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Simple Summary: Triple-negative breast cancer accounts for 15–20% of breast tumors. It is a very
aggressive and heterogeneous disease characterized by the absence of druggable molecular targets.
In that context, understanding the role of non-coding RNAs and their implication in tumorigenesis
could represent an opportunity for the development of new therapeutic strategies, as well as for the
identification of reliable prognostic biomarkers. Recurrence and development of drugs-resistance
represents the most challenging aspects in triple-negative breast cancer. Non-coding RNAs’ unique
characteristics make them reliable biomarkers for monitoring cancer treatment, potentially able to
identify recurrence or chemoresistance.

Abstract: Breast cancer is one of the most frequent causes of cancer death among women worldwide.
In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer
subtype because it is characterized by the absence of molecular targets, thus making it an orphan
type of malignancy. The discovery of new molecular druggable targets is mandatory to improve
treatment success. In that context, non-coding RNAs represent an opportunity for modulation of
cancer. They are RNA molecules with apparently no protein coding potential, which have been
already demonstrated to play pivotal roles within cells, being involved in different processes, such
as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accord-
ingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar
characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment,
thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In
the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs
(lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of
action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-
based therapeutics.

Keywords: long non-coding RNA; circular RNA; triple-negative breast cancer; non-coding RNA; biomarker

1. Introduction

Breast cancer is one of the most frequent cancers leading to deaths in women world-
wide [1]. It is a heterogenous type of cancer that, from a molecular point of view, can be
classified into four different subtypes, according to the expression of three pivotal receptors:
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
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receptor 2 (HER2). Accordingly, breast cancer subtypes are Luminal A, Luminal B, HER2,
and triple-negative breast cancer (TNBC).

TNBC is the most aggressive breast cancer subtype because it lacks the expression of
all ER, PR, and HER2 receptors. It presents high intra-heterogeneity; indeed, four different
subtypes can be identified: basal-like immune-activated, basal-like immunosuppressed,
mesenchymal, and luminal androgen receptor [2].

Moreover, it is often associated with hereditary conditions, such as BRCA1 and BRCA2
mutations. Other mutations in key DNA repair genes or oncosuppressors, such as p53, are
common, as well as upregulation of specific genes and their related pathways involved in
cell proliferation, migration, and inhibition of apoptosis [3,4].

Epigenetically, TNBC is also characterized by a chromatin hypomethylation pattern,
which supports genome instability. Indeed, this breast cancer subtype is characterized by
a shorter median time to relapse. Additionally, TNBC is associated with a high risk of
metastases, leading to a poor overall survival rate. Chemotherapy and radiotherapy are
the gold standard treatments since there are no molecular targets that can be exploited for
TNBC treatment [5,6]. In particular, current treatment strategies include the use of taxanes,
platinum agents, anthracyclines, and ixabepilone. Unfortunately, drug resistance, as well
as the lack of druggable targets, represent the major issues that need to be overcome. In
that scenario, non-coding RNAs could represent an opportunity for solving the above-
raised issues.

The ENCODE project revealed that 98% of the transcribed part of the human genome
gives different RNAs that do not encode for proteins. This class of RNAs is called protein
non-coding RNAs (ncRNAs), and in the last years, they have been intensively studied
because of their pivotal role as gene regulators, participating in several cellular processes
and also in cancer. Indeed, ncRNAs dysregulated expression is often associated with tumor
progression and metastases. Among the different ncRNAs classes, long non-coding RNAs
(lncRNAs) and circular RNAs (circRNAs) exert an important role in TNBC (Figure 1).
LncRNAs are non-coding RNA molecules, defined as transcripts with more than 200 nt
that are transcribed by RNA Polymerase II. Based on their transcription pattern, lncRNAs
can be classified as intergenic, exonic, intronic, sense, antisense, or bidirectional. Similarly,
to messenger RNAs (mRNAs), pre-mature lncRNAs undergo 5′capping with methyl-
guanosine and 3′ polyadenylation and can also be subjected to RNA-splicing. Most of the
lncRNAs undergo alternative splicing, which increases the diversity of isoforms produced
and subsequently their subcellular localization [7]. LncRNAs functions are based on their
nuclear localization, as proven by the fact that they can act as cis or trans RNA regulators
(Figure 2). They can inhibit gene transcription by creating an RNA-DNA duplex preventing
RNA Polymerase II activity or can mediate chromatin methylation through the recruitment
of the Polycomb Complex [8]. Moreover, they can act as a scaffold, bringing together
proteins to favor their direct interaction, such as lncRNA TERRA that participate in the
telomerase modulation activity [9].

They can also act as a decoy or as a guide, thus directing particular ribonucleoprotein
complexes to their specific targets. Moreover, lncRNAs can exert sponge activity on
particular microRNAs (miRNAs), preventing their inhibitory function activity on their
mRNA targets [10] (Figure 2). In addition to the above-mentioned functions, recent studies
revealed the involvement of lncRNAs in viral infections [11], as well as a direct interaction
with signaling receptors [12].

Deregulated expression of lncRNAs has been associated with different diseases, in-
cluding cancer [13]. Based on their activity, lncRNAs can be identified as tumor suppressors
or oncogenes in cancer. Frequently in cancer, tumor suppressors lncRNA appeared to be
non-functional, leading to the activation of oncogenic pathways, whereas the oncogenic
lncRNAs are highly expressed, which sustains tumor development and progression. More-
over, their levels can be used as predictive biomarkers for treatment efficiency since their
levels can be associated also with tumor recurrence and metastases. Drug resistance is the
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main reason for therapy failure. Subsequently, lncRNAs levels can be exploited in order to
monitor therapy advancement.
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Figure 1. TNBC represents the most aggressive breast cancer subtype because it lacks the expression
of druggable receptors. In that context, understanding the role of non-coding RNAs could represent
an opportunity for the development of new therapeutic strategies. Short (miRNA, siRNA, piRNA)
and long non-coding RNA (circRNA, lncRNA) have been found to modulate TNBC tumor growth
and progression and to promote the metastatic process, as well as drug resistance.

Circular RNAs (circRNAs) are a class of ncRNAs that present a peculiar covalently
closed structure.

Initially considered as splicing errors, later it has been assessed their pivotal regulatory
roles in cells [14]. They derived mostly from a process called back-splicing, by which a
downstream 3′ splice site is joined to an upstream 5′ splice site, resulting in a closed loop-
like structure. The absence of 3′ or 5′ polarity allows circRNAs to be resistant to the action
of exonucleases, as shown after RNase R treatment that leads to circRNAs enrichment.
Regarding the circularization process, it is favored by the presence of complementary Alu
elements in the flanking intronic regions [15]. In addition, RNA binding proteins can be



Cancers 2023, 15, 4181 4 of 26

involved as FUS and Quaking (QKI), which have been demonstrated to promote the RNA
circularization process [15,16]. CircRNAs mechanisms of action include (1) interaction
with proteins acting as a scaffold to promote proteins or RNA Polymerase II binding;
(2) regulation of processes, such as autophagy or cell cycle; (3) cap-independent translation
leading to the formation of small functional peptides; and (4) sponge activity on proteins
or miRNAs (Figure 2). In particular, they can bind their miRNAs targets, preventing
their inhibitory activity on the mRNAs targets that result in being upregulated. As in the
case of lncRNAs, also circular RNAs exert pivotal roles in cancer, acting as oncogenes or
oncosuppressors. They participate in tumor progression, can promote metastases, and
can be associated with drug resistance. Moreover, circulating circRNAs that can be found
in fluid liquids, such as blood or saliva, have opened new possibilities to exploit these
molecules as molecular biomarkers, to monitor therapy treatment, and to predict possible
tumor recurrence. Liquid biopsy, which is a powerful tool based on the evaluation of
circulating tumor DNA or tumor cells, can be exploited for early diagnosis, prognosis, and
to monitor the response to treatment.
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Figure 2. Long non-coding and circular RNA main mechanisms of action. LncRNAs can inhibit or
promote gene transcription by creating RNA-DNA duplex, by interacting with proteins, by promoting
the formation of scaffold ribonucleoprotein complex, or by remodeling chromatin structure. They
can restore protein translation by sponging miRNAs. Similarly, also circRNA can sponge miRNAs or
interact with proteins. circRNAs and lncRNAs can encode for peptides.
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Intriguingly, recent evidence revealed that long non-coding and circular RNAs can
encode for peptides (less than 100 amino acids) or proteins [17]. Although their activities,
as well as their mechanism of encoding, have to be further elucidated, they represent
promising targets for the development of new drugs. As their non-coding counterpart,
indeed, they have been found to modulate tumorigenesis.

Here, we will describe the role of the so-far investigated lncRNAs and circRNAs
involved in triple-negative breast cancer pathogenesis, depicting their role as oncogenes or
tumor suppressors and highlighting their clinical relevance.

2. Long Non-Coding RNAs in TNBC

The study of differentially expressed lncRNAs in TNBC could be useful to assess
their involvement in tumorigenesis. Even though the number of the published papers
concerning the oncogenic or oncosuppressor role of lncRNAs and their use as molecular
targets for TNBC increased exponentially in the last few years, further studies are needed
in order to clarify the exact mechanisms they go through.

Several lncRNAs are reported to act as oncogenes in TNBC and also to correlate with
tumorigenic features, such as cell proliferation, invasion, migration, and drug resistance.
LncANRIL has been reported to be upregulated in TNBC and serous ovarian cancer [18]. It
acts as an oncogene by inhibiting apoptosis trough the sponging of miR-199a [18]. Since
lncANRIL has increased plasma levels, it represents a good candidate to serve as a molecu-
lar biomarker [19,20]. In addition, lncANRIL is involved in chemotherapy resistance by
enhancing aerobic glycolysis, and further studies are needed to understand in which way
it could be used as a prognostic predictor and for the monitoring of the treatment [21,22].
Another lncRNA that is related to the TNM stage, lymph node, and distant metastases
in TNBC is HIF1A-AS2 [23]. It is reported to be upregulated in plasma and to act as an
oncogene by an effect on cell proliferation and invasion [19,24]. Moreover, Jiang Y.Z. and
colleagues reported that HIF1A-AS2 is associated with paclitaxel resistance, highlighting
that this lncRNA could be used as a target for future treatment [25]. The peculiar role of
lncRNA downregulated in triple-negative breast cancer is related to lnc00056, an inter-
genic lncRNA that encodes for a micropeptide of 55 kDa called CIP2A binding protein
(CIP2A-BP), which has a tumor suppressor role [26]. Intriguingly, Guo B. and colleagues
showed that CIP2A-BP downregulated expression correlates with increased invasion and
migration in TNBC. Moreover, they showed that TGF- β, through the activation of the
Smad signaling pathway, inhibits the translation of CIP2A-BP, thus supporting TNBC
tumorigenesis [27]. HOTAIR is a well-studied lncRNA that has been reported to have a
peculiar role also in TNBC. Indeed, it is a marker of TNBC metastases and correlated with
poor survival and poor response to chemotherapy [28–30]. It is involved in the reprogram-
ing of the chromatin state [30–33]. Interestingly, studies by Li Z.X. and Wang Y.L. report
that knockdown of lncRNA-HOTAIR could overcome TNBC resistance to doxorubicin
through the PI3K/AKT/mTOR pathway. Of note, the combined treatment, by inhibiting
EGFR and c-ABL, has been found to inhibit HOTAIR, leading to the suppression of TNBC
growth [33,34]. Moreover, Wang Y.L. and colleagues also report that the use of lapatinib and
imatinib, an EGFR/HER tyrosine kinase and KIT inhibitor, respectively, transcriptionally
represses HOTAIR, highlighting the important impact that this lncRNA has on TNBC [33].

Long intergenic non-coding RNA regulator of reprograming, lincRNA-RoR, is another
peculiar lncRNA strongly overexpressed in TNBC, where it exerts oncogenic activity
by acting as a competing endogenous RNA sponge. Indeed, Eades G. and colleagues
reported that in TNBC, lincRNA-RoR is associated with metastases by downregulating the
oncosuppressor miR-145 [35]. Moreover, Hou P. and colleagues described an association
between the lncRNA expression with the epithelial-to-mesenchymal transition process
in breast cancer [36]. These data were confirmed by Eades G. and colleagues, which
demonstrated, in the TNBC context, how miR-145 does not affect cell proliferation or
apoptosis, but it is mainly involved in cell invasion [35,36]. Li Y. and colleagues highlighted
the importance of lincRNA-RoR inhibition in breast cancer, which leads to autophagy and
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also is able to reverse the resistance to tamoxifen, thus suggesting the pivotal role of this
lncRNA as a therapeutic target in TNBC [37].

LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) results
in being upregulated in cancer and, in particular, in TNBC, where Zuo Y. and colleagues
reported that its expression correlates with increased cell migration and invasion [38].
Moreover, they found that it exerts its oncogenic role by acting as a miRNA sponge for
miR-129-5p. Further analysis by Mekky’s group investigated the role of MALAT-1 as an
immunomodulatory lncRNA, showing that it mediates the innate and adaptative immune
response by acting as a miRNA sponge regulating miR-34a/MICA/B and miR-175p/PD-
L1/B7-H4 axes [39]. Interestingly, even though lncRNA DANCR originally was identified
as an oncogene in hepatocellular carcinoma, Sha S. and colleagues revealed that DANCR
results in being upregulated also in TNBC, where it could represent a promising target
for TNBC treatment [40,41]. Indeed, it was found to be correlated with increased cell
proliferation and invasion, and also in the maintaining of CSC-like phenotypic traits by
regulation of the expression of several stemness-related genes, such as Nanog, SOX2, and
OCT4. Wu G. and colleagues found that DANCR regulates SOX2 expression by sponging
miR-874-3p, and, more interestingly, they found that the expression of this lncRNA is
induced by Tuftelin (TUFT1), which is in turn positively correlated with poor prognosis.
This highlighted that a TUFT1-related therapy against DANCR could be useful for TNBC
treatment [42]. Intriguingly, the study of Vaidya A.M. and colleagues demonstrated the
efficacy of a TNBC therapy based on nanoparticle-mediated RNAi of the oncogenic lncRNA
DANCR, in particular, using tumor-targeting RGD-PEG-ECO/siDANCR nanoparticles [43].
Their study showed that basic oncogenic features, such as proliferation and invasion, were
inhibited by the RGD-PEG-ECO/siDANCR nanoparticles in two TNBC cells, MDA-MB-
231 and BT-549. The efficacy of this therapy was demonstrated also in vivo, where the
nanoparticles-mediated inhibition of DANCR resulted in a complete inhibition of tumor
proliferation, suggesting a powerful tool to use in TNBC treatment [43]. Further studies on
the pharmacokinetics and toxicity of the nanoparticles are still mandatory.

LncRNA NEAT1 has been found to be upregulated in TNBC, where its expression
correlates with cell growth, migration, and invasion. Moreover, it mediated cisplatin/taxol
drug resistance, suggesting that NEAT1 downregulation could sensitize cancer cells to
this treatment [44]. Wang S. and colleagues reported that MIR100HG presents a nuclear
localization, and it is involved in the regulation of the cell cycle by modulating the ex-
pression of the p27 gene through the formation of an RNA-DNA triplex structure [45].
Intriguingly, MIR100HG expression levels result in being very high in TNBC patients and
positively correlate with a poor prognosis in TNBC. Of note, this long non-coding RNA
has been found to be overexpressed only in TNBC and not in other types of cancer, thus,
representing an interesting target for TNBC patient treatment [46]. HCP5 is another lncRNA
whose oncogenic role has been established in TNBC, where it acts as a miRNA sponge for
miR-219a-5p, leading to the upregulation of the miRNA target BIRC3 involved in apopto-
sis [46,47]. LncRNA TINCR could serve as a novel biomarker for early TNBC diagnosis. It
is upregulated in the serum of early TNBC patients compared to early BC patients [48,49].
Zhang M. and colleagues demonstrated that TINCR expression correlates with increased
cell proliferation, migration, and invasion of TNBC cells BT-549 and SUM-159PT, and it
also interacts with miR-761, supporting its expression, which in turn promotes a metastatic
phenotype [48,49]. Moreover, the same group reported that TINCR upregulation increases
trastuzumab resistance, highlighting that it could be targeted in novel therapeutic treatment
to overcome drug resistance [49]. Lastly, among the different lncRNAs dysregulated in
cancer, one of the most peculiar oncogenic lncRNAs is lnc-PVT1, which has been found
to be upregulated also in TNBC. It is located in a cancer-associated region at 54 Kb down-
stream of MYC locus. Intriguingly, lncPVT1 is located predominantly in the nucleus, where
it exerts different functions, such as being involved in DNA rearrangement or epigenetic
modification by interacting with EZH2 of PCR2 complex, leading to promoter methylation
of different genes associated with anti-tumor properties. In particular, Li R. and colleagues
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described the lncPVT1 roles in different types of cancer, including breast cancer. Tang J. and
colleagues showed that lncPVT1 exerts an oncogenic role in TNBC, where it interferes with
the beta–catenin signaling pathway by binding KLF5 and increasing its stability, leading
to increased tumorigenesis [50,51]. A study of Wang L. and colleagues revealed that the
lncPVT1 oncogenic role in TNBC occurs also through p21 regulation [52]. This lncRNA
is peculiar because, following circularization of exon 2, it originates the circRNA called
circPVT1, which was also reported to act as an oncogene in several types of cancer, such as
gastric cancer and head and neck tumors [53]. The two molecules, lncPVT1 and circPVT1,
share important pathways, in which they exert a pivotal role as oncogenes; indeed, they
are involved in tumor progression, apoptosis, cancer metabolism, and drug resistance [54].
However, these molecules are controlled by two different promoters; a synergistic effect
cannot be excluded as also the cooperation with the neighbor c-Myc. Until now, studies
reported in the literature showed that circPVT1 exerts oncogenic activity in breast cancer
by sponging miR-181a-2-3p and miR-29a-3p, followed by increased invasion and drug
resistance and supporting breast cancer progression through the HIF-1α pathway [55,56].
However, because of the limited data available for their role in TNBC, further studies are
needed to elucidate the molecular mechanisms and in which way they can be targeted for
eventual treatment.

LncRNAs previously described that result in being upregulated in TNBC are consid-
ered as oncogenes; however, the literature search identified also many tumor suppressor
lncRNAs. This is the case of GAS5, a lncRNA that is downregulated in TNBC through
a high methylation pattern at the CpG island in the promoter region [57]. Zheng S. and
colleagues demonstrated that lncRNA GAS5 upregulation in TNBC leads to an increase
in paclitaxel sensitivity and apoptosis by acting as a miRNA sponge for miR-378a-5p [58].
Another tumor suppressor lncRNA downregulated in TNBC is lncRNA XIST, which is
known to be deregulated in different cancers. Intriguingly, Li X. and colleagues demon-
strated that overexpression of XIST in the TNBC cells MDA-MB-468 and MDA-MB-231
has an anti-tumor effect, leading to cell-growth inhibition. Indeed, they found that XIST
directly interacts with miR-454, increasing E-cadherin expression, thus inhibiting EMT, and
also promotes apoptosis [59]. Moreover, the study of Lan F. and colleagues reported that
serum exosomal XIST results in being overexpressed in recurrent TNBC patients, where
it is associated also with a poor overall survival, pointing out that it could be used as a
pivotal non-invasive biomarker in order to predict TNBC recurrence [60]. DRHC is another
tumor suppressor lncRNA downregulated in TNBC that could be a good candidate for
novel therapy treatment since it has as a target the oncogenic lncRNA HOTAIR. Indeed, Yu
F.S. and colleagues revealed that DRHC expression is able to inhibit the cell proliferation of
TNBC cells BT-549 and HCC70 [61]. In addition, many lncRNAs have been associated with
disease development and progression. Zhang et al. identified that the long non-coding
antisense transcript of nicotinamide phosphoribosyltransferase (NAMPT), NAMPT-AS, has
increased levels in TNBC, and this is linked to shorter survival, lymph node engagement,
long-distant metastasis, and advanced tumor stage. The authors proved that NAMPT-
AS/NAMPT interfered with the mTOR pathway, thus accelerating tumor progression,
and regulated autophagy in vitro and in vivo, underlining the oncogenic role of NAMPT-
AS [62]. Another lncRNA, GATA3-AS1, contributed to TNBC progression through CD8+
T-cells escape, degradation of GATA3 protein, and stabilization of PD-L1 [63].

In Table 1 are listed all lncRNAs reported in the literature that are involved in TNBC
and characterized as upregulated or downregulated, with the respective targets and their
clinical implication.
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Table 1. Comprehensive list of long non-coding RNAs involved in TNBC tumorigenesis.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

ANRIL
Sponges:

- mir-199a

Promotes:

- cell proliferation,
- tumor growth,
- chemotherapy resistance,
- inhibition of apoptosis.

Upregulated Upregulated [16,18,20–22]

HIF1A-AS2 NA

Promotes:

- cell migration,
- cell invasion,
- cell proliferation,
- paclitaxel resistance.

Upregulated Upregulated [19,23–25,64]

UCA1
Interacts with:

- hnRNP I

Promotes:

- cell proliferation,
- tumor growth.

Upregulated Upregulated [19,65,66]

TINCR
Sponges:

- miR-761

Promotes:

- cell migration,
- cell invasion,
- epithelial-to-mesenchymal

transition (EMT).

Upregulated Upregulated [48,49]

LINC00993 NA
Promotes:

- cell cycle arrest,
- tumor growth inhibition.

Downregulated NA [67,68]

LINC00665

Encodes:

- CIP2A-BP

micropeptide

Suppresses:

- cell migration,
- cell invasion.

Downregulated NA [26,27]

HOTAIR

Interacts with:

- HBXIP
- LSD1

Sponges:

- mir148a

Promotes:

- cell migration,
- cell invasion,
- drug resistance,
- chromatin remodeling.

Upregulated Upregulated [28,29,31–
34,69–72]

lincRNA-RoR
Sponges:

- miR-145

Promotes:

- cell invasion,
- cell migration,
- EMT transition,
- tumor growth,
- drug resistance.

Upregulated NA [35–37]

MALAT1

Sponges:

- miR-182
- miR-129-5p
- miR-34a
- miR-175p
- microRNA-

17-92
cluster

Promotes:

- cell and tumor growth,
- cell invasion,
- cell migration,
- tumor metastases,
- epigenetic modulations.

Mediates:

- innate and adaptive
immune suppression
events,

- the cytokine storm in tumor
microenvironment.

Upregulated Upregulated [38,39,73–75]
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Table 1. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

ERRLR01 NA NA Upregulated NA [76]

LINK-A
Interacts with:

- HB-EGF

Promotes:

- HIF1α transcriptional activity
in normoxic conditions.

Upregulated NA [20,77]

LOC554202 NA NA Downregulated NA [78,79]

LINC01234
Sponges:

- miR-429

Promotes:

- cell proliferation,
- cell migration,
- tumor growth.

NA NA [80]

lnc-DNAJC16 NA NA Upregulated NA [81]

lnc-PURA NA NA Upregulated NA [81]

CCAT1
Sponges:

- miR-218

Promotes:

- cell proliferation,
- cell migration,
- cell invasion.

Upregulated NA [82]

TROJAN
Interacts with:

- ZMYND8

Promotes:

- cell migration,
- cell invasion,
- tumor growth and metastases.

Upregulated NA [83]

LINC00339
Sponges:

- miR-377-3p

Promotes:

- cell proliferation.
Upregulated NA [84]

MIR100HG

Sponges:

- miR-5590-3p

Determines:
formation of
RNA–DNA triplex
structures through
binds to p27 gene

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- tumor growth,
- drug resistance.

Upregulated NA [45,46,85,86]

NRAD1 NA
Promotes:

- cell and tumor growth.
Upregulated NA [87]

DANCR

Sponges:

- miR-874-3p

Interacts with:

- RXRA

Promotes:

- cell proliferation,
- cell invasion,
- CSC-like phenotypic,
- tumor growth.

Upregulated NA [40–43,62,88,89]

NAMPT-AS

Interacts with:

- POU2F2

Sponges:

- miR-548b-3p

Promotes:

- cell proliferation,
- cell invasion,
- tumor growth,
- tumor metastasis.

Upregulated NA [62]

Linc-ZNF469-3
Sponges:

- miR-574-5p

Promotes:

- cell migration,
- tumor metastasis.

Upregulated NA [90]

HULC NA
Promotes:

- cell migration,
- cell invasion.

Upregulated Upregulated [23,91]

NEAT1 NA

Promotes:

- cell proliferation,
- cell invasion,
- cell migration,
- drug resistance.

Upregulated Upregulated [44]
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Table 1. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

BORG
Interacts with:

- TRIM28

Promotes:

- drug resistance,
- cell proliferation,
- tumor metastasis.

NA NA [92,93]

HCP5

Sponges:

- miR-219a-5p

Encodes:

- HCP5-132aa
protein

Promotes:

- cell proliferation,
- tumor growth,
- drug resistance.

Upregulated NA [46,47,94,95]

sONE
Sponges:

- eNOS mRNA

Inhibits:

- cell proliferation,
- cell invasion,
- cell migration,
- tumor growth,
- tumor metastasis.

Downregulated NA [96]

PTCSC3
Sponges:

- lncRNA H19

Inhibits:

- cell proliferation.
Downregulated Downregulated [97,98]

NEF NA
Inhibits:

- cell migration,
- cell invasion.

NA Downregulated [99]

GAS5
Sponges:

- miR-378a-5p

Enhances:

- drug sensitivity.
NA NA [58]

SNHG12 NA
Promotes:

- cell proliferation,
- cell migration.

Upregulated NA [100]

LINC01638
Interacts with:

- c-MYC

Promotes:

- EMT,
- cancer stem cell-like state.

Upregulated NA [101]

AFAP1-AS1
Interacts with:

- β-catenin

Promotes:

- cell proliferation,
- cell invasion,
- tumor growth,
- EMT,
- drug resistance.

Upregulated NA [102,103]

Linc00152
Interacts with:

- DNMTs

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- tumor growth.

Upregulated NA [104,105]

snaR NA

Promotes:

- cell migration,
- cell invasion,
- tumor growth.

NA NA [106]

LncRNA H19
Interacts with:

- p53

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- tumor growth,
- drug resistance.

Upregulated NA [107,108]

LUCAT1
Sponges:

- miR-5702

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- EMT.

Upregulated NA [109]
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Table 1. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

TINCR
Sponges:

- mir-761

Promotes:

- cell migration,
- cell invasion,
- EMT.

NA Upregulated [49,85]

lncRNA
titin-antisense

RNA1
(TTN-AS1)

Sponges:

- miR-211-5p

Promotes:

- cell proliferation,
- cell invasion,
- cell migration.

Upregulated NA [110]

LINC00299 NA NA Upregulated Hypermethylated [111,112]

XIST

Sponges:

- miR-454
- miR-let-7a-2-

3p

Modulates:

- cell proliferation,
- EMT,
- tumor growth,
- ALDH+ CSCs.

NA Upregulated [59,60,113]

ZEB1-AS1
Interacts with:

- ELAVL1

Promotes:

- tumor growth,
- cell migration,
- cell invasion.

Upregulated NA [114]

POU3F3 NA
Promotes:

- cell proliferation.
Upregulated Upregulated [115]

NRON NA
Inhibits:

- cell proliferation.
Downregulated NA [116]

DRHC NA
Inhibits:

- cell proliferation.
Downregulated NA [61]

Aim
Activates Wnt/β-

catenin/mTOR/PI3K
signaling

Inhibits:

- cell migration
- cell invasion.

Downregulated [117]

RMST NA

Inhibits:

- cell proliferation,
- cell invasion,
- cell migration.

Downregulated [118]

PVT1

Interacts with:

- KLF5
- Keap 1

Promotes:

- cell proliferation,
- tumor growth,
- drug resistance,
- cell migration,
- EMT.

Upregulated Upregulated [50–52,119]

MNX1-AS1
Interacts with:

- STAT3

Promotes:

- cell proliferation,
- cell invasion,
- cell migration,
- tumor growth.

Upregulated NA [120]

AC093850.2
Sponges:

- miR-4299

Promotes:

- cell proliferation,
- cell invasion,
- cell migration.

Upregulated NA [121]

PRKCQ-AS1
Sponges:

- miR-361-5p

Promotes:

- drug resistance,
- cell proliferation.

NA NA [122]
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Table 1. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

LINC01224

Sponges:

- miR-193a-
5p/NUP210
mRNA

Promotes:

- cell proliferation,
- cell migration,
- cell invasion.

NA NA [123]

LINC01559

Sponges:

- miR-370-3p
- miR-485-5p
- miR-940

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- tumor growth and metastasis.

Upregulated NA [124]

SNHG10 NA
Mediates:

- drug resistance.
Downregulated NA [125]

LINC00921
Sponges:

- miR-9-5p

Inhibits:

- cell proliferation,
- cell migration,
- cell invasion,
- EMT.

Downregulated NA [126]

3. Circular RNAs in TNBC

In recent years, the functions and molecular mechanisms of circular RNAs have
been deeply investigated, as well as their involvement in tumorigenesis [127]. Lu L. and
colleagues used a bioinformatic tool in order to detect differentially expressed circRNAs
in breast cancer, while the group of Coscujuela Tarrero developed a particular tool able
to characterize and quantify circRNAs [128,129]. Evidence showed that circRNAs that
resulted in being downregulated were associated with an oncosuppressor role, while
those overexpressed were considered as oncogenes. Interestingly, Wu L. and colleagues
found that circIRAK3 derived from the IRAK3 gene is upregulated in TNBC cells and
promotes invasion, migration, and metastasis in vitro and in vivo by acting as a miRNA
sponge for miR-3607 [130]. CircEPSTI1 is another circRNA upregulated in TNBC studied
by Chen B. and colleagues, who showed that it acts on the miR-4753/6809-BCL11a axis
supporting tumorigenesis. They demonstrated that knockdown of this RNA molecule
inhibits TNBC cells proliferation and increases apoptosis, suggesting that CircEPSTI1
could be a good candidate for future targeted therapy [69]. Analysis of the He R. group
performed in TNBC patients revealed the significant role of circGFRA1, which results in
being upregulated and correlated with a poor outcome and poor overall survival [131].
They demonstrated that this circRNA is able to act in the cytoplasm as a sponge for miR-
34a, supporting the upregulation of the miRNA target GFRA1, its host gene, that has
been already shown to act as an oncogene in breast cancer, regulating migration and
invasion [131]. TNBC progression, in particular, proliferation and metastasis, is regulated
also by another circRNA called circ-UBAP2 that Wang S. and colleagues showed to be
upregulated in TNBC and associated with poor prognosis [132]. Indeed, this RNA molecule
inhibits by direct interaction the tumor suppressive activity of miR-661, which in turn leads
to upregulation of the oncogene MTA1 [132]. Another circRNA associated with a poor
clinical outcome in TNBC is circKIF4A. Intriguingly, Tang H. and colleagues found that this
circRNA is upregulated in TNBC and positively correlates with the TNM stage, lymph node
metastasis, and also the tumor size, indicating that it could be a promising molecular target
in TNBC treatment [133]. They found that the circRNA mainly localized in the cytoplasm
exerts sponge activity on miR-375, preventing its activity on KI4A expression, whose
levels are upregulated in multiple malignancies, including also breast cancer. Considering
this evidence, the circKIF4A/miR-375/KIF4A axis could be targeted in a novel TNBC
therapeutic treatment to overcome cancer progression [133]. Of note, circKIF4A has been
recently demonstrated to reprogram breast tumor glucose metabolism by sponging miR-
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335, which in turn modulates the expression of the OCT4/ALDOA (aldolase A)-HK2
(hexokinase 2)/PKM2 (pyruvate kinase M2) axis [134]. A peculiar circRNA in TNBC is
circPSMA1, which has been reported to be upregulated in this aggressive subtype of breast
cancer. Yang S. and colleagues revealed that this oncogenic circRNA is found also in
tumor-derived exosomes, highlighting its importance as a biomarker in liquid biopsy [135].
Interestingly, they found that circPSMA1 acts on Akt1/β-catenin pathways by sponging
the miR-637 whose oncosuppressive role has been previously described in other tumors,
such as hepatocellular carcinoma and glioma [135–137]. Also, circHIF1A has been found to
be overexpressed in the plasma of TNBC patients, suggesting it could be a good biomarker
candidate for liquid biopsy. Chen T. and colleagues demonstrated the positive feedback
loop between circHIF1A and the oncogenic NFIB; indeed, this circRNA supports NFIB
upregulation by acting as a sponge for miR-149-5p, leading to the activation of AKT/STAT3
signaling pathways and inhibition of p21 expression [138]. Moreover, they show that NFIB
exerts a feedback loop by enhancing the transcription of FUS, which promotes circHIF1A
biogenesis [138]. CircWAC results in being highly expressed in TNBC, and intriguingly, it
has been reported to play a pivotal role in TNBC chemotherapy resistance [139]. Indeed,
Wang L. and colleagues revealed that circWAC regulates paclitaxel resistance through
miR-142 regulation, leading to the WWP1 oncogene overexpression that, in turn, activates
the PI3K/AKT pathway [139]. CircWAC could be a promising candidate as a biomarker
for future TNBC therapies, and its inhibition could overcome paclitaxel resistance. Notably,
not all circRNAs are associated with oncogenic properties; indeed, there is also evidence
about circRNAs that exert tumor suppressive roles. This is the case of circ-ITCH, which
is downregulated in TNBC and correlates with short survival, larger tumor size, and also
metastasis and advanced TNM stage. The study of Wang S. T. and colleagues investigated
for the first time the oncosuppressor role of this circRNA in TNBC. Intriguingly, they found
that overexpression of circ-ITCH could inhibit TNBC proliferation, migration, and invasion
by acting on its already known miRNA targets, miR-214 and miR-17. Through this miRNAs
sponge activity, circ-ITCH regulates its host gene expression that is involved in canonical
Wnt signaling pathway inhibition [140]. Further studies on this circRNA molecule could
be beneficial to improve our knowledge in order to use it as a novel biomarker for TNBC.
Another interesting tumor suppressor circRNA initially found downregulated in glioma
is circFBXW7 [141]. Further analysis by the Ye F. group demonstrated that circFBXW7
exerts its oncosuppresive role also in TNBC, where it results in being downregulated and
associated with a poor clinical outcome [142]. Intriguingly, they found that this circRNA
is able to inhibit TNBC progression by acting as a sponge for miR-197-3p, which in turn
negatively regulates FBXW7 expression [142]. Moreover, it has been shown that this
circRNA has the peculiarity of encoding for a FBXW7-185aa protein that is involved in the
inhibition of proliferation and migration [141,142]. CircFBXW7 activity on its host gene
FBXW7 may represent a significant axis, on which further studies can be made in order
to better understand the regulatory mechanism of circFBXW7 in TNBC and how it can
be targeted as a novel therapeutic opportunity. The miRNA-sponging function of many
circRNAs has been linked to TNBC progression. For example, circRAD18 has binding
sequences for miR-208a and miR-3164, which subsequently leads to upregulation of IGF1
and FGF2, promoting TNBC progression. In contrast, circRAD18 knockdown in cell lines
and xenograft models induces cell apoptosis and impairs tumor growth, cell proliferation,
and migration [143]. Some circRNAs drive TNBC progression through the regulation of
genes involved in cancer-associated signaling pathways. Zhang et al. demonstrated that
circRNA_069718 causes EMT in TNBC cells and regulates both mRNA and protein levels
of β-catenin, c-Myc, and cyclin D1 that participate in the Wnt/β–catenin pathway [144].
Other circular RNAs have been demonstrated to play pivotal roles in TNBC associated
with tumorigenic features or not; a complete list can be found in Table 2.
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Table 2. Comprehensive list of circular RNAs involved in TNBC tumorigenesis.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

circIRAK3
Sponges:

- miR-3607

Promotes:

- cell invasion,
- cell migration,
- tumor metastasis.

Upregulated NA [130]

circKIFI4A
Sponges:

- miR-375

Promotes:

- cell proliferation,
- TNBC progression.

Modulates:

- glucose metabolism.

Upregulated NA [133,134]

circPSMA1
Sponges:

- miR-637

Promotes:

- cell proliferation,
- cell migration,
- metastasis.

NA Upregulated [135]

circHIF1A
Sponges:

- miR-149-5p

Promotes:

- cell proliferation,
- cell growth,
- cell migration,
- metastasis.

NA Upregulated [138]

circWAC
Sponges:

- miR-142

Promotes:

- drug resistance.
Upregulated NA [139]

circPDCD11
Sponges:

- miR-432-5p

Promotes:

- aerobic glycolysis,
- cell proliferation,
- tumor growth.

Upregulated NA [145]

circGRAF1
Sponges:

- miR-34a

Promotes:

- cell proliferation.
Upregulated NA [131]

circEPSTI1
Sponges:

- miR-4753
- miR-6809

Promotes:

- cell proliferation,
- tumor growth.

Upregulated NA [69]

circUBAP2
Sponges:

- miR-661

Promotes:

- cell proliferation,
- cell migration,
- tumor growth,
- metastasis.

Upregulated NA [132]

circPLK1
Sponges:

- miR-296-5p

Promotes:

- cell proliferation,
- cell migration.

Upregulated NA [146]

circRAD18

Sponges:

- miR-208a
- miR-3164

Promotes:

- cell proliferation,
- metastasis,
- cell growth.

Inhibits:

- apoptosis.

Upregulated NA [143]
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Table 2. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

circRNA_069718 NA
Promotes:

- cell proliferation,
- cell migration.

Upregulated NA [144]

ciRS-7
Sponges:

- miR-1299

Promotes:

- cell invasion,
- cell migration,
- metastasis.

Upregulated NA [147]

circITCH

Sponges:

- miR-214
- miR-17

Inhibits:

- cell proliferation,
- cell migration,
- cell invasion.

Downregulated NA [140]

circTADA2A-E6
Sponges:

- miR-203a-3p

Inhibits:

- cell proliferation,
- cell invasion,
- cell migration.

Downregulated NA [148]

circFBXW7

Sponges:

- miR-197-3p

Encodes:

- 185-aa protein

Inhibits:

- cell proliferation,
- cell invasion,
- metastasis.

NA NA [142]

circANKS1B

Sponges:

- miR-148a-3p
- miR-152-3p

Promotes:

- cancer invasion,
- cancer metastasis,
- epithelial-to-mesenchymal
- transition (EMT).

Upregulated NA [149]

circHER2

Encodes:

- HER2–103
protein

Promotes:

- cell proliferation,
- cell invasion,
- tumorigenesis.

Upregulated NA [150]

circNR3C2
Sponges:

- miR-513a-3p

Inhibits:

- tumor growth,
- metastasis.

Downregulated NA [151]

circSEPT9
Sponges:

- miR-637

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- tumor growth,
- metastasis.

Upregulated NA [152]

circUBE2D2
Sponges:

- miR-512-3p

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- drug resistance.

Upregulated NA [153]

circRPH1
Sponges:

- miR-195-5p

Promotes:

- tumorigenesis,
- metastasis.

Upregulated NA [154]

circUSP42 NA
Inhibits:

- tumor growth.
Downregulated NA [155]

circCDYL
Sponges:

- miR-190a-3p

Inhibits:

- cell proliferation,
- cell migration,
- cell invasion.

Downregulated NA [156]
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Table 2. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

circZEB1
Sponges:

- miR-448

Promotes:

- cell proliferation.
Upregulated NA [157]

circGNB1
Sponges:

- miR-141-5p

Promotes:

- cell proliferation,
- cell growth,
- metastasis.

Upregulated NA [158]

circPGAP3
Sponges:

- miR-330-3p

Promotes:

- cell proliferation,
- cell invasion,
- tumor growth,
- metastasis.

Upregulated NA [159]

circAHNAK1
Sponges:

- miR-421

Inhibits:

- proliferation,
- metastasis.

Downregulated NA [160]

circAMOTL1 NA
Promotes:

- drug resistance.
NA NA [161]

circMTO1
Interacts with:

- TRAF4

Promotes:

- cell proliferation.
Downregulated NA [162]

circ_0062558
Sponges:

- miR-876-3p

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- glutamine metabolism,
- tumor growth.

Upregulated NA [163]

circ_0001925
Sponges:

- miR-1299

Promotes:

- cell proliferation,
- cell metastasis,
- angiogenesis.

Upregulated NA [164]

circ_0076611
Interacts with:

- EIF4B
- EIF4G

Modulates:

- cell translational rate. Upregulated NA [165]

circCD44

Sponges:

- miR-502-5p
- Interacts with:
- IGF2BP2

Promotes:

- cell migration,
- cell invasion,
- drug resistance.

Upregulated NA [166]

circ-EIF6
Encodes:

- EIF6-224aa
protein

Promotes:

- cell migration,
- cell invasion,
- cell proliferation.

Upregulated NA [167]

circ_0091074
Sponges:

- miR-1297

Promotes:

- cell proliferation.
NA NA [168]

circ_0006220
Sponges:

- miR 197-5p

Inhibits:

- cell proliferation,
- cell migration,
- cell invasion.

Downregulated NA [169]

circ_0041732
Sponges:

- miR-149-5p

Promotes:

- cell migration,
- cell invasion,
- cell proliferation.

Upregulated NA [170]
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Table 2. Cont.

Name Function/Target Biological Effect Expression Levels
References

Tumor Tissue Blood

circ_0000520
Sponges:

- miR-1296

Promotes:

- cell migration,
- cell invasion,
- cell proliferation.

Upregulated NA [171]

circ_0131242
Sponges:

- miR-2682

Promotes:

- cell migration,
- cell proliferation.

Upregulated NA [172]

circ_0000199

Sponges:

- miR-613
- miR-206

Promotes:

- cell migration,
- cell proliferation,
- cell invasion,
- drug resistance.

Upregulated NA [173]

circ-PDCD11
Sponges:

- miR-432-5p

Promotes:

- cell proliferation,
- tumor growth,
- aerobic glycolysis.

Upregulated NA [145]

circ-CSNK1G1
Sponges:

- miR-28-5p

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- glycolysis.

Upregulated NA [174]

circ_0044234 NA NA Downregulated NA [175]

circ-TRIO
Sponges:

- miR-432-5p

Promotes:

- cell proliferation,
- cell migration,
- cell invasion.

Upregulated NA [176]

dirc-PGAP3
Sponges:

- miR-330-3p

Promotes:

- cell growth,
- metastasis.

Upregulated NA [159]

circ-UBR5
Sponges:

- miR-1179

Promotes:

- cell proliferation,
- cell migration,
- cell invasion,
- metastasis.

Upregulated NA [177]

circ_102229
Sponges:

- miR-152-3p

Promotes:

- cell proliferation,
- cell migration,
- cell invasion.

Upregulated NA [178]

4. Discussion

Considering the aggressive behavior of TNBC and the lack of molecular therapeutic
targets, the role of non-coding RNAs and their implication in tumorigenesis needs to
be deeply investigated since they could be exploited for future therapy strategies. In
particular, lncRNAs’ and circRNAs’ importance as regulators of biological functions is
already assessed. These molecules have been shown to present a differential expres-
sion pattern between tumoral and non-tumoral tissues that can be associated with their
oncogenic or tumor suppressive abilities. The study of molecular mechanisms and the
interplay with their targets could be useful to design promising therapeutic approaches.
It has been reported that upregulated lncRNA can interact with proteins and also can
directly regulate transcription, protein stability, or being involved in chromatin remod-
eling leading to upregulation of oncogenes that support tumorigenesis. On the other
hand, other lncRNAs that act as tumor suppressors result in being downregulated in
TNBC, highlighting that their ectopic expression could be beneficial for the patients.
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In recent years, several studies were conducted regarding circRNAs involvement in
diseases, including cancer. Their most studied function is the ability to act as miRNAs
sponges, but also through other mechanisms, they exert a fundamental role in cancer.
Recent evidence, indeed, has pointed out that non-coding RNA can encode for peptides.
The latter could represent easily druggable targets compared to the RNA.

Of note, non-coding RNAs, due to their stability in body fluids, represent the best
candidates for prognostic biomarkers in liquid biopsy, a non-invasive way through
which therapy can be monitored. Moreover, among the different functions that these
molecules elicit, particular attention must be paid to their involvement in drug resistance
since it is one of the main issues of TNBC treatment that needs to be overcome. In
conclusion, further studies need to be conducted on TNBC in other to best investigate
novel molecular biomarkers that can be used as therapeutic targets.

The second class of RNAs discussed in the current manuscript, the circRNAs, have
been identified in many species due to the advances of the transcriptomic and bioinfor-
matic approaches. Subsequently, circRNAs received a lot of attention due to their pivotal
role as gene expression regulators. Their tissue-specific expression and role in several
important cancer characteristics, such as initiation, apoptosis, cell proliferation, invasion,
and metastasis, make circRNAs suitable molecules with diagnostic and therapeutic
significance [179,180]. Subsequently, the dysregulation of circRNAs has been considered
as one of the major reasons for the appearance and development of TNBC [181]. In the
aspect of TNBC and circRNAs, the main challenge remained the identification of these
sequences that are responsible for disease occurrence, as well as for the aggressiveness
and the invasion to the other tissues and organs. To date, most of the circRNAs identified
have been shown to be involved in chemotherapy resistance and different pathways
related to apoptosis, EMT processing, autophagy, and ceRNA regulation. The variety of
functions performed by circRNAs inside the cells suggests the great impact they have in
the case of dysregulation of the process of carcinogenesis. The common effort among
clinicians and scientists is to develop methods for an early, non-invasive TNBC diagnosis.
The presence of TNBC-associated circRNAs in exosomes provides an opportunity for
early diagnosis and prediction [182].

5. Conclusions

Even though both lncRNAs and circRNAs hold great promise not only as molecules
for early diagnosis and monitoring, but also for treatment of TNBC, their shift from the
laboratory bench to clinical practice still needs to clarify some issues related to their
nature. Even though deeply investigated, the exact mechanism by which lncRNAs and
circRNAs lead to TNBC development remains elusive. In addition, most lncRNAs and
circRNAs investigations are performed on tumor tissues and cell lines. The use of bodily
fluids, such as blood, urine, saliva, etc., will open new horizons for TNBC diagnosis and
treatment (Figure 3). Finally, the use of lncRNAs and circRNAs as therapeutic targets
should be directed to the specific delivery to their needed places for long-term effect
and to prevent immune rejection. In summary, additional investigations are required to
apply both lncRNAs and circRNAs in current TNBC clinical practice (Figure 3).
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