
 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2022) 000–000  

www.elsevier.com/locate/procedia 

 

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. 

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 

Peer-review under responsibility of Scientific Board Members  

II Fabre Conference – Existing bridges, viaducts and tunnels: research, innovation and 
applications (FABRE24) 

Advanced Fiber Beam Finite Element Model for Neural Network 

Training in Vibration-Based Bridge Monitoring 

Daniela Fuscoa*, Cecilia Rinaldia, Daniela Addessia and Vincenzo Gattullia 

aSapienza Università di Roma, Dipartimento di Ingegneria Strutturale e Geotecnica, Via Eudossiana 18, 00184 Rome, Italy   

Abstract 

Recent advancements in civil infrastructure monitoring have witnessed the increasingly high-performance sensor technologies and 

data-driven algorithms, opening up new possibilities for assessing structural conditions. In recent years, there has been a growing 

interest in leveraging the potential of Artificial Intelligence for civil infrastructure monitoring. One promising approach is the use 

of computational models to train and test data-driven algorithms aiming to tackle damage detection problems. To enhance the 

effectiveness of such procedures based on simulated data, this study proposes a high-performance beam finite element model for 

training a neural network model able to predict the dynamic response of the structure and for generating various damage scenarios. 

Compared to 2D and 3D finite element models, the advanced fiber beam model offers superior computational efficiency while 

accurately capturing the nonlinear behavior of structural elements. Specifically, a force-based beam finite element based on a 

damage-plasticity model is implemented to describe damage and degradation of materials in reinforced concrete girders. Through 

the simulation of the dynamic structural response under withe noise excitation, a neural network model representing the structure 

in the undamaged conditions is obtained. The prediction error of such network model is investigated as a suitable measure for the 

definition of a damage indicator able to detect the presence of damage (concrete cracks and reinforcement yielding). The integration 

of an advanced fiber beam model, accurate constitutive law and neural network models shows promising potential in the monitoring 

of existing bridges. 
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1. Introduction 

Vibration-based structural monitoring plays a relevant role in the management of existing infrastructures, as it 

provides reliable methods for the safety evaluation of such assets and a valuable support for visual inspections. Even 

if visible damages (e.g. corrosion, delamination, cracks or spalling) can be efficiently detected and quantified through 

inspection operations assisted by the use of autonomous platforms and image processing algorithms (Crognale et al., 

2023), the corresponding reliability of the inspected structure can be difficult to assess (Catbas et al., 2002). Therefore, 

for a global condition assessment, vibration-based procedures are more suitable to extract features sensitive to changes 

in the structural behavior and unaffected by environmental conditions. Such procedures require the identification of 

the dynamic properties of structures and their monitoring over time (Rehman et al., 2024). Furthermore, damage 

sensitive features can be extracted from both time series analysis (Tee, 2018, Gul et al., 2011) and dynamic response 

in the frequency domain (Salawu, 1997, Ndambi et al., 2002). These methods proved to be very efficient in detecting 

the damages and their accuracy in its locating the damages can also be improved by increasing the number of the 

measurement points, as for example demonstrated by Rinaldi et al. (2022) using high-speed camera images for 

dynamic displacement measurements. Vibration-based techniques are usually classified in model-based and data-

driven methods; the former exploit structural identification and model updating procedures to calibrate physical 

models according to experimental measurements (Teughels et al., 2004), while the second are based on training 

statistical models using supervised or unsupervised learning algorithms (Figueiredo et al., 2018).  

From a model-based perspective, it is crucial that Finite Element (FE) models accurately describe the nonlinear 

static and dynamic structural response. In case of static loading and unloading cycles, the dynamic response is 

significantly influenced by several mechanical phenomena such as concrete tensile damage and the partial closure of 

cracks induced by the presence of concrete aggregate (Pranno et al., 2022). In data-driven approaches, supervised 

methods perform the training on labeled data regarding both undamaged and damaged states, while unsupervised 

methods train models using only undamaged conditions and performing damaged detection as a novelty one (Worden 

et al., 2000). Unsupervised learning proved to be a practical approach that can detect any deviation from the predicted 

behavior without the need of the knowledge of the damaged state data (Eltouny at al. 2023).  

In this work, an unsupervised approach has been implemented to obtain a neural network time series model able to 

predict the dynamic response of reinforced concrete girders in undamaged conditions and provide a damage indicator 

based on the evaluation of the prediction error. To test the procedure, several damage scenarios have been simulated 

through an efficient fiber beam model that can accurately represent the nonlinear behavior of the reinforced concrete 

including the partial closure of cracks. Although the nonlinear structural response of the bridges can be efficiently 

obtained through 2D and 3D FE models, having a computationally efficient fiber FE model accompanied by an 

accurate constitutive law allows to perform fast and reliable analysis that are a valuable support to define the threshold 

levels for the outlier analysis which is a critical aspect in the unsupervised method adopted for damage detection tasks 

(Eltouny at al. 2023). The paper is organized as follows. Section 2 describes the fiber beam element formulation and 

the damage-plasticity constitutive model implemented to accurately represent the nonlinear behavior of the material 

and simulate the data to train the neural network model. Section 3 introduces the adopted neural network model and 

damage detection strategy, and Section 4 shows a case study application where the trend of the damage indicator 

according to the damage states is provided.  

2. Advanced fiber beam finite element model  

Fiber beam models are commonly used due to their computational efficiency in nonlinear analyses, with a 

significative reduction of the number of elements and computational effort, if compared to models using 2D or 3D 

finite elements. Among the approaches proposed in literature for finite element beam models, the displacement-based 

(DB) formulation is widely used; following this formulation, compatible displacement and strain fields along the 

element are assumed and the equilibrium is satisfied in a weak form (Zienkiewicz et al., 1994). In nonlinear analyses, 

as is the case with this work, such approach is not convenient because it requires a fine discretization, and the force-

based (FB) formulation turns out to be more advantageous (Spacone et al., 1996, Addessi et al., 2007). 

Under the plane section hypothesis, in the fiber beam models the cross-section, located at the Gauss point of the 

beam element, is subdivided into fibers. The constitutive response and the stiffness of the section is evaluated by 
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integration of the response of the fibers, which is derived by the constitutive law of the material. For prestressed 

beams, the constitutive behaviour of the section is given by the response of the concrete and steel fibers corresponding 

to tendons and reinforcement. In this work, the 3D damage-plastic model for concrete-like materials proposed in 

Addessi et al. (2002) is considered for concrete fibers, properly modified to consider the unilateral effect due to the 

re-closure in compression of tensile cracks. The stress-strain relation is defined as: 

 

)2(1 ()
p

D= − − C   (1) 

 

where σ  is the stress vector,  and p  are the total and plastic strain vector, respectively, D  is the damage 

variable ( 0D =  for undamaged material, 1D =  for a completely damaged state), C  is the constitutive matrix of the 

undamaged material, which depends on the Young’s modulus and Poisson ratio. 

To consider the unilateral effect due to the re-closure in compression of tensile cracks, the model proposed in 

Addessi et al. (2002), Gatta et al. (2018), Di Re et al. (2018) and Fusco et al. (2023) introduces a damage variable for 

tension, tD , and one for compression, cD  whose combination provide the overall damage variable D : 
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The evolution of damage is governed by associated variables defined as equivalent strain measures as: 
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The material parameter k  determines the shape of the limit function in compression and ie  is related to the 

principal total strains î  by the following relation: 
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Regarding to expression (4), 0cY  and 0tY  are the damage strain threshold; e

tY  and e

cY  are based on the principal 

elastic strains, adopting the same definition as that in equations (5) and (6). 

The evolution of the two damage variables is controlled by the following damage limit functions for tension and 

compression,  
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and ruled by the classical Kuhn–Tucker and consistency conditions. In (7) the parameters cb  and tb  influence the rate 

of damage growth in tension and compression and govern the maximum strength of the material. The parameters ca  

and ta  control the gradient of the degradation curves in the post-peak softening regime. 

As for the plastic mechanisms in concrete fibers, the Drucker-Prager plasticity model with isotropic and kinematic 

hardening is used in this work. This is capable of accurately representing the asymmetric plastic behaviour of concrete 
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under compression and tension. The adopted constitutive model considers damage and plasticity mechanisms 

activating both in compression and tension.  

This study proposes a modified version of the described 3D damage-plastic model to account for the partial closure 

in compression of concrete cracks opened in tension. As previously mentioned, this mechanical phenomenon 

significantly influences the dynamic parameters of reinforced concrete beams subjected to incremental loading and 

unloading paths (Pranno et al., 2022). The proposed damage-plastic model considers that only a portion of the tensile 

damage, equal to tD , affects the stiffness matrix coefficients during the compression phase, corresponding to 

0c  . In particular, the constitutive law of concrete is still defined as in Eq. (1) and the compressive damage variable 

is defined as t t c cDD D += , but 1t cD D   . Fig. 1a shows an example of the uniaxial constitutive response 

considering both total and partial closure of cracks, corresponding to 0 =  and 0.5 = , respectively. This 

comparison illustrates that, when partial crack closure is considered, the compressive stiffness in reloading phase 

decreases as tensile damage increases. In case of total closure, 0 = , the compressive behavior of the material is 

unaffected by the history of tensile damage, consequently, the compressive stiffness in the reloading phase remains 

elastic. Fig. 1b illustrates the imposed strain history and the evolution of damage corresponding to the case 0.5 = . 

The damage evolution clearly shows that, during the compressive phase, the total damage of the material is equal to a 

portion of the accumulated tensile damage. 

(a) (b) 

Fig. 1. Damage-plastic constitutive model: (a) Uniaxial stress-strain law with total ( 0 = ) and partial ( 0.5 = ) closure of cracks; (b) Strain 

history and damage evolution for partial closure of cracks 0.5 = . 

3. Neural network time series prediction and damage detection 

The presented fiber beam model represents an efficient tool to simulate the structural response of concrete and 

generate large amount of data to train machine learning algorithms for Structural Health Monitoring tasks. In this 

regard, a neural network model is considered to predict future values of a time series only from the knowledge of its 

past values. For this work, the Nonlinear AutoRegressive (NAR) network model is trained on the dynamic response 

data obtained through FE simulations in undamaged conditions. The updating of weight and bias values (training) of 

the neural network is performed by the Levenberg-Marquardt optimization algorithm (Yu et al., 2018) and the network 

architecture is defined by choosing the number of hidden layers and the time delay d , which is the number of the 

past values considered as inputs of the network to predict the value at the 1d +  time step. For the applications 

described in the following section, the hidden layers are set to 10 and the time delay to 6. The performance of the 

NAR model can be evaluated through the Root Mean Squared Error (RMSE) and the Normalized Root Mean Squared 

Error (NRMSE) between the target ( )y t  (numerical response used to train the network) and the output of the network 

ˆ( )y t  (prediction): 
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where f  denotes the final time step. As the network is trained in undamaged conditions, the increasing of the 

prediction error under the same load conditions can be related to a change in structural behavior due to the occurrence 

of damage. Therefore, in this work, the evaluation of such performance is investigated as damage indicator to detect 
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anomalies in the structural response as depicted in Fig. 2. This damage detection procedure is an unsupervised method 

that does not need the preparing of undamaged and damaged labelled data, as is the case of supervised methods; only 

the NAR model related to the healthy state is obtained and its failure in predicting the structural response is considered 

as damage indicator. The performance of the NAR model has been already investigated by De Iuliis et al. (2023) for 

the prediction of the dynamic response of a cable-stayed bridge induced by ambient vibrations. Therefore, for the aims 

of this work, the numerical time-series data are generated under white noise excitation as described in the following 

section. 

Fig. 2. Neural network model for time series prediction and unsupervised approach for damage detection. 

4. Case study application 

In this section, an application of the proposed finite element model to simulations on beams is shown, and the 

numerical results are compared with those experimentally derived by Cerri et al. (2003). The experimental test 

involved both static and dynamic tests on two reinforced concrete beams, each measuring 2.45 meters in length, with 

a cross-section of 100 x 150 mm². Further details regarding the reinforcements and materials used are provided in 

Cerri et al. (2003). In the static test, seven load-unload steps were performed. Subsequently, for each load step, upon 

removing the load, a dynamic test was conducted to assess the frequencies of the main vibration modes. The 

experimental test was numerically modeled through OpenSees software as solver and STKO as pre- and post-

processor. The modified damage-plastic constitutive model with partial closure of cracks, described in the previous 

section was implemented as a new material in OpenSees (nDMaterial); the version of Opensees with the new 

constitutive model has not yet been published and distributed by the authors. The three-dimensional damage-plastic 

law was assigned to the concrete fibers; instead, a classical plastic model was considered for steel. To simulate the 

experimental test, a simply supported beam with a span equal to 2.25 m was modeled. A load-controlled analysis was 

performed by applying a vertical force at the midspan of beam, corresponding to the points of application of the 

experimental load. Fig. 3 shows the nonlinear response curves of the beam comparing the numerical and experimental 

results. In both, the behaviour is governed by the diffuse cracking of the beam and the yielding of the reinforcements. 

The results show a good agreement between the curves both in the concrete cracking phase and in the yielding phase. 

Thanks to the capability of modeling the tensile plasticity of concrete and the partial closure of cracks, it has been 

possible to capture the residual plastic displacement during the crack diffusion phase in the beam. The yielding of the 

reinforcements in the numerical model is predicted to occur at earlier displacement value than in the experimental test. 

This discrepancy may be attributed to a possible slip of the reinforcement bars during the experimental test, 

particularly since smoothed bars were used. The numerical model does not consider the bond slip between the 

reinforcement bars and the surrounding concrete. This phenomenon, while important, falls outside the scope of this 

study.  
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Fig. 3. Comparison between numerical and experimental nonlinear response of fiber beam elements. 

The dynamic response of the beam under white noise excitation has been simulated in different states: three 

responses corresponding to undamaged conditions (U1-U3) in the elastic phase, six responses in six different damaged 

conditions (D1-D6) in the concrete cracking phase, and one response in the yielding phase (P1). For each load step 

considered, a nonlinear dynamic analysis was conducted by applying a low-amplitude force with a White Noise time 

variation. A different white noise signal has been generated for each scenario, using a sampling frequency of 2500 Hz 

which allows to obtain a frequency content in the load time series able to excite the significative modes. The analysis 

of the several damage scenarios revealed a significant frequency variation from around 10% to approximately 35% 

for the first flexural mode, which can be attributed to the concrete cracking and strand yielding that occurred during 

the loading process. The displacement time series response of the undamaged state U1 is exploited to train the NAR 

model, which is then tested for the several scenarios considered (U2, U3, D1-D6, P1). It is worth highlighting that, to 

avoid overfitting issues, the data of U1 state have been prepared by including different magnitude orders of the 

vibration amplitudes, as it can be noted in Fig. 4a. Both training and testing displacement data need to be detrended 

to obtain accurate prediction results, as the neural network model is not able to provide good results when the static 

displacement of testing signals is higher than the displacement of training signals. Fig. 4 shows the displacement 

numerical response (target) and network prediction (output) at mid-span and the corresponding frequency content for 

U1 state. It can be noted that the prediction of the response is accurate both in time and frequency domain. The NAR 

model trained in U1 conditions is then tested on white noise response related to U1-U3, D1-D6 and P1 conditions. 

The results in Fig. 5 show that the accuracy of the neural network model decreases with the occurrence of damages. 

By analyzing the prediction error through the evaluation of the NRMSE in different beam conditions, it is possible to 

establish a relationship between the prediction error and the state of the beam, as reported in Fig. 6a, where NRMSE 

Variation, defined as: 

 

NRMSE NRMSE(U1)
NRMSE Variation

NRMSE(U1)

−
= ,  (9) 

 

is plotted for the considered scenarios.  The plot in Fig. 6a allows to establish the threshold level (the red line depicted) 

allowing to identify the starting of the concrete cracking. The comparison with the index based on the frequency 

variation (Fig. 6b) shows the reliability of the damage indicator based on the adopted unsupervised method. 

5. Conclusions 

This work presents the application of a fiber beam model based on a damage-plastic model for reinforced concrete 

girders accounting for the partial closure of cracks in concrete. The adopted force-based formulation allowed for 

efficient analysis of nonlinear structural responses of bridges which proved to be suitable to investigate on a vibration-

based damage detection procedure using an unsupervised data-driven method.  
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(a) (b) 

Fig. 4. Dynamic response prediction under white noise excitation through NAR model in training phase (U1): comparison between numerical 

response (target) and network prediction (output) of displacement time series (a) and frequency content (b). 

(a) (b) (c) 

Fig. 5. Time series prediction of displacements and prediction error of the NAR model trained in U1 conditions and tested on response in U2 

(a), D6 (b) and P1 (c) scenarios under white noise excitation.  

(a) (b) 

Fig. 6. NRMSE Variation (a) and Frequency Variation (b) for the considered scenarios.  

Through the simulation of the dynamic response under withe noise excitation, only a neural network model related 

to the healthy state of the structure has been obtained and its failure in predicting the structural response of the damaged 

beam has been considered as damage indicator. The prediction error of such network turned out to be a suitable 

measure for the definition of a damage indicator able to detect the presence of the concrete cracks and reinforcement 

yielding. Finally, the fiber beam model and the refined constitutive law considered allowed to perform fast and reliable 

analyses and to accurately define the threshold level for the outlier analysis, which is a critical aspect in the 

unsupervised data-driven methods adopted for damage detection tasks.  
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