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Abstract — Thresholded reciprocal filtering (TRF) 

techniques have been proposed as supervision strategies for 

reciprocal filtering (RF) in order to address the challenges 

posed by the unique characteristics of orthogonal frequency-

division multiplexing (OFDM) waveforms when used for 

radar. These techniques are known to provide a larger 

flexibility for the signal processing scheme at the range 

compression stage by enabling the possibility to operate on 

signal fragments of arbitrary length, while simultaneously 

retaining the RF’s benefits in terms of point-like target 

response. In this paper we extend the study of TRF techniques 

by presenting a theoretical analysis of their impact on the 

clutter suppression capability of the system. To this end, we 

firstly characterize the theoretical performance of the TRF 

techniques in terms of residual clutter power obtained at the 

output range-Doppler map. The derived analytical 

expressions further allow us to introduce optimized variants 

of the TRF, that are able to maximize the performance 

metrics. An extensive simulation-based validation shows that 

the proposed solutions outperform traditional methods, 

especially in low to moderate clutter-to-noise conditions. 

Moreover, the assessment of the proposed technique against 

an experimental dataset allows us to validate the practical 

effectiveness of the TRF approach. 

Index Terms — clutter cancellation, OFDM radar, 

supervised reciprocal filter, passive radar 

I. INTRODUCTION 

Encouraged by recent advancements in joint radar and 
communication (JRC), [1]-[3] as well as passive radar (PR) 
technologies, [5]-[16], orthogonal frequency-division 
multiplexing (OFDM) radar systems have gained increasing 
attention within the radar research community. 

On one hand, the JRC paradigm introduces an effective 
approach to address the growing congestion within the 
radiofrequency spectrum by enabling coexistence between 
radar and communication systems. This concept finds 
relevance in applications involving multiple users, such as 
autonomous drivingor smart indoor environments. 
Nevertheless, designing a JRC system requires careful 
design of the waveform jointly exploited by the radar and 

the communications subsystems. In this perspective, 
OFDM-modulated signals have emerged as promising 
candidates. 

On the other hand, the concept of exploiting existing 
transmitters from communication systems as radar 
illuminators of opportunity has gained substantial attention 
in the last few decades since it enables cost-effective radar 
solutions, suitable for various surveillance and short-range 
monitoring applications. Several studies have explored the 
feasibility of passive radar based on digital audio 
broadcasting (DAB [8][9]), digital video broadcasting - 
terrestrial (DVB-T [9][10][11]), or transmitters used in 
metropolitan and local area networking (e.g., Wi-Fi 
[12][13], LTE [14][15], 5G [16]).  

However, the use of OFDM-modulated signals for radar 
purposes introduces issues that have to be carefully 
considered [6][10][17][18]. As is well known, OFDM 
waveforms include several structures (e.g., cyclic prefixes, 
pilot tones or null carriers), which are typically embedded 
within these waveforms to counter inter-symbol 
interference, achieve signal synchronization and channel 
equalization in communication systems. These periodical 
structures are especially harmful for radar purposes, as they 
induce undesired side-peaks within the cross-ambiguity 
function (CAF), which can mask the echoes of targets with 
low radar cross-section. Moreover, the time-varying nature 
associated to the information content of the employed 
OFDM waveforms also jeopardizes clutter cancellation, as 
the unpredictable changes in the waveform cause 
subsequent observations of the stationary scene to 
decorrelate.  

Recent works have addressed these issues by 
introducing signal processing strategies based on the use of 
a reciprocal filter (RF) at the range compression stage 
[7][11][19]-[21]. In fact, the RF inherently equalizes the 
spectral modulation induced by the waveform 
characteristics thus yielding an ideal sinc-shaped response 
to a point-like target echo. Also, this response remains 
stable across consecutive observations regardless of the 
time-varying data content.  This in turn enables perfect 
clutter suppression through conventional low-complexity 
approaches, such as the non-adaptive single canceller (SC) 
[22].  

Specifically, the signal processing architectures 
proposed in [19]-[21] operate by (i) dividing the reference 
and surveillance signals into batches equal to OFDM 
symbols and removing the cyclic prefix, (ii) applying the RF 
on a batch-by-batch basis to obtain range compressed data, 
(iii) performing clutter cancellation with a SC, (iv) 
evaluating the final range-Doppler map by applying an FFT 
across consecutive batches. The adopted OFDM signal 
fragmentation determines remarkable performance for the 
RF in terms of clutter removal and sidelobes control with 
only a limited signal-to-noise (SNR) loss with respect to the 
conventional matched filter (MF). 

In contrast, not all the above characteristics are 
guaranteed when applying the RF over batches not 
coinciding with OFDM symbols. Nevertheless, the 
possibility to operate with arbitrarily fragmented signals 
would provide the radar designer with additional design 
flexibility in order to be effective in different scenarios: 

1. As known, the suboptimal batching strategy neglects the 
target echo phase variation within each batch. This 
results in a velocity-dependent SNR loss, since the 

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2024.3427089

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



entity of the phase shift depends on the bistatic 
velocity of the target. This suggests using sub-symbol 
batches, especially when dealing with fast-moving 
targets.  

2. The frequency-domain implementation of range 
compression also introduces an SNR loss, since a 
linear correlation is approximated by a circular 
correlation. The resulting SNR loss depends on the 
target bistatic range, and can be mitigated by using 
super-symbol batches, which are more robust to 
border effects.  

3. The equivalent pulse repetition time (PRT) is equal to 
the duration of the adopted batches. Therefore, 
decoupling the batch duration from the OFDM symbol 
duration also allows to select the desired pulse 
repetition frequency (PRF), which is crucial for 
unambiguous target detection.  

4. Practical implementation, especially on resource-
constrained platforms like field programmable gate 
arrays (FPGAs), benefits from the flexibility enabled 
by arbitrary signal fragmentation. For instance, using 
batches shorter than the OFDM symbols may become 
a necessity when dealing with limited memory 
resources. 

 

Driven by the potential of arbitrary fragmentation, the 
application of the RF-based processing on batches of 
arbitrary duration has been considered in [23]. Therein, it 
was demonstrated that applying a conventional RF to non-
OFDM-fragmented signals results in enormous SNR losses, 
which depend on the statistical properties of the received 
signals. Specifically, when the batch does not correspond to 
the OFDM symbol, its samples are not exclusively drawn 
from the OFDM constellation and can assume any random 
value. This is especially problematic when inverting the 
reference signal spectrum to implement a RF, since it may 
introduce spikes amplifying the noise power level. 

To enable the use of arbitrary fragmentations in 
conjunction with RF, supervised versions of the RF were 
introduced in [23], denoted as thresholded reciprocal filter 
(TRF). The proposed approaches proved effective in 
avoiding the noise boosting effect while preserving the RF’s 
improved point-like target response.  

However, [23] does not consider the impact of the TRF 
techniques on the clutter suppression capability, which is 
yet to be explored. In fact, since the supervision strategy 
relies on the actual values of the signal spectrum at each 
batch, it partially restores the data-dependent characteristic 
for the point-like target response. As a consequence, it is 
expected that the use of TRF at the range compression stage 
might have a non-negligible impact on the clutter 
cancellation stage, especially if a low-complexity approach 
has to be exploited such as the SC. Some preliminary results 
along this line have been reported in [24]. However, these 
initial findings lack the theoretical framework needed to 
assess the clutter suppression capabilities of the TRFs.  

Specifically, the novel contributions of this paper can be 
summarized as follows. 

1. The clutter suppression capabilities of a signal 
processing architecture based on the cascade of a TRF-
based range compression and a SC are theoretically 
assessed. This study not only complements the 
analysis reported in [23] and extends the qualitative 
study in [24], but also allows to properly select the 

TRF parameters in order to identify a suitable trade-
off between the clutter cancellation capability and the 
SNR loss limitation. 

2. The availability of closed-form expressions for the 
observed performance metrics allows us to derive 
optimized variants of the TRF techniques, in which the 
parameters are evaluated to optimize different 
objective functions, namely the SNR, the clutter-to-
noise ratio (CNR) and the signal-to-clutter-and-noise 
ratio (SCNR), respectively. 

3. This paper also reports an extensive validation of the 
performance of different TRF techniques through 
testing not only against simulated data as in [24], but 
also against experimental data. This allows to 
demonstrate the advantages of the proposed solutions 
in practical cases. 

 

This paper is outlined as follows. In Section II, we 
introduce the adopted processing scheme based on 
alternative range compression filters, applied against both 
OFDM-fragmented and arbitrarily fragmented signals. In 
Section III, the clutter suppression performance of the 
cascade of MF/RF/TRF and SC are theoretically assessed 
and then validated via simulated analysis. In Section IV, the 
TRF parameters are optimized according to different 
metrics, and the performance of the optimized TRFs are 
compared to that of the TRFs introduced in [23]. In Section 
V, we test the different TRF supervision techniques on 
synthetic data, considering  a DVB-T-based PR. The TRFs 
are also validated against an experimental dataset in Section 
VI. Lastly, Section VII offers concluding remarks. 

II. SIGNAL PROCESSING SCHEME AND 

RANGE COMPRESSION STRATEGY 

In this paper we consider the signal processing scheme 
depicted in Figure 1 that was shown to be an effective 
solution in different OFDM radar applications, especially 
when designing systems with limited complexity [19]-[21].  

The considered architecture encompasses a batching 
stage where the digitized received signals are first 
fragmented into batches of assigned length. The fragmented 
reference and surveillance signals are arranged in bi-
dimensional sequences, namely 𝑟[𝑙, 𝑚] and 𝑠[𝑙, 𝑚] (𝑙 =
0, … 𝐿 − 1, 𝑚 = 0, … 𝑀 − 1), being L the batch length and 
M the number of batches included in the coherent 

 

Figure 1:  Sketch of the adopted processing architecture. 
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processing interval (CPI), while 𝑙 and 𝑚 represent the fast-
time and slow-time indices, respectively.  

Then a range compression stage is applied on a batch-
by-batch basis, [6][25]. It is performed in the frequency 
domain, by computing the DFT of the surveillance signal at 
the m-th batch, namely 𝑆[𝑝, 𝑚], and evaluating: 

𝑥[𝑙, 𝑚] =
1

𝐿
∑ 𝑆[𝑝, 𝑚]𝐻[𝑝, 𝑚]𝑒

𝑗2𝜋𝑝𝑙
𝐿

𝐿−1

𝑝=0

. (1) 

where 𝐻[𝑝, 𝑚] is the adopted range compression filter, 
which might take different forms as discussed later in this 
section. The range-compressed sequence is fed to the clutter 
suppression stage, which is based on a single-pulse MTI 
canceler with a 𝐾-taps delay:  

𝑥𝐶[𝑙, 𝑚] = 𝑥[𝑙, 𝑚] − 𝑥[𝑙, 𝑚 − 𝐾] (2) 

 Finally a discrete Fourier transform (DFT) is performed 
across batches to obtain the final range-Doppler map: 

𝑧[𝑙, 𝑞] = ∑ 𝑥𝐶[𝑙, 𝑚]𝑒−
𝑗2𝜋𝑚𝑞

𝑀

𝑀−1

𝑚=0

 (3) 

Different combinations of batching strategies and range 
compression filters can be adopted within the architecture 
in Figure 1 depending on the considered scenario. 

 

OFDM fragmentation: when an OFDM fragmentation is 
used, signals are fragmented into individual OFDM 
symbols. The signal batches feeding the range compression 
stage are obtained by removing the cyclic prefix (CP) from 
each OFDM symbol. Consequently, the DFT evaluated over 
the useful OFDM symbol portion of duration TU takes 
values out of the adopted modulation constellation 
[11][19][20].  

With this batching strategy, two range compression 
filters have been considered: 

the conventional matched filter (MF): 

𝐻[𝑝, 𝑚] = 𝑅∗[𝑝, 𝑚]    (𝑝 = 0, … , 𝐿 − 1) (4) 

the reciprocal filter (RF): 

𝐻[𝑝, 𝑚] =
1

𝑅[𝑝, 𝑚]
      (𝑝 = 0, … , 𝐿 − 1) (5) 

where 𝑅[𝑝, 𝑚] is the DFT of the reference signal at the m-
th batch. As is well known, the MF allows to maximize the 
output SNR. In contrast, the RF has been shown to provide 
a more controlled point-like target response in terms of both 
stability across time and sidelobe level  [19][20]. When an 
OFDM fragmentation is adopted, these advantages of the 
RF with respect to the MF are obtained at the price of a 
limited loss in terms of SNR, which depends on the adopted 
modulation constellation but is typically below 4-5 dB. 

 

Non-OFDM fragmentation: in this case the batches 
length L is arbitrarily selected in order to meet requirements 
related to the range/Doppler region of interest, the presence 
of Doppler ambiguities, the computational resources, as 
briefly discussed in the introduction. In such condition, 
there is no need to identify the start of the OFDM frame or 
to remove the cyclic prefix, thus further symplifying the 
batching stage [23].  

With this batching strategy, the MF shows identical 
characteristics as for an OFDM fragmentation: it achieves 
optimal SNR performance while still suffering from high 
sidelobes, presence of side-peaks, and large temporal 
variability in the filter response. The RF is still able to 
mitigate these undesired characteristics of the MF but at the 
price of large SNR loss, typically higher than 10 dB [23]. 
This is due to the fact that, with a non-OFDM 
fragmentation, the DFT of the surveillance and the reference 
signals are evaluated over batches that might be shorter or 
longer than the useful OFDM symbol so that the output 
takes values not limited to the constellation symbols that can 
be rather modeled as zero-mean complex gaussian random 
variables. Consequently there is a non negligible probability 
for 𝑅[𝑝, 𝑚] to take very low values that in turn are 
responsible of a noise boosting effect when used to compute 
the RF.  

Therefore, supervised versions of the RF have been 
introduced to mitigate this loss the good characteristics of 
the RF [23]. The idea behind the thresholded RF (TRF) is to 
supervise the minimum value of the reference signal power 
spectrum |𝑅[𝑝, 𝑚]|2 before the RF is computed. This 
prevents the occurrence of spikes in the amplitude response 
|𝐻[𝑝, 𝑚]| of the range compression filter. Specifically, the 
TRF is evaluated as: 

𝐻[𝑝, 𝑚] = {

1

𝑅[𝑝, 𝑚]
                          |𝑅[𝑝, 𝑚]|2 > 𝑥0

𝛼 𝑒−𝑗∠𝑅[𝑝,𝑚],                 |𝑅[𝑝, 𝑚]|2 ≤ 𝑥0

. (6) 

where  

• 𝑥0 is the threshold and can be set to obtain a good trade-
off between output SNR and filter response 
characteristics, and   

• 𝛼 is constant that defines the particular TRF technique; 
specifically, three distinct TRF approaches where 
introduced in [23] based on the following choices of 
this parameter: 

• TRF-Zeros (TRF-Z) – the filter samples triggering the 
threshold are replaced with zeros (𝛼 = 0); 

• TRF-Mean (TRF-M) – the filter samples triggering the 
threshold are replaced with the mean spectral 

amplitude level (𝛼 = 1/√𝐸{|𝑅[𝑝, 𝑚]|2} = 1/√𝐿𝜎𝑟
2). 

• TRF-Saturated (TRF-S) – the filter samples triggering 
the threshold are replaced with the adopted threshold 

𝑥0 (𝛼 = 1/√𝑥0). 

 

All the above combinations of batching strategies and 
range compression filters have been extensively 
investigated in [23] in terms of achievable SNR and 
sidelobes characteristics for the resulting response to a 
point-like target. In particular, the advantages provided by 
RF based approaches have been compared with the SNR 
loss that has to be accepted: 

Δ𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑚𝑎𝑥

𝑆𝑁𝑅
 (7) 

and this is evaluated with respect to the maximum SNR 
achieved with the optimum cross-ambiguity function (CAF) 
between the surveillance signal and the reference signal for 
a given CPI, i.e. 𝑆𝑁𝑅𝑚𝑎𝑥 = 𝑆𝑁𝑅𝑖𝑛 𝑁, being 𝑁 the total 
number of samples in the CPI. 
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For a given fragmentation strategy and range 
compression filter, the above loss is the result of several loss 
factors, all characterized by the authors in [23]: 

• Cyclic Correlation Loss (𝜌𝐶𝐶): Performing range 
compression in the frequency domain implies 
implementing a circular correlation instead of a linear 
one. This yields an SNR loss, denoted as 𝜌𝐶𝐶 , 
increasing with the target’s bistatic range. Thanks to 
the presence of a CP at each OFDM symbol, the 
OFDM fragmentation strategy prevents this loss for 
targets within the bistatic range 𝑅𝐺 = 𝑐 ⋅ 𝑇𝐺 , where 𝑇𝐺  
is the CP duration. On the other hand, with a non-
OFDM fragmentation, this loss can be mitigated up to 
the desired level by increasing the batch duration. 

• Doppler-Induced Phase Variation Loss (𝜌𝐷𝑂𝑃): The 
adopted batching strategy inherently neglects the 
Doppler-induced phase variation within each batch. 
This introduces an additional SNR loss increasing with 
the target’s bistatic velocity. This loss can be mitigated 
only with a non-OFDM fragmentation by employing 
shorter batches. 

• CP Loss (𝜌𝐶𝑃): this loss is only present with the OFDM-
fragmentation since this batching strategy removes the 
CP before range compression, which results in an 
additional SNR loss linearly increasing with the CP 
duration. 

• Filter mismatch Loss (𝜌𝑅𝐶): Lastly, the advantages of 
the RF-based range compression come at the cost of 
mismatching the range compression filter, which 
results in an additional SNR loss. Its entity depends on 
both the fragmentation strategy and the range 
compression filters and it has been theoretically 
evaluated in [23] for all the approaches described 
previously. The results are summarized in the second 
column of Table I. In this table 𝑀𝐶 and 𝑐𝑚  (𝑚 =
0, … , 𝑀 − 1) are the size and symbols of the adopted 
modulation constellation whereas 𝑡 =  𝑥0/𝐿𝜎𝑟

2 is the 
normalized threshold used for the supervised RF 
approaches. Furthermore, 𝐸1(𝑡) denotes the 
exponential integral function, while erf (⋅) denotes the 
error function. We recall that the reported formulas are 
exact in the OFDM-fragmented case, whereas they are 
approximate expressions in the non-OFDM-
fragmented case since they rely on an exponential 
distribution model, which might not necessarily be 
tight. As previously mentioned, with an OFDM 
fragmentation, the RF yields a limited 𝜌𝑅𝐶  loss even 
for large constellations (0 dB for QAM, 2.76 dB with 
16-QAM and 4.29 dB with 64-QAM). In contrast, 
when a conventional RF is applied to non-OFDM-
fragmented signals, an unacceptable loss occurs. Such 
loss can be mitigated by exploiting the supervised 
approaches and carefully selecting the adopted 
threshold. 

With the aim to compare the Δ𝑆𝑁𝑅 obtained with 
different fragmentation strategies and range compression 
filters, we conducted a simulated analysis considering the 
case study of a radar exploiting a 64-QAM-modulated 
OFDM waveform. In the considered scenario, the cyclic 
prefix has been set to 𝑇𝐶𝑃 = 𝑇𝑈/4, resulting in an overall 
duration of the OFDM symbol 𝑇𝑂𝐹𝐷𝑀 = 𝑇𝑈 + 𝑇𝐶𝑃 =
1120 𝜇𝑠, with 𝑇𝑈 = 896 𝜇𝑠. The carrier frequency has 
been set to 𝑓𝐶 = 690 𝑀𝐻𝑧 while the number of sub-carriers 
is 𝑁𝑐 = 8192. We assume to operate over 512 OFDM 

symbols of (1 + 1/4)𝑁𝑐 = 10240 samples each, which 
corresponds to a CPI duration of about 0.57 s. Thermal noise 
has been simulated as complex Gaussian random variable 
(0, 𝜎𝑁

2), and its power level has been deliberately set to 
unity. We considered a point-like scatterer with an input 
SNR equal to 𝑆𝑁𝑅𝑖𝑛 = 0 𝑑𝐵. For such a target the optimum 
CAF would provide a 𝑆𝑁𝑅𝑚𝑎𝑥 = 66.23𝑑𝐵 after range 
compression and Doppler processing. 

The scatterer is located at zero range and zero Doppler 
so that it is not affected by 𝜌𝐶𝐶  and 𝜌𝐷𝑂𝑃 losses. In contrast, 
in such condition, the loss factors affecting the Δ𝑆𝑁𝑅 are the 
𝜌𝐶𝑃 and the 𝜌𝑅𝐶 , which are peculiar characteristics of the 
fragmentation strategy and range compression filter. 
Therefore the Δ𝑆𝑁𝑅 metric was evaluated by measuring the 
loss at the output of the range compression stage.  

Figure 2 shows the Δ𝑆𝑁𝑅 loss as a function of the 
normalized threshold 𝑡, obtained using MF, RF and TRF, 
considering both OFDM-fragmented and arbitrarily 
fragmented signals with super-symbol batches of duration 
𝑇𝑏 = 4 ⋅ 𝑇𝑂𝐹𝐷𝑀. The theoretical predictions and the 
simulated values are respectively represented by the solid 
lines and the markers. The following observations are in 
order. 

• The performances of MF and RF are independent of the 
normalized threshold, so they appear as horizontal 
lines. 

• As expected, the approach based on MF + OFDM 
fragmentation is only affected by the 𝜌𝐶𝑃 loss since 
𝜌𝑅𝐶 = 1. Having assumed a CP of 1/4, 𝜌𝐶𝑃 =
10 log10(1 + 1/4) = 0.9691 𝑑𝐵.  

• Conversely, the approach based on MF + non-OFDM-
fragmentation attains the maximum SNR, as predicted 
by theory. 

• The RF + OFDM-fragmentation strategy undergoes an 
additional loss 𝜌𝑅𝐹  compared to the MF + OFDM-
fragmentation one, due to the RF mismatch. Having 
used a 64-QAM modulation constellation, the RF 
experiences a loss of 𝜌𝑅𝐹 = 4.29 𝑑𝐵, as predicted by 
theory. 

• The SNR loss experienced by the RF becomes 
theoretically infinite when applied to non-OFDM-
fragmented signals, since the values of the reference 

 
 

Figure 2: SNR loss obtained using MF, RF and TRF as a function of 

the normalized threshold 𝑡, considering both OFDM-fragmented and 

arbitrarily fragmented signals. 
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signal power spectrum samples can eventually reach 
zero. In practice, simulated results based on limited 
signal fragments show a highly variable loss which 
changes from batch to batch. In Figure 2, the RF + 
non-OFDM-fragmentation approach undergoes a 
substantial loss of 𝛥𝑆𝑁𝑅 ≈ 13 𝑑𝐵, making it 
impractical in any application. 

• All the TRF techniques recover the SNR loss observed 
in the RF + non-OFDM fragmentation, enabling the 
use of a supervised RF on non-OFDM signal 
fragments. Moreover, increasing the value of 𝑡 
generally results in lower values of Δ𝑆𝑁𝑅. As also 
discussed in [23], this is not the case for the TRF-Z, 
since forcing many zero values in the filter spectrum 
results in the attenuation of the useful signal 
component also. 

The analysis reported above allowed us to recall the 
benefits of the TRFs in terms of SNR losses as extensively 
demonstrated in previous papers [23][24]. Basically, such 
approaches allow to largely recover the loss of a RF when 
operating with a non-OFDM fragmentation and, in turn, to 
get advantage of the RF properties together with the benefits 
of a flexible fragmentation as illustrated in the introduction. 
In the following, the analysis is extended to investigate the 
impact that such approaches have on clutter cancellation. 

 

III. IMPACT OF SUPERVISED 

RECIPROCAL FILTER ON CLUTTER 

SUPPRESSION 

The processing scheme in Figure 1 was shown to be very 
effective particularly when operating with a RF based 
compression strategy [19]-[21]. In fact, since the RF yields 
an ideal sinc-shaped time-invariant response to a point-like 
target echo regardless of the time-varying data content, its 
application potentially enables a theoretically perfect clutter 
suppression for stationary clutter, even operating with a 
low-complexity non-adaptive SC [20][21].  

However, since the supervision strategy relies on the 
actual values of the signal spectrum at each batch, the 
application of a TRF partially restores the data-dependent 
characteristic for the response to a point-like target. As a 
consequence, it is expected that the use of TRF at the range 
compression stage might have a non-negligible impact on 
the clutter cancellation based on the SC. 

Therefore, in this section we investigate the 
performance of the signal processing scheme in Figure 1 in 
terms of clutter cancellation capability when different 
combinations are used of range compression techniques and 
fragmentation strategies. 

To this aim, we define the output SCNR as 

𝑆𝐶𝑁𝑅 =
𝑃𝑇

𝑃𝐶 + 𝑃𝑁
= 𝑆𝑁𝑅

1

𝐶𝑁𝑅 + 1
 (8) 

where: 

• 𝑃𝑇 = |𝐸{𝑧(𝑇)[𝑙T, 𝑞T]}|
2
 is the target peak power and is 

evaluated as the square modulus of a target-only 

range-Doppler map 𝑧(𝑇)[𝑙T, 𝑞𝑇] at the target’s range 
bin 𝑙𝑇 and Doppler bin 𝑞𝑇; 

• 𝑃𝐶 = 𝐸 {|𝑧(𝐶)[𝑙, 𝑞]|
2

} is the output clutter power level 

and is evaluated as the variance of the zero-mean 

clutter-only range-Doppler map 𝑧(𝐶)[𝑙, 𝑞]; 

• 𝑃𝑁 = 𝐸 {|𝑧(𝑁)[𝑙, 𝑞]|
2

} is the output noise power level.  

Correspondingly: 

• 𝑆𝑁𝑅 = 𝑃𝑇/𝑃𝑁 and 𝐶𝑁𝑅 = 𝑃𝐶/𝑃𝑁 are the signal-to-
noise and clutter-to-noise power ratios at the output of 
the signal processing scheme. 

 

The overall loss with respect to the maximum attainable 
SCNR can be defined as: 

Δ𝑆𝐶𝑁𝑅 =
𝑆𝐶𝑁𝑅𝑚𝑎𝑥

𝑆𝐶𝑁𝑅
 (9) 

The 𝑆𝐶𝑁𝑅𝑚𝑎𝑥 is obtained by assuming a perfect clutter 

suppression, i.e., 𝑃𝐶 = 0, together with a perfect target 

Table I: Theoretical expressions for the performance metrics for MF, RF and TRF. 

Filter 𝜌𝑅𝐶  𝑪𝑵𝑹 

MF + OFDM fragmentation 1 2 (
1

𝑀𝐶

∑ |𝑐𝑚|4

𝑀𝐶−1

𝑚=0

− 1) 𝐶𝑁𝑅𝑖𝑛 ⋅ sin2 (𝜋𝐾
𝑞

𝑀
) 

RF + OFDM fragmentation 
1

𝑀𝐶

∑
1

|𝑐𝑚|2

𝑀𝐶−1

𝑚=0

 0 

MF + non-OFDM 

fragmentation 
1 2 𝐶𝑁𝑅𝑖𝑛 ⋅ sin2 (𝜋𝐾

𝑞

𝑀
) 

RF + non-OFDM 

fragmentation 
+∞ 0 

TRF-Z + non-OFDM 

fragmentation 

𝐸1(𝑡)

𝑒−2𝑡
 2 𝐶𝑁𝑅𝑖𝑛

[𝑒−𝑡 − 𝑒−2𝑡]

𝐸1(𝑡)
∙ sin2 (𝜋𝐾

𝑞

𝑀
) 

TRF-M + non-OFDM 

fragmentation 

1 − 𝑒−𝑡 + 𝐸1(𝑡)

[𝑒−𝑡 − √𝑡𝑒−𝑡 + √
𝜋

4
𝑒𝑟𝑓(√𝑡)]

2 

2 𝐶𝑁𝑅𝑖𝑛

2𝐾𝑒−𝑡 + 1 − 𝑡𝑒−𝑡 − 𝑒−2𝑡 − [√𝑡𝑒−𝑡 − √
𝜋
4

𝑒𝑟𝑓(√𝑡)]

2

(1 − 𝑒−𝑡) + 𝐸1(𝑡)
⋅ sin2 (𝜋𝐾

𝑞

𝑀
) 

TRF-S + non-OFDM 

fragmentation 

1 − 𝑒−𝑡 + 𝑡 ⋅ 𝐸1(𝑡)
𝜋
4

𝑒𝑟𝑓2(√𝑡)
 2 𝐶𝑁𝑅𝑖𝑛

1 − 𝑒−𝑡 −
𝜋
4

erf 2(√𝑡)

(1 − 𝑒−𝑡) + 𝑡𝐸1(𝑡)
sin2 (𝜋𝐾

𝑞

𝑀
) 
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energy focusing as that provided by the ideal CAF. 

Consequently 𝑆𝐶𝑁𝑅𝑚𝑎𝑥 = 𝑆𝑁𝑅𝑚𝑎𝑥 = 𝑆𝑁𝑅𝑖𝑛 𝑁 and the 

SCNR loss is rewritten as: 

Δ𝑆𝐶𝑁𝑅 = Δ𝑆𝑁𝑅 (𝐶𝑁𝑅 + 1) (10) 

For the OFDM-fragmented case, the output CNR can be 
theoretically evaluated following the approach in [19] for 
the case of a stationary platform and a homogeneous clutter 
distribution across range, which yields: 

𝐶𝑁𝑅 = {
2(𝜇 − 1)𝐶𝑁𝑅𝑖𝑛 sin2 (𝜋𝐾

𝑞

𝑀
) , 𝑀𝐹 

0,                                                               𝑅𝐹
, (11) 

where 𝐶𝑁𝑅𝑖𝑛 is the input clutter-to-noise ratio, 𝑞 denotes the 

Doppler bin index, and 𝜇 =
1

𝑀𝐶

∑ |𝑐𝑚|4𝑀𝐶−1

𝑚=0  is a scale factor 

depending on the modulation constellation, with values 𝜇 =
1 for QPSK, 𝜇 = 1.32 for 16-QAM, and 𝜇 = 1.38 𝑑𝐵 for 
64-QAM. As is apparent, the result of the MF coincides with 
that of the RF only for a QPSK modulation: in that case the 
signal power spectrum at each batch is constant, 
independently of the data content, and a perfect cancellation 
is achieved. In contrast, for larger constellations, the MF 
yields clutter residuals at the output of the cancellation 
stage. Such residuals span across the range-Doppler map 
following a squared sinusoidal law along the Doppler 

frequency 𝑓𝐷 =
𝑞

𝑁
𝑓𝑠.    

The results in (11) have been generalized in Appendix A 
for non-OFDM signal fragments by exploiting the 
exponential approximation for the waveform power 
spectrum at each batch: 

𝐶𝑁𝑅 = {
2𝐶𝑁𝑅𝑖𝑛 sin2 (𝜋𝐾

𝑞

𝑀
) , 𝑀𝐹

0,                                                𝑅𝐹
 (12) 

From equation (12), we note that, operating with the MF 
over non-OFDM-fragmented batches, one obtains a non-
zero residual clutter output power, and this is larger than that 
provided by (11) with typical constellation sizes. In contrast, 
the RF always achieves perfect clutter suppression, being 
able to equalize the variability associated to the transmitted 
data; however, in this case, this is paid in terms of a large 
SNR loss caused by the noise boosting. 

Appendix A also details the mathematical developments 
required to evaluate the output CNR when the TRF 
techniques are employed for range compression. The result 
is reported in equation (13) as a function of a generic 𝛼 in 
(6) so that it is representative of any supervision strategy. 
This expression is then specified in Table I for the different 
supervision strategies presented in [23] (see third column). 
As expected, all the TRFs yield a non-zero CNR at the 
output of the cancellation stage, since the supervision 
undermines the RF’s capability to equalize the variability 
impressed by transmitted data.  For the same reason, 
different TRF techniques have different impact on the 
cancellation capability. Moreover, for each technique, this 
impact varies with the adopted threshold. 

Using the above expressions for the CNR together with 
the expressions for the Δ𝑆𝑁𝑅, all summarized in Table I, the 
Δ𝑆𝐶𝑁𝑅  can be evaluated according to (9) for different 
combinations of fragmentation strategies and range 
compression filters. 

In the following, these theoretical expressions of the 
performance metrics are validated through simulation. 
Specifically, in order to better understand the output, 
stationary clutter returns are generated only from the first 
range cell with an input CNR of 𝐶𝑁𝑅𝑖𝑛 = 0𝑑𝐵. The clutter 
output power is then evaluated at the target Doppler bin by 
averaging across all the range bins. 

In Figure 3 and Figure 4 we report the results in terms 
of CNR and Δ𝑆𝐶𝑁𝑅 obtained at 𝑓𝐷 = 100 𝐻𝑧 as a function of 
𝑡 for several range compression filters and fragmentation 
strategies. Clearly, the performance of both MF and RF are 

𝐶𝑁𝑅 = 2 𝐶𝑁𝑅𝑖𝑛

𝑒−𝑡 − 𝑒−2𝑡 + 2𝛼√𝐿𝜎𝑟
2𝑒−𝑡 [√𝑡𝑒−𝑡 − √

𝜋
4

𝑒𝑟𝑓(√𝑡)] + 𝛼2𝐿𝜎𝑟
2 [1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − [√𝑡𝑒−𝑡 − √

𝜋
4

𝑒𝑟𝑓(√𝑡)]

2

]

[𝛼2𝐿𝜎𝑟
2(1 − 𝑒−𝑡) + 𝐸1(𝑡)]

sin2 (𝜋𝐾
𝑞

𝑀
) 

(13) 

 

 

Figure 3: Output CNR obtained using MF, RF and TRF as a function 

of the normalized threshold 𝑡, considering both OFDM-fragmentation 

and arbitrarily fragmentation strategies. 

 

 

Figure 4: SCNR loss obtained using MF, RF and TRF as a function of 

the normalized threshold 𝑡, considering both OFDM-fragmentation 

and arbitrarily fragmentation strategies. 
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independent of the normalized threshold, so they are 
represented as horizontal lines. In each figure, the 
theoretical predictions and the simulated values are 
respectively represented by the solid lines and the markers.  

The combinations adopting the MF exhibits an 
uncancelled clutter residue, namely a higher CNR, with 
both OFDM-fragmentation and the non-OFDM-
fragmentation (Figure 3). As a consequence, despite the 
limited SNR loss, these solutions show a non-negligible loss 
in term of SCNR (see Figure 4) which increases with the 
input CNR, namely when the scenario is clutter limited. 

The output CNR of the solutions exploiting the RF is not 
visible in Figure 3, since it is equal to zero (−∞ 𝑑𝐵), 
yielding perfect clutter suppression as predicted by theory. 
Notably, this is the case not only for OFDM-fragmented 
signals, but also for non-OFDM-fragmented ones. 
However, with the RF+OFDM-fragmentation approach this 
advantage partially compensates for the SNR loss due to the 
range compression filter mismatch thus yielding a Δ𝑆𝐶𝑁𝑅  
much comparable to the corresponding solution based on 
the MF (Figure 4). In contrast, with the RF + non-OFDM 
fragmentation approach, the Δ𝑆𝐶𝑁𝑅  is dominated by the 
SNR loss so that the improved clutter cancellation capability 
of the resulting scheme does not yield any practical 
advantage for moderate values of the 𝐶𝑁𝑅𝑖𝑛. For this 
reason, we have not included this case in the reported 
analysis. 

The supervised TRF techniques do not achieve perfect 
clutter suppression, thus sensibly increasing the output CNR 
compared to the unsupervised RF. Yet, the residual clutter 
output is most often lower with the TRF than with the MF 
(see Figure 3). With the considered parameters, the best 
performing strategy is the TRF-S. As expected, the 
cancellation capability enabled by the TRFs degrades as the 
threshold increases since the impact of the data-dependent 
supervision becomes progressively stronger. However, it is 
worth observing that the 𝐶𝑁𝑅 and the Δ𝑆𝑁𝑅 achieved with 
the TRF show opposite behavior when studied as functions 
of the threshold (see Figure 2 and Figure 3). Therefore, the 
normalized threshold t could be carefully selected to obtain 
a good tradeoff between Δ𝑆𝑁𝑅 and output 𝐶𝑁𝑅 in order to 
achieve an improved Δ𝑆𝐶𝑁𝑅  with respect to other solutions 
(Figure 4). Note that the theoretical expressions closely 
match the results of the simulation, so they represent a 
valuable tool also for selecting an appropriate 𝑡 value for the 
desired trade-off between SNR loss and residual CNR 
optimal t value. 

IV. OPTIMIZED THRESHOLDED 

RECIPROCAL FILTER 

Following the last consideration, we further observe that 
the theoretical expressions for Δ𝑆𝑁𝑅, 𝐶𝑁𝑅 and Δ𝑆𝐶𝑁𝑅  also 
depend on the value of the parameter 𝛼, which defines 
different supervision techniques within the TRF family.  

Based on this observation, in this section we introduce 
novel supervision techniques belonging to the TRF family, 
in which the 𝛼 value is selected to maximize the adopted 
performance metrics: Δ𝑆𝑁𝑅, 𝐶𝑁𝑅 and Δ𝑆𝐶𝑁𝑅 , respectively.  

This approach gives rise to three novel techniques: 

• TRF-maxSNR: designed to minimize 𝛥𝑆𝑁𝑅 

• TRF-minCNR: designed to minimize 𝐶𝑁𝑅 

• TRF-maxSCNR: designed to minimize 𝛥𝑆𝐶𝑁𝑅 

The corresponding optimized 𝛼 values are evaluated in 
Appendix B and reported in Table II.  

Although the TRF-maxSCNR technique ideally 
achieves the best performance by providing the best trade-
off between cancellation capability and SNR loss, its 𝛼 
value depends on the 𝐶𝑁𝑅𝑖𝑛, implying that the TRF-
maxSCNR supervision technique changes depending on the 
clutter conditions which in turn have to be known at the 
receiver. Furthermore, the 𝛼 value of the TRF-maxSCNR 
technique depends on the Doppler bin index 𝑞, which makes 
it impractical. 

Therefore, in the following, we consider also a modified 
version of the TRF-maxSCNR, TRF-maxSCNRsub, where 
an average 𝛼 value across the Doppler bins is used in lieu of 
the optimal one: 

𝛼̅ = −
[𝐸1(𝑡) + 𝐶𝑁𝑅𝑖𝑛𝑒−𝑡]𝜉

√𝐿𝜎𝑟
2[(1 − 𝑒−𝑡) + 𝐶𝑁𝑅𝑖𝑛(1 − 𝑒−𝑡 − 𝑡𝑒−𝑡)]𝑒−𝑡

 (14) 

By substituting the 𝛼 values Table II into the equations 
describing the adopted performance metrics, we can verify 
the effectiveness of the new approaches. As in the previous 
sections, the theoretical formulas are also compared with the 
results of simulations. The results are reported in (c) 

Figure 5(a)-(c) for the Δ𝑆𝑁𝑅, 𝐶𝑁𝑅 and Δ𝑆𝐶𝑁𝑅 , 
respectively, using the same scenario of Figure 3 and Figure 
4.  The performance of the traditional MF and RF 
approaches are reported for comparison. Moreover, we have 
included the TRF-S, which exhibited the lowest SCNR loss 
among the TRF techniques introduced in [23].: 

As discussed earlier, the theoretical curves closely 
match the simulated results, with limited deviations due to 
the adopted approximations. 

The optimized TRF techniques yield further 
improvements compared to the previously introduced TRF 
ones, without any significant increase in computational 
complexity. 

As expected, among the TRF family solutions, the TRF-
maxSNR achieves the minimum SNR loss whereas the 
TRF-minCNR yields the best cancellation capability so that 
they should be considered in noise-limited and clutter-
limited scenarios, respectively.  

Table II: 𝛼 for the optimized TRF techniques. 𝜉 = [√𝑡𝑒−𝑡 − √
𝜋

4
𝑒𝑟𝑓(√𝑡)]. 

Filter 𝜶 

TRF-
maxSNR 

−
𝜉 ⋅ 𝐸1(𝑡)

√𝐿𝜎𝑟
2(1 − 𝑒−𝑡)𝑒−𝑡

 

TRF-

minCNR 

−𝜈 − √𝜈2 + 4(1 − 𝑒−𝑡)𝜉2𝑒−2𝑡𝐸1(𝑡)

2𝜉√𝐿𝜎𝑟
2(1 − 𝑒−𝑡)𝑒−𝑡

 

  

𝜈 = (1 − 𝑒−𝑡)2𝑒−𝑡 − (1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2)𝐸1(𝑡) 

TRF-

maxSCNR 
−

[𝐸1(𝑡)+2 𝐶𝑁𝑅𝑖𝑛⋅𝑠𝑖𝑛2(𝜋𝐾
𝑞

𝑁𝑝
)𝑒−𝑡]𝜉

√𝐿𝜎𝑟
2[(1−𝑒−𝑡)+2 𝐶𝑁𝑅𝑖𝑛⋅𝑠𝑖𝑛2(𝜋𝐾

𝑞

𝑁𝑝
)(1−𝑒−𝑡−𝑡𝑒−𝑡)]𝑒−𝑡

  

TRF-

maxSCNR 

sub 

−
[𝐸1(𝑡) + 𝐶𝑁𝑅𝑖𝑛𝑒−𝑡]𝜉

√𝐿𝜎𝑟
2[(1 − 𝑒−𝑡) + 𝐶𝑁𝑅𝑖𝑛(1 − 𝑒−𝑡 − 𝑡𝑒−𝑡)]𝑒−𝑡
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In intermediate scenarios, the techniques aimed at 
maximizing the SCNR represent the best solutions provided 
that a reliable estimate of the input CNR is available. 
Specifically, comparing the performance of the TRF-
maxSCNRsub and the TRF-maxSCNR, we note that the 
approximation in equation (14) has a limited impact. 
Therefore, the sub-optimal (but cost-effective) TRF-
maxSCNRsub could be preferred for a practical 
implementation. 

V. RESULTS FOR A SIMULATED CASE 

STUDY 

In the previous sections, the clutter suppression 
capabilities achieved with the TRF techniques have been 
assessed with reference to a single stationary scatterer at 
zero range and zero Doppler. This allowed us to neglect the 
batch processing losses 𝜌𝐶𝐶  and 𝜌𝐷𝑂𝑃, and to focus on the 
comparison between the different TRF techniques. In this 
section, we carry out a more realistic simulation, in which 
the clutter component is obtained as the superposition of the 
echoes from a grid of stationary scatterers, located within a 
180° angular sector and spanning 𝑁𝑅 = 1000 range cells, 
corresponding to a bistatic range of 4 𝑘𝑚. 

We consider the case study of a DVB-T-based PR for 
maritime surveillance and we exploit an 8k-mode DVB-T 
signal of opportunity, modulated using 64-QAM, with a 
guard interval corresponding to 1/4 of the useful symbol 

duration, so that 𝑇𝑈 = 896𝜇𝑠 and 𝑇𝑠 = (1 +
1

4
) 𝑇𝑈 =

1120𝜇𝑠.  

Figure 6 (a)-(i) show a series of range-velocity maps, 
each obtained using a different combination of range 
compression filter and fragmentation strategy. The CPI has 
a duration of approximately 0.57s, corresponding to 𝑁𝑝 =
512 OFDM symbols, each consisting of 𝐿 = 8192 OFDM 
carriers. Since the all the simulated targets are located at 
long ranges and move relatively slow, we conveniently used 
batches corresponding to 𝑛𝑠𝑦𝑚 = 4 OFDM symbols. For all 

the TRF techniques, we set the normalized threshold to 𝑡 =
0.75.  An input CNR of 𝐶𝑁𝑅𝑖𝑛 = 5 𝑑𝐵 has been assumed. 
In addition, we consider three targets of interest. 

• T1: at 𝑅1 = 10 𝑘𝑚 and moving at 𝑣𝑏 = 4𝑚/𝑠; 

• T2: at 𝑅2 = 50 𝑘𝑚 and moving at 𝑣𝑏 = −8𝑚/𝑠; 

• T3: at 𝑅3 = 100 𝑘𝑚 and moving at 𝑣𝑏 = 12𝑚/𝑠; 

For each target, we assumed an input SNR of 𝑆𝑁𝑅𝑖𝑛 =
−40 𝑑𝐵 before range compression and Doppler processing. 

To assess the detection performance for the three targets, 
we evaluate a local SCNR measure, defined as the ratio 
between the peak power of each target and the average 
interference (clutter + noise) power level within an area 
surrounding the target location. The results are reported in 
each figure with an enlarged view around the targets’ 
position. 

As is apparent, most TRFs achieve improved SCNRs 
compared to the MF and the RF, which clearly reveals a 
better target discrimination capability against the 
interference background. As expected, the TRF-
maxSCNRsub achieves the best performance among the 
family of TRF supervision techniques. In this specific 
simulation trial, identical results are provided by the TRF-
M, while the TRF-S shows only a slightly lower 
performance (0.1dB less against all the three targets) 

To carry out a more in-depth analysis, we evaluate the 
local SCNR measure as a function of the input CNR, while 
maintaining the input SNR constant and equal to −40𝑑𝐵. 
The results are reported in Figure 7 for target T3, for a value 
of the normalized threshold of 𝑡 = 0.75. The following 
observations are in order. 

 

 (a) 

 

 (b) 

 

(c) 

Figure 5: Performance metrics of MF, RF and optimized TRF as a 

function of the normalized threshold 𝑡: (a) 𝛥𝑆𝑁𝑅, (b) Output 𝐶𝑁𝑅, 

(c) 𝛥𝑆𝐶𝑁𝑅. 
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• The MF + OFDM fragmentation performs well at low 

𝐶𝑁𝑅𝑖𝑛 values. In fact, when the scenario is noise-

limited, its performance is essentially affected by the 

batch processing losses 𝜌𝐶𝐶  and 𝜌𝐷𝑂𝑃, as well as by 

the loss 𝜌𝐶𝑃 due to the CP removal. 

• Similarly, the MF + non-OFDM fragmentation 

achieves good detection performance in low CNR 

conditions. For the considered target, it outperforms 

the MF + OFDM-fragmentation, since it preserves the 

CP, thus avoiding the 𝜌𝐶𝑃 loss. Furthermore, it is also 

robust to the range-dependent loss 𝜌𝐶𝐶 , thanks to the 

increased batch duration.  

• As discussed in Section II, compared to the MF + 

OFDM fragmentation approach, the RF + OFDM 

fragmentation technique experiences an SNR loss of 

𝜁 = 4.2901 𝑑𝐵 for 64-QAM modulated OFDM 

signals. However, its superior clutter cancellation 

capabilities renders this solution independent of 

𝐶𝑁𝑅𝑖𝑛. 

• Even though the RF + non-OFDM fragmentation 

strategy also achieves perfect clutter suppression, it 

experiences a substantial SNR loss as discussed in 

Section II. Consequently, its performance falls below 

the scale used in Figure 7. 

• Such SNR loss can be prevented by using one of the 

TRF techniques, which in this way effectively enable 

the use of RF with arbitrarily fragmented OFDM 

signals. Particularly, they outperform the 

conventional MF and RF by a few dBs within the 

region of intermediate CNR values, i.e. 𝐶𝑁𝑅𝑖𝑛 =
[0𝑑𝐵, 10𝑑𝐵]. This improvement is attributed to the 

better trade-off between SNR loss provided at the 

batch processing and the cancellation capability 

enabled across batches. However, when the scenario 

is heavily clutter-limited, the RF + OFDM-

fragmentation approach remains preferable, due to its 

superior clutter suppression capabilities. 

• As expected, among the TRF techniques, the TRF-

maxSCNRsub achieves the best performance. Note 

that the performance of the TRF-maxSCNRsub 

technique approaches that of the TRF-maxSNR in 

low CNR scenarios, and that of the TRF-minCNR in 

high CNR scenarios. 

 To understand the performance limits of the supervised 
approaches, in Figure 8 we revisit the analysis presented in 
Figure 7, optimizing the threshold value 𝑡 for each input 
CNR using the theoretical expression for Δ𝑆𝐶𝑁𝑅 . To make 

  

 

Figure 6: Output range-velocity maps obtained using (a) MF + OFDM fragmentation, (b) RF + OFDM fragmentation, (c) MF + non-OFDM 

fragmentation, (d) TRF-Z, (e) TRF-M, (f) TRF-S, (g) TRF-maxSNR, (h) TRF-minCNR, (i) TRF-maxSCNR. An input CNR of 𝐶𝑁𝑅𝑖𝑛 = 5𝑑𝐵 has 

been assumed. 
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the optimal threshold independent of the target’s Doppler 
bin 𝑞, we conduct a min-max optimization, by replacing the 
Doppler-dependent term sin2(𝜋𝐾𝑞/𝑀) with its maximum 
value. Hence, we look for the threshold t that minimizes the 
following expression: 

Δ̂𝑆𝐶𝑁𝑅 =
α2𝐿𝜎𝑟

2(1 − 𝑒−𝑡) + 𝐸1(𝑡)

[𝑒−𝑡 − 𝛼√𝐿𝜎𝑟
2 [√𝑡𝑒−𝑡 − √

𝜋
4

𝑒𝑟𝑓(√𝑡)]]

2 (𝐶𝑁𝑅̂ + 1), 
(15) 

where 

𝐶𝑁𝑅̂ = 2 𝐶𝑁𝑅𝑖𝑛
[𝑒−𝑡−𝑒−2𝑡]+2𝛼√𝐿𝜎𝑟

2𝜉𝑒−𝑡+𝛼2𝐿𝜎𝑟
2[1−𝑡𝑒−𝑡−𝑒−𝑡−𝜉2]

[𝛼2𝐿𝜎𝑟
2(1−𝑒−𝑡)+𝐸1(𝑡)]

.  (16) 

As visible by comparing Figure 7 and Figure 8, when an 
optimized threshold 𝑡 is used, the improvement of the TRF 
techniques over conventional MF and RF-based approaches 
becomes even more pronounced. This further demonstrates 
the advantages deriving from the availability of a theoretical 
prediction for the performance metrics. Anyway, the above 
considerations in terms of comparative analysis among 

different range compression strategies still apply though 
over slightly modified CNR regions. 

 

VI. EXPERIMENTAL RESULTS 

The TRF techniques have also been tested against an 
experimental dataset, collected along the shore of 
Civitavecchia (Italy) by exploiting a DVB-T-based receiver 
from the Radar and Remote Sensing Group at Sapienza 
University. 

The acquisition geometry is shown in Figure 9 while the 
main parameters of the adopted waveform are reported in 
Table III. Specifically, an 8k DVB-T signal of opportunity 
was parasitically exploited to detect several maritime 
targets, including non-cooperative ships and the small 
cooperative boat shown in Figure 10. The DVB-T 
transmitter is located at ≈ 4400𝑚 from the receiver, and the 
reference signal is obtained by exploiting a dedicated 
antenna. 

 

Table III. Parameters of the experimental test. 

Symbol Description Value 

DVB-T signal parameters 

𝑓𝑐  Carrier frequency 690 MHz 

𝑇𝑆 OFDM symbol duration 1100 us 

 𝑇𝑈 Useful part duration 896 us 

𝑇𝐶𝑃 CP duration 112 us 

𝐶 Constellation 64QAM 

Processing parameters 

𝑇𝐶𝑃𝐼 Coherent Processing Interval 

duration 

0.57 s 

 

Six maritime targets of interest, denoted as T1-T6, are 
present in the observed scene. Specifically, T4 is the small 
cooperative boat shown in Figure 10, while T5 is the sailing 
boat in Figure 11. 

As for the simulated scenario, the processing scheme in 
Figure 1 was employed to evaluate the range-velocity map. 
The SC delay was set to 𝐾 = 15 OFDM symbols. All the 
different combinations of range compression filters and 
fragmentation strategies have been tested. In the non-
OFDM fragmentation cases, we used a batch duration of 
length corresponding to 𝑛𝑠𝑦𝑚 = 1.5 OFDM symbols rather 

than 𝑛𝑠𝑦𝑚 = 4, since the targets in this case are not so far in 

range. 

 

 

Figure 9 Setup for the experimental data acquisition. 

 

Figure 7:  Local SCNR measure obtained using MF, RF and TRF, as 

a function of the input CNR. A normalized threshold 𝑡 = 0.75 has 

been used. 

 

Figure 8: Local SCNR measure obtained using MF, RF and TRF, as a 

function of the input CNR. For each TRF technique and each 𝐶𝑁𝑅𝑖𝑛 

value, the normalized threshold 𝑡 has been optimized based on (15). 
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Figure 12 (a)-(d) shows the output range-velocity maps 
obtained using MF, RF, TRF-S and TRF-maxSCNRsub, all 
with a non-OFDM fragmentation strategy. Here, the six 
targets are identified by the white boxes. 

To assess the detection performance achieved using the 
different approaches, for each target we evaluate a local 
SCNR measure as the ratio between the peak amplitude and 
the mean level of residual disturbance, evaluated by 
averaging over an area of 20 × 20 pixels symmetrical in 
Doppler to the target location, namely centered in [𝑅𝑖, −𝑣𝑖] 
in order to avoid the target’s sidelobes influence. The local 
SCNR measures obtained for the six targets of interest are 
reported in Table IV. Here, we also included the SCNR 
measures achieved using both MF and RF + OFDM 
fragmentation approaches, as well as the SCNR measures 
obtained using each of the supervision techniques within the 
TRF family. 

The following observations are in order: 

• Even though the MF-based approaches achieve the 
lowest SNR loss, the poor clutter cancellation 
performance degrades the local SCNR measure for 
all the considered targets, both with OFDM 
fragmentation and non-OFDM fragmentation. The 
uncancelled clutter residue is also visible in Figure 
12 (a) for the approach based on MF + non-OFDM 
fragmentation. 

• The RF-based approaches have been demonstrated 
to guarantee the highest cancellation capability. 
However, they suffer from high SNR losses, 
especially when applied on non-OFDM signal 
batches The RF + non-OFDM fragmentation 
approach (Figure 12 (b)) undergoes an extremely 
high SNR loss, sensibly degrading the local SCNR 
measure on T1-T6, as visible in Table IV. 
Conversely, the RF + OFDM fragmentation 
approach provides a high SCNR for the fast-moving 
targets (namely T2 and T4), since the loss 𝜌𝐷𝑂𝑃 
dominates over 𝜌𝐶𝐶  and a shorter batch duration is 
preferred. However, it also shows sensible losses 
against the other targets (e.g. T6), depending on their 

radar cross section and their location in the range-
velocity plane. 

• As discussed in the previous sections, the TRF are 
designed to mitigate the SNR loss of the 
unsupervised RF. This is achieved at the expenses of 
a higher uncancelled clutter residue compared to the 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12 – Output range-velocity maps obtained on experimental 
DVB-T based passive radar data with (a) MF (b) RF (c) TRF-S (d) 

TRF-maxSCNRsub and a non-OFDM fragmentation strategy at 

the range compression stage, followed by a SC based clutter 

cancellation. 

 

Figure 10 Small cooperative boat (target T4). 

 

Figure 11 – Sailing boat (target T5). 
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unsupervised RF. Overall, each of the TRF 
approaches achieves higher local SCNR measures 
on all the considered targets compared to the RF + 
non OFDM fragmentation one. Specifically, the 
TRF-S shown in Figure 12 (c) obtains the highest 
local SCNR measures among the conventional TRF 
approaches. 

• As to the optimized TRFs, we note that the TRF-
maxSCNRsub achieves the best performance within 
the TRF family, slightly improving the TRF-S and 
yielding the highest SCNR measures across most of 
the considered targets.  

 

Overall, the results achieved on experimental data confirm 
the observations made on simulated data and anticipated by 
the theoretical derivations of the performance metrics. Also, 
they demonstrate the practical feasibility and effectiveness 
of the proposed approaches. 

 

VII. CONCLUSION 

Building upon the results in [23], where the TRF 
supervision techniques were introduced to mitigate the 
significant SNR loss affecting the performance of the RF + 
non-OFDM fragmentation approach, in this paper we 
studied their impact on the clutter suppression capability of 
the system.  

Firstly, we theoretically derived the residual clutter 
output power obtained using the TRF techniques. Secondly, 
we introduced three new supervision techniques within the 
TRF family, namely the TRF-maxSNR, TRF-minCNR, and 
TRF-maxSCNRsub. For these techniques, the parameter 𝛼 
is optimized based on the theoretical derivation of the 
performance metrics, respectively:  Δ𝑆𝑁𝑅, 𝐶𝑁𝑅 and 𝛥𝑆𝐶𝑁𝑅. 

The obtained theoretical results have been validated 
through simulated analysis, confirming that TRF techniques 
consistently outperform traditional MF and RF methods, 
especially in scenarios with moderate CNR. Furthermore, 
we assessed the performance of the TRF techniques using 
an experimental dataset, showing the effectiveness of the 
TRF techniques against real-world scenarios. 

Future research endeavors may explore the application 
of TRF supervision techniques in passive radar systems 
installed on mobile platforms, where clutter suppression 
presents unique challenges. In addition, based on the 
analysis reported in this paper, novel supervision techniques 
could be identified to improve the clutter suppression 
performance, fully restoring the RF’s clutter cancellation 
performance. 

APPENDIX A 

In the following, we derive the output 𝐶𝑁𝑅 achieved by 
the non-OFDM-fragmented solutions introduced in this 
paper. The output CNR is defined as: 

𝐶𝑁𝑅 =
𝑃𝐶

𝑃𝑁
=

𝐸 {|𝑧𝐷𝑃𝐶𝐴
(𝐶) [𝑙, 𝑞]|

2
}

𝐸 {|𝑧𝐷𝑃𝐶𝐴
(𝑁) [𝑙, 𝑞]|

2
}
 (17) 

The first step is to derive the output power of the clutter 
and noise components, separately. To this end, we let 

𝑧(𝐶)[𝑙, 𝑞] and 𝑧(𝑁)[𝑙, 𝑞] denote respectively the clutter-only 
and the noise-only output range-Doppler maps. 

The noise output power is obtained by evaluating the 
expected value of the absolute square of the noise-only 
range-Doppler map 𝑧(𝑁)[𝑙, 𝑞]: 

𝑃𝑁 = 𝐸 {|
1

𝐿
∑ 𝑒−

𝑗2𝜋𝑚𝑞
𝑀

𝑀−1

𝑚=0

∑ 𝑋𝑆𝐶
(𝑁)[𝑝, 𝑚]𝑒

𝑗2𝜋𝑝𝑙
𝐿

𝐿−1

𝑝=0

|

2

}, (18) 

𝑋𝑆𝐶
(𝑁)[𝑝, 𝑚] being the DFT of the signal at the output of 

the SC: 

𝑋𝑆𝐶
(𝑁)[𝑝, 𝑚] = 𝑆(𝑁)[𝑝, 𝑚]𝐻[𝑝, 𝑚] − 𝑆(𝑁)[𝑝, 𝑚 − 𝐾]𝐻[𝑝, 𝑚 − 𝐾] (19) 

where 𝑆(𝑁)[𝑝, 𝑚] denotes the DFT transformed noise 
component in the surveillance signal. 

Now it is easy to verify that 

𝐸 {𝑋𝑆𝐶
(𝑁)[𝑝, 𝑚]𝑋∗

𝑆𝐶
(𝑁)[𝑝′, 𝑚′]} = 

= {
0,                  𝑖𝑓 𝑚 ≠ 𝑚′ 𝑜𝑟  𝑝 ≠ 𝑝′

𝐿𝜎𝑁
2𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐿𝜎𝑁

2𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 
(20) 

Therefore, the output noise power becomes: 

𝑃𝑁 =
𝐿𝜎𝑁

2

𝐿2 ∑ ∑ 𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2}

𝐿−1

𝑝=0

𝑀−1

𝑚=0

= 

 

      = 𝜎𝑁
2𝑀[𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2}] 

(21) 

Similarly, the clutter output power is obtained by 
evaluating the expected value of the absolute square of the 

clutter-only range-Doppler map 𝑧(𝐶)[𝑙, 𝑞]: 

𝑃𝐶 = 𝐸 {|
1

𝐿
∑ 𝑒−

𝑗2𝜋𝑚𝑞
𝑀

𝑀−1

𝑚=0

∑ 𝑋𝑆𝐶
(𝐶)[𝑝, 𝑚]𝑒

𝑗2𝜋𝑝𝑙
𝐿

𝐿−1

𝑝=0

|

2

} (22) 

Assuming that a grid of stationary scatterers is present, 
located within the angular sector Θ and spanning 𝑁𝑅 range 

cells, 𝑋𝑆𝐶
(𝐶)[𝑝, 𝑚] can be obtained as: 

Table IV. Local SCNR measure using the different processing schemes.  

Scheme T1 T2 T3 T4 T5 T6 

MF + OFDM fragmentation 11,1 dB 12,3 dB 11,4 dB 14,1 dB 22,4 dB 16,5 dB 
RF + OFDM fragmentation 13,9 dB 15,9 dB 14,1 dB 16,7 dB 23,9 dB 18,9 dB 

MF + non-OFDM fragmentation 8,2 dB 9,5 dB 8,9 dB 10,0 dB 21,1 dB 15,6 dB 
RF + non-OFDM fragmentation 9,5 dB 10,8 dB 12,1 dB 10,6 dB 22,5 dB 16,5 dB 

TRF-Z + non-OFDM fragmentation 12,0 dB 11,2 dB 13,2 dB 13,1 dB 24,0 dB 18,5 dB 
TRF-M + non-OFDM fragmentation 13,9 dB 13,2 dB 14,3 dB 14,8 dB 25,0 dB 20,4 dB 

TRF-S + non-OFDM fragmentation 14,4 dB 13,8 dB 14,8 dB 15,2 dB 25,3 dB 20,9 dB 

TRF-maxSNR + non-OFDM fragmentation 10,3 dB 10,1 dB 10,3 dB 11,5 dB 22,5 dB 17,2 dB 

TRF-minCNR + non-OFDM fragmentation 14,5 dB 14,3 dB 15,1 dB 15,4 dB 25,5 dB 20,9 dB 

TRF-maxSCNRsub + non-OFDM fragmentation 14,7 dB 14,3 dB 15,1 dB 15,5 dB 25,5 dB 21,1 dB 
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𝑋𝑆𝐶
(𝐶)[𝑝, 𝑚] = ∑ ∫ 𝐴𝑖(𝜃)

𝜃∈𝛩

𝑁𝑅

𝑖=1

𝑒−
𝑗2𝜋𝑝𝑙𝑖

𝐿 𝑒
𝑗2𝜋𝑚𝑞

𝑀 ⋅ 

⋅ [|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]|

− |𝑅[𝑝, 𝑚 − 𝐾]||𝐻[𝑝, 𝑚

− 𝐾]|𝑒−
𝑗2𝜋𝐾𝑞

𝑀 ] 𝑑𝜃 

(23) 

Therefore, we can write 

𝐸 {𝑋𝑆𝐶
(𝐶)[𝑝, 𝑚]𝑋∗

𝑆𝐶
(𝐶)[𝑝′, 𝑚′]} = 

= 𝐸 {∑ ∑ ∫ ∫ 𝐴𝑖(𝜃)𝐴𝑖′
∗ (𝜃′)

𝜃′∈Θ𝜃∈Θ

𝑁𝑅

𝑖′=1

𝑁𝑅

𝑖=1

𝑒−
𝑗2𝜋𝑝𝑙𝑖

𝐿 𝑒
𝑗2𝜋𝑝′𝑙

𝑖′

𝐿 𝑒
𝑗2𝜋𝑚𝑞

𝑀 𝑒
𝑗2𝜋𝑚′𝑞

𝑀

⋅ 
 

     ⋅ [|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]| − |𝑅[𝑝, 𝑚 − 𝐾]||𝐻[𝑝, 𝑚 − 𝐾]|] ⋅ 
𝑠

     ⋅ [|𝑅[𝑝′, 𝑚′]||𝐻[𝑝′, 𝑚′]| − |𝑅[𝑝′, 𝑚′ − 𝐾]||𝐻[𝑝′, 𝑚′ − 𝐾]|]
𝑠

} 

(24) 

Since 

𝐸{𝐴𝑖(𝜃)𝐴𝑖′
∗ (𝜃′)} = {

𝜎𝐶
2,    𝑖 = 𝑖′and 𝜃 = 𝜃′

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (25) 

the above expression can be simplified as: 

{𝑋𝑆𝐶
(𝐶)[𝑝, 𝑚]𝑋∗

𝑆𝐶
(𝐶)[𝑝′, 𝑚′]} = 

= 2𝜋𝜎𝐶
2 ∑ 𝑒−

𝑗2𝜋(𝑝−𝑝′)𝑙𝑖
𝐿

𝑁𝑅

𝑖=1

𝑒
𝑗2𝜋(𝑚−𝑚′)𝑞

𝑀 ⋅ 𝛾 
(26) 

where 𝛾 

𝛾 = 𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]||𝑅[𝑝′, 𝑚′]||𝐻[𝑝′, 𝑚′]|}  
    −𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]||𝑅[𝑝′, 𝑚′ − 𝐾]||𝐻[𝑝′, 𝑚′ − 𝐾]|}  
    −𝐸{|𝑅[𝑝, 𝑚 − 𝐾]||𝐻[𝑝, 𝑚 − 𝐾]||𝑅[𝑝′, 𝑚′]||𝐻[𝑝′, 𝑚′]|}  
    +𝐸{|𝑅[𝑝, 𝑚 − 𝐾]||𝐻[𝑝, 𝑚 − 𝐾]||𝑅[𝑝′, 𝑚′ − 𝐾]||𝐻[𝑝′, 𝑚′ − 𝐾]|}  

(27) 

By defining  

𝜌 = 𝐸{|𝑅[𝑝, 𝑚]|2|𝐻[𝑝, 𝑚]|2} 
 

𝜇 = 𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]|} 
(28) 

the expected value 𝛾 can be specified in the following 
cases 

• 𝑚 = 𝑚′ and 𝑝 = 𝑝′ 

𝛾 = 𝜌 − 𝜇2 − 𝜇2 + 𝜌 = 2𝜌 − 2𝜇2 (29) 

• 𝑚 = 𝑚′ − 𝐾 and 𝑝 = 𝑝′ 

𝛾 = 𝜇2 − 𝜌 − 𝜇2 + 𝜇2 = −𝜌 + 𝜇2 (30) 

• 𝑚 = 𝑚′ + 𝐾 and 𝑝 = 𝑝′ 

𝛾 = 𝜇2 − 𝜇2 − 𝜌 + 𝜇2 = −𝜌 + 𝜇2 (31) 

• 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 

𝛾 = 𝜇2 − 𝜇2 − 𝜇2 + 𝜇2 = 0 (32) 

With these positions, eq. (22) becomes 

𝑃𝐶 = 4
2𝜋𝜎𝐶

2

𝐿
𝑀𝑁𝑅(𝜌 − 𝜇2) sin2 [𝜋𝐾

𝑞

𝑀
] (33) 

Having derived the output power levels 𝑃𝐶  and 𝑃𝑁, the 
output 𝐶𝑁𝑅 is evaluated as: 

𝐶𝑁𝑅 = 4 𝐶𝑁𝑅𝑖𝑛

(𝜌 − 𝜇2)

𝐿𝜎𝑟
2[𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2}]

sin2 [𝜋𝐾
𝑞

𝑀
] (34) 

In the following, the expression above is specified for 
different range compression filters by evaluating the 
corresponding 𝜌 and 𝜇 in (28). 

• MF: 𝐻[𝑝, 𝑚] = 𝑅∗[𝑝, 𝑚] 

𝜇 = 𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]|} = 𝐸{|𝑅[𝑝, 𝑚]|2} = 𝐿𝜎𝑟
2 (35) 

𝜌 = 𝐸{|𝑅[𝑝, 𝑚]|2|𝐻[𝑝, 𝑚]|2} = 𝐸{|𝑅[𝑝, 𝑚]|4} = 2𝐿2𝜎𝑟
2 (36) 

(𝜌 − 𝜇2) = 𝐿2𝜎𝑟
4 (37) 

Furthermore, 

𝐿𝜎𝑟
2[𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2}] = 2𝐿2𝜎𝑟

4 (38) 

Therefore: 

𝐶𝑁𝑅 = 2 𝐶𝑁𝑅𝑖𝑛 𝑠𝑖𝑛2 [𝜋𝐾
𝑞

𝑀
] (39) 

 

• RF: 𝐻[𝑝, 𝑚] = 1/𝑅[𝑝, 𝑚] 

𝜇 = 𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]|} = 1 (40) 

𝜌 = 𝐸{|𝑅[𝑝, 𝑚]|2|𝐻[𝑝, 𝑚]|2} = 1 (41) 

(𝜌 − 𝜇2) = 0 (42) 

Therefore: 

𝐶𝑁𝑅 =
𝑃𝐶

𝑃𝑁
= 0 (43) 

 

• TRF: 𝐻[𝑝, 𝑚] = {

1

𝑅[𝑝,𝑚]
,              𝑖𝑓|𝑅[𝑝, 𝑚]|2 > 𝑥0

𝛼 ⋅ 𝑒𝑗∠𝑅[𝑝,𝑚], 𝑖𝑓 |𝑅[𝑝, 𝑚]|2 ≤ 𝑥0

 

𝜇 = 𝐸{|𝑅[𝑝, 𝑚]||𝐻[𝑝, 𝑚]|} = 

    = ∫ √𝑥𝛼
1

𝐿𝜎𝑟
2 𝑒

−
𝑥

𝐿𝜎𝑟
2
𝑑𝑥

𝑥0

0

+ ∫
1

𝐿𝜎𝑟
2 𝑒

−
𝑥

𝐿𝜎𝑟
2
𝑑𝑥

∞

𝑥0

 

    = 𝑒−𝑡 − 𝛼√𝐿𝜎𝑟
2𝜉 

(44) 

𝜌 = {|𝑅[𝑝, 𝑚]|2|𝐻[𝑝, 𝑚]|2} = 

    = 𝛼2 ∫ 𝑥
1

𝐿𝜎𝑟
2 𝑒

−
𝑥

𝐿𝜎𝑟
2
𝑑𝑥

𝑥0

0

+ ∫
1

𝐿𝜎𝑟
2 𝑒

−
𝑥

𝐿𝜎𝑟
2
𝑑𝑥

∞

𝑥0

= 

    = 𝛼2(𝐿𝜎𝑟
2 − 𝑥0𝑒−𝑡 − 𝐿𝜎𝑟

2𝑒−𝑡) + 𝑒−𝑡  

(45) 

(𝜌 − 𝜇2) = 

                  = [𝑒−𝑡 − 𝑒−2𝑡] + 2𝛼√𝐿𝜎𝑟
2𝜉𝑒−𝑡 

                       +𝛼2𝐿𝜎𝑟
2[1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2] 

(46) 

where 𝜉 = [√𝑡𝑒−𝑡 − √
𝜋

4
𝑒𝑟𝑓(√𝑡)] and 𝑡 =

𝑥0

𝐿𝜎𝑟
2. 

Furthermore,  

𝐿𝜎𝑟
2[𝐸{|𝐻[𝑝, 𝑚]|2} + 𝐸{|𝐻[𝑝, 𝑚 − 𝐾]|2}] = 

= 2[α2𝐿𝜎𝑟
2(1 − 𝑒−𝑡) + 𝐸1(𝑡)] 

(47) 

Therefore: 

𝐶𝑁𝑅 = 2 𝐶𝑁𝑅𝑖𝑛  sin2 [𝜋𝐾
𝑞

𝑀
] ⋅ 

            

⋅
[𝑒−𝑡 − 𝑒−2𝑡] + 2𝛼√𝐿𝜎𝑟

2𝜉𝑒−𝑡 + 𝛼2𝐿𝜎𝑟
2[1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2]

[𝛼2𝐿𝜎𝑟
2(1 − 𝑒−𝑡) + 𝐸1(𝑡)]

 

(48) 

APPENDIX B 

In the following, we derive the 𝛼 values for the TRF-
maxSNR, TRF-minCNR and TRF-maxSCNR techniques 
optimized according to the defined performance metrics. 

 

TRF-maxSNR: For the TRF-maxSNR technique, we 
write: 

𝛼𝑇𝑅𝐹−𝑚𝑎𝑥𝑆𝑁𝑅 = argmin
𝛼

[
𝛼2𝐿𝜎𝑟

2(1 − 𝑒−𝑡) + 𝐸1(𝑡)

[𝑒−𝑡 − 𝛼√𝐿𝜎𝑟
2𝜉]

2
𝑠𝑖𝑛2 (𝜋𝐾

𝑞𝑇

𝑀
)

] (49) 

since, from [23], we have 
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Δ𝑆𝑁𝑅 =
𝛼2𝐿𝜎𝑟

2(1 − 𝑒−𝑡) + 𝐸1(𝑡)

[𝑒−𝑡 − 𝛼√𝐿𝜎𝑟
2𝜉]

2
𝑠𝑖𝑛2 (𝜋𝐾

𝑞𝑇

𝑀
)
 (50) 

Deriving the expression in (50), we can find the 𝛼 value 
which provides the minimum SNR loss: 

𝛼𝑇𝑅𝐹−𝑚𝑎𝑥𝑆𝑁𝑅 =

𝐸1(𝑡) (√
𝜋
4

𝑒𝑟𝑓(√𝑡) − √𝑡𝑒−𝑡)

√𝐿𝜎𝑟
2(1 − 𝑒−𝑡)𝑒−𝑡

 
(51) 

TRF-minCNR: For the TRF-minCNR technique, from 
equation (48) we have: 
𝛼𝑇𝑅𝐹−𝑚𝑖𝑛𝐶𝑁𝑅 = 
 

                          = 2 𝐶𝑁𝑅𝑖𝑛 sin2 [𝜋𝐾
𝑞

𝑀
] ⋅ 

                

⋅ argmin
𝛼

[
[𝑒−𝑡 − 𝑒−2𝑡] + 2𝛼√𝐿𝜎𝑟

2𝜉𝑒−𝑡 + 𝛼2𝐿𝜎𝑟
2[1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2]

[𝛼2𝐿𝜎𝑟
2(1 − 𝑒−𝑡) + 𝐸1(𝑡)]

] 

(52) 

Deriving the expression in (52), we obtain 

𝛼2{𝐿𝜎𝑟
2(1 − 𝑒−𝑡)𝑒−𝑡𝜉} + 

𝛼 {√𝐿𝜎𝑟
2[(1 − 𝑒−𝑡)2𝑒−𝑡 − (1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2)𝐸1(𝑡)]} 

{−𝜉𝑒−𝑡𝐸1(𝑡)} = 0. 

(53) 

By taking the positive solution of this second-degree 
equation in 𝛼, we obtain the 𝛼 value which provides the 
minimum CNR: 

𝛼𝑇𝑅𝐹−𝑚𝑖𝑛𝐶𝑁𝑅 =
−𝜈 − √𝜈2 + 4(1 − 𝑒−𝑡)𝜉2𝑒−2𝑡𝐸1(𝑡)

2𝜉√𝐿𝜎𝑟
2(1 − 𝑒−𝑡)𝑒−𝑡

 (54) 

where 

𝜈 = (1 − 𝑒−𝑡)2𝑒−𝑡

− (1 − 𝑡𝑒−𝑡 − 𝑒−𝑡 − 𝜉2)𝐸1(𝑡) 
(55) 

• TRF-maxSCNR: For the TRF-maxSCNR technique, 

combining 𝛥𝑆𝑁𝑅 and 𝐶𝑁𝑅 through equation (9), we 

have: 

𝛥𝑆𝐶𝑁𝑅 = {

 
𝛼2𝐿𝜎𝑟

2(1 − 𝑒−𝑡) + 𝐸1(𝑡)

(𝛼√𝐿𝜎𝑟
2𝜉 − 𝑒−𝑡)

2

 

 

 

+
2𝐶𝑁𝑅𝑖𝑛[(𝑒−𝑡 − 𝑒−2𝑡) + 2𝛼√𝐿𝜎𝑟

2𝜉𝑒−𝑡 + 𝛼2𝐿𝜎𝑟
2(1 − 𝑒−𝑡 − 𝑡𝑒−𝑡 − 𝜉2)]

(𝛼√𝐿𝜎𝑟
2𝜉 − 𝑒−𝑡)

2

 

} ⋅ 

 ⋅
sin2 [𝜋𝐾

𝑞
𝑀

]

sin2 [𝜋𝐾
𝑞𝑇

𝑀
]
     

(56) 

As in the previous cases, we need to derive (56) with 
respect to 𝛼. This yields: 

𝛼𝑇𝑅𝐹−𝑚𝑎𝑥𝑆𝐶𝑁𝑅 = − [𝐸1(𝑡) + 2 𝐶𝑁𝑅𝑖𝑛

⋅ 𝑠𝑖𝑛2 (𝜋𝐾
𝑞

𝑀
) 𝑒−𝑡] 𝜉 

 

⋅
1

√𝐿𝜎𝑟
2 [(1 − 𝑒−𝑡) + 2 𝐶𝑁𝑅𝑖𝑛 ⋅ 𝑠𝑖𝑛2 (𝜋𝐾

𝑞
𝑀

) (1 − 𝑒−𝑡 − 𝑡𝑒−𝑡)] 𝑒−𝑡
 

(57) 
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