mMN ≈ m as the reduced mass, MN ≈ M as the
nuclear mass, R0 = a0/Z as the atomic radius, and a0 =
h̄/mcα0 as the Bohr radius. Hence we assume that the external
force Vext simply perturbs the spectrum of Vnuc via the Stark
effect.

Equation (17) reads

aR0 � εQED
(Z − 1)m

2M
, (18)

or, equivalently,

E � (Zα0)3

2

m2c3

h̄e
. (19)

Notice that the electron is localized inside the region R � R0

since Vnuc dominates over Vext. Notice also that εQED � 1
and (Z − 1)m � M. Hence, from Eqs. (15) and (18) one
concludes that the electron is localized where the electric field
is approximately uniform.

Equation (17) guarantees a lifetime τ for the atom that is
exponentially increasing for decreasing electric field. Indeed,
by using the WKB approximation, one can find the following
ionization rate [16]:

1

τ
≈ 16

h̄R0eE

(
E (0)

0

)2
exp

(
4E (0)

0

3R0eE

)
. (20)

Notice that εQEDmc2 is the order of the nonrelativistic
atomic energies. Indeed, the spectrum of Vnuc is

E (0)
n = − εQED

2(n + 1)2
μc2. (21)

By comparing Eq. (18) with Eq. (12), one finds out that the
localization condition (12) is already met by configurations
that satisfy Eq. (18). Furthermore, Eq. (18) leads to

h̄a

mc
� ε

3/2
QED

(Z − 1)m

2M
, (22)

which is a sufficient condition for Eq. (11). By constraining
E and Z accordingly to Eq. (19), one guarantees the atom
stability and the first-quantization electron description in the
accelerated frame. The atom does not ionize and the electron
appears as a nonrelativistic single-particle bound state in both
frames.

V. DETECTING UNRUH RADIATION
VIA HYPERFINE SPLITTING

In this section we consider the interaction between the
accelerated atom and the electromagnetic Unruh background
[1,2,7]. We show the conditions under which the coupling
between electron and Unruh radiation produce measurable
effects. We study the spectrum of the relativistic hydrogenlike
atom in Rindler space-time with uniform external electric field
and we show that the coupling is induced by the hyperfine
splitting. Finally, we plot the regime of parameters for the
observability of the Unruh effect.

In the accelerated frame, as a consequence of the Unruh
radiation the electron can be excited by absorbing a photon

with the energy �En = En − E0 of the nth electronic transi-
tion. The event is detectable if

�En � kBT (23)

and if the atom has a sufficiently large lifetime such that

τ � h̄

�En
. (24)

Equation (23) guarantees a nonvanishing probability for
the electron to interact with photons described by the follow-
ing Boltzmann distribution:

PB = 1

e�En/kBT − 1
. (25)

A more refined constraint than Eq. (23) can be imposed by
assuming a lower bound for PB, i.e.,

PB < Pmin, (26)

with Pmin < 1. Equation (24), instead, ensures that the absorp-
tion spectrum of the atom is narrow around �En. Given the
exponential growth of the atom lifetime for smaller E [see
Eq. (20)], it is safe to assume that Eq. (24) gives an almost
exact lower limit for τ , i.e.,

τ >
h̄

�En
. (27)

The states and energies of the spectrum En are the solutions
of the Dirac equation in Rindler space-time for hydrogen-
like atoms with the interaction potential Vext. They can be
computed perturbatively by considering the nonrelativistic
hydrogenlike spectrum E (0)

n [see Eq. (21)] perturbed by Vext

and by relativistic corrections coming from the Rindler-Dirac
equation.

The energy gaps of the unperturbed Hamiltonian �E (0)
n =

E (0)
n − E (0)

0 in Eq. (21) are of the order

�E (0)
n ∼ εQEDmc2. (28)

By plugging Eq. (28) in Eq. (23), one finds that the lower
bound for the electric field is

E � 2π (Zα0)2

Z − 1

mMc3

h̄e
, (29)

which is way larger than the upper bound (19). Hence, �E (0)
n

does not induce coupling with the electromagnetic back-
ground for any stable configuration.

Perturbations of E (0)
n do not significantly change the ener-

gies gaps, unless they break the spin degeneracy of the atomic
ground state. In that case the first level E (0)

0 splits into the
actual ground state E0 and the first excited state E1, with
�E = E1 − E0 � εQEDmc2.

In Appendix C we show that the Rindler-Dirac equation for
the hydrogenlike atom with potentials Vnuc and Vext have a
degenerate minimum energy level. Hence the external electron
field Vext and the special and general relativity corrections do
not break the spin degeneracy of E (0)

0 .
One has to look at the hyperfine structure to see a split

of E (0)
0 due to quantum electrodynamics corrections. The

electron-nucleus interaction via spin-spin coupling generates
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the following energy gap [17]:

�Ehf =
{

1
3π

(2I + 1)Z3α4
0gm2c2

MP
if I = 0

0 if I = 0
, (30)

with MP as the proton mass. I is the quantum number such that
|�I|2 = I (I + 1), where �I is the nucleus spin. g is the effective
g factor, defined as follows: �μ = (gh̄e/2MP)�I , where �μ is the
magnetic moment of the nucleus resulting from its spin.

Notice that the selection rule that forbids transitions be-
tween levels with vanishing azimuthal quantum number � = 0
breaks down due to the Stark effect. Hence the absorption of
photons coupled to the hyperfine structure is allowed.

By plugging Eq. (30) in Eq. (26), one finds that the atomic
hyperfine structure produces a measurable Boltzmann distri-
bution when I = 0 and when[

exp

(
2(2I + 1)Z3α4

0g

3(Z − 1)

Mm2c3

MPh̄eE

)
− 1

]−1

< Pmin. (31)

Furthermore, the atom has a sufficiently long lifetime when
[see Eqs. (27) and (30)]

h̄eE

m2c3
exp

(
2(Zα0)3

3

m2c3

h̄eE

)
>

12πZ2α0

(2I + 1)g

MP

m
. (32)

Equations (31) and (32) define the regime of parameters
E , Z , M, I , g for the detection of the Unruh effect via first-
quantized atomic detectors. The results are shown in Fig. 1,
where for some nuclear configurations we plot the range of
validity for the electric field E . In Fig. 1 we also plot the
Boltzmann distribution

PB =
[

exp

(
(2I + 1)Z3α4

0g

3(Z − 1)

Mm2c3

MPh̄eE

)
− 1

]−1

(33)

and the Unruh temperature

T = Z − 1

2π

h̄eE

kBMc
. (34)

To overcome background noises, a sufficiently large T is
needed and requires high ionization Z .

VI. CONCLUSIONS

Various experimental proposals have been reported to test
the Unruh effect. The proposals include the depolarization
of electrons in storage rings [19,20], Penning traps [21],
and ultraintense lasers [22,23]. The growing interest is mo-
tivated by the ever-improving experimental equipment that
allows to reach high accelerations [24]. Besides electrons,
also uniformly accelerated protons have been considered
as Unruh-DeWitt detectors via acceleration-induced weak-
interaction decay [25–27] and photon emission [28,29].

In this manuscript we analyzed the electron in the ac-
celerated atom by the nonrelativistic limit of a Dirac field
in Rindler space-time [12–14]. While considering hyperfine
splitting, we addressed three problems: (i) the instability of
the atom due to a strong accelerating field; (ii) the frame-
dependent nature of the electron; and (iii) the detectability of
the Unruh effect due to the electromagnetic radiation. We have
shown that (i) and (ii) impose an upper boundary condition
for the electric field accelerating the ionized hydrogenlike

FIG. 1. Observation window for the Unruh effect via first-
quantized atomic detectors. The constrained variable is the accel-
erating electric field E for each nuclear configuration Z , M, I , g
[18]. The upper limit for E [see Eq. (32)] guarantees the stability
of the atomic bound state and the first-quantized description of the
electron in the accelerated frame. Above this limit, the electron
escapes from the Coulomb potential via tunneling and it appears as
a superposition of states with different energies and number of parti-
cles in the accelerated frame. The lower limit [see Eq. (31)], instead,
ensures the detection of the Unruh effect from the electromagnetic
thermal background via light-matter interaction. Below such limits,
the hyperfine structure of the atom produces an energy gap that is
too large for the Boltzmann distribution to be detected. In (a) we
show the Boltzmann distribution for the atom-radiation interaction
[see Eq. (33)]. In (b) we show the Unruh temperature T of the
electromagnetic background in the accelerated frame for different
configurations [see Eq. (34)].

atom. Taking into account (iii), we determined an observation
window in the E and Z plane [see Fig. 1]. Surprisingly, quan-
titative estimates unveil that the effect can be detected with
electric fields within the reach of the modern technologies of
high-power lasers and nuclear magnetic resonance.

As a concluding remark, we discuss the possibility to ex-
tend our results by including the Zeeman effect. The presence
of a uniform magnetic field �B parallel to the accelerating
electric field �E has the following effects: (i) it does not affect
the accelerating trajectory of the atom, and (ii) it induces an
energy splitting at the ground states similarly to the hyper-
fine splitting. Hence, for atoms that have vanishing hyperfine
splitting (e.g., nuclei with zero spin), only the Zeeman effect
produces a measurable energy gap that couples to the Unruh
radiation. We remark that, at variance with the hyperfine split-
ting, the strength of the magnetic field �B can be controlled
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and induces an arbitrarily small energy gap. Consequently, no
lower bound for the electric field �E occurs.
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APPENDIX A: SUPPRESSING THE FRAME-DEPENDENT
EFFECT FOR DIRAC SINGLE PARTICLES

In this section we adapt the discussion of Ref. [13] to
the case of Dirac fields. We consider a single fermionic
particle |ψ〉 prepared by an inertial observer, and we de-
rive its representation in the Rindler-Fock space by using
the Bogoliubov transformation (8). We assume that the
acceleration is constrained by Eq. (11) and that the parti-
cle is nonrelativistic and localized in (12). We show that
the Rindler-Fock representative for |ψ〉 is approximated by
a nonrelativistic Rindler single particle created over the
Minkowski vacuum |0M〉, which, in turns, is mainly pop-
ulated by Rindler particles and antiparticles localized far
from (12).

We start from the general definition of Minkowski single
particles |ψ〉, with wave function ψ (x). The state is defined as
follows:

|ψ〉 = Ĉ
†
ψ |0M〉, (A1)

with

Ĉψ =
2∑

s=1

∫
R3

d3kψ̃∗
s (�k)ĉs(�k) (A2)

as the particle annihilator and with ψ̃s(�k) as the wave function
in the spin-momentum representation, i.e.,

ψ (�x) =
2∑

s=1

∫
R3

d3kψ̃s(�k)us(�k, 0, �x). (A3)

The nonrelativistic condition for the particle is

ψ̃s(�k) ≈ 0 if
h̄|�k|
mc


 ε1/2. (A4)

The localization condition, instead, is

ψ (�x) ≈ 0 if |az − 1| 
 ε. (A5)

By using the Bogoliubov transformation (8), we write Ĉ
†
ψ in terms of Rindler operators:

Ĉψ =
∑

ν={L,R}

2∑
s=1

2∑
s′=1

∫
R3

d3k
∫
R

d�

∫
R2

d2K⊥ψ̃∗
s (�k)αν (�k,�, �K⊥)ũ†

s (�k)W̃νs′ (�, �K⊥)

× [θ (�)Ĉνs′ (�, �K⊥) + θ (−�)D̂†
νs′ (−�,− �K⊥)]. (A6)

As a consequence of the Dirac delta function appearing in the explicit form of αν (�k,�, �K⊥) [see Eq. (9)] and the nonrelativistic
condition (A4), Ĉ†

ψ creates Rindler particles and destroys Rindler antiparticles with nonrelativistic transverse momentum, i.e.,

h̄| �K⊥|/mc � ε1/2. Furthermore, Eqs. (9) and (A4) lead to the following approximation:

Ĉψ ≈
∑

ν={L,R}

2∑
s=1

2∑
s′=1

∫
R3

d3k
∫
R

d�

∫
R2

d2K⊥ψ̃∗
s (�k)βν (�k,�, �K⊥)ũ†

s (�k)W̃νs′ (�, �K⊥)

× [θ (�)Ĉνs′ (�, �K⊥) + θ (−�)D̂†
νs′ (−�,− �K⊥)], (A7)

with

βν (�k,�, �K⊥) = 1

π
δ2(�k⊥ − �K⊥)

√
m

2π h̄a
cosh

(
π�

ca

) ∑
σ=±

(sν i)(σ−1)/2
∫
R

dzθ (sνz)e−ik3zKσ sν i�/ca−1/2(sνκ ( �K⊥)z). (A8)

By recalling Eq. (2a), we write Eq. (A7) in the following way:

Ĉψ ≈
∑

ν={L,R}

2∑
s=1

∫
R

d�

∫
R2

d2K⊥χνs(�, �K⊥)[θ (�)Ĉνs(�, �K⊥) + θ (−�)D̂†
νs(−�,− �K⊥)], (A9)

with

χνs(�, �K⊥) = 1

2π2

√
m

h̄a
cosh

(
π�

ca

)∫
R3

d3xθ (sνz)
∑
σ=±

(sν i)(σ−1)/2Kσ sν i�/ca−1/2(sνκ ( �K⊥)z)

×
2∑

s′=1

∫
R3

d3kψ̃∗
s′ (�k)u†

s′ (�k, 0, �x)W̃νs(�, �K⊥). (A10)
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By using Eq. (A3), Eq. (A10) reads as

χνs(�, �K⊥) = 1

2π2

√
m

h̄a
cosh

(
π�

ca

) ∫
R3

d3xθ (sνz)
∑
σ=±

(sν i)(σ−1)/2Kσ sν i�/ca−1/2(sνκ ( �K⊥)z)ψ†(�x)W̃νs(�, �K⊥). (A11)

The localization condition (A5) can be used in Eq. (A11) to obtain the following approximation:

χRs(�, �K⊥) ≈ 1

2π2

√
m

h̄a
cosh

(
π�

ca

) ∫
R23

d3xθ (ε − |az − 1|)
∑
σ=±

i(σ−1)/2

× Kσ i�/ca−1/2(κ ( �K⊥)z)ψ†(�x)W̃Rs(�, �K⊥), (A12a)

χLs(�, �K⊥) ≈ 0, (A12b)

which means that Ĉ†
ψ creates Rindler particles and destroys Rindler antiparticles in the right wedge only. By using again Eq. (A3),

Eq. (A12a) reads as

χRs(�, �K⊥) ≈ 1

2π2

√
m

h̄a
cosh

(
π�

ca

) 2∑
s′=1

∫
R3

d3kψ̃∗
s′ (�k)

∑
σ=±

i(σ−1)/2
∫
R3

d3xθ (ε − |az − 1|)

× u†
s′ (�k, 0, �x)W̃Rs(�, �K⊥)Kσ i�/ca−1/2(κ ( �K⊥)z). (A13)

We now consider the limit of low acceleration (11), and we use Eqs. (13) and (14) in Eq. (A13). By using Eq. (13), we find
that χRs(�, �K⊥) is vanishing when |�|/ca � 1, and hence Ĉ

†
ψ creates Rindler particles and destroys Rindler antiparticles with

frequency |�| 
 ca. By using Eq. (14), one can write Eq. (A13) in the limit |�| 
 ca as follows:

χRs(�, �K⊥) ≈ 1 − i

2π

√
m

h̄a

(
h̄a√
2mc

)1/3 2∑
s′=1

∫
R3

d3kψ̃∗
s′ (�k)

∫
R3

d3xθ (ε − |az − 1|)u†
s′ (�k, 0, �x)W̃Rs(�, �K⊥)

× Ai

⎛
⎝(√

2mc

h̄a

)2/3
⎡
⎣(

h̄| �K⊥|√
2mc

)2

+ az − h̄�

mc2

⎤
⎦

⎞
⎠. (A14)

Owing to Eq. (2a), Eq. (A14) reads as

χRs(�, �K⊥) ≈ 1 − i

(2π )5/3

√
m

h̄a

(
h̄a√
2mc

)1/3 2∑
s′=1

∫
R3

d3kψ̃∗
s′ (�k)ũ†

s′ (�k)W̃Rs(�, �K⊥)

×
∫
R3

d3xθ (ε − |az − 1|)e−i�k·�xAi

⎛
⎝(√

2mc

h̄a

)2/3
⎡
⎣(

h̄| �K⊥|√
2mc

)2

+ az − h̄�

mc2

⎤
⎦

⎞
⎠. (A15)

The nonrelativistic condition (A4) in Eq. (A15) leads to

χRs(�, �K⊥) ≈ 1 − i

(2π )5/3

√
m

h̄a

(
h̄a√
2mc

)1/3 2∑
s′=1

∫
R3

d3kθ

(
ε1/2 − h̄|�k|

mc

)
ψ̃∗

s′ (�k)ũ†
s′ (�k)W̃Rs(�, �K⊥)

×
∫
R3

d3xθ (ε − |az − 1|)e−i�k·�xAi

⎛
⎝(√

2mc

h̄a

)2/3
⎡
⎣(

h̄| �K⊥|√
2mc

)2

+ az − h̄�

mc2

⎤
⎦

⎞
⎠. (A16)

One can now use the limits of the Airy function to show
that if h̄�/mc2 − 1 � −ε, then χRs(�, �K⊥) is exponentially
vanishing [13]. Conversely, if h̄�/mc2 − 1 
 ε, the Airy
function appearing in Eq. (A16) oscillates way faster than
e−ik3z[13], leading to a vanishing integration with respect
to z. Consequently, χRs(�, �K⊥) is nonvanishing only when
|h̄�/mc2 − 1| � ε (i.e., � is positive and nonrelativistic). As
a result, Ĉ†

ψ only creates a nonrelativistic right-Rindler particle

and can be approximated by the following identity:

Ĉψ ≈
2∑

s=1

∫
R

d�θ

(
ε −

∣∣∣∣ h̄�

mc2
− 1

∣∣∣∣
) ∫

R2
d2K⊥

× θ

(
ε1/2 − h̄| �K⊥|

mc

)
χRs(�, �K⊥)ĈRs(�, �K⊥). (A17)
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Equation (A17) can be plugged in Eq. (A1) to give a
Rindler-Fock representation of the Minkowski single particle.
The operator Ĉ†

ψ creates a nonrelativistic right-Rindler single
particle over the Minkowski vacuum background |0M〉, which,
in turn, is given by Eq. (10).

By using Eq. (10) and the fact that e−π�/ca is exponen-
tially vanishing when �/ca 
 1, we find that the Minkowski
vacuum is mainly populated by Rindler particles with fre-
quency � � ca. Such particles are localized far from the
region |aZ| � ε. Indeed, by using Eqs. (5), (6), and (13) one
can prove that the modes representing right-Rindler particles
and antiparticles with � � ca are vanishing in |aZ| � ε. The
result is that Eq. (A1) is approximately a nonrelativistic right-
Rindler single particle created over a sea of Rindler particles
and antiparticles localized far from |aZ| � ε.

APPENDIX B: UNIFORM ELECTRIC FIELD
IN THE ACCELERATED FRAME

Here we consider an electric field �E that appears uniform
in the inertial frame, i.e., �E (t, �x) = E �ez, and we compute
the consequent electromagnetic field in the accelerated frame.
The electromagnetic tensor in the inertial frame is

Fμν = E

c

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠. (B1)

The coordinate transformation (t, �x) �→ (T, �X ) from the
Minkowski to the right-Rindler frame is such that

cat = eaZ sinh(caT ), x = X, y = Y, (B2a)

az = eaZ cosh(caT ), (B2b)

which can be inverted to give

caT = tanh−1

(
ct

z

)
, X = x, Y = y, (B3a)

aZ = 1

2
log[(az)2 − (cat )2]. (B3b)

From Eq. (B3) one can compute the following Jacobian ma-
trix:

∂X μ

∂xν
=

⎛
⎜⎜⎜⎝

e−aZ cosh(caT ) 0 0 c−1e−aZ sinh(caT )

0 1 0 0

0 0 1 0

ce−aZ sinh(caT ) 0 0 e−aZ cosh(caT )

⎞
⎟⎟⎟⎠.

(B4)

The components of the electromagnetic tensor in the non-
inertial frame (T, �X ) can be obtained by using Eq. (B4) as
follows:

∂X μ

∂xα

∂X ν

∂xβ
Fαβ = e−2aZ E

c

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠. (B5)

Equation (B5) states that in the accelerated frame, �E appears
as an electric field along Z with magnitude e−2aZ E . The con-

sequent potential energy Vext that is vanishing for Z = 0 is
reported by Eq. (15).

APPENDIX C: SPIN DEGENERACY OF ACCELERATED
HYDROGENLIKE ATOM

Here we consider the energy potential Vext and the special
and general relativity corrections to the accelerated hydrogen-
like atom. We show that the spin degeneracy of the first energy
level is not lifted.

The full Rindler-Dirac equation with potentials Vnuc and
Vext describing the electron in the accelerated frame is

ih̄∂0� = H�, (C1)

with the following Hamiltonian (see, for instance, Ref. [12]):

H = − ih̄c2γ 0γ 3∂3 − i

2
h̄αγ 0γ 3 + eaZγ 0(−ih̄c2γ 1∂1

− ih̄c2γ 2∂2 + mc3) + Vnuc + Vext. (C2)

Notice that H is symmetric with respect to the following
unitary operators:

U1 = icγ 0P1γ
2γ 3, U2 = icγ 0γ 1P2γ

3, (C3)

where Pi is the parity operator for the ith coordinate, i.e., P1 :
X �→ −X and P2 : Y �→ −Y . Indeed, one can prove that H
commutes with U1 and U2,

[U1, H] = 0, [U2, H] = 0, (C4)

by using the following anticommutative properties:

{P1, ∂1} = 0, {P2, ∂2} = 0, (C5a)

{γ μ, γ ν} = −2ημν. (C5b)

Equation (C5b), the hermiticity of γ 0, P1, and P2, and the
antihermiticity of γ i can be used to prove the unitarity of
U1 and U2. Furthermore, Eq. (C5b) leads to the following
anticommutative relation:

{U1,U2} = 0. (C6)

Equation (C4) implies that H and U1 are simultaneously
diagonalizable. The same occurs for H and U2. However,
U1 and U2 are not compatible, since, as a consequence of
Eq. (C6), they do not commute.

Consider a state � which is simultaneously an eigenstate of
H and U2. The noncompatibility between U1 and U2 implies
that � is not an eigenstate of U1. Hence U1� is a different
state from �. However, U1� is still an eigenstate of H with
the same energy of �. We find that the Hamiltonian H is at
least two-degenerate for each energy level.

022807-8



LIMITS TO THE OBSERVATION OF UNRUH RADIATION … PHYSICAL REVIEW A 108, 022807 (2023)

[1] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D
14, 870 (1976).

[2] W. G. Unruh and R. M. Wald, What happens when an acceler-
ating observer detects a Rindler particle, Phys. Rev. D 29, 1047
(1984).

[3] S. Hawking and W. Israel, General Relativity: An Einstein
Centenary Survey (Cambridge University Press, Cambridge,
England, 1980), Chap. 14.

[4] S. A. Fulling, Nonuniqueness of canonical field quantization in
Riemannian space-time, Phys. Rev. D 7, 2850 (1973).

[5] P. C. W. Davies, Scalar particle production in Schwarzschild
and Rindler metrics, J. Phys. A: Math. Gen. 8, 609 (1975).

[6] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F.
Capasso, Enhancing Acceleration Radiation from Ground-State
Atoms via Cavity Quantum Electrodynamics, Phys. Rev. Lett.
91, 243004 (2003).

[7] A. Belyanin, V. V. Kocharovsky, F. Capasso, E. Fry, M. S.
Zubairy, and M. O. Scully, Quantum electrodynamics of ac-
celerated atoms in free space and in cavities, Phys. Rev. A 74,
023807 (2006).

[8] B. Šoda, V. Sudhir, and A. Kempf, Acceleration-Induced Ef-
fects in Stimulated Light-Matter Interactions, Phys. Rev. Lett.
128, 163603 (2022).

[9] B. Reznik, Unruh effect with back reaction—A first-quantized
treatment, Phys. Rev. D 57, 2403 (1998).

[10] V. Sudhir, N. Stritzelberger, and A. Kempf, Unruh effect of
detectors with quantized center of mass, Phys. Rev. D 103,
105023 (2021).

[11] R. Parentani, The recoils of the accelerated detector and the
decoherence of its fluxes, Nucl. Phys. B 454, 227 (1995).

[12] R. Falcone and C. Conti, Nonrelativistic limit of scalar and
Dirac fields in curved spacetime, Phys. Rev. D 107, 045012
(2023).

[13] R. Falcone and C. Conti, Frame dependence of the nonrel-
ativistic limit of quantum fields, Phys. Rev. D 107, 085016
(2023).

[14] R. Falcone and C. Conti, Minkowski vacuum in Rindler space-
time and Unruh thermal state for Dirac fields, Phys. Rev. D 107,
105021 (2023).

[15] F. Olver and W. Rheinbolt, Asymptotics and Special Functions
(Elsevier Science, New York, 2014).

[16] L. Landau and E. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory, Course of Theoretical Physics (Elsevier
Science, New York, 1991).

[17] H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-
Electron Atoms (Springer, Berlin, Heidelberg, 2013).

[18] N. Stone, Table of nuclear magnetic dipole and electric
quadrupole moments, At. Data Nucl. Data Tables 90, 75
(2005).

[19] J. Bell and J. Leinaas, Electrons as accelerated thermometers,
Nucl. Phys. B 212, 131 (1983).

[20] J. Bell and J. Leinaas, The Unruh effect and quantum fluctu-
ations of electrons in storage rings, Nucl. Phys. B 284, 488
(1987).

[21] J. Rogers, Detector for the Temperaturelike Effect of Accelera-
tion, Phys. Rev. Lett. 61, 2113 (1988).

[22] P. Chen and T. Tajima, Testing Unruh Radiation with Ultrain-
tense Lasers, Phys. Rev. Lett. 83, 256 (1999).

[23] R. Schützhold, G. Schaller, and D. Habs, Signatures of the
Unruh Effect from Electrons Accelerated by Ultrastrong Laser
Fields, Phys. Rev. Lett. 97, 121302 (2006).

[24] G. Brodin, M. Marklund, R. Bingham, J. Collier, and R. G.
Evans, Laboratory soft x-ray emission due to the Hawking-
Unruh effect? Class. Quantum Grav. 25, 145005 (2008).

[25] R. Müller, Decay of accelerated particles, Phys. Rev. D 56, 953
(1997).

[26] D. A. T. Vanzella and G. E. A. Matsas, Decay of Accelerated
Protons and the Existence of the Fulling-Davies-Unruh Effect,
Phys. Rev. Lett. 87, 151301 (2001).

[27] H. Suzuki and K. Yamada, Analytic evaluation of the de-
cay rate for an accelerated proton, Phys. Rev. D 67, 065002
(2003).

[28] A. Higuchi, G. E. A. Matsas, and D. Sudarsky, Bremsstrahlung
and Fulling-Davies-Unruh thermal bath, Phys. Rev. D 46, 3450
(1992).

[29] A. Higuchi, G. E. A. Matsas, and D. Sudarsky, Bremsstrahlung
and zero energy Rindler photons, Phys. Rev. D 45, R3308
(1992).

022807-9

https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevLett.91.243004
https://doi.org/10.1103/PhysRevA.74.023807
https://doi.org/10.1103/PhysRevLett.128.163603
https://doi.org/10.1103/PhysRevD.57.2403
https://doi.org/10.1103/PhysRevD.103.105023
https://doi.org/10.1016/0550-3213(95)00452-X
https://doi.org/10.1103/PhysRevD.107.045012
https://doi.org/10.1103/PhysRevD.107.085016
https://doi.org/10.1103/PhysRevD.107.105021
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/0550-3213(83)90601-6
https://doi.org/10.1016/0550-3213(87)90047-2
https://doi.org/10.1103/PhysRevLett.61.2113
https://doi.org/10.1103/PhysRevLett.83.256
https://doi.org/10.1103/PhysRevLett.97.121302
https://doi.org/10.1088/0264-9381/25/14/145005
https://doi.org/10.1103/PhysRevD.56.953
https://doi.org/10.1103/PhysRevLett.87.151301
https://doi.org/10.1103/PhysRevD.67.065002
https://doi.org/10.1103/PhysRevD.46.3450
https://doi.org/10.1103/PhysRevD.45.R3308

