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Recent experimental results have reported the observation of beam self-cleaning or, more generally, nonlinear beam
reshaping in active multimode fibers. In this work, we present a numerical analysis of these processes by considering
the ideal case of a diode-pumped signal amplifier made of a graded-index multimode fiber with uniform Yb dop-
ing. Simulations confirm that beam cleaning of the signal may take place even in amplifying fibers, in the absence of
beam power conservation. Moreover, we show how the local signal intensity maxima, which are periodically gener-
ated by the self-imaging process, may influence the population inversion of the doping atoms, and locally saturate
the amplifier gain. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOSAB.463473

1. INTRODUCTION

Light propagation in active waveguides may hold surprises
or counterintuitive situations. An example is provided by the
robust single-mode behavior that can be obtained in the pres-
ence of sufficiently large gain, even in step-index fibers with
a refractive index dip in the core, or in antiguides [1]. Doped
fibers provide the most technologically successful and suitable
platform for optical amplifiers. Accurate models to describe
short pulse propagation in active fibers, including the contri-
bution to dispersion introduced by the active ions, have been
developed; see, for instance, Ref. [2].

In this context, Yb-doped fibers are of particular interest
for many applications, since their quantum defect is small,
which contributes to reducing thermal effects, and allows for
developing high-power amplifiers and lasers, especially if large-
mode-area or multimode (MM) fibers are used. A thorough
discussion of Yb-doped fiber amplifiers can be found in Ref.
[3], whereas static and dynamic instabilities due to thermooptic
effects are analyzed in Refs. [4,5].

An interesting aspect is that, in a MM fiber amplifier, the
beating among modes can create a thermally induced refractive
index grating, which in turn leads to modal energy transfer and
causes the well-known transverse mode instabilities [6]. The

amplification of coherent signals in MM fiber amplifiers cannot
be merely limited to the study of their overall power throughput;
it is essential to consider transversally resolved rate equations,
since the light intensity pattern can lead to different amplifica-
tion regimes, and it has a substantial impact on the quality of the
output beam [7].

Remarkably, steering of the output beam from an MM active
fiber could be obtained by properly shaping the input beam
phase front via a spatial light modulator (such as a segmented
deformable mirror). This was achieved by measuring the rel-
evant transmission matrix and by implementing appropriate
wavefront control algorithms [8,9].

On the other hand, in recent years, there has been a resur-
gence of research interest in nonlinear optical effects in MM
fibers. Among these, spatial beam self-cleaning (BSC) due
to intermodal four-wave mixing via the Kerr effect was first
observed in passive graded-index (GRIN) fibers [10]. Soon
thereafter, BSC was also reported in an Yb-doped fiber amplifier
with a quasi-step-index profile [11]. Although the radial evolu-
tion of the refractive index profile was not following a parabolic
profile, it was possible to observe BSC at 1064 nm, both in the
presence or in the absence of an additional forward diode pump
at 940 nm, leading to signal gain of about 13 dB [11], or to
a signal loss of 7.3 dB owing to Yb ground state absorption,
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respectively. This experimental work was also extended, for
a quasi-step index MM fiber, to the case of a coupled-cavity-
composite MM laser [12] and, more recently, to Yb-doped
fiber tapers with GRIN profiles [13,14]. Note that nonlinear
MM propagation in passive GRIN fibers has been theoretically
and experimentally studied in recent years in the frame of wave
turbulence and thermodynamic descriptions of conservative
wave systems [15–21]. The numerical simulation of complex
beam shaping combining MM propagation, gain/loss mech-
anisms, and the Kerr effect has recently been discussed in the
context of spatiotemporal mode-locked fiber lasers [22,23].
This has permitted researchers to point out the role played by
gain saturation as a modal coupling mechanism for locking both
longitudinal and transverse laser modes (see supplementary
material of Ref. [22]). In addition, the generation of self-similar
pulses in all-normal dispersion mode-locked fiber lasers has
been experimentally and numerically studied in Ref. [24].

In this work, we introduce a numerical model, suitable for
describing spatial beam-cleaning effects in active GRIN MM
fibers. Our simulation results fully support earlier experimental
findings using Yb-doped MM fibers, showing that dissipa-
tive MM fibers are a convenient and important platform for
obtaining BSC. Moreover, our model permits us to design and
optimize novel active fiber structures and amplification schemes
based on BSC, for example, by introducing a suitable transverse
gain/loss distribution in the fiber core. Our study is organized as
follows: Section 2 explains the mathematical model for gain in
Yb-doped MM fibers; Sections 3 and 4 describe the dynamics
in Yb-doped MM fibers, both in the absence of any pumping,
and with a forward pump, respectively; Section 5 extends the
analysis of BSC and self-imaging to Yb-doped MM tapers;
finally, Section 6 draws our conclusions.

2. DISTRIBUTED GAIN MODEL

Our goal is to numerically study signal beam evolution in Yb-
doped MM fibers under the combined action of the Kerr effect
and gain due to Yb ions, with continuous wave (CW) diode
pumping. For efficient pumping, we consider a double cladding
active fiber structure: owing to the presence of thousands of
modes in the inner cladding, the pump distribution is uniform
in the transverse dimension.

Previous experiments with either passive [10] or active MM
fibers [11] have taught us that, when using signal powers higher
than a few tens of kilowatts, a reshaping of the transverse beam
profile is obtained after 2–3 m of propagation. As a matter of
fact, as the signal power grows larger, one observes a progressive
evolution of the output speckled pattern, which is typical of the
MM regime, towards a single bell-shaped profile. For such a
reason, our numerical model must necessarily include, besides
the dependence of the field on the transverse coordinates, a
longitudinal fiber perturbation that breaks the radial symmetry
of the beam and leads, in the linear regime, to a speckled output
pattern as a result of MM interference [15,16,19]. We underline
that the signal evolution cannot be only modeled in terms of
mode powers, since keeping track of the phase evolution is
necessary for properly modeling linear and nonlinear mode
coupling.

The model presented herein combines transversally resolved
rate equations, including the pump power PP (z), with a
nonlinear beam propagation equation for the signal electric
field E (x , y , z). In the present work, for the ease of discussion,
we limit our analysis to the scalar approximation, and neglect
the polarization effects (Refs. [15,16,25]). When considering
forward pumping, the pump evolution is described by the
equation

d PP

dz
=

[
(σAP + σEP)

∫
S N2(x , y , z)dS

ACl

− σAP

∫
S NT(x , y )dS

ACl

]
PP − αP PP , (1)

where σAP and σEP are absorption and emission cross sections at
the pump wavelength, N1 (N2) is the ground (excited) Yb ion
density, NT = N1 + N2 is the total Yb density, ACl is the inner
cladding area, and αP is the linear pump absorption coefficient.
Since we consider a uniformly distributed pump (i.e., it does
not depend on x , y ) in the inner guiding cladding, the pump
intensity reads as IP (z)= PP (z)/ACl. In the previous equa-
tion, the local densities of ions in the ground and excited states
depend on the three spatial coordinates, since, as we will see, it
is important to take into account the fact that N1 and N2 vary
not only along the longitudinal coordinate z, but also in the
transverse x , y plane. As a result, the two integrals for the ion
densities are calculated on the cross section S, where doping
is present. In this work, we assume that doping is only present
in the core, where it is uniformly distributed. Therefore, NT is
constant, and it vanishes outside the core.

The pump is CW, and we consider the steady-state amplifi-
cation regime. Nevertheless, when writing the rate equations,
we must take into account that the signal pulses have a dura-
tion TS , a repetition rate 1/TR (where TR is the separation
between two consecutive pulses), and a time-dependent
intensity IS(x , y , z, t). We can define the time-averaged
signal intensity as ĪS(x , y , z)= 1/TR

∫
TR

I (x , y , z, t)dt '
maxt [I (x , y , z, t)]TS/TR : this is an approximation in this con-
text, although it is often adopted in fiber lasers [26]. It follows
that the density of excited ions N2(x , y , z) can be explicitly
written as a function of the pump and the (time-averaged) signal
intensities [5],

N2(x , y , z)=
NT
(
σAP IP (z)+ σAS ĪS(x , y , z)λS/λP

)
σAEP IP (z)+ σAES ĪS(x , y , z)λS/λP + Pτ

, (2)

where σAEP = σAP + σEP, σAES = σAS + σES, τ is the excited
level lifetime, Pτ = hc/(λP τ), h is the Planck’s constant, and c
is the speed of light.

The complex envelope of the signal electric field
E (x , y , z) is normalized in such a way that its intensity is
I (x , y , z)= |E (x , y , z)|2; the field evolution is governed by
the following equation [5]:

∂E
∂z
=

i
2k0
{∇

2
⊥

E + [k2
− k2

0]E } + iγ |E |2 E −
αS

2
E

+
1

2
[(σAS + σES)N2 − σAS NT ]E , (3)
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where k0 = 2πn0/λS is the reference propagation constant,
k = 2πn(x , y )/λS , and n(x , y ) is the refractive index distribu-
tion. For an ideal GRIN fiber, n(x , y ) is well approximated by a

circular paraboloid n2
= n2

0(1− 21 x2
+y 2

R2 ), where the reference
index is the maximum core refractive index n0 = nCo, nCl is the
cladding index, and 1= (n2

Co − n2
Cl)/2n2

Co. In Eq. (3), the
term in braces describes diffraction and the guiding structure,
the term iγ |E |2 E represents the instantaneous Kerr nonline-
arity, αS is the linear loss coefficient of the silica glass host, and
the last term accounts for the gain g (x , y , z) introduced by the
population inversion, which reads as

g (x , y , z)= (σAS + σES)N2(x , y , z)− σAS NT(x , y , z). (4)

It is worth observing that even if the Kerr coefficient and
the doping are homogeneous over the fiber cross section,
the intensity-dependent refractive index and the gain func-
tion depend on the transverse coordinates and can lead to an
exchange of power among modes carried by the MM fiber.
Equations (1) and (3) can be numerically solved with a split-step
Fourier method. Moreover, the refractive index distribution
can be perturbed by the population inversion of the Yb ions.
The variation of the refractive index δn depends linearly on the
population of the excited state, as described by the equation

δn =
2π

n0

(
n2

0 + 2

3

)2

1p N2, (5)

where 1p = 1.2× 10−26 cm3 is the polarizability difference
of the Yb3+ ions in the excited and ground states, respec-
tively [27]. We also assume that the Yb-doped glass, for the
selected pump and signal wavelengths, behaves as a quasi-
three-level system [28,29], and that the maximum fraction
of inverted population is N2/NT = 0.5 (since σAP = σEP): by
considering NT = 9× 1019 cm−3 and a maximally inverted
population N2 = 4.5× 1019 cm−3, the resulting variation is
δn = 4.44× 10−6. In other words, δn = 8.88× 10−6 N2/NT ,
where N2/NT is the fractional inverted population. In GRIN
fibers, the self-imaging effect is responsible for the formation
of a Kerr-induced index grating [30,31], which also leads to a
periodic modulation of N2 according to Eq. (2), hence of δn.

In order to investigate how this refractive index modulation
eventually interferes with the Kerr-induced index grating, in
Eq. (3) we may replace n(x , y ) by n(x , y )+ δn(x , y , z): this
part of the study is addressed at the end of Section 5. It is also
worth observing that a local change in the fiber temperature δT
of just a few Kelvin can lead to an increase in the refractive index,
which is larger than that expected from population inversion,
since δn ' 1.2× 10−5 δT; however, this would lead to refrac-
tive index fluctuations on a longitudinal scale that is longer than
the self-imaging period. We may thus neglect this contribution
in the current numerical analysis, and we plan to address this
issue in subsequent studies.

It is also customary to express the guided signal field by using
the base provided by the set of Hermite–Gauss guided modes
ψh,k(x , y ), which are the eigensolutions of the linear problem
∇

2
⊥

E + [k2
− k2

0]E = 0 for the GRIN fiber [32].
In the next sections, we develop our simulations for an ideal

sample case, whose set of parameter values are summarized for
simplicity in Table 1. Whenever necessary, in some simulations

the parameters will be modified (for instance, we may neglect
the Kerr effect), as explained in the corresponding sections.

The disorder along the propagation, which is responsible
for the formation of a speckled output intensity pattern in the
linear regime, and which may also lead to an acceleration of the
beam-cleaning process in the nonlinear regime [15], is imple-
mented in the GRIN fiber with a core radius R = 26 µm and
1= 8.8× 10−3 by considering randomly oriented elliptical
deformations of the fiber core, with a maximum excursion of
the axes of 0.15 µm, and a coarse 5 mm pitch for the ellipse
rotation.

3. LINEAR AND NONLINEAR DYNAMICS IN
Yb3+-DOPED FIBER IN THE ABSENCE OF
PUMPING

First, by means of an example, we numerically confirm that,
whenever the input beam peak intensity grows larger than a
certain threshold value, spatial BSC can indeed be obtained in
an undoped, passive GRIN fiber.

Let us consider the parameters of Table 1 and an input
Gaussian signal beam with a peak intensity in the time domain
of 5 GW/cm2. The corresponding numerically calculated evo-
lution [see the iso-intensity surface at half-maximum intensity
in Fig. 1(a)] shows that a transition, from a wide and speckled
intensity pattern into a cleaned beam, occurs after about 0.5 m.
With 10 times less input intensity [see Fig. 1(b)], this beam-
cleaning effect substantially vanishes: the transverse pattern
remains speckled over the full propagation distance of 4 m, as it
occurs when the simulation is carried out in the absence of the
Kerr effect (i.e., we set n2 = 0).

When one includes a uniform Yb doping (while keeping the
same GRIN profile), and in the absence of a pump, i.e., with
PP (0)= 0, the GRIN fiber exhibits high losses, owing to
ground state absorption by Yb ions. Nevertheless, quite surpris-
ingly, Fig. 2 shows that, in spite of the additional loss, it is still
possible to observe BSC in a doped unpumped fiber, with the
same input signal peak intensity of 5 GW/cm2 [see panel (a)]

Table 1. Parameters Used in Modeling and Numerical
Simulations

Symbol Parameter Value

λP pump wavelength 979 nm
λS signal wavelength 1064 nm
TS signal pulse duration 500 ps
D signal beam diameter FWHMI 40 µm
σAP pump absorption cross section 2.358× 10−24 m2

σEP pump emission cross section 2.358× 10−24 m2

σAS signal absorption cross section 5× 10−27 m2

σES signal emission cross section 2.89× 10−25 m2

αP linear absorption (pump) 1.1 dB/km
αS linear absorption (signal) 1.1 dB/km
τ radiative lifetime 1 ms
NT Yb3+ concentration 9.0× 1025 m−3

nCo maximum core refractive index 1.47
nCl cladding refractive index 1.457
R core radius 26 µm
ACl inner cladding area 7.06× 10−8 m2

n2 Kerr nonlinear coefficient 2.6× 10−20 m2/W
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Fig. 1. (a) Beam cleaning in a passive GRIN fiber with input signal
peak intensity 5 GW/cm2; (b) propagation with input signal peak
intensity 0.5 GW/cm2.

Fig. 2. (a) Beam cleaning in a nonlinear Yb-doped GRIN fiber,
in the absence of pump for an input signal maximum intensity
5 GW/cm2; (b) same propagation after turning off the Kerr effect
(n2 = 0).

as in Fig. 1(a). Obviously, beam cleaning vanishes whenever the
simulation does not include the Kerr effect, i.e., with n2 = 0
[panel (b)]. These numerical simulations are in qualitative
agreement with the experimental results of Ref. [11], which were
carried out for a slightly different fiber geometry. Figure 3 reveals
the evolution with distance of the beam modal composition,
corresponding to the case of Fig. 2(a), where ah,k is the ampli-
tude of mode ψh,k(x , y ). Note that the amplitudes ah,k have
been numerically calculated via postprocessing at selected coor-
dinates z by projecting the field E (x , y , z) on the eigenmodes
ψh,k(x , y ). The eigenmodesψh,k(x , y ) are the Hermite–Gauss
functions, and their definition can be found, for instance, in
Refs. [32,33].

Although the signal drops at a rate of 1.9 dB/m, owing to
linear losses due to the absence of a pump for inverting the pop-
ulation of the active medium, we still observe that a significant
nonlinear power exchange among the modes occurs over the
first few meters of propagation. In particular, the blue curve
in Fig. 2(a) shows the power carried by the fundamental mode
ψ0,0, whereas the red and green curves indicate the power car-
ried by modes ψ0,1 and ψ1,0, respectively: these two modes are
poorly excited, because of the symmetry of the input condition.
The other modes ψh,k are plotted in gray (we considered the
projections with h, k ∈ [0, 9]).

It is also instructive to calculate the corresponding
signal power evolution, as displayed in Fig. 4, where
PS(z)=

∫
S |E (x , y , z)|2dS. It is worth underlining that non-

linear effects occur substantially before the signal is attenuated
along its propagation.

Z (m)
0.5 1 1.5 2 2.5 3 3.5 4

|a
h,

k|2
 (

W
)

10-5

100

Fig. 3. Beam cleaning in a nonlinear Yb-doped GRIN fiber, in the
absence of pump: evolution of the modal power |ah,k |

2 (h, k ∈ [0, 9])
in a logarithmic scale for an input signal peak intensity 5 GW/cm2

(blue line refers to a0,0, red to a0,1, green to a1,0).

Fig. 4. Signal power along the Yb-doped GRIN fiber in the absence
of pump.

4. LINEAR AND NONLINEAR DYNAMICS IN
DOPED FIBER WITH FORWARD PUMPING

In this section, we numerically simulate the dynamics of the
signal beam amplification when the pump is switched on. The
corresponding iso-intensity levels are shown in Fig. 5: as can be
seen, for a pump power level of 20 W, beam cleaning is obtained
with a signal of 0.5 GW/cm2 peak intensity only. Note that
with such input signal level, it was not possible to obtain beam
cleaning in a passive GRIN fiber [see panel (b) of Fig. 1]. To
better illustrate this point, Visualization 1 combines a series of
simulations when the pump power is varied from 0 to 20 W at
constant signal power. We may thus numerically confirm the
behavior reported in the experiments of Ref. [11], specifically, a
reduction of the input threshold power for beam cleaning in an
active fiber, owing to signal amplification, which accompanies
nonlinear beam reshaping.

The field gain g /2 [as defined in Eq. (4)] experienced by the
complex electric field E is neither uniform along the fiber (due
to the progressive pump absorption), nor uniform in the trans-
verse domain, owing to the different population inversion across
the beam cross section. In particular, gain saturation is most
pronounced at the point of minimum waist for the signal beam.
The well-known periodic evolution of the beam in a parabolic
refractive index profile causes then a periodic fluctuation of the

https://doi.org/10.6084/m9.figshare.20099126
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Fig. 5. (a) Beam cleaning in a nonlinear Yb-doped GRIN fiber:
forward pump power of 20 W, and input signal peak intensity
0.5 GW/cm2; (b) propagation when turning off the Kerr effect
(n2 = 0).

Fig. 6. Signal gain evolution in a nonlinear Yb-doped GRIN
fiber: forward pump power of 20 W and input signal peak intensity
0.5 GW/cm2. The inset is a zoom of the region highlighted by the blue
vertical lines.

signal intensity. In turn, this gives rise to a periodic evolution
of the excited ion density N2(x , y , z) along the coordinate z.
To exemplify this effect, in Fig. 6 we show the evolution of the
gain along the fiber axis g (x = 0, y = 0, z). The inset is a detail
of the evolution over a shorter fiber span, as highlighted by the
blue bar. Maximum gain is experienced at the beginning of
the propagation, and then gain gradually drops as the pump is
absorbed during its propagation. However, the most striking
feature of the g evolution is the fast varying oscillation on a
submillimetric scale, which is due to the coherent beating of all
modes with the self-imaging period of3= π R/

√
21 (with the

present parameters,3= 0.6 mm).
A better understanding of the signal dynamics can be gained

by observing the evolution of the power carried by the different
modes |ah,k |

2 (see Fig. 7). Specifically, it is possible to notice
that, although all modes are amplified, they clearly have dif-
ferent growth rates. This is surprising, since in the absence of
nonlinearity and gain saturation, the uniform doping distribu-
tion coupled with the cladding pumping scheme would lead
to the same gain per mode. This process culminates in a strong
nonlinear reshaping near z= 1 m.

Along the propagation of the signal beam, amplification
increases nonlinear mode mixing and reduces the nonlinear
length. As a result, in Fig. 7 we observe a rapid growth of both
low- and high-order modes (see for instance the red and green

Fig. 7. Beam cleaning in a nonlinear Yb-doped GRIN fiber: mode
power evolution on a logarithmic scale. Forward pump of 20 W
power, and input signal peak intensity 0.5 GW/cm2 (the blue line
refers to a0,0, the red to a0,1, and the green to a1,0).

curves, referring to modes a0,1, a1,0). Note that these very modes
are poorly excited in the initial steps of the propagation. In par-
allel, near z= 1 m in Fig. 7, we notice a local decrease of the
fundamental mode power (blue curve) before a new amplifica-
tion stage, which can be ascribed to power flow from high-order
modes. Thus, high-order modes can efficiently absorb the gain
distributed on the outer edge of the fiber core before trans-
ferring it to the fundamental mode by four-wave mixing. For
z> 1 m, the power of the fundamental mode grows larger. Such
multistep nonlinear amplification mechanism, involving the
amplification of many modes coupled with nonlinear power
transfer toward the fundamental mode via the Kerr effect, pro-
vides an original light amplification scheme for nonlinear MM
fiber amplifiers.

The situation can be possibly clarified by inspecting the
evolution of pump and signal powers, as reported in Fig. 8.
The strong nonlinear reshaping at z= 1 m corresponds to
the maximum amplification of the signal, whose peak power
reaches above 2.5 MW. Moreover, at that distance, the pump
is entirely absorbed, so that over the remaining propagation
distance, the signal power is reduced. We can conclude that the
Kerr effect may provide an efficient mechanism of nonlinear
mode redistribution (especially close to the threshold for beam
collapse) and power transfer. We also observed that there is a
well-defined optimal amplifier length for obtaining a maximum
amplification of the signal.

5. MM ACTIVE TAPERS

An important category of fiber amplifiers is provided by fiber
tapers, where both cladding and core radius R(z) vary along
the amplifier length. In this section, we support by numerical
simulations the results of a series of experiments on nonlinear
spectral broadening and beam reshaping in both passive and
active MM fiber tapers [34–37]. Here we limit our analysis
to the spatial coordinates: in this case, Eq. (3) can be easily
extended to tapers, where the radius R(z) varies from a value
RIN to a value ROUT. For ease of discussion, we model the
evolution of the core radius by means of a linear function
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Fig. 8. Powers of (a) pump and (b) signal along the fiber:
ĪS(0, 0, 0)= 0.5 GW/cm2 and input pump power PP (0)= 20 W.

R(z)= ROUT + (z− L)(ROUT − RIN)/L , where L is the
taper length. In practical implementations of fiber tapers, the
variation upon distance of the core radius is not necessarily
linear. We refer here to the case RIN > ROUT, in order to quali-
tatively reproduce some of the experimental results of Ref. [13].
Note that the decrease of core radius with fiber length progres-
sively increases the strength of the fiber nonlinearity, which
leads to an acceleration of nonlinear mixing along the beam
propagation [34]. Similar to the previous considered cases, here
the pump is combined with the signal in the forward direction.
Aiming at a comparative analysis with the previous cases, we
considered the same set of parameters’ values that we used for
uniform or z-invariant fibers. However, in order to match some
of the features of the taper of Ref. [13], we have chosen L = 9 m,
RIN = 61 µm, and ROUT = 18 µm. Moreover, in our simula-
tion, the cladding radius linearly varies from 350 µm down to
90 µm. Again, the presence of fiber disorder is introduced by
means of local elliptical deformations of the fiber core. Since the
core radius changes along the propagation of the signal beam,
these deformations are uniformly randomly distributed with a
maximal excursion proportional to R(z). In the simulation, the
maximal deformation on each axis is 5.8× 10−3 R(z), and with
a coarse step of 5 mm.

The numerical simulation presented in Fig. 9 illustrates signal
beam propagation along the active taper, in the absence of the
Kerr effect (i.e., we set n2 = 0); here the input diode pump
power is 20 W, and the signal intensity is 1 GW/cm2. As can
be seen, the output beam exhibits a speckled intensity pattern.
As shown in Fig. 10, the result is qualitatively different when
adding the contribution of the Kerr effect. Specifically, the sim-
ulation shows that the output signal intensity pattern exhibits
a bright spot at its center, surrounded by a weak background.
Note that in the considered case, the pump is absorbed over
the first meter of fiber, so that for longer distances the signal is
experiencing a propagation loss. Nevertheless, Fig. 10 clearly
illustrates the gradual transition from a speckled to a cleaned
beam when the Kerr effect is switched on.

In fiber amplifiers and lasers, fiber tapers are commonly used
by propagating the signal in the opposite direction, namely, with
RIN < ROUT. In fact, if the size of the core increases at the same

Fig. 9. Iso-intensity surface at half-maximum intensity in a Yb-
doped active fiber taper in the absence of Kerr effect (n2 = 0). The blue
(red) curve reproduces the evolution of the signal (pump) power. The
gray circles represent the local size of the fiber core. The inset shows the
output beam intensity pattern.

Fig. 10. Same as in Fig. 9, but in the presence of the Kerr effect.

time that the signal is amplified, the nonlinearity increase due
to the growing signal power can be compensated by the decrease
of the nonlinear coefficient because of the larger effective area of
the guided beam. An example of the nonlinear dynamics in this
configuration for the MM active taper is illustrated in Fig. 11:
here RIN = 18 µm, ROUT = 61 µm, the input beam diameter
(FWHMI) is 12.5 µm, and the input pump power is 20 W.
In detail, panel (a) in Fig. 11 illustrates nonlinear propagation
in the presence of disorder and the Kerr effect. As can be seen,
the signal beam width remains substantially unchanged along
the taper, in spite of experiencing a drastic increase of the core
diameter. For comparison, panel (b) illustrates propagation
in the same taper, but in the absence of the Kerr effect (we set
n2 = 0): now, the beam spreads wider along its propagation.
Although the present simulations refer to a forward pumping
situation, these numerical results substantially agree with the
experimental observations of spatial BSC in active tapers with
decelerating nonlinearity, as reported in Ref. [14], and obtained
with a backward pump.
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Fig. 11. Numerical simulation of nonlinear beam propagation
in a Yb-doped fiber taper with RIN = 18.5 µm and ROUT = 61 µm
(the signal propagation direction is inverted with respect to Figs. 9 and
10). (a) In the presence of the Kerr effect; (b) in the absence of the Kerr
effect (n2 = 0).

Fig. 12. (a) Photoluminescence measured by using a pulsed laser
at 1030 nm for a short taper segment with a fiber radius R = 61 µm;
(b) numerically calculated intensity evolution in a uniform fiber with
core radius R = 61 µm; (c) measured local refractive index profile.

Since core and cladding radii vary slowly along the taper, a
significant change of their values can only be obtained after a
distance that is orders of magnitude greater than the typical
value of the self-imaging period (which ranges from a few mil-
limeters to a few hundred micrometers). For this reason, the
self-imaging effect can also be observed in short segments of the
taper in Fig. 10. Since the period 3 is proportional to the core
radius R [31], self-imaging accelerates (i.e., 3 decreases) when
going from the large core input facet (3∼ 1.3 mm) to the small
core one (3∼ 0.4 mm).

As an example, we may consider the Yb-doped fiber that was
used in Ref. [13]. Panel (a) of Fig. 12 shows the experimental
photoluminescence that is observed at points where the maxima
of intensity are reached: here the spacing between two consecu-
tive points is 1.2 mm. These results are obtained by using an
experimental setup that is similar to that described in Refs. [35–
38]. Panel (b) shows the calculated intensity evolution along an
uniform fiber segment, i.e., with constant radius R = 61 µm
and a parabolic refractive index profile corresponding to the
experimental profile in panel (c). In such a case, the input
Gaussian beam is injected off-axis, and the corresponding inten-
sity distribution exhibits a zigzag trajectory with a period of 23.
As a matter of fact, 3 is the self-imaging period for an on-axis
symmetric input field only, similar to what is observed in other
MM waveguides [39,40]. Note that these zigzag trajectories in

Fig. 13. (a) Photoluminescence measured by using a pulsed laser at
1030 nm for a short taper segment with a fiber radius R = 19.5 µm;
(b) numerically calculated intensity evolution in a uniform fiber having
core radius R = 19.5 µm; (c) measured local refractive index profile.

Fig. 14. Beam shapes at the output of the fiber taper with dif-
ferent strengths of refractive index perturbation δn, caused by
the population inversion of Yb ions. (a) δn = 1× 10−6 N2/NT ;
(b) δn = 4× 10−6 N2/NT ; (c) δn = 6× 10−6 N2/NT ; (d) δn =
9× 10−6 N2/NT . The remaining parameters are those of Fig. 10.

nonlinear GRIN fibers have been studied, with a variational
method, in Ref. [41]. With R = 61 µm, 1n = 0.018 and
assuming, for instance, nCl = 1.457, the calculated self-imaging
period is 3= 1.2 mm: this value is close to the experimental
result in Fig. 12(a), and agrees well with the numerical result in
Fig. 12(b).

The signal beam intensity maxima are more closely packed
when observing the taper near its small input facet, as illus-
trated in Fig. 13: here panel (a) shows the light scattered by
photoluminescence. As can be seen, the spacing between two
consecutive bright spots reduces to 0.36 mm, owing to the
reduced diameter, whereas panel (b) illustrates the numerical
propagation result, again assuming a segment of constant diam-
eter for a few millimeters of propagation, and panel (c) shows
the corresponding measured local refractive index profile. With
R = 19.5 µm, 1n = 0.017, and nCl = 1.457, the expected
self-imaging period is3= 0.4 mm. These experimental results
agree well with the numerical ones, and with the self-imaging
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theory, thus extending the analysis presented in Refs. [35–37]
from standard 50/125 GRIN MM fibers to the case of Yb-doped
MM tapers.

At this point, we may briefly address the relevant problem of
the local refractive index perturbations that are induced by the
population inversion in the active fiber medium. Figure 14 ana-
lyzes the additional impact of the refractive index perturbation
δn, which is caused by the population inversion of Yb ions, as
described by Eq. (5). Here we show the output beam profiles
for realistic values of δn. The simulations have been carried out
with the same parameters as in Fig. 10. To simplify our analysis,
δn is assumed to be proportional to the ratio N2/NT , with a
proportionality factor ranging from 1× 10−6 [panel (a)] up
to 9× 10−6 [panel (d)]. The conclusion of this analysis is that,
although population inversion can induce a refractive index per-
turbation, its impact is not sufficient to reduce the effectiveness
of spatial beam cleaning, at least within the considered range of
parameters.

6. CONCLUSION

In this work, we carried out a series of numerical simulations in
order to study the onset of nonlinear beam reshaping and clean-
ing in MM GRIN fiber amplifiers. At variance with single-mode
fibers, GRIN fibers lead to a periodic evolution of the signal
intensity, which, in turn, periodically modulates the population
inversion. The beam-cleaning effects observed in our numerical
simulations agree well with experimentally reported spatial BSC
in Refs. [11–14] and add a new building block to the study of
this interesting nonlinear phenomenon. In this work, as well
as in the reported experiments, we have shown how BSC can
be observed even in dissipative fiber systems, where the signal
power evolves (under the effect of either linear absorption or
amplification), namely, in the absence of conservation of the sig-
nal power. Peculiar properties of the associated nonlinear beam
evolution have been pointed out, specifically in connection with
the contribution of the active medium, and its nonuniform
transverse population distribution, whose detailed analysis
deserves further studies.
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