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Abstract: Neuroinflammation is an emerging therapeutic target in chronic degenerative and autoim-
mune diseases, such as osteoarthritis (OA) and rheumatoid arthritis. Mast cells (MCs) play a key role
in the homeostasis of joints and the activation of MCs induces the release of a huge number of media-
tors, which fuel the fire of neuroinflammation. Particularly, synovial MCs release substances which
accelerate the degradation of the extra-cellular matrix causing morphological joint changes and carti-
lage damage and inducing the proliferation of synovial fibroblasts, angiogenesis, and the sprouting of
sensory nerve fibers, which mediate chronic pain. Palmitoylethanolamide (PEA) is a well-known MCs
modulator, but in osteoarthritic joints, its levels are significantly reduced. Adelmidrol, a synthetic
derivate of azelaic acid belonging to the ALIAmides family, is a PEA enhancer. Preclinical and clinical
investigations showed that the intra-articular administration of Adelmidrol significantly reduced
MC infiltration, pro-inflammatory cytokine release, and cartilage degeneration. The combination of
1% high molecular weight hyaluronic acid and 2% Adelmidrol has been effectively used for knee
osteoarthritis and, a significant improvement in analgesia and functionality has been recorded.

Keywords: palmitoylethanolamide; adelmidrol; hyaluronic acid; visco-induction; osteoarthritis;
neuroinflammation; mast cells; joint degeneration and pain

1. Introduction

Osteoarthritis (OA) is a leading cause of musculoskeletal chronic pain, affecting nearly
16% of the population, characterized by cartilage degeneration and stiffness. A mechanism-
based approach to OA should include at least three targets: the peripheral mechanisms of
inflammation, the central mechanisms of pain hypersensitivity, and the prevention of joint
destruction [1]. In the last few years, mast cells (MCs) have been widely investigated as
a possible target to be modulated for controlling peripheral and central nervous system
inflammation [2,3].

Joints are a target of neuroinflammation in chronic degenerative and autoimmune
diseases, such as OA and rheumatoid arthritis, and MC activation has been recognized as a
prominent feature of the synovial tissue in patients with OA [4]. The aim of this review is
to present preclinical and clinical evidence of a new intra-articular formulation containing
Adelmidrol for targeting neuroinflammation in OA diseases.
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2. Neuro-Immune Mechanisms Underlying OA

The pathogenesis of OA is correlated with different interrelated mechanisms including
inflammation, neuroplasticity, cartilage disruption, and bone damage. Neuro-immune
signaling may occur when innate immune cells produce algogenic factors that act on the
pain pathway [5]. Indeed, during OA progression, the nociceptors innervating joints can be
sensitized by locally generated mediators, such as inflammatory cytokines and chemokines,
nerve growth factor (NGF) [6], and disease-associated molecular patterns (DAMPs) [7,8]
(Figure 1).
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Figure 1. Schematic representation of the main contribution of MCs to degenerative joint diseases.
Hyperactivated synovial MCs trigger the inflammatory process increasing vascular permeability and
angiogenesis, recalling circulating PMN cells at the lesion site and activating synovial fibroblasts.
Moreover, synovial MCs degranulation releases a massive amount of pro-inflammatory cytokines
and chemokines, MMPs, and aggrecanases responsible for ECM protein degradation and, cartilage
and bone remodeling.

The pathogenesis of OA is largely determined by the disrupted balance of pro- and anti-
inflammatory mediators leading to a chronic low-grade inflammation which contributes to
the associated pain condition.

The enhancement of proinflammatory cytokines causes the secretion of enzymes and
other inflammatory factors involved in the pathogenesis of OA responsible for morphologi-
cal joint changes, such as cartilage degeneration, osteophyte formation, and synovitis. One
of the most important inflammatory mediators involved in this process is the interleukin
(IL)-1β, a member of the IL-1 superfamily implicated in the pathogenesis of numerous
neuroinflammatory diseases [9].

In OA, through the activation of the IL-1 receptor I (IL-1RI), IL-1β mediates cartilage
destruction by inhibiting new formations of proteoglycans and degrading existing proteo-
glycans by stimulating degradative enzyme production. Widely distributed in different
cells in the knee joint, IL-1RI has been shown to be upregulated in isolated human OA chon-
drocytes in vitro [10,11]. In OA synovium, a relative deficit in the production of natural
antagonists of the IL-1 receptor (IL-1Ra) has been detected and it could possibly be related
to the additional production of nitric oxide in OA tissues [12]. IL-1β activates several sig-
naling pathways which overall contribute to the progression of OA. In particular, through
mitogen-activated protein kinase (MAPK) signaling, IL-1β induces catabolic events includ-
ing the cartilage extracellular matrix (ECM) degradation mediated by metalloproteinases
(MMPs), such as MMP-1, MMP-3, and MMP-13, and aggrecanases such as ADAMTS-4
and ADAMTS-5. Additionally, the IL-1β-mediated NF-κB pathway activation leads to
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the synthesis and secretion of proinflammatory cytokines [IL-6 and tumor necrosis factor
(TNF)-α], and chemokines [IL-8, monocyte chemoattractant protein-1 (MCP-1 or CCL2),
CCL5 (RANTES), and macrophage inflammatory protein-1a (MIP-1a)] [13]. In OA, higher
concentrations of IL-6 in synovial fluid have been correlated with the pain experience of
OA patients [14] and in an experimental study, de Hooge et al. [15] showed that IL-6 gene
knock out mice developed more advanced OA, compared to control animals.

High concentrations of TNF-α have been observed in structures such as synovial fluid,
synovial membrane, cartilage, and subchondral bone layer [16]. As with IL-1β, TNF-α, via
its conjugate receptors (TNFR-1 and TNFR-2), promotes the activation of the JNK kinase
and the transcription factor NF-κB [16], by leading to the degeneration of cartilage and
morphological joint changes.

Chemokines contribute to the inflammatory processes, stimulating the chemotaxis
of inflammatory cells that, in turn, secrete proinflammatory cytokines, by representing
thus the major challenge in treating and slowing the progression of osteoarthritis [11].
Increased levels of CCL2 have been detected in the synovial fluid of patients with knee
OA [17]. Borzi et al. [18] demonstrated that CCL2 induces MMP-3 expression enhance-
ment, contributing to proteoglycan loss and the degradation of cartilaginous tissue. In an
experimental study, Miller et al., [19] showed that both CCL2 and CCR2 were upregulated
in the innervating dorsal root ganglia (DRG) of the knee 8 weeks after the surgical model
of OA while the absence of CCL2 or CCR2 suppresses selective inflammatory genes in
joints 6 h post-de-stabilization of the medial meniscus (DMM) model, including arginase
1, prostaglandin synthase 2, nitric oxide synthase 2, IL-6, MMP-3, and the tissue inhibitor
of metalloproteinase (TIMP)-1, by delaying pain development. CCL3 and CCL5 levels
have been shown to be elevated in OA synovial fluid when compared with controls [17,20].
IL-1β-incubated human chondrocytes showed a significant upregulation of CCL3, CCL4,
and CCL5 [21].

Chemokines from the CXC family also participate in the pathogenesis of OA. CXCL8
(IL-8) has been shown to be upregulated in the serum and in the synovial fluid of OA
patients [22], and the study conducted by Guo et al. [23] reported that CXCL12 levels in
the synovial fluid were closely related to the radiographic severity of OA. Interestingly,
experimental evidence suggests a role for fractalkine (CX3CL1) and its receptor (CX3CR1)
in the development of chronic pain in OA. Indeed, after DMM surgery, fractalkine release
by DRG neurons is upregulated in the late phase of the model and this timing correlates
with the development of microgliosis in the dorsal horn, where microglial cells express
CX3CR1 [24]. The involvement of fractalkine and its receptor CX3CR1 in several pre-
clinical models of chronic and neuropathic pain has been previously described [25,26].
In particular, this pathway has been highlighted as one of the most important cross-talk
pathways involved in neuron-microglia communication [27].

As a member of the neurotrophin family, NGF is essential for the development of
nociceptive primary neurons. NGF can bind the general neurotrophin receptor p75, as
well its high-affinity cognate receptor, tropomyosin-related kinase (Trk)-A [28], which
are expressed by joint cells, including chondrocytes, and increased in OA cartilage [29].
Triggered by a proinflammatory environment, the NGF synthesis is highly correlated with
the degree of OA cartilage degradation in humans [29]. The NGF/TrkA signaling activation
induces the release of a variety of inflammatory mediators such as serotonin, histamine,
and NGF itself, which are known to cause sensitization of nociceptors. The injection of an
anti-NGF monoclonal antibody shortly after model induction (day 2) was able to reverse
the deficits in burrowing one day later compared to saline [30]. Moreover, the effects
of a long-term NGF blockade in rat meniscal surgery models have been reported [31].
The authors showed that therapeutic treatment (day 14–day 21) reversed weight-bearing
asymmetry and mechanical allodynia of the hind paw, while no short-term effects on
histologic cartilage degeneration were observed. Similar findings were reported using
Tanuzemab in a 28-day rat medial meniscal tear (MMT) model [32], where the authors
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described a significant increase in tibial cartilage degeneration, subchondral bone sclerosis,
and tibial osteophytes induced by the treatment.

Damage-associated molecular patterns (DAMPs) are a group of molecules released
from ECM to the joint cavity during cartilage degradation. Together with so-called
pathogen-associated molecular patterns (PAMPs), DAMPs signal to the immune system
a “dangerous state” requiring a protective response to a pathological state. Indeed, joint
trauma results in the production of DAMPs and intracellular alarmins that signal through
pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) on syn-
ovial macrophages, fibroblast-like synoviocytes (FLS), or chondrocytes to induce the local
production of inflammatory mediators of various factors, like catabolic factors [matrix
metalloproteinase, cytokines, chemokines cathepsins (B, K, and L)], and the complement
cascade [7,33].

High levels of NGF, released by MCs, influence sensory nerve activity and its interac-
tion with the high-affinity TrkA receptor (NGF/TrkA), and amplify inflammatory processes
contributing to the development of a nerve sprouting of sensory pain fibers which mediate
chronic pain maintenance.

3. Role of Mast Cells in OA

The important role of MCs in allergic reactions is well-known. Moreover, the involve-
ment of MCs in physiological bone turnover and bone disorders has been described in
detail [34,35]. MCs usually reside quietly within tissues throughout the body, whereas when
they become activated, they secrete granules containing histamine and other inflammatory
substances. The hyperactivation of MCs is often accompanied by pain syndromes [36].
Indeed, pain-like behaviors have been found to be MC-associated in several experimental
models of pain [37].

In healthy joints, synovial tissue macrophages (STM) or MCs represent nearly 3% of
the cellular population of the synovia and act as sentinels, monitoring possible pathogens
and mediating the immune response [38]. In chronically inflamed joints, the synovial mem-
brane becomes hypertrophic and the MC density significantly increases, as a result of the
recruitment of circulating progenitors, the maturation of local MC precursors, the differen-
tiation of local mesenchymal stem cells (MSCs) into MCs, and the release of neurotrophins
as NGF that stimulate further MC proliferation. Farinelli et al. have recently shown, in
hip and knee tissue from OA patients undergoing arthroplasty, a significant increase in the
MCs and the vessel number, which significantly correlated with the synovitis score and
disease severity [39]. The synovial MC infiltration has been associated with a variety of
inflammatory changes which may play a role in the pathophysiology of OA [40,41]. The
increased vascular permeability mediated by the histamine and prostaglandin D2 released
by MCs, the recruitment of other circulating polymorphonuclear cells (PMN), such as
leukocytes, and macrophage activation induced by cytokines and chemokines, contribute
to the early phases of inflammatory arthritis [42]. Additionally, MCs may participate in
joint destruction by the induction of MMPs from fibroblast-like synoviocytes, chondrocytes,
and other cell types in the arthritic cartilage [42,43]. MCs have been detected even in
osteophytes, where they play a role in accentuating the inflammatory pathology of OA [44].
Similarly, in the rheumatoid-arthritis (RA) joint, activated MCs release pro-inflammatory
and immunomodulatory mediators (TNF-A, IL-6, IL-8, VEGF, histamine, heparin, tryptase)
that induce angiogenesis, promote cartilage erosions, synoviocyte proliferation, and pain
sensitization. Synovial MC concentration has been shown to correlate with the different
stages of RA, particularly with the maintenance or lack thereof of the remission phase,
suggesting a possible role as a biomarker to predict the severity and progression of the
disease [45]. Cytokines and growth factors released during inflammation are the main
mediators of the cross-talk between the subchondral bone, cartilage, and synovia. In vitro
studies reveal that MCs synthesize and release NGF in response to antigen/IgE stimulation
and it is involved in MCs maturation and degranulation [46]. High levels of NGF, released
by MCs, induce the sprouting of sensory pain fibers and contribute to peripheral and central
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sensitization, which are the cornerstone of chronic pain maintenance [47]. The injection
of complete Freund’s adjuvant (CFA) induces inflammation of the joint and sprouting of
CGRP+ nerve fibers in the synovium. This sprouting is significantly attenuated by anti-
NGF therapy [48]. NGF binds TrkA receptors on inflammatory cells inducing the release of
inflammatory mediators, such as serotonin, histamine, and even further NGF [49]. A more
recent study suggested that NGF released from MCs may be implicated in osteoarthritis
pain [50]. The authors have indicated the NGF responsible for MCs-PGD2-mediated in-
creased nociceptive signaling, suggesting the TrkA blockade in MCs as a potential target for
OA pain. Finally, MCs seem to play a role in the metabolism of hyaluronic acid (HA), which
is the main component of the ECM and play a key role in joint lubrification during move-
ment. MCs influence HA synthesis and degradation through two mechanisms of action.
Firstly, MCs release tryptases, which may accelerate HA destruction. Secondly, granules of
synovial MCs contain heparin, which represents the preliminary stage in the synthesis of
HA. In vitro studies showed that MC chymase and tryptase accelerated the degradation of
HA in the synovial fluid [51]. Moreover, MCs express the hyaluronic-acid-binding isoform
of CD44 [52]. These observations could explain why the modulation of MCs could be a key
factor for reducing intra-articular inflammation and ensuring the physiological metabolism
of HA, filling the unmet needs of the currently available intra-articular therapies.

4. Intra-Articular Adelmidrol: A New Therapeutic Option for OA

Intra-articular treatments in OA management are warranted as their effects are limited
to damaged joints, without significant systemic adverse events. The most commonly
used intra-articular treatments are high-molecular-weight HA, corticosteroids, leukocyte-
poor platelet-rich plasma (LP-PRP), leukocyte-rich platelet-rich plasma (LR-PRP), bone
marrow mesenchymal stem cells (BM-MSCs), and adipose mesenchymal stem cells (AD-
MSCs) [53]. Intra-articular steroids are widely used for their anti-inflammatory effect.
However, they have a mild to moderate effect on pain severity [54] and their chronic use has
been associated with a number of clinical concerns, the most relevant being the alteration of
gene expression and immunomodulatory effects, which are associated with additional joint
damage [55]. Furth more, corticosteroids may inhibit the anabolic activity of chondrocytes,
decrease collagen expression, and, when chronically used, be chondrotoxic [56].

Recent evidence showed that in symptomatic patients with knee OA, a combination of
PRP and HA induces a significantly greater improvement of pain and function compared
with HA injections only [57]. PRP infiltration in OA allows for the modulation of inflamma-
tion and the induction of cartilage regeneration, while HA is a pure visco-supplementation
therapy, and is thus prone to degradation by proinflammatory cytokines, free radicals, and
proteinases [58]. Although commonly used, this treatment presents extreme variability
during the preparations, often influenced by donor-specific factors or by processing meth-
ods. As conventional treatments provide limited therapeutic benefits, novel strategies for
managing OA are required.

Adelmidrol has been recently investigated as a possible innovative intra-articular
therapy for OA. Adelmidrol is a synthetic derivate of azelaic acid which works as a palmi-
toylethanolamide (PEA) enhancer increasing endogenous PEA levels [59]. Recently, it
has been demonstrated that Adelmidrol is able to significantly increase the endogenous
PEA level in the duodenum and colon of healthy mice in a dose/time-dependent and
PPAR-γ-independent manner [60]. As with PEA, Adelmidrol belongs to the family of Au-
tacoid Local Injury Antagonist Amides (ALIAmides) and its amphiphilic and amphipathic
characteristics make Adelmidrol particularly soluble and suitable for topical [61,62] and
intra-articular administration. In healthy synovia, an elevated amount of PEA is present,
while its levels are significantly reduced in the synovial fluid of patients with OA and
rheumatoid arthritis [63]. In OA joints, the reduction of endogenous PEA levels is responsi-
ble for MC hyperactivation, which, by triggering a cascade of neuroinflammatory events,
alters the physiological functionality of nerve endings, chondrocytes, and joint synvioblasts.
Hypertrophic synvioblasts become unable to produce basic components of cartilage, lead-
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ing to the progression of joint damage [42,64,65]. Therefore, the restoration of normal
endogenous PEA levels, necessary to ensure MC normo-reactivity, becomes essential for
the maintenance of normal joint function. These findings suggest that Adelmidrol, due to
its properties, could represent a valid therapeutic approach for all diseases characterized
by a significant reduction in endogenous PEA levels.

5. Adelmidrol in OA: Preclinical Evidence

The anti-inflammatory and immunomodulatory properties of both PEA and Adelmidrol
have been shown in numerous experimental studies [66,67]. Particularly, Adelmidrol has
been shown to reduce acute inflammation in the carrageenan (CAR) model, when systemi-
cally injected [68]. In the same study, the beneficial effect of Adelmidrol was also proved in
collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. Adelmidrol was
shown to reduce clinical signs of OA, such as periarticular erythema and paw edema. X-ray
examinations have shown that Adelmidrol reduced bone erosions in the femoral growth
plate, as well as in the tibiotarsal joints with a consequent reduction of pain and proinflam-
matory cytokines (TNF-α, IL-6, and IL-1β). Interestingly, the significant presence of MCs,
with an increased chymase and tryptase expression in the joint tissues after CIA induction,
was also reduced [68]. Preclinical observations of the combination of Adelmidrol and HA
are available in a rat model injected with monosodium-iodoacetate (MIA) to induce OA.
Di Paola et al. demonstrated that the combination of Adelmidrol with HA in a dose/time-
dependent manner reduced the plasma levels of pro-inflammatory cytokines (TNF-a and
IL-1b), MMPs, and NGF production in the osteoarthritic knee of the rats. Moreover, the
combination significantly reduced MC infiltration and histological alterations induced by
intra-articular MIA injection [69]. Among animal models developed for the examination
of OA pathophysiology [70], MIA represents the most used model to study chronic pain
associated with OA [71]. Along with joint damage, MIA injections induce mechanical
sensitivity in the ipsilateral hind paw and weight-bearing deficits. Di Paola et al. observed
that mechanical allodynia and motor functioning along with the degeneration of articular
cartilage were reduced by the combination of HA and Adelmidrol [69].

6. Intra-Articular Adelmidrol: Clinical Evidence

A new intra-articular medical device containing Adelmidrol has been recently intro-
duced onto the market (Hyadrol®, 2 mL pre-loaded syringe for intra-articular injection,
Epitech Group SpA, Milano, Italy). In this product, 2% Adelmidrol is administered together
with 1% high-molecular-weight (from 1.3 to 2.0 × 106 dalton) HA, which physiologically
binds the CD44+ receptor [72]. Intra-articular Adelmidrol is supposed to be a valid ther-
apeutic option for normalizing MC function and ensuring the visco-induction of HA,
through a dual mechanism of action. Firstly, Adelmidrol, by increasing PEA levels in the
OA joint, might switch MCs from the hyperactivated to the physiological status; thus, it
may reduce the HA degradation, by inhibiting the release by MCs of lytic enzymes, such as
tryptases, hyaluronidases, and β-hexosaminidases. Secondly, Adelmidrol, by normalizing
the MCs’ release of heparin, which is a precursor of HA, induces HA production, leading
to a visco-inductive effect in the OA joint (Figure 2).

A multi-center clinical trial has been published on the use of this combination of
Adelmidrol and HA for intra-articular injection in patients suffering from Kellgren and
Lawrence grade II-III osteoarthritis of the knee [73]. Eligible patients were ≥40-year-old
subjects suffering from pain for more than 6 months, with an average pain score > 20
on the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index pain
sub-scale, and must have performed a washout of at least 2 weeks from other analgesics
and/or non-steroidal anti-inflammatory drugs (NSAIDs). The principal exclusion criteria
were: (a) the presence of concomitant severe systemic inflammatory joint diseases; (b) the
use of corticosteroids in the previous 3 months; (c) the use of chondroprotective drugs,
visco-supplementation injections, or arthroscopies within 6 months. The Italian WOMAC
version was used in its VAS format: all 24 items were rated by the subject on a 10 cm VAS
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ranging from 0 (indicating no pain, stiffness, or functional limitation) to 10 (indicating
extreme pain, stiffness, or functional limitation). Ranges of the WOMAC scores were: pain
(0–50); stiffness (0–20), and functional limitation (0–170) [74]. The enrolled patients received
4 weekly intra-articular injections of 1% high-molecular-weight hyaluronic acid and 2%
Adelmidrol in a 2 mL pre-loaded syringe. Patients were assessed using the WOMAC
Osteoarthritis Index, the 12-Item Short Form Health Survey (SF-12) for the quality of life,
and the Likert Patient Global Impression of Change (PGIC). In total, 102 patients (female n
60, 58.8%), with a mean age of 63.2 ± 0.6 years were recruited in this study, and follow-ups
were conducted for 4 weeks after the last intra-articular injection. Only 7 patients withdrew
prematurely from the trial: 3 for accidental trauma not related to the treatment, 3 due to
knee pain and/or swelling after infiltration, and 1 was lost at the follow-up stage.
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Figure 2. Visco-supplementation vs. Visco-induction. (A) Visco-supplementation: Exogenous
HA is injected in the OA joints where activated MCs release tryptases, hyaluronidases, and
β-hexosaminidases which in turn may accelerate HA degradation; (B) Visco-induction: Adelmidrol,
by increasing endogenous PEA levels, downregulates MCs activation and shift them towards a
physiological condition. Adelmidrol reduces the MCs degranulation, the release of lytic enzymes,
and therefore the HA degradation, normalizing the physiological release of heparin, a HA precursor.

The 95 patients included in the final evaluation 4 weeks after treatment showed a
significant improvement in all 3 elements of the WOMAC subscale (pain, stiffness, and
functional limitation) (Table 1). Furthermore, a significant improvement in the quality of
life was recorded in both the mental and physical components of the SF-12 (Figure 3).

Table 1. Changes in the WOMAC Osteoarthritis Index. Adapted from [73].

T0 T1 T2 T3 T4 T5
Basal

(before 1st
infiltration)

1st w 2nd ws 3rd ws 1st w after 4th
infiltration

4th w after 4th
infiltration

N patients 102 102 101 98 97 95
Pain 22.5 ± 0.76 16.8 ± 0.87 12.2 ± 0.81 9.4 ± 0.82 7.0 ± 0.76 5.2 ± 0.63

Stiffness 7.8 ± 0.49 6.3 ± 0.48 4.7 ± 0.43 3.6 ± 0.39 2.5 ± 0.33 1.9 ± 0.29
Articular function 67.3 ± 3.24 58.4 ± 3.10 46.3 ± 2.84 36.0 ± 2.83 28.1 ± 2.66 21.4 ± 2.13

Total WOMAC score 97.6 ± 4.11 81.5 ± 4.08 63.3 ± 3.78 49.1 ± 3.77 37.6 ± 3.53 28.5 ± 2.85
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Figure 3. Changes in the SF12. Adapted from [73].

Over 90% of the treated subjects reported a clinical improvement according to the
PGIC subjective evaluation, among which 76.4% felt “very much” or “much” improved
(Figure 4). Intra-articular injections of 1% high-molecular-weight hyaluronic acid and 2%
Adelmidrol were well tolerated. No severe adverse events were observed. Seven patients
(7.4%) reported local pain at the site of injection, accompanied by swelling in 2 patients
(2.1%), regarded as related to the infiltrative procedure. Other adverse events, such as
diarrhea, headache, abdominal cramps, and trauma were observed in 10 patients judged
by the investigators as not related to the treatment [73].

Biomolecules 2022, 12, 1453 9 of 14 
 

  

Figure 4. Patient Global Impression of Change. Adapted from [69]. 

Vulpiani et al. recently published the follow-up of the described clinical trial, limited 

to a group of patients enrolled in a single hospital (Sant’Andrea University Hospital, 

Rome, Italy), available for re-evaluation at 6 months, 1 year, and 2 years following the last 

intra-articular infiltration [75]. Forty-seven patients (77% of those enrolled in the first trial 

in a single center) were evaluated using both the WOMAC scale and the SF-12 question-

naire. The results obtained after 4 infiltrations, as measured with the WOMAC score, have 

been maintained for the whole follow-up period, including the effects on functional limi-

tation. Similarly, no statistically significant modifications of both the physical and mental 

components of SF-12 have been observed in the 2-year follow-up period. These results 

suggest a long-term effect of Adelmidrol infiltration, which is not common for other intra-

articular therapies. 

7. Conclusions 

OA is a complex degenerative disease, which requires a multimodal approach [1]. 

Systemic analgesia plays a role in targeting recurrent episodes of acute inflammation, 

which, by definition, lasts only a few days. NSAIDs may be useful for mitigating the dan-

gerous effects of the destructive enzymes, cytokines, and prostaglandins released in the 

inflamed synovial membrane, after leukocyte infiltration [76,77]. Central analgesics, such 

as acetaminophen, opioids, and adjuvants, may be used for targeting maladaptive neu-

ronal plasticity [78,79] and central mechanisms of pain [80]. Intra-articular therapies may 

support systemic analgesia by affecting the progression of joint destruction. In the real-

world experience, however, there are still many unmet needs in the currently available 

intra-articular treatments for OA, in terms of analgesic efficacy, duration, tolerability, anti-

inflammatory effect, and the modulation of cartilage degeneration. 

Adelmidrol represents an innovative intra-articular treatment, which targets neu-

roinflammation and provides “visco-induction” to OA joints. It is time to “think outside 

the box”: we can prevent endogenous HA degradation, rather than merely provide HA 

through exogenous administration. Traditional exogenous HA is intra-articularly admin-

istered in order to provide “visco-supplementation” and to improve joint lubrification. 

However, when considering the inflammatory environment where the HA is injected, it 

is not surprising that its efficacy can be invalidated by the huge number of substances 

locally released, including MC-released tryptases and chymase, hyaluronidases, and β-

hexosaminidases. Furthermore, MCs have played a key role in joint homeostasis, and their 

degranulation induces neuroinflammation. 

MC-released pro-inflammatory cytokines fuel the fire of inflammation, promoting 

cartilage damage, angiogenesis, nerve sprouting, and pain sensitization. 
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Vulpiani et al. recently published the follow-up of the described clinical trial, limited
to a group of patients enrolled in a single hospital (Sant’Andrea University Hospital,
Rome, Italy), available for re-evaluation at 6 months, 1 year, and 2 years following the
last intra-articular infiltration [75]. Forty-seven patients (77% of those enrolled in the
first trial in a single center) were evaluated using both the WOMAC scale and the SF-12
questionnaire. The results obtained after 4 infiltrations, as measured with the WOMAC
score, have been maintained for the whole follow-up period, including the effects on
functional limitation. Similarly, no statistically significant modifications of both the physical
and mental components of SF-12 have been observed in the 2-year follow-up period. These
results suggest a long-term effect of Adelmidrol infiltration, which is not common for other
intra-articular therapies.
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7. Conclusions

OA is a complex degenerative disease, which requires a multimodal approach [1].
Systemic analgesia plays a role in targeting recurrent episodes of acute inflammation,
which, by definition, lasts only a few days. NSAIDs may be useful for mitigating the
dangerous effects of the destructive enzymes, cytokines, and prostaglandins released in
the inflamed synovial membrane, after leukocyte infiltration [76,77]. Central analgesics,
such as acetaminophen, opioids, and adjuvants, may be used for targeting maladaptive
neuronal plasticity [78,79] and central mechanisms of pain [80]. Intra-articular therapies
may support systemic analgesia by affecting the progression of joint destruction. In the
real-world experience, however, there are still many unmet needs in the currently available
intra-articular treatments for OA, in terms of analgesic efficacy, duration, tolerability, anti-
inflammatory effect, and the modulation of cartilage degeneration.

Adelmidrol represents an innovative intra-articular treatment, which targets neuroin-
flammation and provides “visco-induction” to OA joints. It is time to “think outside the
box”: we can prevent endogenous HA degradation, rather than merely provide HA through
exogenous administration. Traditional exogenous HA is intra-articularly administered in
order to provide “visco-supplementation” and to improve joint lubrification. However,
when considering the inflammatory environment where the HA is injected, it is not surpris-
ing that its efficacy can be invalidated by the huge number of substances locally released,
including MC-released tryptases and chymase, hyaluronidases, and β-hexosaminidases.
Furthermore, MCs have played a key role in joint homeostasis, and their degranulation
induces neuroinflammation.

MC-released pro-inflammatory cytokines fuel the fire of inflammation, promoting
cartilage damage, angiogenesis, nerve sprouting, and pain sensitization.

PEA is a well-known substance that physiologically down-regulates MC activation
and in OA joints, its endogenous levels are significantly reduced. Therefore, one of the
targets of OA treatment, alongside the prevention of the progression of cartilage damage,
should be to extinguish the fire of joint neuroinflammation.

Adelmidrol, by increasing and normalizing PEA levels in the joints, could be the first
innovative molecule for “visco-induction”, through two mechanisms of action: (a) by reduc-
ing degranulation of MCs and therefore improving the efficacy of HA; (b) by normalizing
MC function and restoring the physiological production of heparin, a HA precursor.

Preclinical and clinical data available on Adelmidrol administered together with HA
support these hypotheses, by showing a significant reduction in cartilage degeneration,
MC infiltration, and pro-inflammatory cytokine and chemokine plasma levels, and by
improving analgesia and the functionality of OA patients.

Unfortunately, there are still many limitations to this emerging evidence. Firstly,
further studies are needed to address the exact molecular mechanisms underlying the
effects of Adelmidrol in the inflamed joint, despite the expected results demonstrated both
in animal and clinical studies. Secondly, nowadays, clinical experience is still limited to
the reported multicenter clinical trial by Vulpiani et al. [73] and the subsequent follow-up
study [75], which confirmed the long-term results of this treatment. Therefore, further
studies are warranted to confirm these interesting preliminary results.

In conclusion, in the context of a multimodal approach to OA, where systemic anal-
gesia plays a role in targeting recurrent acute inflammation and central neuroplasticity
leading to chronic pain [1], intra-articular treatment with Adelmidrol can be considered
a promising treatment for preventing the progression of joint degeneration and neuro-
inflammatory processes.
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