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This article defines the class of H-valued autoregressive (AR) processes with a unit
root of finite type, where H is a possibly infinite-dimensional separable Hilbert
space, and derives a generalization of the Granger–Johansen Representation The-
orem valid for any integration order d = 1,2, . . . . An existence theorem shows that
the solution of an AR process with a unit root of finite type is necessarily integrated
of some finite integer order d , displays a common trends representation with a fi-
nite number of common stochastic trends, and it possesses an infinite-dimensional
cointegrating space when dimH = ∞. A characterization theorem clarifies the con-
nections between the structure of the AR operators and (i) the order of integration,
(ii) the structure of the attractor space and the cointegrating space, (iii) the ex-
pression of the cointegrating relations, and (iv) the triangular representation of the
process. Except for the fact that the dimension of the cointegrating space is infinite
when dimH = ∞, the representation of AR processes with a unit root of finite type
coincides with the one of finite-dimensional VARs, which can be obtained setting
H = R

p in the present results.

1. INTRODUCTION

The theory of time series that take values in infinite-dimensional separable Hilbert
spaces, or infinite-dimensional H-valued processes, is receiving increasing atten-
tion in econometrics. Infinite-dimensional H-valued processes allow to represent
directly the dynamics of infinite-dimensional objects, such as Lebesgue square-
integrable functions on a compact domain. In this way, they allow greater mod-
eling generality with respect to models for conditional means and variances, see,
e.g., Horváth and Kokoszka (2012).
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Economic applications of functional time series analysis include studies on
the term structure of interest rates, see Kargin and Onatski (2008), and intraday
volatility, see Hörmann, Horváth, and Reeder (2013) and Gabrys, Hörmann, and
Kokoszka (2013); additional applications can be found in the recent monograph
by Kokoszka and Reimherr (2017) and in the review article by Hörmann and
Kokoszka (2012).

One notable special case is given by H-valued processes xt = ψ( ft ), where ft

is a generic probability density function (pdf) and ψ is an invertible transforma-
tion, see Petersen and Müller (2016), Beare (2017), and Seo and Beare (2019).1

Modeling dynamics of an entire density or parts of a density is of practical inter-
est in modeling income distributions, see, e.g., Bourguignon, Ferreira, and Lustig
(2005), Piketty (2014), and Chang, Kim, and Park (2016b).

An important early contribution to the theory of functional time series is
Bosq (2000), where a theoretical treatment of linear processes in Banach and
Hilbert spaces is developed. There, emphasis is given to the derivations of laws
of large numbers and central limit theorems that allow to discuss estimation
and inference for infinite-dimensional H-valued stationary autoregressive (AR)
models.

Let xt be an infinite-dimensional H-valued process and let 〈·, ·〉 be the inner
product on H; as observed in Hu and Park (2016), the inner product 〈v,xt 〉 for
some v ∈ H is the generalization of a linear combination in Rp; this is called
the v-characteristic of xt . The simplest form of cointegration for the H-valued
process xt corresponds to a process integrated of order one (I (1)), i.e., a random
walk type process, together with some stationary v-characteristic of xt .

Recently, Chang et al. (2016b) applied Functional Principal Components Anal-
ysis (FPCA) directly on the space of densities for individual earnings and intra-
month distributions of stock returns. They found evidence of unit root persistence
in a handful of v-characteristics of these cross-sectional distributions. The frame-
work proposed by Chang et al. (2016b) has (by construction) a finite number of
I (1) stochastic trends and an infinite-dimensional cointegrating space. The theory
is developed starting from the infinite moving average representation of the first
differences of the process, and the potential unit roots are identified and tested
through FPCA.

The representation of infinite-dimensional H-valued AR processes with unit
roots has been recently considered in the literature. Hu and Park (2016) con-
sider infinite-dimensional H-valued AR(1) processes with a compact operator
and prove that an extension of the Granger–Johansen Representation Theorem,
see Theorem 4.2 in Johansen (1996), holds in the I (1) case. The corresponding
common trends representation, or functional Beveridge–Nelson decomposition,
displays a finite number of I (1) stochastic trends and an infinite-dimensional

1 Density functions do not form a vector space with the standard addition and multiplication operations. This diffi-
culty can be overcome by the transformation approach of Petersen and Müller (2016) and/or by redefining the basic
operations of addition and multiplication, as in Seo and Beare (2019) and references thereof.
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cointegrating space. They further propose an estimator for the functional autore-
gressive operator which builds on the results in Chang et al. (2016b).

Beare, Seo, and Seo (2017) consider infinite-dimensional H-valued AR(k),
k ≥ 1, with compact operators if k > 1 and no compactness assumption if k = 1,
and show that the counterpart of the conditions of the Granger–Johansen Rep-
resentation Theorem are sufficient to prove the existence an I(1) representation
with cointegration. If k > 1, the number of I (1) stochastic trends is finite and
the dimension of the cointegrating space is infinite, whereas if k = 1 this is not
necessarily the case.

To obtain the common trends representation of infinite-dimensional H-valued
AR(k), k ≥ 1, with compact operators, Beare and Seo (2019) are the first to em-
ploy a theorem on the inversion of analytic operator functions in Gohberg, Gold-
berg, and Kaashoek (1990).2 They also present results on the I (2) case that show
that the number of I (2) stochastic trends is finite and the dimension of the coin-
tegrating space is infinite.

Finally, Chang, Hu, and Park (2016a) consider infinite-dimensional H-valued
AR(k) processes possessing an error correction form with a compact error cor-
rection operator, and show that in this case the number of I (1) stochastic
trends is infinite and the dimension of the cointegrating space is finite. More-
over, they show that the Granger–Johansen Representation Theorem continues
to hold.

This article introduces the class of AR processes with a unit root of finite type,
which contains infinite-dimensional H-valued ARs with compact operators as a
special case, and derives a generalization of the Granger–Johansen Representa-
tion Theorem valid for any integration order d = 1,2, . . . . Necessary and suffi-
cient conditions for AR processes with a unit root of finite type to generate coin-
tegrated I (d) processes are provided, in a parallel way with respect to the I (d)
representation results in the finite-dimensional VAR case derived in Franchi and
Paruolo (2019). When d > 1, the notion of polynomial cointegration, see Granger
and Lee (1989), corresponds to the existence of some linear combination of
v-characteristics of xt and other v-characteristics of� j xt , j = 1, . . . ,d −1 that is
integrated of order less than d .

More specifically, an existence theorem is provided, which shows that the
solution of an AR process with a unit root of finite type is necessarily I (d)
for some finite integer d , and it displays a common trends representation with
a finite number of common stochastic trends of the type of (cumulated) bi-
lateral random walks and a cointegrating space which is infinite-dimensional
when dimH = ∞. This result is a direct consequence of the Analytic Fred-
holm Theorem, see Gohberg et al. (1990), that was first employed in Beare and
Seo (2019) in the context of infinite-dimensional H-valued ARs with compact
operators.

2 This theorem is usually called the Analytic Fredholm Theorem, and it used here to discuss the existence of a
common trends representation in Section 3.
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Despite these important implications, this existence result does not address a
number of central issues, such as the connections between the structure of the
AR operators and (i) the order of integration of the process, (i i) the structure
of the attractor space and the cointegrating space, and (i i i) the expression of the
cointegrating relations.

The characterization of these links in the generic I (d) case constitutes the
main contribution of the present article. More specifically, a necessary and suf-
ficient condition for the order of integration d is given in terms of the decom-
position of the space H into the direct sum of d + 1 orthogonal subspaces τh ,
h = 0, . . . ,d , that are expressed recursively in terms of the AR operators. This con-
dition is called the “POLE(d) condition”, because it is a necessary and sufficient
condition for the inverse of an operator function A(z) to have a pole of order d
at z = 1.

A crucial feature of the present POLE(d) condition is that the subspaces in
the orthogonal direct sum decomposition H = τ0 ⊕ τ1 ⊕ ·· · ⊕ τd , τd 	= {0}, iden-
tify the directions in which the properties of the process differ. Specifically, for
any nonzero v ∈ τ0, for which it is found that dimτ0 = ∞ when dimH = ∞,
one can combine v-characteristics of xt with other v-characteristics of � j xt ,
j = 1, . . . ,d − 1, to obtain I (0) polynomial cointegrating relations.

For h = 1, . . . ,d − 2 and any nonzero v ∈ τh , which is found to have dimen-
sion 0 ≤ dimτh < ∞, one can combine v-characteristics of xt with other v-
characteristics of � j xt , j = 1, . . . ,d − h + 1, to obtain I (h) polynomial cointe-
grating relations. In τd−1, with 0 ≤ dimτd−1 <∞, one has v-characteristics that
are I (d − 1) and do not allow for polynomial cointegration. Finally, all nonzero
v-characteristics v ∈ τd do not present cointegration and 0< dimτd <∞. These
results parallel the ones in the triangular representation in the finite-dimensional
case H=Rp discussed in Phillips (1991a) and Stock and Watson (1993); see also
Franchi and Paruolo (2019).

These results show that conditions and properties of AR processes with a unit
root of finite type extend those that apply in the usual finite-dimensional VAR
case; in fact, setting H = Rp in the present results one finds the I (1) and I (2)
results in Johansen (1996), and for the generic I (d) case, one finds the results in
Franchi and Paruolo (2019). This shows that except for the fact that the dimension
of the cointegrating space is infinite when dimH= ∞, the infinite-dimensionality
of H does not introduce additional elements in the representation analysis of AR
processes with a unit root of finite type.

The present results are based on an orthogonal decomposition of the embedding
Hilbert space and on the corresponding orthogonal projections. Orthogonal and
nonorthogonal projections are well-known concepts in econometrics, where the
choice between the two is usually discussed in terms of estimation efficiency; see
Phillips (1991b) for how these arguments are modified for spectral GLS regres-
sions methods in a cointegration context. In the context of the present represen-
tation theory, results can be obtained using either orthogonal, as in this article, or
nonorthogonal projections, as done in Hu and Park (2016), Chang et al. (2016a),
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Beare et al. (2017), and Beare and Seo (2019). The present choice of orthogonal
projections is found to ease exposition and to allow for a characterization of the
generic I (d) case.

The rest of the article is organized as follows: Section 2 presents basic defini-
tions and concepts, Section 3 discusses the assumption of unit root of finite type
and reports an initial existence result, Section 4 provides a characterization of
I (1) and I (2) AR processes with a unit root of finite type, and Section 5 extends
the analysis to the general I (d), d = 1,2, . . . , case. Section 6 concludes.

Three Appendices collect background definitions, novel inversion results and
proofs of the statements in the article. Specifically, Appendix A reviews no-
tions on operators acting on a separable Hilbert space H and on H-valued
random variables; Appendix B presents novel results on the inversion of a mero-
morphic operator function and Appendix C reports proofs of the results in
the text.

2. H-VALUED LINEAR PROCESS, ORDER OF INTEGRATION
AND COINTEGRATION

This section introduces the notions of weakly stationary, white noise, linear,
integrated, and cointegrated processes that take values in a possibly infinite-
dimensional separable complex Hilbert space H, where separable means that H
admits a countable orthonormal basis.3 Basic definitions of operators acting on H
and of H-valued random variables are reported in Appendix A. Time is indexed
by t , which is discrete, t ∈ Z = (. . . ,−1,0,1, . . . ). The time-lag operator is de-
noted by L and �= 1 − L is the difference operator; hence, for xt ∈ H, one has
Lxt = xt−1 and�xt = xt − xt−1.

2.1. Definitions

The definitions of weakly stationary and white noise process are taken from Bosq
(2000, Definitions 2.4, 3.1, 7.1), whereas those of linear, integrated, and cointe-
grated process are adapted from Johansen (1996); they are similar to those em-
ployed in Chang et al. (2016b), Beare et al. (2017), Beare and Seo (2019). The
definitions of expectation E(·), covariance operator, and cross-covariance function
used in the following are reported in Appendix A.2.

DEFINITION 2.1 (Weakly stationary process). An H-valued stochastic pro-
cess {εt , t ∈ Z} is said to be weakly stationary if (i) 0 < E(‖εt‖2) < ∞, (i i)
E(εt ) and the covariance operator of εt do not depend on t, and (i i i) the
cross-covariance function of εt and εs , cεt ,εs (h,v), is such that cεt ,εs (h,v) =
cεt+u ,εs+u (h,v) for all h,v ∈ H and all s, t,u ∈ Z.

The notion of H-valued white noise is presented next.

3 All results in the article are valid also for real separable Hilbert spaces; in the following examples are taken from
the latter.
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DEFINITION 2.2 (White noise process). An H-valued weakly stationary
stochastic process {εt , t ∈ Z} is said to be white noise if (i) E(εt ) = 0 and (i i)
cεt ,εs (h,v) = 0 for all h,v ∈ H and all s 	= t,s, t ∈ Z, where cεt ,εs (h,v) is the
cross-covariance function of εt and εs; it is called strong white noise if (i) holds,
and (i i) is replaced by the requirement that εt is an i.i.d. sequence of H-valued
random variables.

In the following, it is assumed that any white noise is nondegenerate, i.e., that
the probability that εt belongs to a strict subspace of H for all t is equal to zero.
Note that by definition any strong white noise is white noise, and any white
noise process is weakly stationary. The same property holds for linear combi-
nations of lags of a white noise process with suitable weights; this leads to the
class of linear processes, introduced in Definition 2.3 below, where the follow-
ing notation is employed: D(z0,ρ) denotes the open disc {z ∈ C : |z − z0| < ρ}
with center z0 ∈ C and radius 0 < ρ ∈ R, H1,H2 are separable Hilbert spaces
and LH1,H2 indicates the set of bounded linear operators A : H1 → H2 with
norm ‖A‖LH1,H2

= sup‖v‖=1 ‖Av‖; an operator function B(z) = ∑∞
n=0 Bn(z −

z0)
n , where Bn ∈ LH1,H2 , is said to be absolutely convergent on D(z0,ρ) if∑∞

n=0 ‖Bn‖LH1,H2
|z − z0|n <∞ for all z ∈ D(z0,ρ).4 When H1 = H2 = H, the

simplified notation LH is used for LH1,H2 .

DEFINITION 2.3 (Linear process). Let {εt , t ∈ Z} be an H1-valued (strong)
white noise; an H2-valued stochastic process {xt , t ∈ Z} with μt = E(xt) is said
to be a linear process if

xt = μt +
∞∑

n=0

Bnεt−n, Bn ∈ LH1,H2 , B0 	= 0,

where B(z) = ∑∞
n=0 Bnzn, z ∈ C, is absolutely convergent on the open disc

D(0,ρ) for some ρ > 1.

Usually, the notion of strong white noise is used in the definition of linear pro-
cesses; the only consequence of strong versus weak white noise on the repre-
sentations is that the cumulation of {εt , t ∈ Z} gives rise to a random walk with
increments that are independent versus just uncorrelated.

Observe also that Definition 2.3 allows the white noise {εt , t ∈Z} and the linear
process to live in different Hilbert spacesH1,H2. In particular, this is useful when
considering v-characteristics wt = 〈v,xt 〉 of a linear process xt = ∑∞

n=0 Bnεt−n

with xt ,εt ∈ H1 say, for which one has wt ∈ H2 = C (or H2 = R) and wt =∑∞
n=0 B�nεt−n where B�nεt−n = 〈v,Bnεt−n〉 and B�n ∈ LH1,H2 ; hence, in this

case, the white noise process εt is an element of a possibly infinite-dimensional

4 Note that
∑∞

n=0 ‖Bn‖LH1,H2
|z − z0 |n < ∞ for all z ∈ D(z0,ρ) implies that

∑∞
n=0 Bn (z − z0)

n converges

in the operator norm to B(z) ∈ LH1,H2
for all z ∈ D(z0,ρ), i.e., ‖B(z)−∑N

n=0 Bn(z − z0)
n‖LH1,H2

→ 0 as

N → ∞.
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Hilbert space H1 (as xt ), whereas its v-characteristics wt is an element of a one-
dimensional Hilbert space C (or R).5

As discussed in Section 7.1 in Bosq (2000), existence and weak sta-
tionarity of

∑∞
n=0 Bnεt−n are guaranteed by the square summability con-

dition
∑∞

n=0 ‖Bn‖2
LH1,H2

< ∞. Observe that the requirement that B(z)

is absolutely convergent on D(0,ρ) for some ρ > 1 is stronger. In
fact,

∑∞
n=0 ‖Bn‖LH1,H2

|z|n < ∞ for all z ∈ D(0,ρ), ρ > 1, implies∑∞
n=0 ‖Bn‖LH1,H2

< ∞ and hence
∑∞

n=0 ‖Bn‖2
LH1,H2

< ∞. This shows that

xt −μt in Definition 2.3 is well defined and weakly stationary.
Moreover, because B(z) is a bounded linear operator for all z ∈ D(0,ρ), ρ > 1,

B(1) is a bounded linear operator. Finally, note that B(z) is infinitely differen-
tiable on D(0,ρ), ρ > 1, and the series obtained by termwise k times differen-
tiation,

∑∞
n=k n(n − 1) · · · (n − k + 1)Bnzn−k , is absolutely convergent and coin-

cides with the k-th derivative of B(z) for each z ∈ D(0,ρ). Hence,
∑∞

n=k n(n −
1) · · · (n − k + 1)‖Bn‖LH1,H2

<∞, which for k = 1 reads
∑∞

n=1 n‖Bn‖LH1,H2
<

∞; this condition is employed in Chang et al. (2016b) and in Beare and Seo
(2019).

The notions of integration and cointegration are introduced next.

DEFINITION 2.4 (Order of integration). A linear process xt = μt + B(L)εt is
said to be integrated of order 0, written xt ∼ I (0), if B(1) 	= 0. If �d xt is I (0)
for some finite integer d = 1,2, . . . , {xt , t ∈ Z} is said to be integrated of order d,
indicated xt ∼ I (d).

This definition coincides with Definition 3.3 in Johansen (1996) of an I (d)
process for the special case H = Rp .

Observe that a white noise process is I (0) and that an I (0) process is weakly
stationary. To see that a weakly stationary process is not necessarily I (0), take for
instance ut = �εt = εt − εt−1; this process is weakly stationary, with B(1) = 0
and hence it does not satisfy the definition of an I (0) process, showing that the
two concepts do not coincide. The distinction between weak stationarity and I (0)-
ness is relevant for the definition of order of integration: in fact, the cumulation
of an I (0) process is necessarily I (1), whereas the cumulation of a stationary
process is not necessarily so.

Following Hu and Park (2016), one can define the v-characteristic of xt

as the scalar process 〈v,xt 〉, for any v ∈ H. Orthogonality with respect to
the inner product leads to the following definition of orthogonal complement
S⊥ of a subspace S ⊆ H, S⊥ = {v ∈ H : 〈v,s〉 = 0 for all s ∈ S}. From Def-
inition 2.4, one can see that a generic v-characteristic of xt ∼ I (d) is it-
self at most integrated of order d; the case when a v-characteristic of xt ∼
I (d) is integrated of lower order b < d is associated with the notion of
cointegration.

5 The same construction is used in Beare and Seo (2019) Section 3.
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DEFINITION 2.5 (Cointegrated process). An I (d) process xt is said to be coin-
tegrated (respectively polynomially cointegrated) if there exists a nonzero v ∈ H
such that 〈v,xt 〉 (respectively 〈v,xt 〉+∑d−b−1

n=1 〈v,Gn�
nxt 〉 for some Gn) is I (b)

for some b< d; in this case v 	= 0 is called a cointegrating vector. The closed span
of all cointegrating vectors is called the cointegrating space and its orthogonal
complement is called the attractor space.

As in the usual finite-dimensional case, xt is cointegrated if there exists a
v-characteristic of xt that has lower order of integration than the original pro-
cess. The cointegrating space contains all nonzero v ∈ H that correspond to a
v-characteristic of xt with lower order of integration than the original process xt

and the null vector 0 ∈ H. On the other hand, the attractor space is the subspace
where the dominant I (d) trends take values.

When both the attractor and the cointegrating space have finite dimension, H is
finite-dimensional, so that the standard results in the literature apply. The case in
which the attractor space is infinite-dimensional corresponds to a process with an
infinite number of I (d) stochastic trends; for d = 1, this case has been discussed
in Chang et al. (2016a) and in Beare et al. (2017) for k = 1; this case is not covered
by the present results.

Most of the contributions in the literature have studied instead the case of an
attractor space of finite dimension and a cointegrating space of infinite dimension.
This is the setup studied for d = 1 in Chang et al. (2016b), Hu and Park (2016) and
Beare et al. (2017) for k > 1 and in Beare and Seo (2019) for d = 1,2 and k ≥ 1.
This is the setting considered in the present article as well, and it is motivated also
by the next example.

2.2. Yield Curve Example

As an example of an infinite-dimensional separable Hilbert space of economic
interest, consider the yield curve x◦,t (s), where s denotes maturity and t time. In
this subsection t is omitted, unless needed for clarity.

Let H be the set of Lebesgue measurable real functions x◦(s) such that∫ smax
0 x2◦ (s)ds < ∞, where smax is the maximal maturity and

∫
g(s)ds indicates

a Lebesgue integral with respect to the Lebesgue measure. One can rescale the
maturity s into u = s/smax and define the rescaled yield curve x(u) by x(u) =
x◦(u · smax), with u ∈ (0,1] and

∫ 1
0 x2(u)du <∞. The vector space operations on

H are defined in a natural way as (x + y)(u)= x(u)+ y(u) and (αx)(u)= αx(u)
where α ∈ R. Next, define the inner product

〈x, y〉 =
∫ 1

0
x(u)y(u)du. (2.1)

This set of Lebesgue square-integrable functions with inner product (2.1), when
identifying functions which are equal almost everywhere, is a separable real
Hilbert space, see, e.g., Kokoszka and Reimherr (2017, p. 214).

The yield curve is often described in terms of the three features of level, slope,
and curvature, see, e.g., Cochrane and Piazzesi (2005). These features of the
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yield curve can be associated with the following v-characteristics of x . Define
πj,1, . . . ,πj, j as a partition of the unit interval (0,1] into j segments πj,i of length
1/j , πj,i = ( i−1

j ,
i
j ], and let 1{u∈πj,i } be the indicator function that takes value one

when u ∈ πj,i and equals 0 otherwise.
Next define the following v functions

v0(u)= 1{u∈π1,1}, v1(u)= 1

2

(
1{u∈π2,2} − 1{u∈π2,1}

)
,

v2(u)= 1

4

(
1{u∈π4,4} − 1{u∈π4,3}

)− 1

4

(
1{u∈π4,2} − 1{u∈π4,1}

)
,

and observe that they belong to H, because they are Lebesgue square-integrable
functions. Finally, let x denote the rescaled yield curve and note that

〈v0, x〉 =
∫ 1

0
v0(u)x(u)du =

∫ 1

0
x(u)du,

〈v1, x〉 =
∫ 1

0
v1(u)x(u)du = 1

2

(∫ 1

1
2

x(u)du −
∫ 1

2

0
x(u)du

)
,

〈v2, x〉 =
∫ 1

0
v2(u)x(u)du = 1

4

(∫ 1

3
4

x(u)du −
∫ 3

4

1
2

x(u)du

)
− 1

4

(∫ 1
2

1
4

x(u)du −
∫ 1

4

0
x(u)du

)
.

One can see that 〈v0,x〉 computes the average yield curve, and hence can be
associated with the level of the yield curve. Similarly, 〈v1,x〉 computes the dif-
ference between the average yield on the longer maturities and the one on the
shorter maturities; hence, it can be associated with the slope of the yield curve.
Finally, 〈v2,x〉 computes the difference of the slopes on the longer maturities and
the shorter maturities; hence, it can be associated with the curvature of the yield
curve.

This shows that v0, v1, v2 define interesting v-characteristics for the yield curve
x . If the yield curve x is modeled as a functional time series, xt , then it is inter-
esting to ask questions of the type: “what is the order of integration of the level
(or slope, or curvature) of the yield curve?”. These questions translate into “what
is the order of integration of the v j -characteristics, j = 0,1,2, of the yield curve
xt ?”.

This illustrates how interesting hypotheses can be formulated in this context;
other types of hypotheses can be formulated in a similar way. Moreover, it is
of interest to determine how many and which characteristics are nonstationary,
which corresponds to estimating the (dimension of the) attractor space in the I (1)
case.

It appears natural in this context to assume (or test) that there are only a finite
number of factors driving the dynamics of the yield curve. This seems to be a
reasonable assumption also beyond the case of the yield curve; this setup is the
one studied in the present article.
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3. AR PROCESS WITH A UNIT ROOT OF FINITE TYPE

This section introduces the class of H-valued ARs that is studied in the present
article, called AR processes with a unit root of finite type, where H is a possibly
infinite-dimensional separable Hilbert space. It also presents an existence result
about their common trends representation, which shows that the solution of an AR
process with a unit root of finite type is necessarily I (d) for some finite integer d ,
displays a common trends representation with a finite number of common stochas-
tic trends of the type of (cumulated) bilateral random walks and it possesses an
infinite-dimensional cointegrating space when dimH = ∞.6 The relations of AR
processes with a unit root of finite type with the infinite-dimensional H-valued
ARs studied in literature are also discussed in this section, and an example of
an AR process with a unit root of finite type with a noncompact AR operator
is given.

3.1. Main Assumption

Consider an H-valued AR process

xt = A◦
1xt−1 +·· ·+ A◦

kxt−k + εt , A◦
n ∈ LH, t ∈ Z, (3.1)

where H is a possibly infinite-dimensional separable Hilbert space, xt ,εt ∈ H,
{εt , t ∈ Z} is white noise, and the operator function

A(z)= I −
k∑

h=1

A◦
hzh, z ∈ C, A(1) 	= 0, (3.2)

is noninvertible at z = 1 and invertible in the punctured disc D(0,ρ)\{1} for some
ρ > 1; here I indicates the identity operator in LH.

This requirement restricts attention to unit roots at frequency zero, correspond-
ing to the point z = 1 on the unit disc. Note that there is no loss of generality
in assuming that A(1) 	= 0. In fact, if A(1) = 0, one can factorize (1 − z)s from
A(z), A(z)= (1 − z)s Ã(z) for some Ã(1) 	= {0} and some s > 0, and rewrite the
AR equations A(L)xt = εt as Ã(L)yt = εt for yt =�s xt .

The notion of eigenvalue of finite type, see Gohberg et al. (1990, Sect. XI.8), is
central in the present setup and it is reported next. For any A ∈ LH the subspace
{v ∈ H : Av = 0}, written Ker A, is called the kernel of A and the subspace {Av :
v ∈ H}, written Im A, is called the image of A. The dimension of Im A, written
dimIm A, is called the rank of A.

DEFINITION 3.1 (Eigenvalue of finite type). A(z) in (3.2) is said to have an
eigenvalue of finite type at z0 ∈ C if

6 This result is a direct consequence of the Analytic Fredholm Theorem, reported in Theorem A.1 in Appendix
A.1, and first employed in Beare and Seo (2019) in the context of infinite-dimensional H-valued ARs with compact
operators.
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(i) A0 = A(z0) is Fredholm of index n − q, where n = dimKerA0 <∞ and q =
dim(ImA0)

⊥ <∞,
(i i) A0v = 0 for some nonzero v ∈ H,
(i i i) A(z) is invertible for all z in some punctured disc D(z0,δ)\{z0}, δ > 0.

Direct consequences of this definition are listed in the following remark.

Remark 3.2. If A(z) has an eigenvalue of finite type at z = z0, A0 = A(z0) is
necessarily Fredholm of index 0, see Gohberg et al. (1990, Sect. XI.8). Combin-
ing this with (i) and (i i) in Definition 3.1 one thus has that 0 < dimKer A0 =
dim(Im A0)

⊥ <∞. Note that when H is finite-dimensional any operator is Fred-
holm of index 0 and any eigenvalue is of finite type. Moreover, if A(z) has an
eigenvalue of finite type at z = z0, Im (A0) is necessarily closed, see Theorem
2.1 in Gohberg, Goldberg, and Kaashoek (2003, Sect. 15.2). When the image of
a bounded operator is closed, the generalized maximal Tseng inverse of A0, writ-
ten A+

0 , satisfies the Moore–Penrose conditions, see Theorem 3 in Ben-Israel and
Greville (2003, Chap. 9). In the following, whenever the generalized maximal
Tseng inverse is used, it always coincides with the Moore–Penrose inverse be-
cause it is applied to bounded operators with a closed image, as it is the case for
A0, and it is simply referred to as “generalized inverse”.

The key assumption is introduced next.

Assumption 3.3 (AR process with a unit root of finite type). A(z) has an eigen-
value of finite type at z = 1. In this case, A(L)xt = εt in (3.1) is said to be an AR
process with a unit root of finite type.

That is, an AR process with a unit root of finite type is such that A(z)
is invertible for all z ∈ D(0,ρ) \ {1} for some ρ > 1, A0 = A(1) 	= 0, 0 <
dimKer A0 = dim(Im A0)

⊥ < ∞, and Im A0 is closed. Note that when H is
finite-dimensional an AR process with a unit root of finite type coincides with a
cointegrated VAR.

3.2. Existence of a Common Trends Representation

Under Assumption 3.3, one can apply the Analytic Fredholm Theorem of Section
XI.8 of Gohberg et al. (1990), reported in Theorem A.1 in Appendix A.1, and
first employed in Beare and Seo (2019) in the context of infinite-dimensional
H-valued ARs with compact operators. These results guarantee that there exists
a finite integer d = 1,2, . . . and operators Cn , n = 0,1, . . . , with finite rank for
n = 0, . . . ,d − 1, such that

A(z)−1 =
∞∑

n=0

Cn(1 − z)n−d, z ∈ D(0,ρ)\{1}, ρ > 1, (3.3)

so that the inverse of A(z) has a pole of finite order d at z = 1. Note that (3.3) can
be written as
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A(z)−1 =
d−1∑
n=0

Cn(1 − z)n−d + C◦(z), z ∈ D(0,ρ)\{1}, ρ > 1,

where C◦(z)= ∑∞
n=d Cn(1− z)n−d is absolutely convergent on D(0,ρ) for some

ρ > 1.
This implies that the solution of the AR equations is I (d) for some finite integer

d . Moreover, because the operators that make up the principal part of A(z)−1

around z = 1 have finite rank, xt displays a common trends representation with
a finite number of common stochastic trends of the type of (cumulated) bilateral
random walks, as reported in Theorem 3.5 below.

To state Theorem 3.5, the cumulation operator S is introduced, following Gre-
goir (1999).

DEFINITION 3.4 (Cumulation operator S). For an H-valued generic process
{wt , t ∈ Z} the cumulation operator S is defined as

Swt = 1(t≥1) ·
t∑

i=1

wi − 1(t≤−1) ·
0∑

i=t+1

wi . (3.4)

When wt = εt is white noise, the notation sh,t = Shεt , h = 1,2, . . . , is employed,
and sh,t is called the (h − 1)-fold cumulated bilateral random walk.

Observe that by definition S assigns value 0 to the cumulated process at time
0. In fact, applying the definition, see also Properties 2.1, 2.2 in Gregoir (1999),
one has

�Swt = wt , S�wt =wt −w0, t ∈ Z. (3.5)

Equation (3.5) shows that S applied to �wt regenerates the level of the process
wt , up to a constant; this parallels the constant of integration in indefinite integrals.
The cumulation operator S is hence the inverse of the difference operator� up a
constant.

Note that when wt = εt is white noise, (3.4) implies that s1,t = Sεt is a bi-
lateral H-valued random walk, see Bosq (2000, Example 1.9 on page 20); be-
cause �s1,t = �Sεt = εt is I (0), this shows that s1,t is I (1). Similarly, for
h = 2,3, . . . , sh,t = Ssh−1,t is the (h − 1)-fold cumulation of the bilateral ran-
dom walk s1,t ∼ I (1) and hence it is I (h).

The following result connects AR processes with a unit root of finite type with
the existence of a common trend representation in terms of stochastic trends of
the above type.

THEOREM 3.5 (Existence of a common trends representation). Let A(L)xt =
εt be an AR process with a unit root of finite type; then there exist a finite integer
d = 1,2, . . . and operators Cn, n = 0,1, . . . , with finite rank for n = 0, . . . ,d − 1,
such that xt has common trends representation

xt = C0sd,t + C1sd−1,t +·· ·+ Cd−1s1,t + yt +μt , t ∈ Z, (3.6)
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where sh,t = Shεt ∼ I (h) is the (h − 1)-fold cumulation of the bilateral random
walk s1,t ∼ I (1), yt = C◦(L)εt is a linear process with C◦(z) = ∑∞

n=d Cn(1 −
z)n−d , and μt = ∑d−1

n=0 vntn is a polynomial in t whose coefficients v0, . . . ,vd−1 ∈
H depend on the initial values of xt , yt ,εt for t = −d, . . . ,0.

In the common trends representation (3.6), the operators C0,C1, . . . ,Cd−1 have
finite rank; this implies that xt depends only on a finite number of bilateral (cu-
mulated) random walks. In fact, these common stochastic trends are selected from
sh,t ∼ I (h), h = 1, . . . ,d , by the finite rank operators C0,C1, . . . ,Cd−1 that load
onto xt only a finite number of characteristics from sh,t , h = 1, . . . ,d .

Theorem 3.5 implies a number of properties for AR processes with a unit root
of finite type, some of which are listed in the following corollary, namely, that
d (the order of the pole of the inverse of A(z) at z = 1) is finite, the process is
cointegrated, the number of common trends is finite, and the dimension of the
cointegrating space is infinite when dimH = ∞.

COROLLARY 3.6 (Cointegration properties). Let A(L)xt = εt be an AR pro-
cess with a unit root of finite type; then
(i) xt ∼ I (d) for some finite integer d = 1,2, . . . ,
(i i) xt is cointegrated,
(i i i) Im C0 is the finite-dimensional attractor space,
(iv) (Im C0)

⊥ is the cointegrating space, which is infinite-dimensional when
dimH = ∞.

Despite these important implications of Theorem 3.5, these existence results
do not address a number of important issues, such as the connection between
the structure of A(z) and the order of integration d of the process. In fact, one
cannot determine the order of integration d of the solution of the AR equa-
tions using Theorem 3.5. Moreover, Theorem 3.5 does not specify the connec-
tion between Im C0 and the AR operators, so that one does not know how the
attractor space and the cointegrating space are related to the AR operators. Fi-
nally, as the relations among the finite rank operators C0,C1, . . . ,Cd−1 are not
specified, Theorem 3.5 is mostly silent about the structure of the cointegrating
relations.

These additional characterization results form the main contribution of the
present article and are presented in Section 5 for the generic I (d) case. For ease
of presentation, Section 4 starts from the cases of I (1) and I (2) H-valued AR
processes.

3.3. Relations with the Literature

Before turning to the characterization results, the present subsection dis-
cusses the relationship between Assumption 3.3 and the assumptions em-
ployed in the literature. An example in the next section illustrates the
differences.
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The following proposition discusses the relation with Chang et al. (2016b), who
study I (1) infinite-dimensional H-valued processes xt satisfying �xt = B(L)εt ,
where

∑∞
n=1 n‖Bn‖LH <∞ and dimIm B(1) <∞.

PROPOSITION 3.7 (I(1) AR processes with a unit root of finite type). Let
A(L)xt = εt be an AR process with a unit root of finite type with d = 1; then
�xt = B(L)εt , where B(z)= ∑∞

n=0 Bnzn, z ∈ C, is such that
∑∞

n=1 n‖Bn‖LH <
∞ and Im B(1) is finite-dimensional. The converse does not necessarily
hold.

This shows that I (1) AR processes with a unit root of finite type necessarily
satisfy Assumption 2.1 in Chang et al. (2016b); hence, their asymptotic analysis
applies and their test can be employed in the present setup.

The next proposition discusses the relation with Hu and Park (2016), who
consider (3.1) with dimH = ∞, k = 1 and compact A◦

1. Similarly, Beare et al.
(2017) consider (3.1) with dimH = ∞ and compact A◦

1, . . . , A◦
k if k > 1 and

Beare and Seo (2019) consider (3.1) with dimH = ∞ and compact A◦
1, . . . , A◦

k
for k ≥ 1.

PROPOSITION 3.8 (Compactness and AR processes with a unit root of fi-
nite type). Assume that A◦

1, . . . , A◦
k , k ≥ 1, in (3.1) are compact; then (3.1) is

an AR process with a unit root of finite type. The converse does not necessarily
hold.

This shows that the present results can be applied to the setups of Hu and Park
(2016), Beare et al. (2017) for k > 1 and Beare and Seo (2019). Beare et al. (2017)
also consider xt = A◦

1xt−1 +εt with no compactness assumption on A◦
1. This case

is not covered by the present results; see also Proposition 4.7 below.
Finally, Chang et al. (2016a) consider an error correction form with compact

error correction operator and show that in this case the number of I (1) common
trends is infinite and the dimension of the cointegrating space is finite. This case
is not covered by the present results.

3.4. Example of a Noncompact Operator

This section illustrates the relevance of Assumption 3.3 with an example, which
is considered again in Sections 4.3 and 4.4 to illustrate the characterization results
in the I (1) and in the I (2) cases.

Consider a real infinite-dimensionalH-valued AR(1) process xt = A◦
1xt−1 +εt ,

where A◦
1 is a band operator. Band operators are defined as follows: let ϕ1,ϕ2, . . .

be an orthonormal basis of H and let (ai j ), where ai j = 〈Aϕj ,ϕi 〉, be the matrix
representation of A ∈ LH corresponding to ϕ1,ϕ2, . . . , see, e.g ., Gohberg et al.
(2003, Sect. 2.4); A ∈ LH is called a band operator if all nonzero entries in its
matrix representation (ai j ) are in a finite number of diagonals parallel to the main
diagonal, i.e., there exists an integer N such that ai j = 0 if |i − j |> N , see, e.g.,
Gohberg et al. (2003, Sect. 2.16).

MASSIMO FRANCHI AND PAOLO PARUOLO

https://doi.org/10.1017/S0266466619000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000306


817

Note that a band operator is compact if and only if limi, j→∞ ai j = 0, see
Theorem 16.4 in Gohberg et al. (2003, Sect. 2.16). Finally, let wi,t = 〈ϕi ,wt 〉
be the i -th coordinate of the process wt , where wt = xt ,εt . Note also that
A(z)= A0 + A1(1 − z) with A0 = I − A◦

1, A1 = A◦
1 and An = 0 for n = 2,3, . . . ,

in A(z)= ∑∞
n=0 An(1 − z)n; see (4.1) below.

Consider the matrix representation (ai j ) of A◦
1 and assume that ai j = 0 for

|i − j | > 0 and aii = αi , where αi ∈ R, α1 = 1 and 0 < |αi | < 1, i = 2,3, . . . ,
without αi → 0 as i → ∞. Note that A◦

1 is a band operator. Observe that xt =
A◦

1xt−1 + εt reads

x1,t = x1,t−1 + ε1,t , xi,t = αi xi,t−1 + εi,t , i = 2,3, . . . .

Note that A◦
1 is not compact because αi does not tend to 0 as i → ∞. Next note

that A(z) is invertible for all z ∈ D(0,ρ) \ {1} for some ρ > 1 and consider the
matrix representation of A◦

1 = A1 and A0 = I − A◦
1, i.e.,

A◦
1 = A1 =

⎛⎜⎝1
α2
. . .

⎞⎟⎠ , A0 =
⎛⎜⎝0

1 −α2
. . .

⎞⎟⎠ , (3.7)

where unspecified entries are equal to 0, and compute

(Im A0)
⊥ = (sp{ϕ2,ϕ3, . . .})⊥ = sp{ϕ1}, Ker A0 = sp{ϕ1},

where sp{·} and sp{·} indicate the span of the set of vectors in curly brackets and
its closure respectively. Because 0< dimKer A0 = dim(Im A0)

⊥<∞, this shows
that A0 is Fredholm of index 0, so that Assumption 3.3 holds and xt = A◦

1xt−1 +εt

is an AR process with a unit root of finite type with noncompact operator.

4. A CHARACTERIZATION OF I (1) AND I (2) AR PROCESSES WITH A
UNIT ROOT OF FINITE TYPE

This section presents a characterization of I (1) and I (2) AR processes with a unit
root of finite type. The I (1) case parallels the results in Hu and Park (2016), Beare
et al. (2017) for k > 1, Beare and Seo (2019), and it is discussed in Theorem 4.1.
The results for the I (2) case are novel, and they are given in Theorem 4.8.

To state the characterization results, it is useful to expand the operator function
A(z)= I −∑k

h=1 A◦
hzh around 1, obtaining

A(z)=
∞∑

n=0

An(1− z)n, An =
{

I −∑k
h=1 A◦

h for n = 0
(−1)n+1 ∑k−n

h=0

(n+h
n

)
A◦

n+h for n = 1,2, . . .
,

(4.1)

where empty sums are defined to be 0; note that An = 0 for n > k, see (3.1).
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4.1. I (1) Case

Let An be as in (4.1) and define

S0 = A0, ζ0 = Im S0, τ0 = (Ker S0)
⊥, (4.2)

S1 = Pζ⊥
0

A1 Pτ⊥
0
, ζ1 = Im S1, τ1 = (Ker S1)

⊥, (4.3)

where Pη is the orthogonal projection on η, i.e., P2
η = Pη, Im Pη = η and

Ker Pη = η⊥.
Observe that

ζ1 ⊆ ζ⊥
0 , τ1 ⊆ τ⊥

0

by construction; that is, ζ1 is orthogonal to ζ0 and τ1 is orthogonal to τ0. Moreover,
because 1 is an eigenvalue of finite type, one has 0< dimτ⊥

0 = dimζ⊥
0 <∞, see

Remark 3.2, so that the subspaces ζ1,τ1 are finite-dimensional and the subspaces
ζ0,τ0 are infinite-dimensional when dimH = ∞. Note that S0 and S1 both have
closed images (ζ0 and ζ1), thanks to Remark 3.2 and the fact that ζ1 is finite-
dimensional. This implies that the generalised inverses of S0 and S1 exist and
satisfy the usual Moore–Penrose equations.

In the following, the orthogonal direct sum decomposition

H = τ0 ⊕ τ1, τ1 	= {0}, (4.4)

is called the POLE(1) condition. Note that {0} in (4.4) indicates the subspace of H
of dimension 0, simply containing the 0 element; in other words condition (4.4)
requires τ1 to complement τ0 and to have positive dimension. In the following,
a ⇒ b indicates that a implies b.

THEOREM 4.1 (A characterization of I (1) AR processes with a unit root of
finite type). Consider an AR process with a unit root of finite type A(L)xt = εt and
let τ0, τ1 be as in (4.2), (4.3) respectively; then xt is I (1) if and only if the POLE(1)
condition in (4.4) holds. In this case, the common trends representation of xt is
found by setting d = 1 in (3.6), i.e., xt = C0s1,t + yt +μt . Moreover, Im C0 = τ1
is the finite-dimensional attractor space, τ0 is the cointegrating space, which is
infinite-dimensional when dimH = ∞, and for any nonzero v ∈ H one has

v ∈ τ0 ⇒ 〈v,xt 〉 ∼ I (0), (4.5)

v ∈ τ1 ⇒ 〈v,xt 〉 ∼ I (1), (4.6)

where τ1 = τ⊥
0 	= {0}.

Some remarks on Theorem 4.1 are in order.

Remark 4.2. An AR process with a unit root of finite type generates an I (1)
process if and only if τ1 = τ⊥

0 	= {0}, i.e., dimτ1 > 0. In fact, the common trends
representation xt = C0s1,t + yt +μt implies that

〈v,xt 〉 = 〈v,C0s1,t 〉+ 〈v, yt 〉+ 〈v,μt 〉.
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Because Im C0 = τ1 = τ⊥
0 , for any nonzero v ∈ τ0 one has 〈v,C0u〉 = 0 for all

u ∈ H, and hence also when u equals s1,t , which shows that 〈v,xt 〉 is stationary.
Hence τ0 is the cointegrating space, which is infinite-dimensional when dimH =
∞, and its orthogonal complement τ1 = τ⊥

0 is the finite-dimensional attractor
space. Theorem 4.1 further shows that 〈v,xt 〉 is not only stationary, but I (0) for
any nonzero v ∈ τ0.

Remark 4.3. The orthogonal decomposition H = τ0 ⊕ τ1 can be employed to
characterize the order of integration of any v-characteristic of the process. In fact,
(4.4) implies Pτ0 + Pτ1 = I , where Pτh is the orthogonal projection onto τh ; hence,
for any v ∈ H one has

〈v,xt 〉 = 〈v0,xt 〉+ 〈v1,xt 〉, vh = Pτh v ∈ τh, h = 0,1,

where 〈v0,xt 〉 ∼ I (0) by (4.5) and 〈v1,xt 〉 ∼ I (1) by (4.6). Here, the I (1) com-
ponent dominates, and one has 〈v,xt 〉 ∼ I (1) if and only if v1 	= 0.

Remark 4.4. Franchi and Paruolo (2016) study the finite-dimensional case
H = Rp (or H = Cp); they show that the I (1) condition in Theorem 4.2 in Jo-
hansen (1996) can be equivalently stated as R

p = ζ0 ⊕ ζ1 = τ0 ⊕ τ1, ζ1 	= {0},
and τ1 	= {0}, where ζh = sp{αh}, τh = sp{βh}, h = 0,1, and the bases αh , βh

are defined by the rank factorizations A0 = α0β
′
0 and Pζ⊥

0
A1 Pτ⊥

0
= α1β

′
1; here

sp{a} indicates sp{a1, . . . ,ak} when the argument a of sp{a} is a matrix with k
columns ai , a = (a1, . . . ,ak). In this case, observe that αh , βh are full-column-
rank matrices that respectively span the column space ζh and the row space τh of
the corresponding matrix. Except for the fact that dimζ0 = dimτ0 is finite when
H = Rp , this mirrors what happens when dimH = ∞.

Remark 4.5. The POLE(1) condition in (4.4) is equivalent to τ1 = τ⊥
0 	=

{0}. Moreover, Theorem B.4 in Appendix B shows that it can be equivalently
stated as (i) H = ζ0 ⊕ ζ1, ζ1 	= {0}, (i i) ζ1 = ζ⊥

0 	= {0}, (i i i) Im C0 = τ1,
(iv) Ker C0 = ζ0.

The POLE(1) condition is next compared to equivalent conditions in the litera-
ture. Beare et al. (2017, Definition 4.3) say that A(z) satisfies the ‘Johansen I (1)
condition’ if Im A0 and A1Ker A0 are closed and

H = Im A0 ⊕ A1Ker A0, (4.7)

where A0, A1 are as in (4.1). The condition (4.7) is a nonorthogonal direct sum de-
composition. The next proposition shows the equivalence of the orthogonal direct
sum (POLE(1)) condition in (4.4) and the nonorthogonal direct sum (‘Johansen
I (1)’) condition in (4.7).

PROPOSITION 4.6 (Equivalence of (4.4) and (4.7)). Let A(L)xt = εt be an
AR process with a unit root of finite type; then the Johansen I (1) condition in
(4.7) is equivalent to the POLE(1) condition in (4.4).
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Beare et al. (2017, Theorem 4.1) has further connections with Theorem 4.1 of
the present article in case k = 1, when (4.7) reduces to

H = Im A0 ⊕ Ker A0 (4.8)

Their Theorem 4.1 places no compactness assumption on A◦
1 when k = 1 and they

state that the “Johansen I (1) condition” (4.8) is sufficient to imply the common
trends representation (3.6) with d = 1 and Im C0 = Ker A0. The following propo-
sition clarifies the connection between AR processes with a unit root of finite type
and their result for k = 1, showing that if Ker A0 is finite-dimensional, then the
“Johansen I (1) condition” (4.8) is a necessary and sufficient condition for the
common trends representation (3.6).

PROPOSITION 4.7 (AR(1) case with finite-dimensional Ker A0). Consider
the infinite-dimensionalH-valued AR(1) process xt = A◦

1xt−1 +εt and let H= Im
A0 ⊕KerA0. If KerA0 is finite-dimensional then xt = A◦

1xt−1+εt is an AR process
with a unit root of finite type, and the “Johansen I (1) condition” (4.8) (or equiv-
alently the POLE(1) condition in (4.4)) is necessary and sufficient for xt ∼ I (1).

One can observe that the case with k = 1 and infinite-dimensional Ker A0,
which corresponds to an infinite-dimensional attractor space, is treated in Beare
et al. (2017, Thm. 4.1) but it is not covered by the present results.

4.2. I (2) Case

The I (2) case is considered next. Let An , ζ0,τ0 and ζ1,τ1 be as in (4.1), (4.2),
and (4.3) respectively and define

S2 = PZ ⊥
2

A2,1 PT ⊥
2
, ζ2 = Im S2, τ2 = (Ker S2)

⊥, (4.9)

where Z2 = ζ0 ⊕ ζ1, T2 = τ0 ⊕ τ1, and A2,1 = A2 − A1 A+
0 A1. Recall that the

generalized inverse A+
0 exists and it is unique, see Remark 3.2.

Observe that

ζ2 ⊆ (ζ0 ⊕ ζ1)
⊥, τ2 ⊆ (τ0 ⊕ τ1)

⊥

by construction; that is, for 0 ≤ j < h, ζh is orthogonal to ζj , and τh is orthogonal
to τj . Moreover, because 0 < dimζ⊥

0 = dimτ⊥
0 <∞, the subspaces ζ1,ζ2,τ1,τ2

are finite-dimensional and the subspaces ζ0,τ0 are infinite-dimensional when
dimH = ∞. Again note that S0, S1, and S2 have closed images (ζ0,ζ1, and ζ2),
thanks to Remark 3.2 and the fact that ζ1,ζ2 are finite-dimensional. This implies
that the generalised inverses of S0, S1, and S2 exist and satisfy the usual Moore–
Penrose equations.

In the following, the orthogonal direct sum decomposition

H = τ0 ⊕ τ1 ⊕ τ2, τ2 	= {0}, (4.10)

is called the POLE(2) condition.
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THEOREM 4.8 (A characterization of I (2) AR processes with a unit root of
finite type). Consider an AR process with a unit root of finite type A(L)xt = εt ;
let τ0, τ1, τ2 be as in (4.2), (4.3), (4.9) respectively and let A+

0 be the generalized
inverse of A0; then xt is I (2) if and only if the POLE(2) condition in (4.10) holds.
In this case, the common trends representation of xt is found by setting d = 2
in (3.6), i.e., xt = C0s2,t + C1s1,t + yt +μt . Moreover, Im C0 = τ2 is the finite-
dimensional attractor space, τ0 ⊕ τ1 is the cointegrating space, which is infinite-
dimensional when dimH = ∞, and for any nonzero v ∈ H one has

v ∈ τ0 ⇒ 〈v,xt 〉+ 〈v, A+
0 A1�xt 〉 ∼ I (0), (4.11)

v ∈ τ1 ⇒ 〈v,xt 〉 ∼ I (1), (4.12)

v ∈ τ2 ⇒ 〈v,xt 〉 ∼ I (2), (4.13)

where τ1 ⊂ τ⊥
0 and τ2 = (τ0 ⊕ τ1)

⊥ 	= {0}.
Some remarks on Theorem 4.8 are in order.

Remark 4.9. An AR process with a unit root of finite type generates an I (2)
process if and only if τ2 = (τ0 ⊕ τ1)

⊥ 	= {0}. The common trends representa-
tion of xt shows that the I (2) stochastic trends s2,t are loaded into the pro-
cess by C0; because Im C0 = τ2 = (τ0 ⊕ τ1)

⊥, for any nonzero v ∈ τ0 ⊕ τ1 one
has 〈v,C0u〉 = 0 for all u ∈ H, and hence also for u = s2,t ; this implies that
〈v,xt 〉 is at most I (1), i.e., τ0 ⊕ τ1 is the cointegrating space and its orthogo-
nal complement τ2 = (τ0 ⊕ τ1)

⊥ is the finite-dimensional attractor space. Note
that when dimH = ∞ one has dimτ0 = ∞ and hence the cointegrating space is
infinite-dimensional.

Remark 4.10. Theorem 4.8 further shows that the cointegrating space is par-
titioned into τ0 ⊕ τ1; in τ0, which is infinite-dimensional when dimH = ∞, one
finds the v-characteristics that allow for I (0) polynomial cointegration and in
τ1, with 0 ≤ dimτ1 < ∞, those that do not allow for polynomial cointegration.
Specifically, any nonzero v0 ∈ τ0, if one combines levels and first differences
as in 〈v0,xt 〉 + 〈v0, A+

0 A1�xt 〉, one finds an I (0) process. The contribution of
〈v0, A+

0 A1�xt 〉 may be irrelevant; there are situations, in fact, depending on the
specific form of v0, A0, A1 where 〈v0, A+

0 A1u〉 is equal to 0 for any u; in this
case one would have 〈v0,xt 〉 ∼ I (0). On the other hand, polynomial cointegra-
tion cannot happen in the τ1 subspace, in which every nonzero v1 ∈ τ1 is such
that 〈v1,xt 〉 ∼ I (1). Apart from the fact that the dimension of τ0 is infinite when
dimH = ∞, this parallels the finite-dimensional case, see Theorem 4.6 in Jo-
hansen (1996).

Remark 4.11. The orthogonal direct sum decomposition H = τ0 ⊕ τ1 ⊕ τ2 can
be employed to characterize the order of integration of any v-characteristic of the
process. In fact, (4.10) implies Pτ0 + Pτ1 + Pτ2 = I , where Pτh is the orthogonal
projection onto τh ; hence for any v ∈ H one has 〈v,xt 〉 = 〈v0,xt 〉 + 〈v1,xt 〉 +
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〈v2,xt 〉, where vh = Pτh v ∈ τh , and 〈vh ,xt 〉 ∼ I (h) by (4.12) and (4.13) for h =
1,2. Taking these results together with (4.11), one also concludes that 〈v0,xt 〉 is
either I (0) or I (1). Here, the I(2) trend dominates, and hence one has 〈v,xt 〉 ∼
I (2) if and only if v2 	= 0.

Remark 4.12. In the finite-dimensional case H = Rp , Franchi and Paruolo
(2016) show that the I (2) condition in Theorem 4.6 in Johansen (1996) can be
equivalently stated as Rp = ζ0 ⊕ ζ1 ⊕ ζ2 = τ0 ⊕ τ1 ⊕ τ2, ζ2 	= {0}, and τ2 	= {0},
where ζh = sp{αh}, τh = sp{βh}, h = 0,1,2, and the bases αh , βh are defined by
the rank factorizations A0 = α0β

′
0, Pζ⊥

0
A1 Pτ⊥

0
= α1β

′
1, and PZ ⊥

2
A2,1 PT ⊥

2
= α2β

′
2

where A2,1 = A2 − A1 A+
0 A1, A+

0 = (α0β
′
0)

+ = β̄0ᾱ
′
0, and η̄ = η(η′η)−1 for a

generic full-column-rank matrix η. This shows that the infinite-dimensional case
parallels the finite-dimensional one, apart from the fact that dimζ0 = dimτ0 is
finite when H = Rp and infinite when dimH = ∞.

Remark 4.13. The POLE(2) condition in (4.10) is equivalent to τ2 = (τ0 ⊕
τ1)

⊥ 	= {0}. Moreover, Theorem B.4 in Appendix B shows that it can be equiva-
lently stated as (i) H = ζ0 ⊕ ζ1 ⊕ ζ2, ζ2 	= {0}, (i i) ζ2 = (ζ0 ⊕ ζ1)

⊥ 	= {0}, (i i i)
Im C0 = τ2, (iv) Ker C0 = ζ0 ⊕ ζ1.

4.3. Illustration: I (1) Example

Consider the setup in Section 3.4. Here, the analysis should deliver that xt is
I (1), the attractor space coincides with sp{ϕ1} and the cointegrating space with
sp{ϕ2,ϕ3, . . . }. Since 〈v,xt 〉 is I (0) for any nonzero v ∈ sp{ϕ2,ϕ3, . . . } and 〈v,xt 〉
is I (1) for any nonzero v ∈ sp{ϕ1}, the analysis should further convey that τ0 =
sp{ϕ2,ϕ3, . . . } and τ1 = sp{ϕ1}.

From (3.7), one has

ζ0 = Im A0 = sp{ϕ2,ϕ3, . . .},
τ0 = (Ker A0)

⊥ = (sp{ϕ1})⊥ = sp{ϕ2,ϕ3, . . . },
ζ1 = Im Pζ⊥

0
A1 Pτ⊥

0
= sp{ϕ1},

τ1 = (Ker Pζ⊥
0

A1 Pτ⊥
0
)⊥ = (sp{ϕ2,ϕ3, . . . })⊥ = sp{ϕ1}.

This shows that H = τ0 ⊕ τ1, τ1 	= {0}, so that the POLE(1) condition in (4.4)
holds and Theorem 4.1 applies: the common trends representation of xt is found
by setting d = 1 in (3.6), Im C0 = τ1 = sp{ϕ1} is the finite-dimensional attractor
space and τ0 = sp{ϕ2,ϕ3, . . . } is the infinite-dimensional cointegrating space.

4.4. Illustration: I (2) Example

Consider gain the setup in Section 3.4, with the following modifications. In the
matrix representation (ai j ) of A◦

1, assume that ai j = 0 for |i − j |> 1, a12 = 1 and
aii = αi , where αi ∈ R, α1 = α2 = α3 = 1 and 0 < |αi |< 1, i = 4,5, . . . without
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αi → 0 as i → ∞. Here, A◦
1 is not compact but xt = A◦

1xt−1 +εt is an AR process
with a unit root of finite type. Observe that xt = A◦

1xt−1 + εt reads

x1,t = x1,t−1 + x2,t−1 + ε1,t , x2,t = x2,t−1 + ε2,t , x3,t = x3,t−1 + ε3,t,
xi,t = αi xi,t−1 + εi,t , i = 4,5, . . . .

Hence, the analysis should deliver that xt is I (2), the attractor space coincides
with sp{ϕ1} and the cointegrating space with sp{ϕ2,ϕ3, . . . }. Next, note that 〈v,xt 〉
is I (0) for any nonzero v ∈ sp{ϕ4,ϕ5, . . . } and 〈v,xt 〉 is I (1) for any nonzero
v ∈ sp{ϕ2,ϕ3}. Moreover, because �x1,t = x2,t−1 + ε1,t = x2,t − ε2,t + ε1,t , one
has that x2,t −�x1,t is I (0), i.e., 〈ϕ2,xt 〉 − 〈ϕ1,�xt 〉 is I (0), so that 〈ϕ2,xt 〉
allows for polynomial cointegration while 〈ϕ3,xt 〉 does not. Hence, the analy-
sis should further convey that τ0 = sp{ϕ2,ϕ4,ϕ5, . . . }, τ1 = sp{ϕ3}, τ2 = sp{ϕ1},
〈ϕ2, A+

0 A1�xi,t 〉 = −�xi,t , and 〈ϕi , A+
0 A1�xi,t 〉 = 0 for i = 4,5, . . . , as shown

below.
Consider the matrix representation of A◦

1 = A1 and A0 = I − A◦
1, i.e.,

A◦
1 = A1 =

⎛⎜⎜⎜⎜⎜⎝
1 1

1
1
α4
. . .

⎞⎟⎟⎟⎟⎟⎠ , A0 =

⎛⎜⎜⎜⎜⎜⎝
0 −1

0
0

1 −α4
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where empty entries are equal to 0. Compute

ζ0 = Im A0 = sp{ϕ1,ϕ4,ϕ5, . . . },
τ0 = (Ker A0)

⊥ = (sp{ϕ1,ϕ3})⊥ = sp{ϕ2,ϕ4,ϕ5, . . . },
so that ζ⊥

0 = sp{ϕ2,ϕ3} and τ⊥
0 = sp{ϕ1,ϕ3}; because 0 < dimKer A0 =

dim(Im A0)
⊥ <∞, this shows that A0 is Fredholm of index 0 and because A(z)=

I − A◦
1z is invertible for all z ∈ D(0,ρ)\{1} for some ρ > 1, and xt = A◦

1xt−1 +εt

is an AR process with a unit root of finite type with noncompact operator.
Next compute

ζ1 = Im Pζ⊥
0

A1 Pτ⊥
0

= sp{ϕ3},
τ1 = (Ker Pζ⊥

0
A1 Pτ⊥

0
)⊥ = (sp{ϕ1,ϕ2,ϕ4,ϕ5, . . . })⊥ = sp{ϕ3}.

This shows that τ1 is strictly contained in τ⊥
0 , so that the POLE(1) condition in

(4.4) does not hold and the process is I (d) for some finite d = 2,3, . . . .
Now consider PZ ⊥

2
A2,1 PT ⊥

2
in (4.9); since Z2 = ζ0 ⊕ ζ1 = sp{ϕ1,ϕ3,ϕ4, . . . }

and T2 = τ0 ⊕ τ1 = sp{ϕ2,ϕ3, . . .}, one has Z ⊥
2 = sp{ϕ2} and T ⊥

2 = sp{ϕ1}.
Note that A2 = 0 and hence A2,1 = −A1 A+

0 A1; thus, PZ ⊥
2

A2,1 PT ⊥
2

=
−Psp{ϕ2} A1 A+

0 A1 Psp{ϕ1} and because Psp{ϕ2} A1 = Psp{ϕ2} and A1 Psp{ϕ1} =
Psp{ϕ1}, one has PZ ⊥

2
A2,1 PT ⊥

2
= −Psp{ϕ2} A+

0 Psp{ϕ1}. Next, the matrix represen-

tation of A+
0 is investigated; from Lemma B.1 one has Ker A+

0 = (Im A0)
⊥,
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A+
0 A0 = P(Ker A0)⊥ and because (Im A0)

⊥ = sp{ϕ2,ϕ3} and (Ker A0)
⊥ =

sp{ϕ2,ϕ4,ϕ5, . . . } one has

A+
0 =

⎛⎜⎜⎜⎜⎜⎝
0

−1 0
0

1
1−α4

. . .

⎞⎟⎟⎟⎟⎟⎠ .

This implies that the only nonzero element in the matrix representation of
PZ ⊥

2
A2,1 PT ⊥

2
= −Psp{ϕ2} A+

0 Psp{ϕ1} is a one in row 2 and column 1, so that

ζ2 = Im PZ ⊥
2

A2,1 PT ⊥
2

= sp{ϕ2},
τ2 = (Ker PZ ⊥

2
A2,1 PT ⊥

2
)⊥ = (sp{ϕ2,ϕ3, . . . })⊥ = sp{ϕ1}.

Hence, H = τ0 ⊕ τ1 ⊕ τ2, τ2 	= {0}, i.e., the POLE(2) condition in (4.10) holds
and Theorem 4.8 applies: the common trends representation of xt is found by
setting d = 2 in (3.6), Im C0 = τ2 = sp{ϕ1} is the finite-dimensional attractor
space and τ0 ⊕ τ1 = sp{ϕ2,ϕ3, . . . } is the infinite-dimensional cointegrating space.
Moreover, for any nonzero v ∈ H one has

v ∈ τ0 = sp{ϕ2,ϕ4,ϕ5, . . . } ⇒ 〈v,xt 〉+ 〈v, A+
0 A1�xt 〉 ∼ I (0),

v ∈ τ1 = sp{ϕ3} ⇒ 〈v,xt 〉 ∼ I (1),

v ∈ τ2 = sp{ϕ1} ⇒ 〈v,xt 〉 ∼ I (2).

Note that τ1 ⊂ τ⊥
0 and τ2 = (τ0 ⊕ τ1)

⊥ 	= {0}. Moreover, 〈ϕ2, A+
0 A1�xt 〉 =

−�x1,t − �x2,t and 〈ϕi , A+
0 A1�xt〉 = αi

1−αi
�xi,t , for i = 4,5, . . . ; hence

〈ϕ2,xt 〉+ 〈ϕ2, A+
0 A1�xt〉 = x2,t −�x1,t −�x2,t and, for i = 4,5, . . . , 〈ϕi ,xt 〉+

〈ϕi , A+
0 A1�xt〉 = xi,t + αi

1−αi
�xi,t . This shows that 〈v,xt 〉+ 〈v, A+

0 A1�xt〉 con-
tains stationary terms (�x2,t and αi

1−αi
�xi,t ) that are not necessary for coin-

tegration; these can be eliminated by considering 〈v, A+
0 A1 Pτ2�xt 〉 instead of

〈v, A+
0 A1�xt〉, as in the finite-dimensional I (2) case, see Theorem 4.6 in Jo-

hansen (1996).

5. A CHARACTERIZATION OF I (d) AR PROCESSES WITH A UNIT
ROOT OF FINITE TYPE

This section extends the results in Section 4 to the general I (d), d = 1,2, . . . <∞,
case. Theorem 5.3 provides a necessary and sufficient condition for AR processes
with a unit root of finite type to be I (d) and it is shown that under this condition
the space H is decomposed into the direct sum of d + 1 orthogonal subspaces τh ,
H = τ0 ⊕ τ1 ⊕ ·· · ⊕ τd , τd 	= {0}, that are defined in terms of the AR operators
A0, A1, . . . , Ad in (4.1), see Definition 5.1 below.
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The finite-dimensional attractor space coincides with τd and τ0 ⊕ τ1 ⊕ ·· · ⊕
τd−1 is the cointegrating space, which is infinite-dimensional when dimH = ∞.
In τ0, with dimτ0 = ∞ when dimH = ∞, one finds the v-characteristics that
allow for polynomial cointegration of order 0 and in τh , h = 1, . . . ,d − 2, with
0 ≤ dimτh < ∞, those that allow for I (h) polynomial cointegration. In τd−1,
with 0 ≤ dimτd−1 <∞, those that are I (d − 1) and do not allow for polynomial
cointegration. Finally, any nonzero v ∈ τd , with 0 < dimτd < ∞, is such that
〈v,xt 〉 ∼ I (d). The results in Section 4 are found as special cases for d = 1 and
d = 2.

Before stating the results, some definitions are introduced.

DEFINITION 5.1 (Sh,ζh ,τh , and Ah,n). Consider an AR process with a
unit root of finite type A(L)xt = εt , where A(z) = ∑∞

n=0 An(1 − z)n is as in
(4.1). Let

S0 = A0, ζ0 = Im S0, τ0 = (Ker S0)
⊥

and for h = 1,2, . . . define

Sh = PZ ⊥
h

Ah,1 PT ⊥
h
, ζh = Im Sh , τh = (Ker Sh)

⊥, (5.1)

where

Zh = ζ0 ⊕ ·· ·⊕ ζh−1, Th = τ0 ⊕ ·· ·⊕ τh−1 (5.2)

and

Ah,n =
{

An for h = 1
Ah−1,n+1 − Ah−1,1

∑h−2
j=0 S+

j Aj+1,n for h = 2,3, . . .
, n = 1,2, . . . .

(5.3)

A few remarks on Definition 5.1 are in order.

Remark 5.2. First note that for h = 1,2 (5.1), (5.2), and (5.3) deliver (4.3) and
(4.9) respectively. Next, observe that for h = 1,2, . . . one has

ζh ⊆ (ζ0 ⊕ ·· ·⊕ ζh−1)
⊥, τh ⊆ (τ0 ⊕ ·· ·⊕ τh−1)

⊥ (5.4)

by construction; that is, for 0 ≤ j < h, ζh is orthogonal to ζj and τh is orthogonal to
τj . Moreover, because 0< dimζ⊥

0 = dimτ⊥
0 <∞, for h = 1,2, . . . the subspaces

ζh and τh are finite-dimensional and possibly of dimension equal to 0 and the
subspaces ζ0,τ0 are infinite-dimensional when dimH = ∞.

Note also that, as h increases, the finite-dimensional subspaces Z ⊥
h = (ζ0 ⊕

·· · ⊕ ζh−1)
⊥ and T ⊥

h = (τ0 ⊕ ·· · ⊕ τh−1)
⊥ have nonincreasing dimension and,

because 0< dimζ⊥
0 = dimτ⊥

0 <∞, they will eventually have dimension 0. This
shows that only a finite number of ζh,τh are nonzero. Let s be the value of h such
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that Z ⊥
s 	= {0}, T ⊥

s 	= {0} and Z ⊥
s+1 = T ⊥

s+1 = {0}. As shown in Theorem B.4 in
Appendix B, the integer s is precisely the order of the pole of A(z)−1 at z = 1.

Finally, observe that the generalized inverse of Sh , S+
h , exists and it is unique

for h = 0,1, . . . , because Im Sh , h = 0,1, . . . , is closed; in fact, S0 is Fredholm of
index 0, see Remark 3.2, and dimIm Sh <∞ for h = 1,2, . . . .

In the following, the orthogonal direct sum decomposition

H = τ0 ⊕ τ1 ⊕ ·· ·⊕ τd , τd 	= {0}, (5.5)

is called the POLE(d) condition.

THEOREM 5.3 (A characterization of I (d) AR processes with a unit root of
finite type). Consider an AR process with a unit root of finite type A(L)xt = εt

and let Sh , τh and Ah,n be as in Definition 5.1; then xt is I (d) if and only if the
POLE(d) condition in (5.5) holds. In this case, the common trends representation
of xt is found in (3.6), i.e., xt = ∑d−1

n=0 Cnsd−n,t + yt +μt . Moreover, Im C0 = τd

is the finite-dimensional attractor space, τ0 ⊕ τ1 ⊕ ·· ·⊕ τd−1 is the cointegrating
space, which is infinite-dimensional when dimH= ∞, and for any nonzero v ∈H
and for h = 0,1, . . . ,d, one has

v ∈ τh ⇒ 〈v,xt 〉+
d−h−1∑

n=1

〈v, S+
h Ah+1,n�

n xt〉 ∼ I (h), (5.6)

where empty sums are defined to be 0, τh ⊂ (τ0 ⊕·· ·⊕ τh−1)
⊥ for h = 1, . . . ,d −1

and τd = (τ0 ⊕ ·· ·⊕ τd−1)
⊥ 	= {0}.

Remark 5.4. Theorem 5.3 provides a full description of the properties of an
I (d) AR process with a unit root of finite type for a generic d = 1,2, . . . <∞. For
d = 1 and d = 2 one finds the I (1) and I (2) cases discussed in Theorems 4.1 and
4.8. Observe that all the relevant quantities in Theorem 5.3 are expressed in terms
of the AR operators via Definition 5.1.

Remark 5.5. The cointegrating relations in (5.6) provide information that par-
allels the triangular representation for finite-dimensional process discussed in
Phillips (1991a) and Stock and Watson (1993); see also Franchi and Paruolo
(2019, Corollary 4.6).

Remark 5.6. An AR process with a unit root of finite type generates an I (d)
process if and only if τd = (τ0 ⊕·· ·⊕ τd−1)

⊥ 	= {0}. The common trends represen-
tation of xt shows that the I (d) stochastic trends sd,t are loaded into the process by
C0; because Im C0 = τd = (τ0 ⊕·· ·⊕ τd−1)

⊥, for any nonzero v ∈ τ0 ⊕·· ·⊕ τd−1
one has 〈v,C0u〉 = 0 for all u ∈ H, and hence also for u = sd,t ; this implies that
〈v,xt 〉 is at most I (d − 1), i.e., τ0 ⊕ ·· · ⊕ τd−1 is the cointegrating space and its
orthogonal complement τd = (τ0 ⊕·· ·⊕ τd−1)

⊥ is the finite-dimensional attractor
space. Note that when dimH = ∞ one has dimτ0 = ∞ and hence the cointegrat-
ing space is infinite-dimensional.
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Remark 5.7. Theorem 5.3 further shows that the cointegrating space is parti-
tioned into τ0 ⊕ ·· · ⊕ τd−1; in τ0, which is infinite-dimensional when dimH =
∞, one finds the cointegrating vectors that allow for I (0) polynomial cointe-
gration, i.e., for any nonzero v ∈ τ0, one has 〈v,xt 〉 + ∑d−1

n=1〈v, A+
0 An�

nxt 〉 ∼
I (0). For any nonzero v ∈ τh , h = 1, . . . ,d − 2, for which 0 ≤ dimτh <
∞, one finds those that allow for I (h) polynomial cointegration, i.e., 〈v,xt 〉 +∑d−h−1

n=1 〈v, S+
h Ah+1,n�

n xt 〉 ∼ I (h). In τd−1, with 0 ≤ dimτd−1 < ∞, every
nonzero v-characteristic of xt is I (d −1) and does not allow for polynomial cointe-
gration, and inτd,with 0< dimτd <∞, every nonzerov-characteristicof xt is I (d).
Apart from the fact that the dimension of τ0 is infinite when dimH = ∞, this par-
allels the finite-dimensional case, see Theorem 4.3 in Franchi and Paruolo (2019).

Remark 5.8. The orthogonal direct sum decomposition H = τ0 ⊕ τ1 ⊕ ·· ·⊕ τd

can be employed to characterize the order of integration of any v-characteristic
of the process. In fact, (5.5) implies Pτ0 + Pτ1 + ·· · + Pτd = I , where Pτh is the
orthogonal projection onto τh ; hence for any v ∈ H one has 〈v,xt 〉 = 〈v0,xt 〉+
〈v1,xt 〉+ · · ·+〈vd ,xt 〉, where vh = Pτh v ∈ τh , where (5.6) implies that 〈vh ,xt 〉 is
integrated of order I (d − 1) or less for h = 0,1, . . . ,d − 1; these components are
dominated by 〈vd ,xt 〉 ∼ I (d). Hence 〈v,xt 〉 ∼ I (d) if and only if vd 	= 0.

Remark 5.9. In the finite-dimensional case H = Rp , Franchi and Paruolo
(2016) show that d = 1,2, . . . if and only if Rp = ζ0 ⊕ ·· · ⊕ ζd = τ0 ⊕ ·· · ⊕ τd ,
where ζh = sp{αh}, τh = sp{βh}, h = 0,1, . . . , and the bases αh , βh are defined
by the rank factorizations PZ ⊥

h
Ah,1 PT ⊥

h
= αhβ

′
h , where Ah,1 is as in Definition

5.1 with S+
h = (αhβ

′
h)

+ = β̄h ᾱ
′
h . Apart from the fact that dimζ0 = dimτ0 is fi-

nite when H = Rp and infinite when dimH = ∞, the general case in this article
coincides with the finite-dimensional case discussed in that article.

Remark 5.10. The POLE(d) condition in (5.5) is equivalent to τd = (τ0 ⊕ ·· ·⊕
τd−1)

⊥ 	= {0}. Moreover, Theorem B.4 in Appendix B shows that it can be equiva-
lently stated as (i)H= ζ0 ⊕ ζ1 ⊕·· ·⊕ ζd , ζd 	= {0}, (i i) ζd = (ζ0 ⊕·· ·⊕ ζd−1)

⊥ 	=
{0}, (i i i) Im C0 = τd , (iv) Ker C0 = τ0 ⊕ ·· ·⊕ τd−1.

In order to complete the discussion of the relation of the present results with
the existing literature, the equivalence of the POLE(d) condition in (5.5) to the
condition in Hu and Park (2016) reported in equation (5.7) below is discussed.

Hu and Park (2016) consider an infinite-dimensional H-valued AR(1) process
xt = A◦

1xt−1+εt with A◦
1 compact, formulate an I (d) condition and then study the

I (1) case. In order to state their I (d) condition, they employ the nonorthogonal
direct sum decompositionH=HP ⊕HT , where HP is the finite-dimensional im-
age of the Riesz projection associated with the isolated eigenvalue z = 1 and HT

is the infinite-dimensional image of the Riesz projections associated with the re-
maining stable eigenvalues. Using the nonorthogonal projections associated with
the nonorthogonal direct sum decomposition H =HP ⊕HT , they decompose the
process into xt = x P

t + x T
t , where x X

t = AX x X
t + εX

t ∈ HX and AX = A◦
1|HX is

the restriction of A◦
1 to HX , X = T, P . Their I (d) condition is stated as
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AP − I is a nilpotent matrix of order d, (5.7)

i.e., (AP − I )d−1 	= 0 and (AP − I )d = 0, which simplifies to AP = I in the I (1)
case studied in that article.

PROPOSITION 5.11 (Equivalence of (5.5) and (5.7)). Let xt = A◦
1xt−1 + εt

be an AR process with a unit root of finite type; then the I (d) condition in (5.7) is
equivalent to the POLE(d) condition in (5.5).

6. CONCLUSION

The present article characterizes the cointegration properties of infinite-
dimensional H-valued AR processes A(L)xt = εt such that A(z) has an eigen-
value of finite type at z = 1 and it is invertible in the punctured disc D(0,ρ)\{1}
for some ρ > 1. It is shown that these processes, called AR processes with a
unit root of finite type, are necessarily integrated of finite integer order d , I (d),
and necessarily have a finite number of I (d) trends and an infinite-dimensional
cointegrating space when dimH = ∞. This is in line with the setup employed
in many contributions in the literature and seems to be a relevant framework for
applications.

A necessary and sufficient condition on the AR operators that establishes the
value of d is given in terms of the orthogonal direct sum decomposition H =
τ0 ⊕ τ1 ⊕ ·· · ⊕ τd , τd 	= {0}, where τ0 is infinite-dimensional when dimH = ∞
and 0 ≤ dimτh <∞, h = 1, . . . ,d , with strict inequality for h = d .

A full description of how the properties of the v-characteristic 〈v,xt 〉 vary with
v ∈ H is given: in τ0, one can combine 〈v,xt 〉 with differences of the process
and find I (0) polynomial cointegrating relations; in τ1, one can combine 〈v,xt 〉
with differences and find at most I (1) polynomial cointegrating relations, and
so on up to τd−2, in which one can combine 〈v,xt 〉 with differences and find at
most I (d − 2) polynomial cointegrating relations. Finally, any nonzero v ∈ τd−1
is such that 〈v,xt 〉 is I (d − 1) and does not allow for polynomial cointegration
and any nonzero v ∈ τd is such that 〈v,xt 〉 is I (d). This shows that the sub-
space τ0 ⊕ τ1 ⊕ ·· ·⊕ τd−1, which is infinite-dimensional when dimH = ∞, is the
cointegrating space, whereas the finite-dimensional subspace τd is the attractor
space.

For any nonzero v in the cointegrating space, the expression of the polynomial
cointegrating relations is provided in terms of operators that are defined recur-
sively in terms of the AR operators together with the τh subspaces.

The present results show that, under the assumption that 1 is an eigenvalue of
finite type of the AR operator function, the infinite-dimensionality of the space
H does not introduce additional elements in the representation theory. That is,
apart from the fact that the dimension of the cointegrating space is infinite when
dimH = ∞, conditions and properties of AR processes with a unit root of finite
type coincide with those that apply in the usual finite-dimensional VAR case,
which is obtained setting H = Rp in the present results.
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APPENDIX A: Notation and Background Results

In the present article, H is a possibly infinite-dimensional separable Hilbert space, an
H-valued random variable is a random variable that takes values in H and an H-valued
stochastic process is a sequence of H-valued random variables. Section A.1 reviews no-
tions and results on separable Hilbert spaces and on operators acting on them and Section
A.2 presents the definitions of expectation and covariance operator for H-valued random
variables.

A.1. Separable Hilbert Spaces and Operators Acting on Them

The material in this section is based on Chapters I, II in Gohberg et al. (2003) and Chap-
ter XI in Gohberg et al. (1990). Consider separable Hilbert spaces H,H1,H2 with inner

products 〈 · , · 〉 and norms ‖x‖ = 〈x, x〉 1
2 ;7 a transformation A : H1 → H2, is called a

linear operator if for all v,w ∈ H1 and c ∈ C, A[v +w] = Av + Aw and A[cv] = cAv ,
where Au and A[u] both indicate the action of A on u ∈ H. A linear operator A is called
bounded if its norm ‖A‖LH1,H2

= sup‖v‖=1 ‖Av‖ is finite and the set of bounded linear
operators with norm ‖·‖LH1,H2

is denoted by LH1,H2
. For any A ∈LH1,H2

the subspace
{v ∈H1 : Av = 0}, written Ker A, is called the kernel of A and the subspace {Av : v ∈H1},
written Im A, is called the image of A. The dimension of Im A, written dimIm A, is
called the rank of A, written rank A. When H1 = H2 = H, LH is written in place of
LH1,H2

.
H is said to be the direct sum of subspaces S and U , written H = S ⊕ U , if S ∩ U =

0 and if every vector v ∈ H can be written as v = s + u, where s ∈ S and u ∈ U . For
U = S⊥, one has the orthogonal direct sum H = S ⊕ S⊥. The orthogonal projection on
η, written Pη, is such that Pη ∈ LH, P2

η = Pη , Im Pη = η and Ker Pη = η⊥; moreover,
I = Pη+ Pη⊥ .

An operator A ∈LH is said to be invertible if there exists an operator B ∈LH such that
B Av = ABv = v for every v ∈ H; in this case B is called the inverse of A, written A−1.
An operator A ∈LH such that n = dimKer A<∞ and q = dim(Im A)⊥ <∞ is said to be
Fredholm of index n −q. Observe that if H is finite-dimensional, any A ∈LH is Fredholm
of index 0.

Corollary 8.4 in Section XI.8 in Gohberg et al. (1990) states that the inverse of an op-
erator function that is Fredholm of index 0 and non-invertible at some isolated point has
a pole at that point. Moreover, the operators that make up the principal part of its Laurent
representation around that point have finite rank. If z0 is an eigenvalue of finite type of
W (z), see Definition 3.1, then z0 is an isolated singularity of W (z)−1, W (z0) is Fredholm
of index 0 and non-invertible at z0, so that Theorem A.1 below applies.

7 The same notation is used for the inner products and norms on H,H1,H2 but this should cause no confusion.
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THEOREM A.1. Let z0 be an eigenvalue of finite type of an operator function W (z);
then there exist a finite integer d = 1,2, . . . and operators Un, n = 0,1, . . . , with finite rank
for n = 0, . . . ,d −1, such that

W (z)−1 =
∞∑

n=0

Un(z − z0)
n−d , z ∈ D(z0,δ)\{z0},

where Ud is Fredholm of index 0.

Proof. See Section XI.8 in Gohberg et al. (1990). �

A.2. Random Variables in Separable Hilbert Spaces

The definitions in this section are taken from Chapter 1 in Bosq (2000). Let H be a

separable Hilbert space with inner product 〈 · , · 〉, norm ‖x‖ = 〈x, x〉 1
2 , and Borel σ -

algebra σ(H) and let (�,A, P) be a probability space. A function Z : � → H is called
an H-valued random variable on (�,A, P) if it is measurable, i.e., for every subset
S ∈ σ(H), {ω : Z(ω) ∈ S} ∈ A. For a C-valued random variable X on (�,A, P), define
E(X)= ∫

� X (ω)d P(ω); the expectation of an H-valued random variable Z , written E(Z),
is defined as the unique element of H such that

E(〈v, Z〉)= 〈v,E(Z)〉 for all v ∈ H.
It can be shown that the existence of E(Z) is guaranteed by the condition E(‖Z‖) <∞.
The covariance function of an H-valued random variable Z is defined as

cZ (v,w)= E(〈v, Z −E(Z)〉〈w, Z −E(Z)〉), v,w ∈ H.
It is immediate to see that cZ (v,w) = E(〈v,W 〉) − 〈v,E(Z)〉〈w,E(Z)〉, where W =
〈w, Z〉Z . If E(‖W‖) <∞, one has

cZ (v,w)= 〈v,E(W )〉−〈v,E(Z)〉〈w,E(Z)〉, v,w ∈ H, W = 〈w, Z〉Z .

Because ‖W‖ = |〈w, Z〉|‖Z‖ ≤ ‖w‖‖Z‖2, the existence of the covariance function of
Z is guaranteed by the condition E(‖Z‖2) < ∞. Define the operator CZ : H → H
that maps w into E(W ) and rewrite the covariance function as cZ (v,w) = 〈v,CZw〉 −
〈v,E(Z)〉〈w,E(Z)〉, v,w ∈ H. CZ is fully determined by the covariance function and it
is called the covariance operator of Z . Similarly, the cross-covariance function of two H-
valued random variables Z and U is defined as

cZ ,U (v,w)= E(〈v, Z −E(Z)〉〈w,U −E(U)〉), v,w ∈ H.
This also completely determines the cross-covariance operators of Z and U , CZ ,U and
CU,Z , respectively, defined as the mappings w �→ E(〈w, Z〉U) and w �→ E(〈w,U〉Z).

APPENDIX B: Inversion of an Operator Function around
a Singular Point

This Appendix presents novel results on the inversion of a meromorphic operator func-
tion; these are used in Appendix C for the proofs of the propositions in the text.
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The inversion results are derived from system (B.1) below, also employed in Howlett,
Avrachenkov, Pearce, and Ejov (2009). When the inverse A(z)−1 has a pole of order d ,
from the identity A(z)A(z)−1 = I = A(z)−1 A(z) one finds the following systems in the
An , Cn operators defined in (4.1) and (3.3),

A0C0 =0 = C0 A0

A0C1 + A1C0 =0 = C0 A1 +C1 A0

...

A0Cd−1 +·· ·+ Ad−1C0 =0 = C0 Ad−1 +·· ·+Cd−1 A0 (B.1)

A0Cd + A1Cd−1 +·· ·+ AdC0 = I = C0 Ad +C1 Ad−1 +·· ·+Cd A0

A0Cd+1 + A1Cd +·· ·+ Ad+1C0 =0 = C0 Ad+1 +C1 Ad +·· ·+Cd+1 A0

...

In the following, equations in system (B.1) are numbered according to the highest value
of the subscript of Cn which is present in the equation. Note that the identity appears in
equation d , which is the order of the pole. The equations derived from A(z)A(z)−1 = I
are called left versions (and correspond to the left side of (B.1)) and those that derive from
I = A(z)−1 A(z) are called right versions (and correspond to the right side of (B.1)). For
instance A0Cd + A1Cd−1 +·· ·+ AdC0 = I is called the left version of equation d . Finally,
let Pη indicate the orthogonal projection operator on η and A+ and A∗ respectively denote
the generalized inverse and the adjoint of A.

LEMMA B.1. Consider Definition 5.1; then Ker S+
h = (ImSh)

⊥, S+
h Sh = Pτh and

S+
h PZ ⊥

h
= S+

h , h = 0,1, . . . ,d.

Proof. From Theorem 3 in Ben-Israel and Greville (2003, Chap. 9), one has S+
h Sh =

PIm S∗
h

and Ker S+
h = Ker S∗

h and from Theorem 11.4 in Gohberg et al. (2003, Chap.

II) one has Im S∗
h = (Ker Sh)

⊥ and Ker S∗
h = (Im Sh)

⊥, so that Ker S+
h = (Im Sh)

⊥.

By Definition 5.1, (Ker Sh)
⊥ = τh and hence S+

h Sh = Pτh . Moreover, by Definition

5.1, (Im Sh)
⊥ = ζ⊥

h ⊇ ζ0 ⊕ ·· · ⊕ ζh−1 = Zh and hence Zh ⊆ Ker S+
h , which implies

S+
h = S+

h PZ ⊥
h

. �

LEMMA B.2 (Subspace decompositions of system (B.1)). Consider Definition 5.1 and
further define PZ ⊥

0
= PT ⊥

0
= I ; then the left version of equation n +h ≤ d in system (B.1)

implies

ShCn + PZ ⊥
h

n∑
k=1

Ah+1,kCn−k = δn+h,d PZ ⊥
h
, h = 0,1, . . . ,d −n, (B.2)

where δh j is the Kronecker delta, which is equal to 1 if h = j and equal to 0 otherwise.
Similarly, the right version of equation n +h ≤ d in system (B.1) implies

Cn Sh +
n∑

k=1

Cn−k Ah+1,k PT ⊥
h

= δn+h,d PT ⊥
h
, h = 0,1, . . . ,d −n. (B.3)
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Proof. The proof of (B.2) is by induction and consists in showing that the left version of
equation n ≤ d in system (B.1) implies

ShCn−h + PZ ⊥
h

n−h∑
k=1

Ah+1,kCn−h−k = δn,d PZ ⊥
h
, h = 0,1, . . . ,n; (B.4)

replacing n with n +h one finds (B.2). In order to show that (B.4) holds for h = 0, observe
that the left version of equation n in system (B.1) reads A0Cn +∑n

k=1 AkCn−k = δn,d I .
By definition, PZ ⊥

0
= I , S0 = A0, and A1,k = Ak and this shows that (B.4) holds for

h = 0. Next assume that (B.4) holds for h = 0, . . . ,�−1 for some 1 ≤ � ≤ d; one wishes
to show that it also holds for h = �. First note that S+

h Sh = Pτh and S+
h PZ ⊥

h
= S+

h , see

Lemma B.1; thus the induction assumption implies

Pτh Cn−h + S+
h

n−h∑
k=1

Ah+1,kCn−h−k = δn,d S+
h , h = 0,1, . . . ,�−1,

and replacing n with n −�+h and h with i , one has

Pτi Cn−� = −S+
i

n−�∑
k=1

Ai+1,kCn−�−k + δn−�+i,d S+
i , i = 0,1, . . . ,�−1.

Observe that for i = 0,1, . . . ,�−1 one has n −�+ i ≤ n −1< d; hence δn−�+i,d = 0 and
one finds

Pτi Cn−� = −S+
i

n−�∑
k=1

Ai+1,kCn−�−k , i = 0,1, . . . ,�−1. (B.5)

Next write (B.4) for h = �−1,

S�−1Cn−�+1 + PZ ⊥
�−1

n−�+1∑
k=1

A�,kCn−�+1−k = δn,d PZ ⊥
�−1
,

where Im S�−1 = ζ�−1, see Definition 5.1; applying PZ ⊥
�

, where Z� = ζ0 ⊕ ·· ·⊕ ζ�−1,

one has PZ ⊥
�

S�−1 = 0 and rearranging one finds

PZ ⊥
�

A�,1Cn−�+ PZ ⊥
�

n−�∑
k=1

A�,k+1Cn−�−k = δn,d PZ ⊥
�
. (B.6)

Next consider T�= τ0 ⊕·· ·⊕ τ�−1 and use projections, inserting I = PT ⊥
�

+ PT�
between

A�,1 and Cn−� in PZ ⊥
�

A�,1Cn−� = U , say; one finds

U =
(

PZ ⊥
�

A�,1 PT ⊥
�

)
Cn−�+ PZ ⊥

�
A�,1 PT�

Cn−� = U1 +U2, say.

By Definition 5.1, PZ ⊥
�

A�,1 PT ⊥
�

= S�, so that U = S�Cn−�+U2. Substituting PT�
=

Pτ0 + ·· · + Pτ�−1 in U2, one has U2 = PZ ⊥
�

A�,1
∑�−1

i=0 Pτi Cn−� and by the induction
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assumption, see (B.5), one finds

U2 = −PZ ⊥
�

n−�∑
k=1

⎛⎝A�,1

�−1∑
i=0

S+
i Ai+1,k

⎞⎠Cn−�−k .

Substituting the expression of U2 into U = S�Cn−�+U2 and using A�+1,k = A�,k+1 −
A�,1

∑�−1
i=0 S+

i Ai+1,k , see Definition 5.1, one hence can rewrite (B.6) as

S�Cn−�+ PZ ⊥
�

n−�∑
k=1

A�+1,kCn−�−k = δn,d PZ ⊥
�
.

This shows that (B.4) holds for h = � and completes the proof of (B.2). A similar induction
on the right version of system (B.1) leads to (B.3). �

LEMMA B.3. Consider Definition 5.1; then Im C0 ⊆ T ⊥
d and Zd ⊆ Ker C0.

Proof. For n = 0, (B.2) and (B.3) read

ShC0 = δh,d PZ ⊥
h
, C0Sh = δh,d PT ⊥

h
h = 0,1, . . . ,d, (B.7)

where Sh = PZ ⊥
h

Ah,1 PT ⊥
h

, see Definition 5.1. (B.7) implies ShC0 = C0Sh = 0 for

h = 0,1, . . . ,d − 1. From ShC0 = 0, h = 0,1, . . . ,d − 1, one has Im C0 ⊆ Ker Sh for
h = 0,1, . . . ,d − 1, i.e., Im C0 ⊆ (

Ker S0 ∩Ker S1 ∩·· · ∩Ker Sd−1
)
. By Definition 5.1,

Ker Sh = τ⊥
h and hence Im C0 ⊆

(
τ⊥

0 ∩ τ⊥
1 ∩·· · ∩ τ⊥

d−1

)
= (τ0 ⊕ τ1 ⊕ ·· · ⊕ τd−1)

⊥ =
T ⊥

d . This proves the first statement.
From C0Sh = 0, h = 0,1, . . . ,d − 1, one has Im Sh ⊆ Ker C0 for h = 0,1, . . . ,d − 1,

i.e.,
(
Im S0 ⊕ Im S1 ⊕ ·· ·⊕ Im Sd−1

) ⊆ Ker C0. By Definition 5.1, Im Sh = ζh and hence
ζ0 ⊕ ζ1 ⊕ ·· ·⊕ ζd−1 = Zd ⊆ Ker C0. �

THEOREM B.4 (Order of the pole). Consider Definition 5.1. The following statements
are equivalent:
(i) A(z)−1 has a pole of order d at z = 1,
(ii) the identity is in equation d of system (B.1),
(iii) ζd = (ζ0 ⊕ ·· ·⊕ ζd−1)

⊥ 	= {0},
(iv) Ker C0 = ζ⊥

d ,

(v) τd = (τ0 ⊕ ·· ·⊕ τd−1)
⊥ 	= {0},

(vi) Im C0 = τd .

Proof.
(i)⇔ (ii) By definition.
(ii)⇒ (iii)⇒ (iv). Under (ii), one has h = d in the left equation in (B.7), i.e., SdC0 =
PZ ⊥

d
, Z ⊥

d 	= {0}; by Definition 5.1, Im Sd ⊆ Z ⊥
d and because Im Sd ⊂ Z ⊥

d contradicts

SdC0 = PZ ⊥
d

, one has Im Sd = Z ⊥
d . By Definition 5.1, Im Sd = ζd and Z ⊥

d = (ζ0 ⊕
·· ·⊕ ζd−1)

⊥, and hence (iii). Moreover, by Lemma B.3, Zd ⊆ Ker C0 and because Zd ⊂
Ker C0 contradicts SdC0 = PZ ⊥

d
, one has Zd = Ker C0. Using Zd = ζ⊥

d , see (iii), one

finds (iv).
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(iv) ⇒ (ii). Let Ker C0 = ζ⊥
d and proceed by contradiction, assuming that the identity

is not in equation d , so that the right equation in (B.7) reads C0Sd = 0, which implies
Im Sd ⊆ Ker C0, where Im Sd = ζd and Ker C0 = ζ⊥

d . Hence ζd ⊆ ζ⊥
d , so that ζd = {0}

and thus ζ⊥
d = H. This contradicts C0 	= 0, i.e., that the pole has order d , and proves that

(ii) holds.
(ii)⇒ (v)⇒ (vi). Under (ii), one has h = d in the right equation in (B.7), i.e., C0Sd =
PT ⊥

d
, T ⊥

d 	= {0}; by Definition 5.1, Td ⊆ Ker Sd and because Td ⊂ Ker Sd contradicts

C0Sd = PT ⊥
d

, one has Td = Ker Sd . By Definition 5.1, Ker Sd = τ⊥
d and Td = τ0 ⊕

·· ·⊕ τd−1, and hence (v). Moreover, by Lemma B.3, Im C0 ⊆ T ⊥
d and because Im C0 ⊂

T ⊥
d contradicts C0Sd = PT ⊥

d
, one has Im C0 = T ⊥

d . Using T ⊥
d = τd , see (v), one

finds (vi).
(vi) ⇒ (ii). Let Im C0 = τd and proceed by contradiction, assuming that the iden-
tity is not in equation d , so that the left equation in (B.7) reads SdC0 = 0, which im-
plies Im C0 ⊆ Ker Sd , where Im C0 = τd and Ker Sd = τ⊥

d . Hence τd ⊆ τ⊥
d , so that

τd = {0}. This contradicts C0 	= 0, i.e., that the pole has order d , and proves that
(ii) holds. �

THEOREM B.5 (Pole cancellations in A(z)−1). Consider Definition 5.1 and for h =
0,1, . . . ,d define

γh(z)= Pτh + S+
h

d−h−1∑
n=1

Ah+1,n(1− z)n ; (B.8)

then γh(z)A(z)
−1 has a pole of order h at z = 1, i.e.,

γh(z)A(z)
−1 = (1− z)−h γ̃h(z), γ̃h(1) 	= 0, (B.9)

where γ̃h(z) is absolutely convergent on D(0,ρ) for some ρ > 1. Moreover,
Im γ̃h(1)= τh .

Proof. Applying S+
h to (B.2) and using S+

h Sh = Pτh and S+
h PZ ⊥

h
= S+

h , see Lemma

B.1, one finds

Pτh Cn + S+
h

n∑
k=1

Ah+1,kCn−k = δn+h,d S+
h , h = 0,1, . . . ,d −n. (B.10)

Write A(z)−1 = ∑∞
n=0 Cn(1− z)n−d as

A(z)−1 = C0(1− z)−d +
d−h−1∑

n=1

Cn(1− z)n−d + (1− z)−h R0(z), R0(1)= Cd−h,

and apply Pτh to find

Pτh A(z)−1 = Pτh C0(1− z)−d +
d−h−1∑

n=1

Pτh Cn(1− z)n−d + (1− z)−h Pτh R0(z).
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First consider h = 0, . . . ,d −1. Setting n = 0 in (B.10) one has Pτh C0 = 0 and hence

Pτh A(z)−1 =
d−h−1∑

n=1

Pτh Cn(1− z)n−d + (1− z)−h Pτh R0(z). (B.11)

From (B.10), for n ≤ d − h one has Pτh Cn = −S+
h

∑n
k=1 Ah+1,kCn−k + δn+h,d S+

h and
because δn+h,d = 0 for n = 1, . . . ,d −h −1, one has

d−h−1∑
n=1

Pτh Cn(1− z)n−d = −
d−h−1∑

n=1

⎛⎝S+
h

n∑
k=1

Ah+1,kCn−k

⎞⎠(1− z)n−d .

Rearranging one thus finds

d−h−1∑
n=1

Pτh Cn(1− z)n−d = −S+
h

d−h−1∑
k=1

Ah+1,k

⎛⎝d−h−1∑
n=k

Cn−k(1− z)n−d

⎞⎠ .
Next write

(1− z)k A(z)−1 =
⎛⎝d−h−1∑

n=k

Cn−k(1− z)n−d

⎞⎠+ (1− z)−h Rk (z), Rk(1)= Cd−h−k,

so that

d−h−1∑
n=1

Pτh Cn(1− z)n−d = −
(

S+
h

d−h−1∑
k=1

Ah+1,k (1− z)k
)

A(z)−1 + (1− z)−h S+
h

d−h−1∑
k=1

Ah+1,k Rk(z).

Substituting in (B.11) and rearranging one thus finds γh(z)A(z)
−1 = (1 − z)−h γ̃h(z),

where

γh (z)= Pτh + S+
h

d−h−1∑
k=1

Ah+1,k(1− z)k , γ̃h (z)= Pτh R0(z)+ S+
h

d−h−1∑
k=1

Ah+1,k Rk (z).

Note that, because Rk(1)= Cd−h−k , one has

γ̃h(1)= Pτh Cd−h + S+
h

d−h−1∑
k=1

Ah+1,kCd−h−k ;

from (B.10) for n = d −h one finds Pτh Cd−h + S+
h

∑d−h
k=1 Ah+1,kCd−h−k = S+

h , so that

γ̃h(1)= S+
h (I − Ah+1,d−hC0).

Hence Im γ̃h(1)⊆ Im S+
h . From Lemma 3 in Ben-Israel and Greville (2003, Chap. 9) one

has that Im S+
h =H∩(Ker Sh)

⊥ =H∩τh = τh , so that Im γ̃h(1)⊆ τh . Using S+
h Sh = Pτh

and C0Sh = 0 one finds γ̃h(1)Sh = Pτh , so that Im γ̃h(1)= τh . This shows that γ̃h(1) 	= 0
and hence γh(z)A(z)

−1 has a pole of order h = 0, . . . ,d −1 at z = 1.
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Next consider h = d . One has γd(z) = Pτd and γd (z)A(z)
−1 = Pτd C0(1 − z)−d +

Pτd

∑∞
n=1 Cn(1− z)n−d . Setting n = 0 and h = d in (B.10) one finds that

γ̃d (1)= Pτd C0 = S+
d ,

and hence Im γ̃d (1) = Im S+
d = τd , where the last equality follows as above from

Im S+
d = H∩ (Ker Sd )

⊥ = H∩ τd = τd . Hence γ̃d (1) is different from 0, which shows

that γd (z)A(z)
−1 = Pτd A(z)−1 has a pole of order d at z = 1. This completes the

proof. �

APPENDIX C: Proofs

This Appendix contains proofs of the results in the text. The proof of Theorem 3.5
makes use of the following fact, which is proven in Franchi and Paruolo (2019): for t ∈ Z,
one has

Ss�hut = Ss−hut −
s−1∑

n=s−h

ςn,t�
h−s+nu0, 0< h ≤ s, (C.1)

where ςn,t is a polynomial of order n in t .

Proof of Theorem 3.5. The result is a direct consequence of Theorem A.1 in Appendix
A.1. By definition, an AR process with a unit root of finite type A(L)xt = εt is such
that A(1) 	= 0, A(z) has an eigenvalue of finite type at z = 1 and A(z) is invertible in
the punctured disc D(0,ρ) \ {1} for some ρ > 1. Letting z0 = 1 and Cn = Un(−1)n−d ,
Theorem A.1 states that there exist a finite integer d = 1,2, . . . and operators Cn , n =
0,1, . . . , with finite rank for n = 0, . . . ,d −1, such that

A(z)−1 =
∞∑

n=0

Cn(1− z)n−d , z ∈ D(1,δ)\{1}. (C.2)

Write A(z)−1 = ∑d−1
n=0 Cn(1 − z)n−d + C◦(z), where C◦(z) = ∑∞

n=d Cn(1 − z)n−d is

absolutely convergent on D(0,ρ) for some ρ > 1; applying A(L)−1 on both sides of
A(L)xt = εt one finds the common trends representation xt = C0sd,t +C1sd−1,t +·· ·+
Cd−1s1,t + yt +μt , where sh,t = Shεt ∼ I (h) is the h-fold integrated bilateral random

walk, yt = C◦(L)εt is a linear process and μt = ∑d−1
n=0 vntn , vn ∈ H, is a polynomial

in t whose coefficients v0, . . . ,vd−1 ∈ H depend on the initial values of xt , yt ,εt for
t = −d, . . . ,0, see (C.1). �

Proof of Corollary 3.6. The order d of the pole of the inverse of A(z) is finite by
Theorem A.1 in Appendix A.1; this implies xt ∼ I (d) via (3.6) because the I (d) trend
sd,t is non-degenerate, i.e., the probability that it belongs to a strict subspace of H for all
t is equal to zero, and hence C0sd,t 	= 0 (with probability 1). One has dimIm C0 <∞ by
Theorem A.1 in Appendix A.1. Observe that

〈v, xt 〉 = 〈v,C0sd,t 〉+
d−1∑
n=1

〈v,Cnsd−n,t 〉+〈v, yt 〉+〈v,μt 〉,
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where 〈v,Cnsd−n,t 〉 is at most I (d −n), for n = 0, . . . ,d −1. One sees that 〈v,C0sd,t 〉 =
0 for all t if and only if v ∈ (Im C0)

⊥, because sd,t is non-degenerate. This shows
that (Im C0)

⊥ is the cointegrating space and Im C0 is the attractor space. One has
dim(Im C0)

⊥ = ∞ when dimH = ∞ because it complements Im C0, which is finite-
dimensional. �

Proof of Proposition 3.7. First note that for d = 1, Theorem 3.5 and Corollary 3.6
imply �xt = B(L)εt , where B(z) = ∑∞

n=0 Bnzn is absolutely convergent on D(0,ρ),
ρ > 1, B(1) = C0 	= 0 and Im B(1) = Im C0 is finite-dimensional. Because B(z) is in-
finitely differentiable on D(0,ρ), ρ > 1, the series obtained by termwise differentia-
tion coincides with the first derivative of B(z) for each z ∈ D(0,ρ), and hence one has∑∞

n=1 n‖Bn‖LH <∞. �
Proof of Proposition 3.8. Because the sum of compact operators is compact, see Theo-

rem 16.1 in Gohberg et al. (2003, Chap. II), and if K is compact then I − K is Fredholm
of index 0, see Theorem 4.2 in Gohberg et al. (2003, Chap. XV), then A0 = I −∑k

n=1 A◦
n

is Fredholm of index 0. Because A0 is non-invertible, by the Fredholm alternative there
exists a nonzero v ∈H such that A0v = 0, see Theorem 4.1 in Gohberg et al. (2003, Chap.
XIII). Finally, since z = 1 is assumed to be the only isolated singularity of A(z)−1 within
D(0,ρ), ρ > 1, this shows that z = 1 is a eigenvalue of finite type of A(z). �

Proof of Theorem 4.1. Set d = 1 in Theorem 5.3. �
Proof of Proposition 4.6. The notation ζ0 = Im A0 and τ0 = (Ker A0)

⊥, see (4.2), is
employed. In the present notation, (4.7) reads H= ζ0 ⊕ A1τ

⊥
0 , where by assumption of AR

process with a unit root of finite type, see Remark 3.2, one has 0< dimτ⊥
0 = dimζ⊥

0 <∞.
Observe that (4.4) is equivalent to the condition:

the identity is in equation 1 of system (B.1), (C.3)

see (ii) in Theorem B.4 in Appendix B.
Proof that (C.3) implies (4.7). Let (C.3) hold, i.e., A0C1 + A1C0 = I . This implies that
for any v ∈ H one has v = u + s, where u = A0C1v ∈ ζ0 because Im A0 = ζ0 and s =
A1C0v ∈ A1τ

⊥
0 because Im C0 = τ⊥

0 , see (v) and (vi) in Theorem B.4. It remains to show
that Im A0C1 ∩ Im A1C0 = {0}.

Assume that v ∈ Im A0C1 ∩ Im A1C0, i.e., v = A0C1w = A1C0q, for some w,q ∈ H.
Subtracting the two representations, one finds A0C1w− A1C0q = 0. Applying Pζ⊥

0
to both

sides of this equation one finds 0 = Pζ⊥
0

A1C0q = Pζ⊥
0

q, which implies that q ∈ ζ0; here

use is made of Im A0 = ζ0 and Pζ⊥
0

A1C0 = Pζ⊥
0

, which follows from A0C1 + A1C0 = I .

Substituting q ∈ ζ0 in the second representation of v , v = A1C0q, one finds that v = 0
because Ker C0 = ζ0, see (iii) and (iv) in Theorem B.4. Hence only v = 0 is in Im A0C1 ∩
Im A1C0, and this proves that (4.7) holds.
Proof that (4.7) implies (C.3). By contradiction, assume (C.3) does not hold, i.e., A0C1 +
A1C0 = 0. This implies that there exists a nonzero v ∈ H such that v = u + s = 0, where
u = A0C1v ∈ ζ0 and s = A1C0v ∈ A1τ

⊥
0 , this is a contradiction to H = ζ0 ⊕ A1τ

⊥
0 and

hence (4.4) holds. �
Proof of Proposition 4.7. When k = 1, (4.7) reads H = Im A0 ⊕ Ker A0. By assump-

tion, Ker A0 has finite dimension; hence H = Im A0 ⊕ Ker A0 implies that (Im A0)
⊥ has

finite dimension equal to dimKer A0. This shows that A0 is Fredholm of index 0. Because
dimKer A0 > 0, there exists a nonzero v ∈H such that A0v = 0 and since z = 1 is assumed
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to be the only isolated singularity of A(z)−1 within D(0,ρ), ρ > 1, this shows that z = 1
is a eigenvalue of finite type of A(z). �

Proof of Theorem 4.8. Set d = 2 in Theorem 5.3. �
Proof of Theorem 5.3. The proof makes use of Theorem B.4 in Appendix B, which

establishes the order of the pole of A(z)−1 at z = 1, and Theorem B.5 in Appendix B,
which describes the pole cancellations that give rise to cointegration. The common trends
representation of xt ∼ I (d) is found in (3.6) and, see Corollary 3.6, Im C0 and (Im C0)

⊥
are respectively the attractor space and the cointegrating space. By Theorem B.4 one has
that xt ∼ I (d) if and only if Im C0 = τd = (τ0 ⊕ ·· ·⊕ τd−1)

⊥ 	= {0}; thus τd is the finite-
dimensional attractor space and τ0 ⊕·· ·⊕ τd−1 is the cointegrating space, which is infinite-
dimensional when H is infinite-dimensional.

Recall that from (B.9) in Theorem B.5 one has γh(z)A(z)
−1 = (1− z)−h γ̃h(z), where

γ̃h(z) = γ̃h(1)+ (1 − z)γ̃ ◦
h (z), say, is analytic and Im γ̃h(1) = τh . Hence γh(L)xt =

γh(L)A(L)
−1εt = γ̃h(L)sh,t + ηt where ηt depends on the initial values which can be

chosen such that 〈v,ηt 〉 = 0 for all v ∈ τh . Note that γ̃h(1)sh,t 	= 0 because sh,t ∼ I (h) is
non-degenerate and γ̃h(1) 	= 0; hence γh(L)xt ∼ I (h).

For v ∈ τh one finds 〈v,γh (L)xt 〉 = 〈v, γ̃h (L)sh,t 〉 where 〈v, γ̃h (L)sh,t 〉 =
〈v, γ̃h (1)sh,t 〉+ 〈γ̃ ◦

h (z)sh−1,t 〉, and 〈v, γ̃h (1)sh,t 〉 ∼ I (h) because Im γ̃h(1)= τh and sh,t
is non-degenerate. This implies 〈v,γh (L)xt 〉 ∼ I (h). Note that from (B.8) one has

γh(L)xt = Pτh xt +
d−h−1∑

n=1

S+
h Ah+1,n�

n xt

and hence

〈v,γh (L)xt 〉 = 〈v, Pτh xt 〉+
d−h−1∑

n=1

〈S+
h Ah+1,n�

n xt 〉 = 〈v, xt 〉+
d−h−1∑

n=1

〈S+
h Ah+1,n�

nxt 〉.

In fact 〈v, Pτh xt 〉 = 〈Pτh v, xt 〉 = 〈v, xt 〉, where the first equality follows from the fact that
Pτh is an orthogonal projection and hence self-adjoint, and the second one from v ∈ τh .
This completes the proof. �

Proof of Proposition 5.11. Recall that xt = A◦
1xt−1 + εt is an AR process with a unit

root of finite type if A(z)= I − A◦
1z has an eigenvalue of finite type at z = 1; in this case,

see Gohberg et al. (1990, p. 27–28), H = HP ⊕HT , where HP is the finite-dimensional
image of the Riesz projection associated with the isolated eigenvalue z = 1. Relative to this
decomposition, I − A◦

1z admits the following operator matrix representation

I − A◦
1z =

(
I − AP z

I − AT z

)
,

where AX = A◦
1|HX is the restriction of A◦

1 to HX , X = T, P. Note that AP acts on a
finite-dimensional space and it has precisely one point in its spectrum, namely 1. So HP
has a basis of eigenvectors and generalized eigenvectors such that the matrix of AP relative
to this basis has a Jordan normal form with 1 on the main diagonal.

Because AP − I is a nilpotent matrix of order d if and only if the largest Jordan block
of AP has dimension d , see e.g., Horn and Johnson (2013, p. 181), and the size of the
largest Jordan block is equal to d if and only if the POLE(d) condition holds, see Franchi
and Paruolo (2019), one has the statement. �
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