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Abstract
We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment 
cerebral hemispheres in magnetic resonance (MR) volumes of rats with ischemic lesions. MedicDeepLabv3+ improves the 
state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connec-
tions that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image 
preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and 
its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six 
other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a 
heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated 
the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large 
dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an 
average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that 
despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In 
conclusion, our method, publicly available at https:// github. com/ jmlip man/ Medic DeepL abv3P lus, yielded excellent results 
in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.
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Introduction

Rodents are widely used in preclinical research to investigate 
brain diseases (Carbone, 2021). These studies often utilize 
in-vivo imaging technologies, such as magnetic resonance 
imaging (MRI), to visualize brain tissue at different time-
points, which is necessary for studying disease progression. 
MRI permits the acquisition of brain images with differ-
ent contrasts in a non-invasive manner, making MRI a par-
ticularly advantageous in-vivo imaging technology. How-
ever, these images typically need to be segmented before 
conducting quantitative analysis. As an example, the size 

of the hemispheric brain edema relative to the volume of 
the contralateral hemisphere is an important biomarker for 
acute stroke that requires accurate hemisphere segmentation 
(Swanson et al., 1990; Gerriets et al., 2004).

With brain edema biomarkers in mind, our work focuses 
on cerebral hemisphere segmentation in MRI volumes of rat 
brains with ischemic lesions. Segmenting these images is 
particularly challenging since lesions’ size, shape, location, 
and contrast can vary even within images from the same 
cohort, hampering, as we show in our experiments, tradi-
tional segmentation methods. Additionally, rodents’ small 
size makes image acquisition sensitive to misalignments, 
potentially producing slices with asymmetric hemispheres 
and particularly affecting anisotropic data. Furthermore, 
although neuroanatomical segmentation tools can be used 
to produce hemisphere masks (e.g., Schwarz et al. (2006)), 
these tools only work on rodent brains without lesions, as 
lesions alter the appearance and location of the brain struc-
tures. These difficulties have led researchers and technicians 
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to annotate rodent cerebral hemispheres manually (Freret 
et al., 2006; McBride et al., 2015), which is laborious and 
time-consuming, and motivates this work.

In recent years, convolutional neural networks (Con-
vNets) have been widely used to segment medical images 
due to their outstanding performance (Bakas et al., 2018; 
Bernard et al., 2018; Heller et al., 2021). ConvNets can be 
optimized end-to-end, require no preprocessing, such as 
bias-field correction and costly registration, and can pro-
duce segmentation masks in real time (De Feo et al., 2021). 
ConvNets can also be tailored to specific segmentation prob-
lems by incorporating domain constraints and shape priors  
(Kervadec et al., 2019). In particular, DeepLabv3+ archi-
tecture with its efficient computation of large image regions 
via dilated convolutions has demonstrated excellent results 
on various segmentation tasks in computer vision (Chen 
et al., 2018b). Xie et al. (2019) utilized DeepLabv3+ for 
gland instance segmentation on histology images to estimate 
the segmentation maps and subsequently refined such esti-
mation with a second ConvNet. Ma et al. (2019) modified 
DeepLabv3+ for applying style transfer to homogenize MR 
images with different properties. Khan et al. (2020) showed 
that DeepLabv3+ outperforms other ConvNets on prostate 
segmentation of T2-weighted MR scans.

We present and make publicly available MedicDeep-
Labv3+, the first method for segmenting cerebral hemi-
spheres in MR images of rats with ischemic lesions. Medic-
DeepLabv3+ improves DeepLabv3+ architecture with 
a new decoder with spatial attention layers (Oktay et al., 
2018; Wang et al., 2019) and an increased number of skip 
connections that facilitate the optimization. We optimized 
our method on a training set comprised by 51 MR rat brain 
volumes from 11 cohorts acquired at multiple lesion stages, 
and we evaluated it on a large and challenging dataset of 655 
MR rat brain volumes. Our experiments show that Medic-
DeepLabv3+ outperformed the baseline state-of-the-art 
DeepLabv3+ (Chen et al., 2018b), UNet (Ronneberger et al., 
2015), HighRes3DNet (Li et al., 2017), V-Net (Milletari 
et al., 2016), VoxResNet (Chen et al., 2018), and, particularly 
for skull stripping, it also outperformed Demon (Roy et al., 
2018), RATS (Oguz et al., 2014), and RBET (Wood et al., 
2013). Additionally, we evaluated MedicDeepLabv3+ with 
very limited GPU memory and training data, and our experi-
ments demonstrate that, despite such restrictions, MedicDee-
pLabv3+ yields satisfactory segmentations, showcasing its 
usability in multiple real-life situations and environments.

Related Work

Anatomical segmentation of rodent brain MRI with lesions  
Anatomical segmentation in MR images of rodents with 
lesions is an under-researched area; Roy et al. (2018) and 
De Feo et al. (2022) are the only studies that examined this 

problem. Roy et  al. (2018) showed that their Inception-
based (Szegedy et al., 2015) skull-stripping ConvNet named 
‘Demon’ outperformed other methods on MR images of mice 
and humans with traumatic brain injury. De Feo et al. (2022) 
presented an ensemble of ConvNets named MU-Net-R for ipsi- 
and contralateral hippocampus segmentation on MR images of 
rats with traumatic brain injury. Mulder et al. (2017) developed 
a lesion segmentation pipeline that includes an atlas-based 
contralateral hemisphere segmentation step. However, these 
hemisphere segmentations were not compared to a ground 
truth, and this approach is sensitive to the lesion appearance 
because it relies on registration.

Anatomical segmentation of rodent brain MRI without 
lesions The vast majority of anatomical segmentation meth-
ods for rodent MR brain images have been exclusively devel-
oped for brains without lesions. These methods can be clas-
sified into three categories. First, atlas-based segmentation 
approaches, which apply registration to one or more brain 
atlases (Pagani et al., 2016) and, afterwards, label candidates 
are refined or combined with, for instance, Markov random 
fields (Ma et al., 2014). As these approaches heavily rely on 
registration, they underperform in the presence of anatomi-
cal deformations. Second, methods that group nearby voxels 
with similar properties. These approaches typically start by 
proposing one or several candidate regions, and later adjust 
such regions with an energy function and, optionally, shape 
priors. Examples of these methods include surface deforma-
tion models (Wood et al., 2013), graph-based segmentation 
algorithms (Oguz et al., 2014), and a more recent approach 
that combines blobs into a single region (Liu et al., 2020). 
These approaches can handle different MRI contrasts and 
require no registration. However, they also rely on local fea-
tures, such as nearby image gradients and intensities. Thus, 
these methods can be very sensitive to intensity inhomoge-
neities, and small brain deformities. Third, machine learn-
ing algorithms that classify brain features. These features 
can be handcrafted, such as in (Bae et al., 2009; Wu et al., 
2012) where authors employed support vector machines to 
classify voxels into different neuroanatomical regions based 
on their intensity, location, neighbor labels, and probability 
maps. On the contrary, deep neural networks, a subclass of 
machine learning algorithms, can automatically find rele-
vant features and learn meaningful non-linear relationships 
between such features. Methods based on neural networks, 
such as pulse-coupled neural networks (Chou et al., 2011; 
Murugavel and Sullivan, 2009) and ConvNets (Roy et al., 
2018; Hsu et al., 2020; De Feo et al., 2021), have been used 
in the context of rodent MRI segmentation.

Lesion segmentation of  rodent brain MRI The high 
contrast between lesion and non-lesion voxels in certain 
rodent brain MR images motivated the development of 
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thresholding-based methods (Wang et al., 2007; Choi et al., 
2018). However, these methods are not fully automatic, and 
they cannot be used in MR images with other contrasts, or 
lesions with different appearances. Mulder et al. (2017) 
introduced a fully-automated pipeline to segment lesions via 
level sets (Dervieux & Thomasset, 1980; Osher & Sethian, 
1988). Images were first registered to a template, then skull 
stripped, and their ventricles were segmented prior to the 
final lesion segmentation step. Arnaud et al. (2018) framed 
lesion segmentation as an anomaly-detection problem and 
developed a pipeline that detects voxels with unusual inten-
sity values with respect to healthy rodent brains. Valverde 
et al. (2020) developed the first single-step method to seg-
ment rodent brain MRI lesions using ConvNets.

Materials and Methods

MRI Data

The image data, provided by Charles River Laboratories 
Discovery site (Kuopio, Finland)1, consisted of 723 MR 
T2-weighted brain scans of 481 adult male Wistar rats 
weighting between 250-300 g derived from 11 different 
cohorts. Rats were induced focal cerebral ischemia by mid-
dle cerebral artery occlusion for 120 minutes in the right 
hemisphere of the brain (Koizumi et al., 1986). MR data was 
acquired at multiple time-points after the occlusion; for each 
of the 11 cohorts, time-points were different (see Fig. 1A 
for details). In total, our dataset contained MR images from 
nine lesion stages: shams, 2h, 24h, D3, D7, D14, D21, D28, 
and D35. Figure 1B shows representative images of these 
lesion stages in approximately the same brain area. All ani-
mal experiments were conducted according to the National 
Institute of Health (NIH) guidelines for the care and use of 
laboratory animals, and approved by the National Animal 
Experiment Board, Finland. Multi-slice multi-echo sequence 
was used with the following parameters; TR = 2.5 s, 12 
echo times (10-120 ms in 10 ms steps) and 4 averages in 
a horizontal 7T magnet. T2-weighted images were calcu-
lated as the sum of the all echoes. Eighteen coronal slices 
of 1 mm thickness were acquired using a field-of-view of 
30x30 mm2 producing 256x256 imaging matrices of reso-
lution 117 × 117�m . Afterwards, these coronal slices were 
combined into a 3D volume.

Data Preparation

The T2-weighted MRI volumes were not preprocessed (i.e., 
no registration, bias-field or artifact correction), and their 

intensity values were standardized to have zero mean and 
unit variance. Brain and contralateral hemisphere masks 
were annotated by several trained technicians employed by 
Charles River according to a standard operating procedure. 
These annotations did not include the cerebellum and the 
olfactory bulb. Finally, we computed the ipsilateral hemi-
sphere mask by subtracting the contralateral hemisphere 
from the brain mask, yielding non-overlapping regions (i.e., 
the background, ipsilateral and contralateral hemispheres) 
for optimizing the ConvNets.

Train, Validation and Test Sets

We divided the MR images into a training set of 51 volumes, 
validation set of 17 volumes, and test set of 655 volumes. 
Specifically, we grouped the MR images by their cohort and 
acquisition time-point (Fig. 1A). From the resulting 17 sub-
groups, our training and validation sets comprised 3 and 1 
MR images, respectively, per subgroup. Images from sham-
operated animals were not included to the training and vali-
dation sets since our work focused on rat brains with lesions. 
The remaining 655 MR images, including shams, formed the 
independent test set. This splitting strategy aimed to create 
a diverse training set, as brain lesions have notably different 
T2-weighted MRI intensities depending on the lesion stage, 

Fig. 1  A: Cohorts, acquisition time-points, and number of images. 
B: Example slice from each lesion stage in approximately the same 
brain area. The lesion border of the manual segmentation is outlined 
in green

1 https:// www. criver. com/ produ cts- servi ces/ disco very- servi ces

https://www.criver.com/products-services/discovery-services
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and annotations can differ slightly across cohorts due to the 
task subjectivity and the consequent low inter-rater agree-
ment (Mulder et al., 2017; Valverde et al., 2020).

MedicDeepLabv3+

MedicDeepLabv3+ is a 3D fully convolutional neural net-
work (ConvNet) based on DeepLabv3+ (Chen et al., 2018b) 
and UNet (Ronneberger et al., 2015). We chose DeepLabv3+ 
because of its excellent performance in semantic segmenta-
tion tasks, and we modified its last layers to resemble more 
closely to UNet, which is an architecture widely used in 
medical image segmentation. DeepLabv3+ first employs 
Xception (Chollet, 2017) to transform the input and reduce 
its dimensionality, and then it upsamples the transformed 
data, twice, by a factor of four. MedicDeepLabv3+ replaces 
these last layers (i.e., the decoder) with three stages of skip 
connections and convolutional layers, and, as we describe 
below, it incorporates custom spatial attention layers, ena-
bling deep supervision (see Fig. 2).

Encoder

MedicDeepLabv3+ stacks several 3 × 3 × 3 convolutional 
layers, normalizes the data with Batch Normalization (Ioffe 
and Szegedy, 2015), and incorporates residual connections 
(He et al., 2016). Both batch normalization and residual 
connections are well established architectural components 
that have been shown to facilitate the optimization in deep 
ConvNets (Drozdzal et al., 2016; Li et al., 2018). The first  
layers of MedicDeepLabv3+ correspond to Xception (Chollet,  
2017), which uses depthwise-separable convolutions instead 

of regular convolutions. These depthwise-separable con-
volutions are advantageous over regular convolutions as 
they can decouple channel and spatial information. This is 
achieved by separating the operations of a regular convolu-
tion into a spatial feature learning and a channel combina-
tion step, increasing the efficiency and performance of the 
model (Chollet, 2017).

MedicDeepLabv3+ utilizes dilated convolutions in the 
last layer of Xception. Dilated convolutions sample padded 
input patches and multiply the non-padded values with the 
convolution kernel, thus, expanding the receptive field of the 
network (Chen et al., 2014). In other words, dilated convolu-
tions permit to adjust the area that influences the classifica-
tion of each voxel, and, as increasing this area has shown 
to improve model performance, we opted to employ dilated 
convolutions as in DeepLabv3+ (Chen et al., 2017). After 
the Xception backbone, DeepLabv3+’s Atrous Spatial Pyra-
mid Pooling (ASPP) module concatenates parallel branches 
of dilated convolutional layers with different dilation rates 
and an average pooling followed by trilinear interpolation. 
Then, a pointwise convolution combines and reduces the 
number of channels. To this step, the described architecture 
reduces the data dimensionality by a factor of 16.

Decoder

We developed a new decoder for MedicDeepLabv3+ with 
more stages of skip connections and convolution blocks 
than DeepLabv3+. In each stage, feature maps are upsam-
pled via trilinear interpolation and concatenated to previ-
ous feature maps from the encoder. Subsequently, 3 × 3 × 3 
convolutions halve the number of channels (Fig. 2, blue 

Fig. 2  MedicDeepLabv3+ architecture
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blocks), and a ResNet block (He et  al., 2016) further 
transforms the data (Fig. 2, orange blocks). The conse-
quent increase of skip-connections facilitates MedicDee-
pLabv3+ optimization (Drozdzal et al., 2016; Li et al., 
2018). Importantly, DeepLabv3+ produces segmentations 
at ×4 less resolution than the original images that, to match 
their size, are upsampled via interpolation. In contrast, our 
MedicDeepLabv3+ incorporates more convolutional layers 
at the end of its architecture to perform a final data trans-
formation at the same resolution as the input.

Another key difference with respect to DeepLabv3+ is 
that MedicDeepLabv3+ utilizes spatial attention layers 
(Oktay et al., 2018; Wang et al., 2019). Attention layers 
behave as dynamic activation functions that first learn 
and then apply voxel-wise importance maps, transform-
ing feature maps differently based on their values. Con-
sequently, attention layers permit to learn more complex 
relations in the data. Furthermore, attention layers have 
been shown to aid the network to identify and focus on 
the most important features, improving performance (Fu 
et al., 2019). In our implementation, these layers (Fig. 3) 
transform the inputs with a depthwise-separable convolu-
tion and, subsequently, average the resulting feature maps. 
Afterwards, a sigmoid activation function transforms the 
data non-linearly, producing spatial attention maps with 
values in the range [0, 1]. Then, these attention maps 
multiply the input feature maps voxel-wise. To encourage 
spatial attention maps that lead to the ground truth and to 
further facilitate the optimization, we added a branch in 
the first two attention layers for generating downsampled 
probability maps of the segmentation masks, enabling 
deep supervision (Fig. 3, red and pink arrows).

Loss Function

We trained MedicDeepLabv3+ with deep supervision (Lee 
et al., 2015), i.e., we minimized the sum of cross entropy 
and Dice loss of all outputs of MedicDeepLabv3+ (Fig 2, 

pink arrow). Formally, we minimized L =
∑

s∈S L
s
CE

+ Ls
Dice

 
with S = {1, 2, 3} indicating each MedicDeepLabv3+ out-
put (see Fig. 2). Cross entropy treats the model predictions 
and the ground truth as distributions

where pi,c ∈ {0, 1} represents whether voxel i belongs to 
class c, and qi,c ∈ [0, 1] its predicted Softmax probability. 
C = 3 for background, ipsilateral and contralateral hemi-
sphere classes, and N is the total number of voxels. Dice 
loss estimates the Dice coefficient between the predictions 
and the ground truth:

Minimizing cross entropy and Dice loss is a common 
practice in medical image segmentation (Myronenko & 
Hatamizadeh, 2019; Isensee et al., 2021). Cross entropy opti-
mization reduces the difference between the ground truth 
and prediction distributions. Dice loss optimization increases 
the Dice coefficient that we ultimately aim to maximize and 
it is particularly beneficial in class-imbalanced datasets  
(Milletari et al., 2016). Additionally, their optimization at 
different stages via deep supervision is equivalent to adding 
shortcut connections to propagate the gradients to various 
layers, facilitating the optimization of those layers.

Experimental Design

Metrics

We assessed the automatic segmentations with Dice coef-
ficient (Dice, 1945), Hausdorff distance (Rote, 1991), preci-
sion, and recall. Dice coefficient measures the overlapping 
volume between the ground truth and the prediction

(1)LCE = −
1

NC

N∑

i=1

C∑

c=1

pi,c log(qi,c),

(2)LDice = 1 −
2

C

C�

c=1

∑N

i
pi,cqi,c

∑N

i
p2
i,c
+ q2

i,c

.

Fig. 3  Spatial attention block 
(details in Sect. 2.4.2)
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where A and B are the segmentation masks. Hausdorff dis-
tance (HD) is a quality metric that calculates the distance to 
the misclassification located the farthest from the boundary 
masks. Formally:

where �A and �B are the boundary voxels of A and B, respec-
tively. In other words, HD provides the distance to the largest 
segmentation error. We provided HD values in mm and we 
accounted for voxel anisotropy. Finally, precision is the per-
centage of voxels accurately classified as brain/hemisphere, 
and recall is the percentage of brain/hemisphere voxels that 
were correctly identified:

Benchmarked Methods

We compared our MedicDeepLabv3+ with DeepLabv3+ 
baseline (Chen et al., 2018b), UNet (Ronneberger et al., 2015), 
HighRes3DNet (Li et al., 2017), V-Net (Milletari et al., 2016), 
VoxResNet (Chen et al., 2018), Demon (Roy et al., 2018), 
RATS (Oguz et al., 2014), and RBET (Wood et al., 2013). 
Since Demon, RATS, and RBET were exclusively designed 
for rodent skull stripping, we computed contralateral hemi-
sphere masks only with MedicDeepLabv3+, DeepLabv3+, 
UNet, HighRes3DNet, V-Net, and VoxResNet. MedicDeep-
Labv3+ and all the other ConvNets were optimized on our 
training set with Adam (Kingma & Ba, 2014) ( �1 = 0.9

,�2 = 0.999 , � = 10−8 ), starting with a learning rate of 10−5 . 
ConvNets’ hyper-parameters (e.g., activation functions, num-
ber of filters, number of convolutional layers, normalization 
layers, type of downsampling/upsampling layers, dilation rate 
in atrous convolution layers, kernel size) were set as instructed 
in the articles proposing the method (i.e., DeepLabv3+ (Chen 
et al., 2018b), UNet (Ronneberger et al., 2015), HighRes3DNet 
(Li et al., 2017), V-Net (Milletari et al., 2016), VoxResNet 
(Chen et al., 2018a), Demon (Roy et al., 2018). As such, these 
hyper-parameters can be considered to be close to optimal. 
MedicDeepLabv3+, DeepLabv3+, HighRes3DNet, V-Net, 
VoxResNet and UNet were trained for 300 epochs, and Demon 
was trained for an equivalent amount of time. All ConvNets 
were either 2D or 3D; we disregarded 2.5D ConvNets (e.g., 
Kushibar et al. (2018)) that concatenate three orthogonal 2D 
images to classify the voxel at their intersection since they 
are more inefficient at inference time than 2D and 3D Con-
vNets. We ensembled three models (Dietterich, 2000) since 
this strategy markedly improved segmentation performance in  

(3)Dice(A,B) =
2|A ∩ B|
|A| + |B|

,

(4)d(A,B) = max
{
max
a∈�A

min
b∈�B

|b − a|, max
b∈�B

min
a∈�A

|a − b|
}
,

(5)Prec =
TP

TP + FP
Recall =

TP

TP + FN
.

our previous work (Valverde et al., 2020). More specifically, 
we trained each ConvNet three times, separately, starting from 
different random initializations. Then, we formed the final 
segmentations based on the majority vote from the binarized 
outputs of the three trained models.

We conducted a grid-search for best hyperparameters for 
RATS and RBET. We performed the grid-search using merged 
training and validation sets as RATS and RBET do not involve 
supervised learning, thus making it possible to use also the 
training set for hyper-parameter tuning. Subsequently, we 
utilized the best-performing hyper-parameters on the test set. 
With RATS, computing the brain mask ŷ of image x requires 
setting three hyper-parameters: intensity threshold t, � , and 
rodent brain volume s, i.e., ŷ = RATS(x, t, 𝛼, s) . As rat brain 
volumes are highly similar in adult rats, we left this hyper-
parameter with its default value, s = 1650 mm3 . Thus, we only 
optimized for the threshold t and � hyper-parameters. Since 
RATS assumes that all intensity values are positive integers, 
we employed unnormalized images with RATS. We optimized 
RATS hyper-parameters by maximizing the Dice coefficients 
in the training and validation sets:

where Dice is the Dice coefficient (Eq. (3)) between the ground-
truth brain mask y and RATS’ output, � = 0, 1,… , 10 balances 
the importance between gradients and intensity values, and P%i 
is the ith percentile of x with i = 0.01, 0.02,… , 0.99 . Since 
finding t is potentially suboptimal due to the distribution vari-
ability across images, we optimized for the ith percentile, yield-
ing image-specific thresholds. In total, our hyper-parameter grid 
search in RATS comprised 1089 different parameter value com-
binations. For RBET, we optimized the Dice coefficient to find 
the optimal ellipse axes ratio w:h:d with w, h, d from 0.1 to 1 in 
steps of 0.05, accounting for 193 different configurations. Note 
that, despite optimizing over a large number of hyper-parameter 
choices may increase the risk to overfit, our train, validation and 
test sets were derived so that Xtrain+val is a good representation 
of Xtest (see Sec. 2.3).

Unlike ConvNets that can be optimized to segment spe-
cific brain regions, RATS and RBET perform skull strip-
ping, segmenting also the cerebellum and olfactory bulb that 
were not annotated. As these brain areas were not part of 
our ground truth, RATS and RBET segmentations would be 
unnecessarily penalized in those areas. Thus, before com-
puting the metrics, we discarded the slices containing cer-
ebellum and olfactory bulb. This evaluation strategy ignores 
potential misclassifications in the excluded slices, slightly 
favoring RATS and RBET.

We tested whether the difference in Dice coefficient and 
HD between our MedicDeepLabv3+ and the other methods 
was significant. The hypothesis was tested with a paired 

(6)argmax
i,�

∑

x∈Xtrain+val

Dice(y,RATS(x, t, �, 1650)) ∶ t = P%i,
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two-sample permutation test using the mean-absolute dif-
ference as the test statistic. We considered p-values smaller 
than 0.05 as statistically significant.

Brain Midline Evaluation

We calculated the average Dice coefficients of contra- and 
ipsilateral hemispheres around the brain midline—boundary 
between both hemispheres (see Fig. 4A). Specifically, we 
considered the volume after expanding brain midline vox-
els in the coronal plane via morphological dilation n times, 
with n = 1, 2,… , 10 . In contrast to brain vs. non-brain tissue 
boundaries, the brain midline volume is more ambiguous to 
annotate due to the lower intensity contrast between hemi-
spheres, hence the importance to assess the performance in 
this area. This evaluation aims to supplement computing 
Dice coefficient and HD on the whole 3D volumes. Since 
most of the voxels lie within the hemisphere borders, Dice 
coefficients tend to be very high, and since HD might indi-
cate the distance to a misclassification that can be easily 
corrected via postprocessing (e.g., a misclassification out-
side the brain), HD alone does not suffice to assess specific 
areas. Note that, similarly to RATS and RBET evaluation, 
this experiment computed the Dice coefficient only on the 
slices that were manually annotated, as finding the brain 
midline requires these manual annotations. Consequently, 
the evaluated 3D masks excluded non-annotated slices that 
could have false positives.

Biomarkers Based on Hemisphere Segmentation

Since the ratio between contra- and ipsilateral hemispheres 
volume is an important biomarker for acute stroke (Swanson 
et al., 1990; Gerriets et al., 2004), we compared the hemisphere 

volume ratio of the ground truth with the hemisphere volume 
ratio of the automatic segmentations. For this, we computed 
the effect size via Cohen’s d (Lakens, 2013) and the bias- 
corrected and accelerated (BCa) bootstrap confidence intervals 
(Efron, 1987) with 100000 bootstrap resamples. An effect size 
close to zero with a narrow confidence interval indicates a  
high similarity between automated and manual segmentation 
based biomarkers.

Performance with Limited GPU Memory and Data

Motivated by potential GPU memory limitations, we studied 
the performance and computational requirements of multi-
ple versions of MedicDeepLabv3+ with lower capacity and, 
consequently, lower GPU memory usage. To investigate this, 
we varied the number of kernel filters in all convolutions of 
MedicDeepLabv3+ that determines the number of param-
eters. For instance, decreasing the number of kernel filters 
by half in the encoder also decreases the number of kernel 
filters in the decoder to half.

Separately, we evaluated the proposed MedicDeepLabv3+ 
on each cohort and time-point independently, simulating the typ-
ical scenario in rodent studies with extremely scarce annotated 
data. For each of the 17 groups containing no sham animals 
(Fig. 1A), we trained an ensemble of three MedicDeepLabv3+ 
on only three images, employed another image for validation 
during the optimization, and we evaluated this ensemble on the 
remaining holdout images from the same group.

Implementation

MedicDeepLabv3+, DeepLabv3+, UNet, HighRes3D-
Net, V-Net, VoxResNet, and Demon were implemented in 
Pytorch (Paszke et al., 2019) and were run on Ubuntu 16.04 
with an Intel Xeon W-2125 CPU @ 4.00GHz processor, 

Fig. 4  A: Example of ground truth and its brain midline area after 
four (red) and ten (green) iterations of morphological dilation. B-C: 
Dice coefficients for the ipsi- and contralateral hemisphere classes in 

the brain midline area with different morphological dilation iterations 
(brain midline area sizes)
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64 GB of memory and an NVidia GeForce GTX 1080 Ti 
with 11 GB of memory. MedicDeepLabv3+ and the scripts 
for segmenting rat MR images and to optimize new mod-
els are publicly available at https:// github. com/ jmlip man/ 
Medic DeepL abv3P lus. These scripts are ready for use via 
command line interface with a single command, and users 
can easily adjust the number of initial filters that controls 
the model size, capacity, and GPU memory requirements. 
Additionally, we provide the optimized parameters (i.e., 
the weights) of MedicDeepLabv3+ at https:// github. com/ 
jmlip man/ Medic DeepL abv3P lus.

Results

Segmentation Metrics Comparison

Our MedicDeepLabv3+ produced brain and hemisphere 
masks with the highest Dice coefficients (0.952 and 0.944) 
and precision (0.94 and 0.94), and the lowest HD (1.856 
and 2.064) (see Table 1). MedicDeepLabv3+ also achieved 
the highest Dice coefficients in the brain and contralateral 
hemisphere most frequently, in 38% and 36% of the test 
images, respectively, followed by UNet (24% and 26%), 
VNet (13% and 13%), VoxResNet (13% and 12%), High-
Res3DNet (11% and 12%) and the others (1% or less). In 
the majority of cases, MedicDeepLabv3+ produced seg-
mentations with Dice and HD significantly better than the 
compared methods (see Table 1). All ConvNets performed 
better than RATS and RBET and, particularly, 3D Con-
vNets (MedicDeepLabv3+, DeepLabv3+, HighRes3D-
Net, V-Net, and VoxResNet) consistently yielded lower 
HD than 2D ConvNets (UNet, Demon). Our MedicDee-
pLabv3+ produced finer segmentations that were more 

similar to the ground truth than the baseline DeepLabv3+ 
which generated masks with imprecise borders. UNet also 
produced segmentations with higher Dice and recall than 
DeepLabv3+, although UNet HD was considerably lower. 
HighRes3DNet, V-Net, and VoxResNet yielded slightly 
worse Dice coefficients and HDs than MedicDeepLabv3+. 
Figure 5 illustrates these results on the MR image with 
the highest hemispheric volume imbalance. Figure 5 shows 
that RBET was incapable of finding the brain bounda-
ries; RATS produced segmentations with several holes 
and non-smooth borders; 2D ConvNets misclassified the 
olfactory bulb and cerebellum; and, in agreement with 
Table 1, MedicDeepLabv3+ produced the segmentation 
mask most similar to the ground truth. We included 17 
images (one per cohort and lesion time-point) in Online 
Resource 1 that also corroborate the higher performance 
of MedicDeepLabv3+. The computation time to optimize 
these methods also varied notably: on average, ConvNets 
required 16 hours, and RATS and RBET needed six days. 
Furthermore, MedicDeepLabv3+ segmented the images in 
real time, requiring approximately 0.4 seconds per image.

Brain Midline Experiment

Regarding the brain midline area experiment (Sect. 2.5.3, 
Fig. 4B,C), MedicDeepLabv3+ outperformed the base-
line DeepLabv3+ across different area sizes (average Dice  
coefficient difference of 0.07). VoxResNet, HighRes3DNet, 
V-Net, and MedicDeepLabv3+ yielded very similar Dice 
coefficients, and UNet produced the highest Dice coeffi-
cients by a small margin (average difference between UNet 
and MedicDeepLabv3+ of only 0.02). Additionally, Dice  
coefficients were similar across hemispheres regardless of 
the segmentation method.

Table 1  Dice coefficients, 
Hausdorff distances (HD), 
precision, and recall of the brain 
and contralateral hemisphere 
(CH) masks derived from the 
evaluated methods (mean ± 
std). Bold: best scores. Scores 
that were significantly different 
from our MedicDeepLabv3+ 
were marked with * (p-value 
< 0.05)

Approach Dice HD Prec Recall

Brain MedicDeepLabv3+ 0.952 ± 0.04 1.856 ± 0.91 0.94 ± 0.07 0.97 ± 0.03
VoxResNet 0.951 ± 0.04 2.042 ± 1.02* 0.94 ± 0.07 0.97 ± 0.02
HighRes3DNet 0.949 ± 0.04* 1.858 ± 1.04 0.93 ± 0.07 0.97 ± 0.02
V-Net 0.948 ± 0.04* 1.920 ± 1.05* 0.94 ± 0.07 0.97 ± 0.02
UNet 0.947 ± 0.05* 3.477 ± 1.20* 0.93 ± 0.07 0.97 ± 0.02
DeepLabv3+ 0.936 ± 0.04* 2.149 ± 1.02* 0.93 ± 0.07 0.95 ± 0.03
Demon 0.934 ± 0.04* 3.621 ± 1.17* 0.92 ± 0.07 0.96 ± 0.02
RATS 0.913 ± 0.01* 2.221 ± 0.51* 0.91 ± 0.03 0.92 ± 0.02
RBET 0.781 ± 0.10* 3.628 ± 0.46* 0.89 ± 0.05 0.70 ± 0.10

CH MedicDeepLabv3+ 0.944 ± 0.04 2.064 ± 1.85 0.94 ± 0.08 0.96 ± 0.03
VoxResNet 0.944 ± 0.04 2.265 ± 1.86* 0.93 ± 0.07 0.96 ± 0.02
HighRes3DNet 0.942 ± 0.04* 2.205 ± 1.86* 0.93 ± 0.07 0.96 ± 0.03
V-Net 0.940 ± 0.04* 2.218 ± 1.86* 0.93 ± 0.07 0.96 ± 0.03
UNet 0.941 ± 0.05* 3.689 ± 1.64* 0.92 ± 0.07 0.97 ± 0.02
DeepLabv3+ 0.921 ± 0.04* 2.411 ± 1.80* 0.91 ± 0.07 0.94 ± 0.03

https://github.com/jmlipman/MedicDeepLabv3Plus
https://github.com/jmlipman/MedicDeepLabv3Plus
https://github.com/jmlipman/MedicDeepLabv3Plus
https://github.com/jmlipman/MedicDeepLabv3Plus
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Hemispheric Ratio Experiment

The computed Cohen’s d shows that, in terms of magni-
tude, all methods produced hemispheric ratio distributions 
not too different from the ground truth (Table 2). Among 
these methods, MedicDeepLabv3+ and V-Net provided the 
smallest effect size and the most zero-centered confidence 
interval, with MedicDeepLabv3+’s confidence interval 
being narrower than V-Net’s. DeepLabv3+’s confidence 
interval was the largest and contained zero whereas UNet’s 
confidence interval was the narrowest—slightly narrower 
than MedicDeepLabv3+’s—and did not contain zero.

Limited Resources

Table 3 lists the characteristics, computational requirements, 
and performance of different versions of MedicDeepLabv3+ 
on the contralateral hemisphere segmentation (performance 
on the brain can be found in Online Resource 2). Reducing 
the number of parameters by decreasing the number of initial 
filters reduced notably the required GPU memory and train-
ing time while it barely affected MedicDeepLabv3+’s per-
formance. For instance, reducing the number of parameters 
by 93.5% (from 79.1M to 5.1M) decreased the required GPU 
memory and training time by 72% while it decreased the 
Dice coefficient in the contralateral hemisphere by only 1%.

Tables 4 and 5 show the performance of MedicDeep-
Labv3+ optimized and evaluated on each cohort and acqui-
sition time-point separately. In other words, for each cohort 
and acquisition time-point, the training set was comprised 
by only three images and test set size (Tables 4 and 5, 

“Volumes” column) varied across the 17 groups. MedicDee-
pLabv3+, on average, performed slightly worse than in our 
first experiment that utilized 17 times more annotated data. 
Performance measures across these groups varied notably: 
in the contralateral hemisphere segmentations (Table 5) Dice 
coefficients ranged from 0.876 to 0.951, HD from 1.200 to 
3.745, precision from 0.871 to 0.962, and recall from 0.859 
to 0.967. Additionally, in agreement with our previous 
experiment, performance on the contralateral hemisphere 
was slightly lower than on the brain.

Discussion

We presented MedicDeepLabv3+, the first method for 
hemisphere segmentation in rat MR images with ischemic 
lesions. We compared MedicDeepLabv3+ performance with 
state-of-the-art DeepLabv3+, UNet, HighRes3DNet, V-Net, 
VoxResNet, and three brain extraction algorithms (Demon, 

Fig. 5  T2-weighted image, ground truth and automatic segmentations of the rat with the most imbalanced hemispheric volumes

Table 2  Cohen’s d that measured the effect size and its confidence 
intervals

Approach Cohen’s d Confidence Interval

MedicDeepLabv3+ 0.008 [-0.013, 0.035]
VoxResNet -0.042 [-0.060, -0.025]
HighRes3DNet -0.102 [-0.125, -0.080]
V-Net 0.003 [-0.042, 0.022]
UNet -0.038 [-0.054, -0.021]
DeepLabv3+ 0.050 [-0.008, 0.099]
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RATS, and RBET) combining several preclinical neuroim-
aging studies to a large dataset of 723 rat MR volumes.

ConvNets performed markedly better and their training time 
was about 10 times shorter than RATS (Oguz et al., 2014) 
and RBET (Wood et al., 2013). The superior performance 
of ConvNets was not surprising, as RATS and RBET were 
not designed to segment brains with widely varying intensity 
values, such as those found in brains with lesions. This out-
performance of ConvNets over more traditional segmentation 
algorithms on rodent MRI aligns with recent research (Roy 
et al., 2018; Liu et al., 2020; De Feo et al., 2021).

MedicDeepLabv3+ yielded the highest Dice coefficients, 
precision and recall, and the lowest HD (Table 1). Particu-
larly, the outperformance of MedicDeepLabv3+ over the 
baseline DeepLabv3+ (Chen et al., 2018b) indicates that 
the proposed modifications (i.e., the incorporation of spatial 
attention layers and additional skip-connections), altogether, 

led to improvements. Similar improvements after incorporat-
ing attention layers, such as the proposed spatial attention 
layers, have also been reported in the literature (Oktay et al., 
2018; Wang et al., 2019; Tao et al., 2019; Xu e tal., 2020). 
The same applies for adding skip connections (Drozdzal 
et al., 2016; Li et al., 2018). In the brain midline area experi-
ment, UNet achieved slightly higher Dice coefficients than 
the other 3D ConvNets. However, these Dice coefficients 
were computed only in the annotated slices, as finding the 
brain midline requires the manual annotations. As we showed 
in Table 1, Fig. 5, and the 17 Figures in Online Resource 
1, 2D ConvNets, including UNet, produced misclassifica-
tions in the cerebellum and the olfactory bulb that were not 
annotated, leading to notably higher HD. Therefore, the 
small difference between UNet and the 3D ConvNets (Fig. 4) 
comes at the expense of those misclassifications that were 
disregarded during the evaluation. The differences among 

Table 3  Comparison between multiple versions of MedicDeepLabv3+ 
with different capacity. Columns: proportion of kernel filters with respect 
to the default configuration, trainable ConvNet parameters (in millions), 
optimization time for 300 epochs in our workstation (see Sect. 2.5.6 for 

details) in hours, maximum GPU memory required during training and 
evaluation, Dice and HD in the contralateral hemisphere (mean ± std). 
Bold: default configuration, highest performance

Rate Parameters Time (h) Mem. (train) Mem. (eval) Dice HD

1 79.1M 16.2 8857 MiB 2935 MiB 0.944 ± 0.04 2.064 ± 1.85
0.875 60.7M 14.4 7571 MiB 2617 MiB 0.941 ± 0.04 2.103 ± 1.86
0.750 44.7M 12.1 6545 MiB 2319 MiB 0.941 ± 0.04 2.118 ± 1.86
0.625 31.1M 10.3 5619 MiB 2007 MiB 0.941 ± 0.04 2.099 ± 1.85
0.500 20.0M 7.8 4577 MiB 1717 MiB 0.939 ± 0.05 2.099 ± 1.83
0.375 11.3M 6.2 3531 MiB 1421 MiB 0.937 ± 0.05 2.138 ± 1.85
0.250 5.1M 4.5 2503 MiB 1121 MiB 0.933 ± 0.05 2.078 ± 1.82

Table 4  Dice, Hausdorff 
distance (HD), precision, 
and recall on the brain 
masks derived with 
MedicDeepLabv3+ in each 
cohort and time-point (TP) 
separately. Volumes indicate the 
number of volumes in the test 
set. Mean ± std

Cohort TP Volumes Dice HD Prec Recall

1 2h 8 0.916 ± 0.03 2.018 ± 0.47 0.929 ± 0.08 0.913 ± 0.08
1 24h 8 0.912 ± 0.10 2.581 ± 1.82 0.894 ± 0.18 0.952 ± 0.02
2 24h 13 0.915 ± 0.02 3.745 ± 1.12 0.929 ± 0.07 0.909 ± 0.05
3 D35 16 0.949 ± 0.02 2.142 ± 0.44 0.956 ± 0.03 0.942 ± 0.02
4 24h 40 0.957 ± 0.01 1.981 ± 0.87 0.985 ± 0.01 0.930 ± 0.02
5 24h 23 0.947 ± 0.01 1.557 ± 0.43 0.935 ± 0.03 0.960 ± 0.02
6 D3 60 0.973 ± 0.01 1.200 ± 0.32 0.968 ± 0.02 0.978 ± 0.01
6 D28 58 0.946 ± 0.02 1.688 ± 0.60 0.937 ± 0.04 0.957 ± 0.02
7 D3 35 0.956 ± 0.01 1.723 ± 0.92 0.968 ± 0.02 0.945 ± 0.03
7 D21 35 0.950 ± 0.01 1.548 ± 0.75 0.937 ± 0.02 0.964 ± 0.01
8 24h 29 0.956 ± 0.01 1.742 ± 0.92 0.956 ± 0.03 0.956 ± 0.02
8 D3 26 0.953 ± 0.01 1.599 ± 0.35 0.949 ± 0.02 0.957 ± 0.01
8 D14 26 0.948 ± 0.01 1.678 ± 0.43 0.929 ± 0.03 0.967 ± 0.01
8 D28 23 0.943 ± 0.02 1.713 ± 0.36 0.940 ± 0.03 0.946 ± 0.03
9 24h 77 0.951 ± 0.03 1.838 ± 1.02 0.970 ± 0.04 0.935 ± 0.04
10 D7 36 0.919 ± 0.05 2.226 ± 0.81 0.880 ± 0.10 0.970 ± 0.02
11 24h 28 0.937 ± 0.02 2.696 ± 0.79 0.954 ± 0.04 0.923 ± 0.04
Average 541 0.948 ± 0.03 1.833 ± 0.89 0.949 ± 0.05 0.951 ± 0.03
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HighRes3DNet, V-Net, VoxResNet and MedicDeepLabv3+ 
were also very small. In contrast, the difference between 
MedicDeepLabv3+ and the baseline DeepLabv3+ was three 
times larger than between MedicDeepLabv3+ and UNet.

Our benchmark (Table 1) provides a valuable insight into 
whether 2D ConvNets produce better segmentations than 
3D ConvNets on highly anisotropic data. In recent litera-
ture, 2D ConvNets appeared to be better (Jang et al., 2017; 
Isensee et al., 2017; Baumgartner et al., 2017), including in 
rodent images similar to our dataset (De Feo et al., 2021). 
2D ConvNets outperformance may arise because contigu-
ous slices can differ significantly in anisotropic data, thus, 
three-dimensional information might be unnecessary, and 
slice appearance might suffice to segment the regions of 
interest. Our data and, particularly, our manual annotations, 
were specially challenging since our regions of interest had 
similar intensity values to the cerebellum and olfactory bulb 
that were not annotated. Therefore, three-dimensional infor-
mation can be critical to learn the location in the rostro-
caudal axis of certain areas to avoid them. Indeed, our results 
support this intuition. Although Dice coefficient, precision 
and recall varied across architectures (Table 1), HD was 
consistently lower with 3D ConvNets. In other words, 2D 
ConvNets produced more critical misclassifications. Thus, 
our data showcased a scenario in which, despite the anisot-
ropy, 3D ConvNets were superior to 2D ConvNets, showing 
that the architectural choices need to consider more specific 
information and not just whether the data is anisotropic.

We measured the discrepancy magnitude between the 
hemispheric ratio distributions from the segmentations 
and from the ground truth (Table 2), and V-Net and our 

MedicDeepLabv3+ yielded the smallest effect size, indi-
cating that the hemispheric ratios of their corresponding 
segmentations were more similar to the ground truth than 
the other ConvNets. We want to emphasize the importance 
of accurate hemispheric ratios as they are biomarkers for 
predicting acute stroke (Swanson et  al., 1990; Gerriets 
et al., 2004). Both V-Net and MedicDeepLabv3+’s confi-
dence intervals were zero-centered, and between these two, 
MedicDeepLabv3+’s was one third smaller than V-Net’s. 
The effect size of VoxResNet and HighRes3DNet (the sec-
ond and third best performing ConvNets after MedicDeep-
Labv3+) was much higher, and their confidence intervals 
did not include zero, which indicates that their hemispheric 
ratios were biased, being considerably larger than the 
ground truth. UNet’s and DeepLabv3+’s effect size were 
also high, and DeepLabv3+’s confidence interval was the 
largest across all compared ConvNets. Thus, overall, and in 
agreement with the other experiments, MedicDeepLabv3+ 
compared favorably with the baseline DeepLabv3+ and the 
other competing methods.

ConvNets, and especially our MedicDeepLabv3+, pro-
duced segmentations more similar to the ground truth than 
the other methods (Table 1). Since these ConvNets were 
high capacity—requiring large GPU memory—and they 
were optimized with several images, their outperformance 
is in line with recent research (Tan & Le, 2019). However, 
annotated data are often scarce, and large GPU memory to 
optimize ConvNets is not necessarily available. Motivated 
by these constraints, we showed in two separate experiments 
that MedicDeepLabv3+ performed remarkably well with few 
annotated data and very limited GPU memory (see Tables 3, 

Table 5  Dice, Hausdorff 
distance (HD), precision, and 
recall on the contralateral 
hemisphere masks derived with 
MedicDeepLabv3+ in each 
cohort and time-point (TP) 
separately. Volumes indicate the 
number of volumes in the test 
set. Mean ± std

Cohort TP Volumes Dice HD Prec Recall

1 2h 8 0.883 ± 0.03 3.593 ± 0.83 0.871 ± 0.06 0.904 ± 0.07
1 24h 8 0.886 ± 0.11 3.181 ± 1.76 0.874 ± 0.18 0.915 ± 0.03
2 24h 13 0.876 ± 0.03 3.792 ± 1.60 0.902 ± 0.08 0.859 ± 0.05
3 D35 16 0.927 ± 0.02 1.977 ± 0.94 0.948 ± 0.03 0.907 ± 0.03
4 24h 40 0.928 ± 0.02 1.889 ± 0.76 0.962 ± 0.03 0.898 ± 0.03
5 24h 23 0.899 ± 0.04 1.630 ± 0.48 0.912 ± 0.04 0.888 ± 0.06
6 D3 60 0.951 ± 0.02 2.766 ± 2.27 0.936 ± 0.04 0.967 ± 0.01
6 D28 58 0.935 ± 0.02 1.387 ± 0.51 0.932 ± 0.04 0.939 ± 0.02
7 D3 35 0.930 ± 0.02 2.038 ± 1.40 0.959 ± 0.02 0.904 ± 0.04
7 D21 35 0.939 ± 0.01 1.487 ± 0.90 0.927 ± 0.03 0.952 ± 0.02
8 24h 29 0.935 ± 0.02 2.574 ± 2.32 0.936 ± 0.03 0.936 ± 0.03
8 D3 26 0.903 ± 0.07 5.874 ± 0.82 0.902 ± 0.03 0.912 ± 0.11
8 D14 26 0.933 ± 0.02 1.911 ± 1.34 0.901 ± 0.04 0.967 ± 0.01
8 D28 23 0.932 ± 0.02 1.830 ± 1.23 0.929 ± 0.03 0.935 ± 0.03
9 24h 77 0.917 ± 0.03 2.234 ± 1.67 0.926 ± 0.05 0.911 ± 0.04
10 D7 36 0.908 ± 0.05 3.195 ± 2.20 0.871 ± 0.10 0.958 ± 0.03
11 24h 28 0.894 ± 0.03 4.200 ± 2.27 0.900 ± 0.04 0.892 ± 0.04
Average 541 0.923 ± 0.04 2.480 ± 1.89 0.924 ± 0.05 0.926 ± 0.05
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4, and 5). In other words, our method can handle different 
scenarios without excessively sacrificing performance, which 
showcases MedicDeepLabv3+ generalization capabilities.

MedicDeepLabv3+ is publicly available, and it can be 
easily incorporated into existing pipelines, reducing human 
workload and accelerating rodent neuroimaging analyses. 
Furthermore, MedicDeepLabv3+ is fast, requires no pre-
processing and postprocessing, and it can be optimized on 
MR images with different contrast, voxel resolution, field 
of view, lesion appearance, and limited GPU memory and 
annotated data. As hemisphere segmentation masks can be 
utilized in diverse studies, our work is relevant for multiple 
applications involving brain lesions in rat images.
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