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A B S T R A C T

Wave propagation in metamaterial honeycombs endowed with periodically distributed nonlin-
ear resonators is addressed. The linear and nonlinear dispersion properties of the metamaterial
are investigated. The nonlinear wave propagation equations obtained via a projection method
and the Floquet–Bloch theorem are attacked by the method of multiple scales to obtain in closed
form the nonlinear manifolds parametrized by the amplitudes, the frequency, and the wave
numbers. The effects of the nonlinearity on the frequency bandgaps are thoroughly investigated
and the optimization problem of the resonators nonlinearity towards increased bandgap size is
tackled to provide a significant practical framework for the design of nonlinear metamaterials.

. Introduction

Periodic structures are attracting a great deal of attention thanks to their potential for suppressing or attenuating the propagation
f elastic waves [1,2]. The possibility of manipulating the band gaps [3,4] allows to exploit the advantageous characteristics of these
eriodically architected materials for vibration or sound attenuation purposes [5]. The formation of a band gap is one of the most
ttractive features and includes both Bragg scattering and local resonance gaps phenomena. The former is achieved when destructive
nterferences are created by the geometric properties of such lattices, the latter is a locally resonant (LR) mechanism meant to create
revalently low-frequency band gaps [6]. While Bragg scattering occurs if the period of the structure is of the same order as the
avelength of the band gap frequencies, resulting into a substantial difficulty of forming low-frequency band gaps, periodic LR

tructures, realized as arrays of resonators attached to a hosting structure, are independent from the size of the unit cell and can
chieve vibration suppression across a bandwidth which is two order-of-magnitude lower than that given by the Bragg limit [7].

The possibility of creating and optimizing targeted flexural wave band gaps in 2D locally resonant periodic structures thanks
o the resonators nonlinearity is one of the main goals of the present work. Initial studies addressing 2D LR periodic structures
ith linear resonators can be found in [8–19]. Lattice structures and resonator architectures in different shapes have been proposed

or wave propagation control [20–24]. For example, a periodic and aperiodic composite metamaterial design was proposed and
xperimentally investigated in [25]. The metamaterial LR system, mimicking the idea of locally resonant sonic crystals discussed
n [26], consists of a polymeric casing which embeds in its skeleton spherical and cylindrical steel masses; the rigid steel masses
nhance the effective mass density, and thus allow the resonant system to generate wide, low-frequency band gaps distributed over
broad frequency range with a bandwidth gap to mid-gap ratio of 181%.

The background of the present work is represented by the study carried out by the same authors on a cellular metamaterial
eam with multi-resonators possessing nonlinear (cubic) restoring forces [27]. The formation of multiple band gaps with various
andwidths was demonstrated together with the significant enlargement of the band gaps triggered by the nonlinear resonators
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forces giving rise to nonlinear resonances. Here, we provide design conditions to maximally leverage on the beneficial effects of
the resonators softening/hardening nonlinearity towards the enhancement of the stop bands size in the metamaterial honeycomb
making use of the asymptotic solutions [28]. The effects of dissipation in a 1D hosting medium made of linear springs with a periodic
distribution of nonlinear, hysteretically damped resonators were previously tackled using an extended Hamiltonian approach and
Lie series [29].

Among the analytical methods available in the literature, the well-known Plane Wave Expansion (PWE) method [30], also called
(𝐊), is one of the effective approaches to tackle wave propagation in periodic resonant systems. In [31], by taking into account

he classical Kirchhoff–Love plate theory, the influence of the periodic array of one-degree-of-freedom (1-dof) resonators embedded
n square and hexagonal lattice structures was studied employing the PWE method. The single-dof resonator system is characterized
y one complete band gap at low frequencies, whereas by introducing multi-frequency resonators (i.e., several resonators per unit
ell), it is possible to increase the number of band gaps of the LR structures [32]. In a recent work [33], a locally resonant isotropic
late, hosting multiple arrays of multi-dof spring–mass resonators, was investigated. Interesting results regarding the band gap
roperties, including the location, the bandwidth, and the attenuation strength of the band gaps, as well as the effect of damping
n the resonators were analyzed.

The method of multiple scales [34] is a classical tool for asymptotic analysis of weakly nonlinear dynamical problems and is
idely employed for the study of metamaterials and lattices. In [35], the authors estimated the amplitude-dependent dispersion

elationships of a configurable one-dimensional periodic chain with stiffness nonlinearity by making use of the method of multiple
cales. Then, two-dimensional weakly nonlinear lattices were investigated asymptotically in [36], where a special focus was put
n the invariant waveforms and stability analysis. Again, by employing the method of multiple scales, Bukhari and Barry [37]
nvestigated a nonlinear metamaterial consisting of a nonlinear chain with multiple nonlinear local resonators, obtaining the
elationship between the space–time domain and nonlinear dispersion properties. The asymptotic method was also employed in
he context of several other studies dealing, for example, with nonlinear lattices undergoing internal resonances (see, e.g., [38,39]),
xhibiting nonlinear monoatomic chains (see, e.g., [40–42]).

A key role in studies dealing with 2D cellular structures hosting resonators is also played by the homogenization approach
mplemented to obtain equivalent continuum plate-like models. The model proposed by [43] is one of the popular homogenization
pproaches for honeycomb-shaped 2D cellular structures yielding analytical expressions of the equivalent continuum elastic
oefficients. This approach assumes the periodicity of the honeycomb cells treated as a beam network system in which each cell
all segment is modeled as a beam. A good agreement between numerical and experimental investigations was shown. More recent

tudies [44] improved the honeycomb homogenization model presented in [43] by also considering the effect of the stress in the
ell vertices which becomes more relevant for increasing values of the relative density. The homogenization approach was further
xtended in [45] to cover a sufficiently general class of honeycomb periodic cells with different hexagonal shapes.

In this paper, we first discuss the modeling approach yielding the equations governing wave propagation. Then the nonlinear
ispersion relationships are obtained via the method of multiple scales in order to study the nonlinear stop band optimization
roblem. The optimization approach yields a design chart through which the optimal nonlinearity of the resonators can be selected
or a given metamaterial with a targeted frequency range.

. Problem formulation and metamaterial modeling

Fig. 1 shows the reference configuration of the infinitely long, equivalent orthotropic plate whose reference planes lies in
he 𝐞1 − 𝐞2 coordinate plane of the fixed frame while the equivalent spider-web-like resonators positions are ruled by the lattice
ectors (𝐚1, 𝐚2). Each multi-frequency resonator should be meant as the multi-mass–spring system resulting from the multi-dof modal
eduction of the infinite-dimensional resonator (i.e., the spider webs with a central mass, here represented in the figure, for the sake
f graphical clarity, by a single mass–spring system instead of a set of mass–spring systems). The modal reduction is performed
ia the Galerkin projection method employing a number of mode shapes of the distributed-parameter resonators. Therefore, each
esonator is represented by equivalent modal masses and modal springs positioned at the lattice points 𝐱𝑗 = 𝑚𝐚1 + 𝑛𝐚2, with 𝑚 and
being integers, 𝐚1 = (𝑎11, 𝑎12) = (𝑎, 0) and 𝐚2 = (𝑎21, 𝑎22) =

𝑎
2 (1,

√

3) being the direct lattice vectors and 𝑎 is the lattice parameter.
The equivalent orthotropic model of the honeycomb derived from the homogenization originally proposed in [43] and enhanced

n [44] employs the equivalent elastic moduli [46] expressed as (𝐸⋆
𝛼 , 𝐺⋆

𝛼𝛽 , 𝜈⋆𝛼𝛽), for 𝛼, 𝛽 = 1, 2, 3, and mass density 𝜌∗ of the equivalent
rthotropic material.

The adopted plate theory (see [47]) with the elastic constants of the equivalent, homogenized orthotropic material describes the
otion of the honeycomb with the attached resonators. The equations of motion for the orthotropic plate-resonator coupled system

re

𝜌⋆ℎ
𝜕2𝑤(𝐱, 𝑡)

𝜕𝑡2
+

[

𝐷∗
11
𝜕4𝑤(𝐱, 𝑡)

𝜕𝑥41
+ (2𝐷∗

12 + 4𝐷∗
66)

𝜕4𝑤(𝐱, 𝑡)
𝜕𝑥21𝜕𝑥

2
2

+𝐷∗
22
𝜕4𝑤(𝐱, 𝑡)

𝜕𝑥42

]

+ (1)

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

�̈�(𝐱, 𝑡) + �̈�𝑖𝑗 (𝑡)
]

𝛿(𝐱 − 𝐱𝑗 ) = 0,

𝑀𝑖𝑗
[

�̈�(𝐱𝑗 , 𝑡) + �̈�𝑖𝑗 (𝑡)
]

+𝐾𝑖𝑗𝑧𝑖𝑗 (𝑡) +𝑁 (3)
𝑖𝑗 𝑧3𝑖𝑗 (𝑡) = 0, 𝑖 = 1,… , 𝑁, 𝑗 = −∞,∞ (2)

where 𝐱 = 𝑥1𝐞1 + 𝑥2𝐞2 is the position vector for a material point of the plate mid-surface, 𝑡 is time, 𝑤(𝐱) is the displacement of the
plate at 𝐱, 𝑧 is the displacement of the 𝑗th resonator placed at 𝐱 vibrating in its 𝑖th mode, 𝑁 is the number of retained resonators
2

𝑖𝑗 𝑗
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Fig. 1. (a) Schematic view of the orthotropic plate models with the periodically distributed spider-web resonators (shown in (b)). (c) The hexagonal cell geometry
with height ℎ, side length 𝑙ℎ, thickness 𝑡ℎ, and angle 𝜃. The hexagonal lattice vectors are denoted by (𝐚1 , 𝐚2) and the fixed frame by (𝐞1 , 𝐞2 , 𝐞3).

modes, ℎ is the thickness of the honeycomb plate, while 𝐷⋆
𝑟𝑠 are the plate bending stiffness coefficients, and 𝜌⋆ is the density of

the equivalent plate whose expressions are reported in Appendix A; 𝐾𝑖𝑗 , 𝑀𝑖𝑗 and �̃� (3)
𝑖𝑗 are the 𝑖th modal stiffness, modal mass, and

nonlinearity of the 𝑗th resonator, 𝛿(𝐱− 𝐱𝑗 ) is the 2D Dirac-delta function introduced to localize the inertia force of the 𝑗th resonator
at its reference position.

By employing the Floquet–Bloch Theorem which states that the solutions of the corresponding linear periodic resonators-plate
system are quasi-periodic in space with the fundamental periodicity provided by the lattice period, the solution is sought as
𝑤(𝑥1, 𝑥2, 𝑡) = 𝑤0(𝑡)𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2) and 𝑧𝑖𝑗 (𝑥1𝑗 , 𝑥2𝑗 , 𝑡) = 𝑧𝑖0(𝑡)𝑒

𝑖(𝑘1𝑥1𝑗+𝑘2𝑥2𝑗 ) where 𝑤0(𝑡) = 𝑤(0, 0, 𝑡) and 𝑧𝑖0(𝑡) ∶= 𝑧𝑖0(0, 0, 𝑡) denote the plate
deflection and the resonator relative motion at the origin of the fixed frame. Upon substitution of the assumed solution into (1),
one obtains

[

𝜌⋆ℎ�̈�0(𝑡) + [𝑘41𝐷
∗
11 + 𝑘21𝑘

2
2(2𝐷

∗
12 + 4𝐷∗

66) + 𝑘42𝐷
∗
22]𝑤0(𝑡)

]

𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2)

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

�̈�0(𝑡) + �̈�𝑖0(𝑡)
]

𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2)𝛿(𝑥1 − 𝑥1𝑗 )𝛿(𝑥2 − 𝑥2𝑗 ) = 0,

𝑀𝑖𝑗
[

�̈�0(𝑡) + �̈�𝑖0(𝑡)
]

+𝐾𝑖𝑗𝑧𝑖0(𝑡) +𝑁 (3)
𝑖𝑗 𝑧3𝑖0(𝑡) = 0.

(3)

Given the periodicity of the solution, the plate equation of motion is projected onto the unit cell domain 𝛺𝑥 (i.e., the periodic ally
repeated lattice unit) to yield

∫𝛺𝑥

[

𝜌⋆ℎ�̈�0(𝑡) + (𝑘41𝐷
∗
11 + 𝑘21𝑘

2
2(2𝐷

∗
12 + 4𝐷∗

66) + 𝑘42𝐷
∗
22)𝑤0(𝑡)

]

𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2)𝑑𝑥1𝑑𝑥2

+ ∫𝛺𝑥

{

∑

𝑖𝑗
𝑀𝑖𝑗

[

�̈�0(𝑡) + �̈�𝑖0(𝑡)
]

𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2)𝛿(𝑥1 − 𝑥1𝑗 )𝛿(𝑥2 − 𝑥2𝑗 )
}

𝑑𝑥1𝑑𝑥2 = 0,

𝑀𝑖𝑗
[

�̈�0(𝑡) + �̈�𝑖0(𝑡)
]

+𝐾𝑖𝑗𝑧𝑖0(𝑡) +𝑁 (3)
𝑖𝑗 𝑧3𝑖0(𝑡) = 0.

(4)

A schematic view of the honeycomb plate is shown in Fig. 2(a), with the corresponding cell domain mapping 𝛺𝑥 in Fig. 2(b).
The idea is to transform the parallelogram region 𝛺𝑥 into the rectangular domain 𝛺𝑦 (see Fig. 2(c)) for computational convenience.
To this end, the transformation matrix 𝐉 is introduced according to

{

𝑦1
𝑦2

}

=
[

𝐽11 𝐽12
𝐽21 𝐽22

]{

𝑥1
𝑥2

}

, (5)

where (𝑥1, 𝑥2) are the coordinates of P or Q shown in Fig. 2(b), and (𝑦1, 𝑦2) are the corresponding coordinates in Fig. 2(c). The
mapping 𝐉 can thus be solved as follows

𝐉 =

[

1 −1∕
√

3
0 2∕

√

3

]

. (6)

Therefore, one can make use of the coordinate transformation to obtain the integral of any term of the equation of motion (here
denoted by function 𝑓 (x)) over 𝛺𝑥

𝑓 (𝐱)𝑑𝐴𝑥 = 𝑓 (𝐲) det(𝐉−1)𝑑𝐴𝑦. (7)
3

∫𝛺𝑥
∫𝛺𝑦
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Fig. 2. (a) Schematic view of the cell mapping domain, (b) 𝛺𝑥 before transformation, (c) 𝛺𝑦 after transformation.

Hence,

∫𝛺𝑥

𝑓 (𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 = ∫

𝑎∕2

−𝑎∕2 ∫

𝑎∕2

−𝑎∕2
𝑓 (𝑦1, 𝑦2) det(𝐉−1)𝑑𝑦1𝑑𝑦2 = ∫

𝑎∕2

−𝑎∕2 ∫

𝑎∕2

−𝑎∕2
𝑓 (𝑦1, 𝑦2)

√

3
2

𝑑𝑦1𝑑𝑦2 (8)

Finally, 𝐱 = 𝐉−1𝐲 yields the following transformation:

𝑥1 = 𝑦1 +
𝑦2
2
, 𝑥2 =

√

3𝑦2
2

, (9)

which shows the parametric relation of the cell domain coordinates before and after transformation.
Upon introducing the coordinates transformation, by setting:

𝐴(𝑘1, 𝑘2) ∶= ∫𝛺𝑥

𝑒𝑖(𝑘1𝑥1+𝑘2𝑥2)𝑑𝑥1𝑑𝑥2 = ∫

𝑎∕2

−𝑎∕2 ∫

𝑎∕2

−𝑎∕2
𝑒𝑖(𝑘1(𝑦1+𝑦2∕2)+𝑘2(

√

3𝑦2∕2))

√

3
2

𝑑𝑦1𝑑𝑦2

=
4
√

3 sin
(

𝑎𝑘1
2

)

sin
(

1
4𝑎

(

𝑘1 +
√

3𝑘2
))

𝑘1
(

𝑘1 +
√

3𝑘2
)

(10)

and upon defining the following nondimensional variables and parameters:

�̃�1 =
𝑥1
𝑎
, �̃�2 =

𝑥2
𝑎
, 𝑡 = 𝜔0𝑡, 𝜔0 =

√

𝐷∗
11

𝜌∗ℎ𝑎4
, �̃� = 𝑤

𝑎
, �̃�𝑖𝑗 =

𝑧𝑖𝑗
𝑎
, 𝐱𝑗 =

𝐱𝑗
𝑎
, �̃� = 𝐤𝑎,

�̃�𝑖𝑗 =
𝐾𝑖𝑗𝑎2

𝐷∗
11

, �̃�12 =
𝐷∗

12
𝐷∗

11
, �̃�∗

22 =
𝐷∗

22
𝐷∗

11
, �̃�66 =

𝐷∗
66

𝐷∗
11
, �̃�𝑖𝑗 =

𝑀𝑖𝑗

𝜌∗ℎ𝑎2
, �̃� (3)

𝑖𝑗 =
𝑁 (3)

𝑖𝑗 𝑎4

𝐷∗
11

,

(11)

the nondimensional reduced equations are obtained as

�̃�𝐻 ̈̃𝑤0(𝑡) + �̃�𝐻 �̃�0(𝑡) +
𝑁
∑

𝑖=1
�̃�𝑖( ̈̃𝑤0(𝑡) + ̈̃𝑧𝑖0(𝑡)) = 0,

�̃�𝑖( ̈̃𝑧𝑖0(𝑡) + ̈̃𝑤0(𝑡)) + �̃�𝑖�̃�𝑖0(𝑡) + �̃� (3)
𝑖 �̃�3𝑖0(𝑡) = 0, 𝑖 = 1,… , 𝑁

(12)

where

�̃�𝐻 = �̃�(�̃�1, �̃�2), �̃�𝐻 = �̃�(�̃�1, �̃�2)
[

�̃�41 + �̃�21�̃�
2
22(�̃�12 + 2�̃�66) + �̃�42�̃�22

]

(13)

and

�̃�(�̃�1, �̃�2) =
4
√

3 sin
(

�̃�1
2

)

sin
(

1
4

(

�̃�1 +
√

3�̃�2
))

�̃�1
(

�̃�1 +
√

3�̃�2
) . (14)

The nondimensional wave numbers �̃�1, �̃�2 within the Irreducible Brillouin zone (IBZ) exhibit the following ranges (see the first
plot in Fig. 3): Γ𝐗, 𝐗𝐌 and 𝐌Γ. The wave number vector (𝑘 , 𝑘 ) should lie within the triangular domain formed by the three
4

1 2
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Fig. 3. The irreducible Brillouin zone.

Fig. 4. (a) The effective mass and (b) stiffness of the plate as function of wave numbers.

points (Γ,𝐗,𝐌). The effective mass and stiffness of the plate, with the material and geometric parameters shown in Section 5,
versus different wave numbers are shown in Fig. 4 (a, b), respectively.

3. Linear dispersion functions and eigenvectors

For the metamaterial lattice with an array of equally spaced single-dof resonators (i.e., 𝑁 = 1, so that the subscripts in
�̃�𝑖, �̃�𝑖, �̃�

(3)
𝑖 can be dropped), wave equations (12) read:

[

�̃�𝐻 (�̃�1, �̃�2) + �̃� �̃�
�̃� �̃�

] [ ̈̃𝑤0(𝑡)
̈̃𝑧0(𝑡)

]

+
[

�̃�𝐻 (�̃�1, �̃�2) 0
0 �̃�

] [

�̃�0(𝑡)
�̃�0(𝑡)

]

=
[

0
−�̃� (3)�̃�30(𝑡)

]

, (15)

The solution of the linear problem can be sought by letting 𝑤0(𝑡) = 𝑊 𝑒𝑖𝜔𝑡 and �̃�0(𝑡) = 𝑍𝑒𝑖𝜔𝑡, where 𝑊 and 𝑍 are constant coefficients.
Thus, the ensuing eigenvalue problem is expressed as:

(�̃� − 𝜔2�̃�)𝝓 = 𝟎, (16)

where the column vector 𝝓 = (𝑊 ,𝑍) denotes the eigenvector and the mass and stiffness matrices are given by

�̃� =
[

�̃�𝐻 (�̃�1, �̃�2) + �̃� �̃�
�̃� �̃�

]

and �̃� =
[

�̃�𝐻 (�̃�1, �̃�2) 0
0 �̃�

]

. (17)

Setting the determinant of the coefficient matrix in Eq. (16) to zero yields the linear dispersion equation:

det(�̃� − 𝜔2�̃�) = 0, (18)

whose roots denoted by 𝜔− and 𝜔+ describe the frequencies of the low-frequency propagation mode 𝝓− (acoustic mode) and the
high-frequency propagation mode 𝝓+ (optical mode). Fig. 5 shows the linear dispersion properties of the bare plate (the relevant
parameters are provided in Section 5) and the plate with resonators. The stop band, which is formed between the acoustic and
5

optical frequencies, is highlighted in gray.
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Fig. 5. The dispersion curves for the bare plate (red line) and plate with single-dof linear resonators (black lines) with �̃� = 0.146 and �̃� = 10.79. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) The linear stop band size 𝑆𝐴 = min(𝜔+) − max(𝜔−); (b) the linear absolute stop band position 𝑃 = (min(𝜔+) + max(𝜔−))∕2; (c) the linear relative stop
band size 𝑆𝑅 = 𝑆𝐴∕𝑃 , versus �̃� and �̃�.

The limit values of the frequencies across the boundaries of the IBZ are found in closed form. The formulas to find these values
are provided below across each range (the full expressions are shown in Appendix B):

Γ − 𝐗 ∶

max(𝜔−) = 𝜔−(�̃�1 = 4𝜋∕3, �̃�2 = 0), min(𝜔+) = 𝜔+(�̃�1 = 0, �̃�2 = 0) (19)

𝐗 −𝐌 ∶

max(𝜔−) = 𝜔−(�̃�1 = 4∕3𝜋, �̃�2 = 0), min(𝜔+) = 𝜔+(�̃�1 = 𝜋, �̃�2 = 𝜋∕
√

3) (20)

𝐌 − Γ ∶

max(𝜔−) = 𝜔−(�̃�1 = 𝜋, �̃�2 = 𝜋∕
√

3), min(𝜔+) = 𝜔+(�̃�1 = 0, �̃�2 = 0). (21)

An example with a given choice of the metamaterial system parameters (provided in Section 5) is shown here, the maximum
acoustic frequency is obtained for (�̃�𝐴1 = 4𝜋∕3, �̃�𝐴2 = 0) and the minimum optical frequency is found for (�̃�𝑂1 = 0, �̃�𝑂2 = 0). The absolute
stop band size is obtained as 𝑆𝐴 = min(𝜔+) − max(𝜔−). The stop band central frequency, which indicates the position of the stop
band, is expressed by 𝑃 = (min(𝜔+) + max(𝜔−))∕2. The relative stop band size is defined by 𝑆𝑅 = 𝑆𝐴∕𝑃 . Fig. 6 shows the linear
stop band size 𝑆𝐴, the central frequency 𝑃 , and the relative stop band size 𝑆𝑅 versus different choices of resonator parameters
�̃� and �̃�. The results highlight that when the resonators become heavier, the linear stop band will be enlarged but in the lower
frequency range, and when the spring becomes stiffer, the stop band will have large width and appear in the high frequency range.
When looking at the variation of the relative stop band size 𝑆𝑅 upon variations of �̃� and �̃�, it is found that the resonators should
be heavy to have large values of the relative stop band size. These results facilitate the (linear) design process of the resonators
parameters based on the stop band characteristic requirements.

Variations of the components of the acoustic and optical eigenvectors with the wave number are reported in Fig. 7. The well-
known property holding for the acoustic mode being an in-phase mode and the optical mode being an out-of-phase mode is
shown.
6
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Fig. 7. Acoustic and optical eigenvectors components versus the wave number, for �̃� = 0.146 and �̃� = 10.79.

4. Nonlinear asymptotic solution

In this section, the method of multiple scales [34] is employed to analyze the nonlinear wave properties of metamaterials. As
mentioned, the method of multiple scales is a classical tool for nonlinear asymptotic analysis and it is widely used also for the study
of metamaterials (see, e.g., [28,36,39,40,48]). Let 𝐮 = (�̃�0, �̃�01,… , �̃�0𝑁 ) be the vector collecting all plate and resonators coordinates
so that Eq. (15) can be written in matrix-valued form as

𝐌�̈� +𝐊𝐮 = 𝐍(𝐮,𝐮,𝐮), (22)

where 𝐍(𝐮,𝐮,𝐮) represents the nonlinear part of the resonators restoring forces. By employing the mass-normalized modal matrix
Φ (which is equal to [𝝓−,𝝓+] for one resonator case with eigenvectors 𝝓± = (𝜙±

1 , 𝜙
±
2 )), and by introducing the modal coordinate

transformation 𝐮 = Φ𝐪, with 𝐪 = (𝑞1, 𝑞2) playing the role of principal coordinates vector, the following equation is obtained:

𝐌Φ�̈� +𝐊Φ𝐪 = 𝐍(Φ𝐪,Φ𝐪,Φ𝐪), (23)

which, upon pre-multiplication by Φ⊤, yields:

�̈� +Λ𝐪 = 𝐜(𝐪,𝐪,𝐪) (24)

with Λ = diag(𝜔−2, 𝜔+2) and

𝐜(𝐪,𝐪,𝐪) = Φ⊤𝐍(Φ𝐪,Φ𝐪,Φ𝐪) = Φ⊤
[

0
−�̃� (3)(𝝓⊤

𝟐 𝒒)(𝝓
⊤
𝟐 𝒒)(𝝓

⊤
𝟐 𝒒)

]

, (25)

where 𝝓𝟏 = Φ⊤ ⋅ 𝐞1 and 𝝓𝟐 = Φ⊤ ⋅ 𝐞2 are the vectors collecting the first and second rows of the mass-normalized modal matrix Φ,
respectively; 𝐞1 = (1, 0) and 𝐞2 = (0, 1).

By making use of a small book-keeping nondimensional parameter denoted by 𝜀, the method of multiple scales is employed to
express the solution as a series of 𝜀 where each term is function of two time scales 𝑇𝑗 = 𝜀𝑗 𝑡 for 𝑗 = 0, 2 according to

𝐪 = 𝜀𝐪1(𝑇0, 𝑇2) + 𝜀3𝐪2(𝑇0, 𝑇2) + 𝑂(𝜀5). (26)

By taking into the change of time variables, the derivatives with respect to the actual fast time variable are expressed as: 𝜕(⋅)∕𝜕𝑡 =
𝐷0 + 𝜀2𝐷2, and 𝜕2(⋅)∕𝜕𝑡2 = 𝐷2

0 + 2𝜀2𝐷0𝐷2, where 𝐷𝑗 (⋅) = 𝜕(⋅)∕𝜕𝑇𝑗 . By equating to zero all terms of like powers of 𝜀, the following
hierarchy of problems is obtained:

Order(𝜀) ∶

𝐷2
0𝐪1 +Λ𝐪1 = 𝟎, (27a)

Order(𝜀3) ∶

𝐷2
0𝐪2 +Λ𝐪2 = −2𝐷0𝐷2𝐪1 + 𝐜(𝐪1,𝐪1,𝐪1), (27b)

where the second perturbation problem was neglected because the complex-valued oscillation amplitudes 𝐴± do not depend on the
2
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slow time scale 𝑇1 = 𝜀 𝑡 [28,38,49].



Journal of Sound and Vibration 562 (2023) 117821Y. Shen and W. Lacarbonara

b

w
r
w
𝜔

T

F

We only focus on the case of one resonator per unit cell; hence, the solution of the generating problem given by Eq. ((27)a) can
e expressed in the form:

𝐪1 =
[

𝑞−1
𝑞+1

]

=
[

𝐴−(𝑇2)𝑒𝑖𝜔
−𝑇0 + 𝑐.𝑐.

𝐴+(𝑇2)𝑒𝑖𝜔
+𝑇0 + 𝑐.𝑐.

]

(28)

here the superscripts }} − ε and }} + ε describe the low-frequency (acoustic) mode and the high-frequency (optical) mode,
espectively. The cubic perturbation problem expressed by Eq. ((27)b) contains resonant terms due to the cubic nonlinearity which
ould cause secular terms in the solution if not removed. By enforcing the solvability condition and assuming that the frequencies
− and 𝜔+ are away from the condition 𝜔+ ≈ 3𝜔− so as to prevent the onset of a 3:1 internal resonance, one finally obtains:

2𝑖𝜔−𝐷2𝐴
− = 𝝓−⊤

[

0
−�̃� (3)(3𝜙−

2
3𝐴−2�̄�− + 6𝜙−

2 𝜙
+
2
2𝐴−𝐴+�̄�+)

]

,

2𝑖𝜔+𝐷2𝐴
+ = 𝝓+⊤

[

0
−�̃� (3)(3𝜙+

2
3𝐴+2�̄�+ + 6𝜙+

2 𝜙
−
2
2𝐴+𝐴−�̄�−)

]

.

(29)

o obtain Eq. (29) in real-valued form, one needs to express 𝐴± in polar form as

𝐴±(𝑇2) =
1
2𝑎

±(𝑇2)exp(𝑖𝜃±(𝑇2)), (30)

where 𝑎± and 𝜃± denote the unknown amplitude and phase of the optical and acoustic modes, respectively. Substituting Eq. (30)
into Eq. (29) and separating real and imaginary parts in Eq. (29) yields:

𝑎±
′
= 0, 𝜃±

′
=

�̃� (3)(3𝜙±
2
4𝑎±2 + 6𝜙±

2
2𝜙∓

2
2𝑎∓2)

8𝜔± . (31)

inally, by re-absorbing 𝜀 in the amplitude definition, the nonlinear frequencies of the two wave modes are expressed as

𝜔−
𝑛𝑙 = 𝜔− +

�̃� (3)(3𝜙−
2
4𝑎−2 + 6𝜙−

2
2𝜙+

2
2𝑎+2)

8𝜔− , 𝜔+
𝑛𝑙 = 𝜔+ +

�̃� (3)(3𝜙+
2
4𝑎+2 + 6𝜙+

2
2𝜙−

2
2𝑎−2)

8𝜔+ . (32)

The above equations describe the nonlinear, amplitude-dependent dispersion functions for the acoustic and optical modes. Note that
the eigenvector components 𝜙±

𝑗 and the nonlinear coefficients depend on the wave numbers �̃�1, and �̃�2. Eq. (32) is a key result of the
asymptotic approach since it unfolds the nonlinear wave propagation characteristics of the metamaterial, indicating that the acoustic
and optical modes are not uncoupled in the dispersion functions. This result holds as far as the system is considered undamped. In
addition, in Appendix C we show that a direct asymptotic treatment of the nonlinear equation of motion Eq. (1) together with the
Floquet–Bloch solution ansatz at each order yields the same results as those obtained by assuming the Floquet–Bloch solution for
the nonlinear system from the outset and projecting the equation onto the unit cell domain. This is true as far as the asymptotic
treatment is arrested to within the first nonlinear order (i.e., here the cubic order) and is not aimed at a higher order approximation.
For higher order approximations, the Floquet–Bloch solution ansatz has to be relaxed.

5. Numerical examples

Numerical examples are computed to discuss the effects of the resonator nonlinearity on the dispersion functions and to offer
guidance towards the optimization of the resonators. The parameters of the honeycomb used for the numerical simulations are:
characteristic length 𝑎 = 0.14m, plate height ℎ = 0.005m, plate density 𝜌 = 1150 kg∕m3, Young’s modulus 𝐸 = 2.2 GPa, Poisson’s
ratio 𝜈 = 0.35. The geometric parameters of the hexagon are: thickness 𝑡ℎ = 0.001m and side length 𝑙ℎ = 𝑎 × tan(𝜋∕6).

When applying the multiple scale approach, we assumed that the nonlinear part of the resonator restoring force 𝐹𝑛𝑙 should be
smaller (of 𝜀3 order) than the linear restoring force 𝐹𝑙𝑖𝑛. To this end, we set the condition that the ratio between 𝐹𝑛𝑙 and 𝐹𝑙𝑖𝑛 must
be smaller than 1 in the whole range of nonlinearity coefficient. The conditions providing the amplitude bounds thus read:

𝐹+
𝑛𝑙

𝐹+
𝑙𝑖𝑛

= |

𝜙+
2 �̃�

(3)(𝜙+
2 𝑎

+ + 𝜙−
2 𝑎

−)3

(𝜔+)2𝑎+
| < 1 and

𝐹−
𝑛𝑙

𝐹−
𝑙𝑖𝑛

= |

𝜙−
2 �̃�

(3)(𝜙+
2 𝑎

+ + 𝜙−
2 𝑎

−)3

(𝜔−)2𝑎−
| < 1, (33)

This set of conditions has the virtue of ensuring the validity of the asymptotic approach by preventing selection of exceedingly large
values of the amplitudes as a function of the given nonlinearity coefficient.

5.1. Dispersion properties

Fig. 8(a) shows the comparison between the dispersion properties of the metamaterial with linear resonators with the properties
of the metamaterial with nonlinear resonators. In the numerical test here considered, the modal amplitudes of the acoustic and
optical modes were set to 𝑎− = 10−2 and 𝑎+ = 5 × 10−3. To quantify the nonlinear effects on the stop band sizes, we introduce the
function 𝐺 as the ratio of the nonlinear stop band width to the corresponding linear stop band width, i.e.,

𝐺 =
min(𝜔+

𝑛𝑙) − max(𝜔−
𝑛𝑙) . (34)
8

min(𝜔+) − max(𝜔−)
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Fig. 8. (a) The dispersion curves of the metamaterial with the single-dof nonlinear resonator; the modal amplitudes are set to 𝑎− = 10−2 and 𝑎+ = 5 × 10−3.
The resonators parameters are: �̃� = 0.146, �̃� = 10.79, and the nonlinearity is set to �̃� (3) = −104. As in Fig. 5, the red and black dashed curves represent the
dispersion properties of the plate without resonators and with linear resonators, respectively. The nonlinear optical and acoustic frequencies are shown by the
blue and green curves, respectively. (b) The nonlinear stop band gain versus the nonlinearity coefficient �̃� (3). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

In Fig. 8(a), compared to the linear stop band shown in gray, the nonlinear stop band, which is highlighted in light blue, gets shifted
to lower frequencies due to the softening resonators having a cubic spring coefficient �̃� (3) = −104. At the same time, the stop band
largely increases (by as much as 72%) when the nonlinearity is taken into account. Fig. 8(b) showing 𝐺 versus �̃� (3) highlights the
fact that there exists an optimal value of the nonlinearity strength which yields the largest stop band size within the set range for
a given selection of modal amplitudes (here 𝑎− = 10−2 and 𝑎+ = 5 × 10−3).

The outcomes of the investigations into the nonlinearity of the resonators point out that the stop band size can be considerably
enlarged by suitably choosing the type and strength of the nonlinearity. The next section will address the optimization of the
resonators nonlinearity.

5.2. Design of the nonlinear resonators with certain targeted frequency

To enhance the band gap performance of the metamaterial with nonlinear resonators, one of the key problems is to determine
whether the resonator should be hardening or softening. To solve this problem, the nonlinear terms in the dispersion functions
yielding the nonlinear corrections to the linear stop band width can be expressed as:

𝑄 = [min(𝜔+
𝑛𝑙) − max(𝜔−

𝑛𝑙)] − [min(𝜔+) − max(𝜔−)]. (35)

The nonlinearity promotes a widening of the stop band when 𝑄 is positive definite. By assuming that the nonlinearity is not too
large, the wave numbers �̃�𝐴1 = 4𝜋∕3 and �̃�𝐴2 = 0 leading to the maximum linear acoustic frequency and �̃�𝑂1 = 0 and �̃�𝑂2 = 0 leading
to the minimum optical frequency will not change in the nonlinear case. Consequently, one can rewrite 𝑄 given by Eq. (35) as:

𝑄 = �̃� (3)
[

(2𝜙+
2
2𝜙−

2
2∕𝜔+)|(�̃�𝑂1 ,�̃�𝑂2 )

− (𝜙−
2
4∕𝜔−)|(�̃�𝐴1 ,�̃�𝐴2 )

]

𝑎−2

+ �̃� (3)
[

(𝜙+
2
4∕𝜔+)|(�̃�𝑂1 ,�̃�𝑂2 )

− (2𝜙+
2
2𝜙−

2
2∕𝜔−)|(�̃�𝐴1 ,�̃�𝐴2 )

]

𝑎+2,
(36)

or, in more compact form, as

𝑄 = �̃� (3)(𝛤−𝑎−2 + 𝛤+𝑎+2) =∶ �̃� (3)𝛬(𝑎−, 𝑎+). (37)

Eq. (37) embeds the key information that will guide the answer to the question of whether hardening or softening resonators should
be selected. In other words, to ensure that the quadratic form 𝑄 given by Eq. (37) be positive regardless of the range of acoustic
and optical amplitudes, one has to tune the resonators nonlinearity based on the constants 𝛤± (i.e., they are determined by the
parameters of the resonators) and on the modal amplitudes 𝑎±.

The goal is to determine suitable resonators parameters (�̃� , �̃�) such that the effective nonlinearity coefficients 𝛤± will result
into one of the following conditions:

𝛬(𝑎−, 𝑎+) > 0 if �̃� (3) > 0 or 𝛬(𝑎−, 𝑎+) < 0 if �̃� (3) < 0 (38)

for any combination of 𝑎±, depending on the type of nonlinearity (�̃� (3) > 0 or �̃� (3) < 0). The inequalities given by Eq. (38) can
be written as sign(𝛬�̃� (3)) = 1. The best strategy is to seek conditions under which the type of nonlinearity of the resonators does
9
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Fig. 9. 𝛤 − and 𝛤 + versus �̃� and �̃�.

not need to be tuned based on the modal amplitudes so as to overcome the drawback of adaptive nonlinearity in the resonators.
Inequalities (38) are satisfied if 𝛤− and 𝛤+ meet one of the following conditions:

(1) 𝛤− and 𝛤+ are both positive with �̃� (3) > 0 (hardening),
(2) 𝛤− and 𝛤+ are both negative with �̃� (3) < 0 (softening),
(3) |𝛤−

| ≫ |𝛤+
| and 𝑎− and 𝑎+ are of the same order.

(4) |𝛤−
| ≪ |𝛤+

| and 𝑎− and 𝑎+ are of the same order.
To find where the parameters of the resonators satisfy one of the above conditions, we introduce the ratio between the effective

nonlinearity coefficients as

𝛾 = 𝛤−∕𝛤+. (39)

Condition (3) comes from the fact that when |𝛾| ≫ 1, it is 1∕|𝛾| = 𝑂(𝜀) and by combining this fact with the asymptotic assumption
𝑎±2 = 𝑂(𝜀2), one obtains:

𝛬 = (𝛤−𝑎−2 + 𝛤+𝑎+2) = 𝛤−(𝑎−2 + 1
𝛾 𝑎

+2) = 𝛤−(𝑂(𝜀2) + 𝑂(𝜀3)). (40)

In another words, the sign of 𝛬 is dictated by the sign of 𝛤−. Similarly, condition (4) stems from the fact that under the assumption
|𝛾| ≪ 1, which can be stated as 𝛾 = 𝑂(𝜀), one obtains:

𝛬 = (𝛤−𝑎−2 + 𝛤+𝑎+2) = 𝛤+(𝛾𝑎−2 + 𝑎+2) = 𝛤+(𝑂(𝜀3) + 𝑂(𝜀2)). (41)

Thus, the sign of 𝛬 is ruled by 𝛤+. Fig. 9 shows variations of 𝛤± as function of �̃� and �̃�.
In order to discuss the various scenarios, in terms of the above defined ratio, we can recognize the following conditions leading

to the optimal resonators nonlinearity:
(1) 𝛾 > 0 and 𝛤− > 0, entail �̃� (3) > 0 (hardening),
(2) 𝛾 > 0 and 𝛤− < 0, entail �̃� (3) < 0 (softening),
(3a) sign(�̃� (3)𝛤−) = 1 and 𝛤− > 0, thus, �̃� (3) > 0 (hardening),
(3b) sign(�̃� (3)𝛤−) = 1 and 𝛤− < 0, thus, �̃� (3) < 0 (softening),
(4a) sign(�̃� (3)𝛤+) = 1 and 𝛤+ > 0, thus, �̃� (3) > 0 (hardening),
(4b) sign(�̃� (3)𝛤+) = 1 and 𝛤+ < 0, thus, �̃� (3) < 0 (softening).
In other words, when 𝛾 is positive, or when 𝛾 is negative and small in absolute value (i.e., |𝛾| < 0.1 to meet condition (3))

or negative and large in absolute value (i.e., |𝛾| > 10 to meet condition (4)), for almost all combinations of 𝑎±, one should use
a certain type of nonlinearity to obtain a positive 𝑄. On the other hand, when 𝛾 < 0 and 0.1 < |𝛾| < 10 (i.e., the effective
nonlinearity coefficients are of the same order of magnitude), some combinations of 𝑎± will require a softening nonlinearity while
other combinations will require hardening resonators for enhanced stop band. The drawback is that self-adaptive resonators should
be designed to obtain enhanced performance.

Fig. 10 shows the contour plot of 𝛾 versus �̃� and �̃�, the red and green curves show the bound along which 𝛾 = −0.1 or 𝛾 = ±10,
thus, the parameter space spanned by �̃� and �̃� is divided into four regions, each of which is characterized by a certain type of
optimal nonlinearity. In the plot, ‘‘H’’ means hardening, ‘‘S’’ means softening, and ‘‘A’’ represents adaptive nonlinearity, and the
corresponding condition is also given for each region with certain type of optimal nonlinearity. Fig. 11 shows the final suggested
type of resonator nonlinearity in the plane spanned by �̃� and �̃�. Fig. 11 represents a design chart that can be exploited during the
metamaterial design process.

When one has to design a new metamaterial with a certain targeted frequency, the results shown in Figs. 6 and 11 indicate the
strategy to find the proper choice of mass �̃� and stiffness �̃� as well as the optimal type of resonators nonlinearity. After choosing
optimal resonators nonlinearity, one still needs to carefully select the strength of the nonlinearity. The choice of �̃� (3) should be
10

optimized based on the range of modal amplitudes of the incoming waves, to obtain the largest stop band width.
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Fig. 10. Contour plot of 𝛾 versus �̃� and �̃�. The red and green curves divide the parameter space into four regions where different types of optimal resonators
nonlinearity should be employed to enlarge the stop band for all amplitudes 𝑎±. H stands for hardening, A for self-adaptive, and S for softening. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Design chart with the suggested type of optimal resonator nonlinearity based on the values of �̃� and �̃�.

Numerical example: target frequency �̄� = 5
An example is given here to show how to enlarge the stop band width by using optimal nonlinear resonators when the target

frequency is set to �̄� = 5. From the results shown in Figs. 6 and 10, we select �̃� = 0.3 and �̃� = 7.54 thus �̄� = 5 in the linear
stop band region and softening resonators are expected to provide an increased stop band width. With this choice of parameters,
Fig. 12(a) shows the results in terms of optimal value �̃� (3) for every combination of 𝑎− and 𝑎+ leading to the largest bandgap 𝐺.
In the numerical search, the range of 𝑎± was set to [0, 0.01] and 100 grid points were selected; �̃� (3) was investigated in the range
[−2, 2] × 104. Fig. 12(b) provides the corresponding maximum nonlinear stop band gain factor 𝐺 for the found optimal values of
the nonlinear coefficient in (a). It is shown that if the minimum value �̃� (3) = −5 × 103 is selected, for every combination of modal
amplitudes, the nonlinear stop band is always larger than the linear counterpart (𝐺𝑜𝑝 > 1). In practice, it is better to select values
larger than the minimum value to have more considerable nonlinear effects, thus, in the next numerical study, we set �̃� (3) = −104.

To further investigate the sensitivity of the stop band gain factor, we show in Fig. 13 variation of 𝐺 with the amplitudes 𝑎± for
the honeycomb embedding resonators with the nonlinearity coefficient set to �̃� (3) = −104. The amplitudes 𝑎+ and 𝑎− are varied
in the range [0, 0.01] within a grid of 100 points. It is found that in all situations, the selected softening nonlinearity can act to
considerably increase the stop band by as much as 60%. One can thus conclude that, with the softening nonlinearity involved, the
performance of the metamaterial is always enhanced for any incoming wave exciting both the acoustic or optical mode at moderately
large amplitudes.

Finally, we consider the dispersion curves for certain modal amplitudes to check whether the nonlinear effects are consistent
with the expectations. The nonlinearity is chosen again to be �̃� (3) = −104 as in the optimization results obtained in Fig. 12, while
11
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Fig. 12. (a) The optimization results about the selection of �̃� (3) in terms of modal amplitudes 𝑎± leading to the largest bandgap size. (b) The corresponding
maximum stop band size when choosing the nonlinearity coefficients given in (a).

Fig. 13. Variation of the nonlinear stop band gain factor 𝐺 for the metamaterial with softening resonators in terms of the modal amplitudes 𝑎− and 𝑎+ with
�̃� (3) = −104.

the modal amplitudes are set to (a) 𝑎− = 𝑎+ = 5 × 10−3, (b) 𝑎− = 𝑎+ = 8 × 10−3, (c) 𝑎− = 10−2, 𝑎+ = 5 × 10−3, respectively. Fig. 14
shows the dispersion curves for the three cases. It is found that the nonlinear stop bands (denoted by blue and green curves) are
significantly larger than the linear counterparts (described by black dashed curve), with the target frequency �̄� = 5 still within the
nonlinear stop band range.

In summary, the optimization process reveals the possibility that, by a proper selection of the nonlinear characteristics of the
resonators, the nonlinear stop band can be significantly enlarged, leading to a surprising enhancement of the energy absorption
performance of the metamaterial.

5.3. Numerical validation of the stop band behavior with damping

A numerical example is further provided to verify the stop band behavior in the presence of damping of the hosting honeycomb.
In this numerical example, we consider the metamaterial subject to a harmonic excitation for various frequencies and in the range
of wave numbers spanning the boundary of the IBZ (Γ − 𝐗, 𝐗 − 𝐌, 𝐌 − Γ). The resonators parameters are set to �̃� = 0.3 and
�̃� = 7.54, as in the previous section. The equations of motion of the metamaterial system with damping are given by:

[

�̃�𝐻 (�̃�1, �̃�2) + �̃� �̃�
�̃� �̃�

] [ ̈̃𝑤0(𝑡)
̈̃𝑧0(𝑡)

]

+
[

�̃�𝐻 (�̃�1, �̃�2) 0
0 �̃�

] [

�̃�0(𝑡)
�̃�0(𝑡)

]

+
[

�̃�𝐻 (�̃�1, �̃�2) 0
0 �̃�

] [ ̇̃𝑤0(𝑡)
̇̃𝑧0(𝑡)

]

=
[

0
−�̃� (3)�̃�30(𝑡)

]

+
[

𝐹 sin(�̃�𝑒𝑥𝑡)
0

]

,
(42)

where 𝐹 is the external force amplitude, �̃�𝑒𝑥 is the excitation frequency which spans the range from 0.1 to 20 with step set to 0.2
̃ ̃

√

�̃� ∕�̃� �̃�(𝑘 , 𝑘 ) with
12

(reduced to 0.02 near the boundary of the stop bands), while the system damping is set to be: 𝐶𝐻 = 2𝜁 𝐻 𝐻 1 2
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Fig. 14. The nonlinear dispersion functions with nonlinear coefficient 𝑁 (3) = −104 and the modal amplitudes set to : (a) 𝑎− = 𝑎+ = 5×10−3, (b) 𝑎− = 𝑎+ = 8×10−3,
(c) 𝑎− = 10−2 , 𝑎+ = 5 × 10−3. The red dashed curve here indicates the target frequency. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

𝜁 = 0.05 and �̃� = 0. The fourth-order Runge–Kutta method (function ‘‘ode45’’ in Matlab) is used to integrate the equation of motion
yielding the time response.

We collect the maximum displacement amplitudes of the plate at steady-state for every selection of wave numbers and excitation
frequency. The results are shown in Fig. 15 in terms of contour plots where the horizontal axis denotes the wave number, the
vertical axis indicates the non-dimensional harmonic excitation frequency, while the steady-state displacement amplitude levels are
represented by different colors; in particular, bright yellow means amplitudes beyond 5 × 10−3, which is 14% the nondimensional
plate thickness ℎ∕𝑎. Correspondingly for the damped wave propagation scenario here considered, the stop band is defined as the
region where the wave amplitude is sufficiently small (< 5 × 10−3) across all wave numbers and excitation frequencies. Fig. 15(a)
shows that the dispersion curves for the metamaterial with linear resonators, here described by dashed black lines, fully matches
the numerically obtained time response (alongside the middle of the yellow range), and that the stop band region goes from 4.80 to
5.70. On the other hand, Fig. 15(b) shows the nonlinear resonators case with �̃� (3) = −2000, not chosen as large as in the last section
to avoid convergence problems. The newly formed stop band region highlighted by the red dashed box, due to the nonlinearity
and damping effects, gets enlarged between �̃�𝑒𝑥 = 4.32 and 5.42. Hence, 𝐺 = (5.42 − 4.32)∕(5.70 − 4.80) = 1.22 indicates that the
stop band width increases by 22% thanks to the resonators nonlinearity also in the presence of damping. The corresponding 3D
frequency-wave number response plots for the linear and nonlinear cases are shown in parts (c, d), respectively, to provide a more
effective graphical representation of the damped stop band.

6. Conclusions

In this paper, the nonlinear wave properties of honeycombs embedding spider web-like resonators are studied. The wave
propagation equations were derived making use of the Floquet–Bloch quasi-periodicity ansatz and the projection method. The
nonlinear dispersion properties were obtained in closed form employing the method of multiple scales. Numerical examples showed
that the stop band width of the honeycomb can be significantly enhanced by the presence of suitable nonlinear resonators.

In the first part of this work, the linear dispersion properties of the honeycomb metamaterials were addressed by investigating
the relationship between the linear stop band characteristics (size and position) and the variation of resonator mass and stiffness.
The main contribution consists in the full range of analytical studies into the effects of the nonlinearity of the resonators embedded
into the honeycomb metamaterial. It has been proved that the nonlinearity of the resonators can be designed to exert great beneficial
effects on the dispersion properties enhancing the frequency range where wave propagation is stopped.

The extensive numerical studies based on the analytical solutions helped streamlining an optimal design approach which
determines the type of nonlinearity as a function of the mass and stiffness of the resonators. The optimal nonlinear resonators
design leads to an enlarged stop band for any modal amplitude governing the acoustic and optical modes. First, the targeted
stop band frequency is chosen and the corresponding suitable linear resonators properties are defined (i.e., mass and stiffness).
Subsequently, the optimal nonlinearities of the resonators are determined thanks to a behavior chart depicting regions of optimal
softening, hardening or adaptive nonlinearity. Time domains simulations were carried out to validate the existence of the stop band
and to show how the numerically obtained stop band gets enlarged under the simultaneous presence of hosting honeycomb damping
and resonators nonlinearity.

The conducted analytical computations of the nonlinear dispersive waves and the numerical sensitivity optimization studies
within the nonlinear vibratory regime provide a comprehensive outlook into the dispersion properties of the nonlinear metamaterial,
and the opportunities offered by the exploitation of the resonator nonlinearity to enhance the wave propagation control capability
of the metamaterial.
13
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Fig. 15. (a, b) Contour plots showing the displacement amplitudes of the plate at steady-state for the metamaterial subject to harmonic excitation (𝐹 = 0.03)
and (c, d) the corresponding 3D plots. The dashed lines are the analytical predictions of the linear dispersion curves. In parts (a, c) the resonators are linear
(i.e., �̃� (3) = 0), in parts (b, c) the resonators are nonlinear with �̃� (3) = −2 × 103.
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𝑧

Appendix A. The orthotropic bending coefficients and the density of the equivalent plate

The orthotropic bending coefficients 𝐷∗
11, 𝐷

∗
12, 𝐷

∗
22, 𝐷

∗
66 and the density 𝜌⋆ of the equivalent plate read [46]:

𝐷∗
11 =

0.023958𝐸ℎ3𝑡ℎ
(

𝑙2ℎ + (1.5𝜈 + 5.4)𝑡2ℎ
)2

𝑙5ℎ + 𝑙3ℎ(1.5𝜈 + 3.4)𝑡2ℎ

𝐷∗
12 =

0.023958𝐸ℎ3𝑡ℎ
(

𝑙2ℎ + (1.5𝜈 + 1.4)𝑡2ℎ
) (

𝑙2ℎ + (1.5𝜈 + 5.4)𝑡2ℎ
)

𝑙5ℎ + 𝑙3ℎ(1.5𝜈 + 3.4)𝑡2ℎ

𝐷∗
22 =

0.023958𝐸ℎ3𝑡ℎ
(

𝑙2ℎ + (1.5𝜈 + 5.4)𝑡2ℎ
)2

𝑙5ℎ + 𝑙3ℎ(1.5𝜈 + 3.4)𝑡2ℎ

𝐷∗
66 =

0.0475𝐸ℎ3𝑡3ℎ
𝑙3ℎ

𝜌⋆ =
𝑡ℎ∕𝑙ℎ(ℎ∕𝑙ℎ + 2)

2 cos 𝜃(ℎ∕𝑙ℎ + sin 𝜃)
𝜌

(A.1)

where 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio.

Appendix B. The limit values for the linear dispersion function

∙Γ − 𝐗:

max(𝜔−) =𝜔−(�̃�1 = 4𝜋∕3, �̃�2 = 0) =
(

1
162�̃�

(

256�̃�𝜋4 + �̃�(81 + 16
√

3�̃�𝜋2)−
√

(65536�̃�2𝜋8 + 512�̃��̃�𝜋4(16
√

3�̃�𝜋2 − 81) + 3�̃�2(2187 + 864
√

3�̃�𝜋2 + 256�̃�2𝜋4))
)

)

1
2

min(𝜔+) =𝜔+(�̃�1 = 0, �̃�2 = 0) =

√

(

�̃�(3 + 2
√

3�̃�) +
√

3
√

�̃�2(3 + 4�̃�(
√

3 + �̃�))
)

∕(6�̃�)

(B.1)

∙𝐗 −𝐌:

max(𝜔−) =𝜔−(�̃�1 = 4∕3𝜋, �̃�2 = 0) =
(

1
162�̃�

(

256�̃�𝜋4 + �̃�(81 + 16
√

3�̃�𝜋2)−
√

(65536�̃�2𝜋8 + 512�̃��̃�𝜋4(16
√

3�̃�𝜋2 − 81) + 3�̃�2(2187 + 864
√

3�̃�𝜋2 + 256�̃�2𝜋4))
)

)

1
2

min(𝜔+) =𝜔+(�̃�1 = 𝜋, �̃�2 = 𝜋∕
√

3)

=
(

1
36�̃�

(

18�̃� + �̃�𝜋2(3
√

3�̃� + 18𝜋2 + 12𝐷1𝜋
2 + 2𝐷2𝜋

2)+

3
2

√

−64(9 + 6�̃�1 + �̃�2)�̃��̃�𝜋4 + 4
9
(2(9 + 6�̃�1 + �̃�2)�̃�𝜋4 + 3�̃�(6 +

√

3�̃�𝜋2))2
)

)

1
2

(B.2)

∙𝐌 − Γ:

max(𝜔−) =𝜔−(�̃�1 = 𝜋, �̃�2 = 𝜋∕
√

3)

=
(

1
36�̃�

(

18�̃� + �̃�𝜋2(3
√

3�̃� + 18𝜋2 + 12�̃�1𝜋
2 + 2�̃�2𝜋

2)−

3
2

√

−64(9 + 6�̃�1 + �̃�2)�̃��̃�𝜋4 + 4
9
(2(9 + 6�̃�1 + �̃�2)�̃�𝜋4 + 3�̃�(6 +

√

3�̃�𝜋2))2
)

)

1
2

min(𝜔+) =𝜔+(𝑘1 = 0, 𝑘2 = 0) =

√

(

�̃�(3 + 2
√

3�̃�) +
√

3
√

�̃�2(3 + 4�̃�(
√

3 + �̃�))
)

∕(6�̃�)

(B.3)

where �̃�1 = �̃�12 + 2�̃�66 and �̃�2 = �̃�22.

Appendix C. Direct asymptotic treatment and the floquet–bloch solution

The equations of motion for the orthotropic plate-resonator coupled system representing the honeycomb with the attached
resonators are given by Eqs. (1). According to the method of multiple scales, the displacement of the plate 𝑤(𝐱) and the displacement
𝑖𝑗 of the 𝑗th resonator vibrating in its 𝑖th mode can be expressed in a power series of 𝜀 as:

𝑤 = 𝜀𝑤(1)(𝑥0, 𝑦0, 𝑥2, 𝑦2, 𝑇0, 𝑇2) + 𝜀3𝑤(3)(𝑥0, 𝑦0, 𝑥2, 𝑦2, 𝑇0, 𝑇2), (C.1)
(1) 3 (3)
15

𝑧𝑖𝑗 = 𝜀𝑧𝑖𝑗 (𝑥0, 𝑦0, 𝑥2, 𝑦2, 𝑇0, 𝑇2) + 𝜀 𝑧𝑖𝑗 (𝑥0, 𝑦0, 𝑥2, 𝑦2, 𝑇0, 𝑇2), (C.2)
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𝑡
t

w

F
c
𝑧

r

G
p

U

w

w

where we replaced the dependence on (𝑥, 𝑦) with the fast space scales (𝑥0, 𝑦0) = (𝑥, 𝑦) and slow scales (𝑥2, 𝑦2) = (𝜀2𝑥, 𝜀2𝑦) and time
with the fast time scale 𝑇0 = 𝑡 and the slow time scale 𝑇2 = 𝜀2𝑡. By substituting Eqs. (C.1) and (C.2) into Eqs. (1) and equating

erms of like powers of 𝜀 to zero, the following hierarchy of problems is obtained:

Order(𝜀) ∶

𝜌⋆ℎ𝐷2
0𝑤

(1) +

[

𝐷∗
11
𝜕4𝑤(1)

𝜕𝑥40
+ (2𝐷∗

12 + 4𝐷∗
66)

𝜕4𝑤(1)

𝜕𝑥20𝜕𝑦
2
0

+𝐷∗
22
𝜕4𝑤(1)

𝜕𝑦40

]

(C.3a)

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

𝐷2
0𝑤

(1) +𝐷2
0𝑧

(1)
𝑖𝑗

]

𝛿(𝐱0 − 𝐬𝑗 ) = 0,

𝑀𝑖𝑗

[

𝐷2
0𝑤

(1) +𝐷2
0𝑧

(1)
𝑖𝑗

]

+𝐾𝑖𝑗𝑧
(1)
𝑖𝑗 = 0, (C.3b)

Order(𝜀3) ∶

𝜌⋆ℎ𝐷2
0𝑤

(3) +

[

𝐷∗
11
𝜕4𝑤(3)

𝜕𝑥40
+ (2𝐷∗

12 + 4𝐷∗
66)

𝜕4𝑤(3)

𝜕𝑥20𝜕𝑦
2
0

+𝐷∗
22
𝜕4𝑤(3)

𝜕𝑦40

]

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

𝐷2
0𝑤

(3) +𝐷2
0𝑧

(3)
𝑖𝑗

]

𝛿(𝐱0 − 𝐬𝑗 ) (C.3c)

= −2𝜌⋆ℎ𝐷0𝐷2𝑤
(1) − 2

∑

𝑖,𝑗
𝑀𝑖𝑗

[

𝐷0𝐷2𝑤
(1) +𝐷0𝐷2𝑧

(1)
𝑖𝑗

]

𝛿(𝐱0 − 𝐬𝑗 )

− 2

[

𝐷∗
11

𝜕4𝑤(1)

𝜕𝑥20𝜕𝑥
2
2

+ (2𝐷∗
12 + 4𝐷∗

66)(
𝜕4𝑤(1)

𝜕𝑥20𝜕𝑦
2
2

+ 𝜕4𝑤(1)

𝜕𝑥22𝜕𝑦
2
0

) +𝐷∗
22

𝜕4𝑤(1)

𝜕𝑦20𝜕𝑦
2
2

]

,

𝑀𝑖𝑗 (𝐷2
0𝑤

(3) +𝐷2
0𝑧

(3)
𝑖𝑗 ) +𝐾𝑖𝑗𝑧

(3)
𝑖𝑗 = −𝑁 (3)

𝑖𝑗 (𝑧(1)𝑖𝑗 )
3 − 2𝑀𝑖𝑗 (𝐷0𝐷2𝑤

(1) +𝐷0𝐷2𝑧
(1)
𝑖𝑗 ), (C.3d)

here 𝐬𝑗 = (𝑥0𝑗 , 𝑦0𝑗 ) indicates the position vector of the 𝑗th resonator.

irst order problem. The first order equations given by Eqs. ((C.3a), (C.3b)) are linear and represent the generating problem. One
an here employ the Floquet–Bloch Theorem according to which the solution is sought as 𝑤(1)(𝑥0, 𝑦0, 𝑇0) = 𝑤(1)

0 (𝑇0)𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) and
(1)
𝑖𝑗 (𝑥0𝑗 , 𝑦0𝑗 , 𝑇0) = 𝑧(1)𝑖0 (𝑇0)𝑒

𝑖(𝑘1𝑥0𝑗+𝑘2𝑦0𝑗 ) where 𝑤(1)
0 (𝑇0) = 𝑤(1)(0, 0, 𝑇0) and 𝑧(1)𝑖0 (𝑇0) ∶= 𝑧(1)𝑖0 (0, 0, 𝑇0) denote the plate deflection and the

elative resonator motion at the origin of the fixed frame. Upon substitution of the assumed solution into (1), one obtains
[

𝜌⋆ℎ𝐷2
0𝑤

(1)
0 (𝑇0) + [𝑘41𝐷

∗
11 + 𝑘21𝑘

2
2(2𝐷

∗
12 + 4𝐷∗

66) + 𝑘42𝐷
∗
22]𝑤

(1)
0 (𝑇0)

]

𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) (C.4a)

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

𝐷2
0𝑤

(1)
0 (𝑇0) +𝐷2

0𝑧
(1)
𝑖0 (𝑇0)

]

𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0)𝛿(𝑥0 − 𝑥0𝑗 )𝛿(𝑦0 − 𝑦0𝑗 ) = 0,

𝑀𝑖𝑗

[

𝐷2
0𝑤

(1)
0 (𝑇0) +𝐷2

0𝑧
(1)
𝑖0 (𝑇0)

]

+𝐾𝑖𝑗𝑧
(1)
𝑖0 (𝑇0) = 0. (C.4b)

iven the periodicity of the solution, the plate equation of motion is projected onto the unit cell domain 𝛺𝑥 (i.e., the lattice unit is
eriodically repeated along the lattice vector directions) to yield

∫𝛺𝑥

[

𝜌⋆ℎ𝐷2
0𝑤

(1)
0 (𝑇0) + (𝑘41𝐷

∗
11 + 𝑘21𝑘

2
2(2𝐷

∗
12 + 4𝐷∗

66) + 𝑘42𝐷
∗
22)𝑤

(1)
0 (𝑇0)

]

𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0)𝑑𝑥0𝑑𝑦0

+ ∫𝛺𝑥

{

∑

𝑖𝑗
𝑀𝑖𝑗

[

𝐷2
0𝑤

(1)
0 (𝑇0) +𝐷2

0𝑧
(1)
𝑖0 (𝑇0)

]

𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0)𝛿(𝑥0 − 𝑥𝑗 )𝛿(𝑦0 − 𝑦𝑗 )
}

𝑑𝑥0𝑑𝑦0 = 0,

𝑀𝑖𝑗

[

𝐷2
0𝑤

(1)
0 (𝑇0) +𝐷2

0𝑧
(1)
𝑖0 (𝑇0)

]

+𝐾𝑖𝑗𝑧
(1)
𝑖0 (𝑇0) = 0.

(C.5)

For the metamaterial lattice with an array of equally spaced single-dof resonators (so that the subscripts in 𝑀𝑖𝑗 , 𝐾𝑖𝑗 can be dropped),
the first order equations read:

[

𝑀𝐻 (𝑘1, 𝑘2) +𝑀 𝑀
𝑀 𝑀

]

[

𝐷2
0𝑤

(1)
0

𝐷2
0𝑧

(1)
0

]

+
[

𝐾𝐻 (𝑘1, 𝑘2) 0
0 𝐾

]

[

𝑤(1)
0

𝑧(1)0

]

=
[

0
0

]

. (C.6)

pon searching for solutions of the form [𝑤(1)
0 , 𝑧(1)0 ] = 𝐴(𝑥2, 𝑦2, 𝑇2)𝝓 exp(𝑖𝜔𝑇0), the ensuing eigenvalue problem is expressed as:

(𝐊 − 𝜔2𝐌)𝝓 = 𝟎, (C.7)

here the column vector 𝝓 denotes the eigenvector and the mass and stiffness matrices are given by

𝐌 =
[

𝑀𝐻 (𝑘1, 𝑘2) +𝑀 𝑀
𝑀 𝑀

]

and 𝐊 =
[

𝐾𝐻 (𝑘1, 𝑘2) 0
0 𝐾

]

. (C.8)

here
[ 4 2 2 ∗ ∗ 4 ∗ ]
16

𝐾𝐻 = 𝐴𝑘(𝑘1, 𝑘2) 𝑘1 + 𝑘1𝑘22(𝐷12 + 2𝐷66) + 𝑘2𝐷22 (C.9)
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w
a
t
m
a

T

f

T
p

and 𝑀𝐻 = 𝜌∗ℎ𝐴𝑘(𝑘1, 𝑘2) with

𝐴𝑘(𝑘1, 𝑘2) =
4
√

3 sin
(

𝑘1
2

)

sin
(

1
4

(

𝑘1 +
√

3𝑘2
))

𝑘1
(

𝑘1 +
√

3𝑘2
) . (C.10)

Setting the determinant of the coefficient matrix in Eq. (C.7) to zero yields the linear dispersion equation:

det(𝐊 − 𝜔2𝐌) = 0, (C.11)

whose roots denoted by 𝜔− and 𝜔+ are the frequencies of the acoustic mode 𝝓− and the optical mode 𝝓+, respectively.
The first order solutions of the plate displacement and the resonator motion at the origin are expressed as

𝑤(1)
0 = 𝐴±(𝑥2, 𝑦2, 𝑇2)𝜙

±
1 𝑒

(𝑖𝜔±𝑇0) + 𝑐.𝑐. (C.12)

𝑧(1)0 = 𝐴±(𝑥2, 𝑦2, 𝑇2)𝜙
±
2 𝑒

(𝑖𝜔±𝑇0) + 𝑐.𝑐. (C.13)

here 𝐴±(𝑥2, 𝑦2, 𝑇2) is the slowly-varying (in space and time) complex-valued amplitude. We take + or- depending on whether the
coustic or the optical wave is sought to be expanded. The cubic resonator restoring force [𝑧(1)0 ]3 will generate terms proportional
o (𝐴±)2�̄�±(𝜙±

2 )
3𝑒𝑖𝜔±𝑇0 (i.e., �̄�± is the complex conjugate of 𝐴±) which induce resonance effects on either the acoustic or the optical

ode. For a more general treatment as discussed in Section 4, we assume that the first-order solution contains both the acoustic
nd optical wave eigenvectors; that is,

𝑤(1)
0 = 𝐴−(𝑥2, 𝑦2, 𝑇2)𝜙−

1 𝑒
𝑖𝜔−𝑇0 + 𝐴+(𝑥2, 𝑦2, 𝑇2)𝜙+

1 𝑒
𝑖𝜔+𝑇0 + 𝑐.𝑐. (C.14)

𝑧(1)0 = 𝐴−(𝑥2, 𝑦2, 𝑇2)𝜙−
2 𝑒

𝑖𝜔−𝑇0 + 𝐴+(𝑥2, 𝑦2, 𝑇2)𝜙+
2 𝑒

𝑖𝜔+𝑇0 + 𝑐.𝑐. (C.15)

his approach will generate resonance terms proportional to (𝐴−)2�̄�−(𝜙−
2 )

3𝑒𝑖𝜔−𝑇0 and
𝐴−𝐴+�̄�+𝜙−

2 (𝜙
+
2 )

2𝑒𝑖𝜔−𝑇0 for the acoustic mode or (𝐴+)2�̄�+(𝜙+
2 )

3𝑒𝑖𝜔+𝑇0 and 𝐴+𝐴−�̄�−𝜙+
2 (𝜙

−
2 )

2𝑒𝑖𝜔+𝑇0 for the optical mode. Thus, the
irst order solution 𝑤(1) and 𝑧(1)𝑖𝑗 is expressed as

𝑤(1) = 𝐴+(𝑇2, 𝑥2, 𝑦2)𝜙+
1 𝑒

𝑖𝜔+𝑇0𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) + 𝐴−(𝑇2, 𝑥2, 𝑦2)𝜙−
1 𝑒

𝑖𝜔−𝑇0𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) + 𝑐.𝑐.,

𝑧(1)𝑖𝑗 = 𝐴+(𝑇2, 𝑥2, 𝑦2)𝜙+
2 𝑒

𝑖𝜔+𝑇0𝑒𝑖(𝑘1𝑥0𝑗+𝑘2𝑦0𝑗 ) + 𝐴−(𝑇2, 𝑥2, 𝑦2)𝜙−
2 𝑒

𝑖𝜔−𝑇0𝑒𝑖(𝑘1𝑥0𝑗+𝑘2𝑦0𝑗 ) + 𝑐.𝑐..
(C.16)

hird order problem. Substituting the first order solution (C.16) into the right-hand side of Eqs. ((C.3c), (C.3d)) yields the cubic
roblem:

𝜌⋆ℎ𝐷2
0𝑤

(3) +

[

𝐷∗
11
𝜕4𝑤(3)

𝜕𝑥40
+ (2𝐷∗

12 + 4𝐷∗
66)

𝜕4𝑤(3)

𝜕𝑥20𝜕𝑦
2
0

+𝐷∗
22
𝜕4𝑤(3)

𝜕𝑦40

]

(C.17a)

+
∑

𝑖,𝑗
𝑀𝑖𝑗

[

𝐷2
0𝑤

(3) +𝐷2
0𝑧

(3)
𝑖𝑗

]

𝛿(𝐱0 − 𝐬𝑗 ) =
{

−2𝑖𝜔±𝜌⋆ℎ𝜙±
1𝐷2𝐴

±

− 2
∑

𝑖,𝑗
𝑖𝜔±𝑀𝑖𝑗 (𝜙

±
1 + 𝜙±

2 )𝐷2𝐴
±𝛿(𝐱𝟎 − 𝐬𝑗 ) − 2𝜙±

1
[

𝐷∗
11

𝜕4𝐴±

𝜕𝑥20𝜕𝑥
2
2

+ (2𝐷∗
12 + 4𝐷∗

66)(
𝜕4𝐴±

𝜕𝑥20𝜕𝑦
2
2

+ 𝜕4𝐴±

𝜕𝑥22𝜕𝑦
2
0

) +𝐷∗
22

𝜕4𝐴±

𝜕𝑦20𝜕𝑦
2
2

]

}

𝑒𝑖𝜔
±𝑇0𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) + 𝑐.𝑐.,

𝑀𝑖𝑗

[

𝐷2
0𝑤

(3)(𝑥2, 𝑦2, 𝑇2) +𝐷2
0𝑧

(3)
𝑖𝑗 (𝑥2, 𝑦2, 𝑇2)

]

+𝐾𝑖𝑗𝑧
(3)
𝑖𝑗 (𝑥2, 𝑦2, 𝑇2) (C.17b)

=
[

−2𝑖𝜔±𝑀𝑖𝑗 (𝜙
±
1 + 𝜙±

2 )𝐷2𝐴
±

− 3𝑁 (3)
𝑖𝑗 ((𝐴±)2�̄�±(𝜙±

2 )
3 + 2𝐴±𝐴∓�̄�∓𝜙±

2 (𝜙
∓
2 )

2)
]

𝑒𝑖𝜔
±𝑇0𝑒𝑖(𝑘1𝑥0𝑗+𝑘2𝑦0𝑗 ) +𝑁𝑆𝑇 + 𝑐.𝑐.,

where NST represents terms that do not cause secular effects due to the cubic nonlinearity. Given the periodic nature of the resonance
forcing terms, the periodicity is enforced again according to 𝑤(3) = 𝑤(3)

0 𝑒𝑖(𝑘1𝑥0+𝑘2𝑦0) and 𝑧(3)𝑖𝑗 = 𝑧(3)0 𝑒𝑖(𝑘1𝑥0𝑗+𝑘2𝑦0𝑗 ) (for the case of one
resonator per unit cell). The ensuing third order equation (C.17a) is projected onto the unit cell domain 𝛺𝑥, after carrying out the
nondimensionalization procedure expressed by Eq. (11). The reduced equations become

�̃�𝐻𝐷2
0�̃�

(3)
0 + �̃�𝐻 �̃�(3)

0 + �̃�
[

𝐷2
0�̃�

(3)
0 +𝐷2

0 �̃�
(3)
0

]

=
{

−2𝑖𝜔±�̃�𝐻𝜙±
1𝐷2𝐴

± (C.18a)

− 2𝑖𝜔±�̃�(𝜙±
1 + 𝜙±

2 )𝐷2𝐴
± + 2�̃�(�̃�1, �̃�2)𝜙

±
1
[

�̃�11
�̃�21𝜕

2𝐴±

𝜕�̃�22

+ (2�̃�12 + 4�̃�66)(
�̃�21𝜕

2𝐴±

2
+

�̃�22𝜕
2𝐴±

2
) + �̃�22

�̃�22𝜕
2𝐴±

2

]

}

𝑒𝑖𝜔
±𝑇0 + 𝑐.𝑐.,
17

𝜕�̃�2 𝜕�̃�2 𝜕�̃�2
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�̃�(𝐷2
0�̃�

(3)
0 +𝐷2

0 �̃�
(3)
0 ) + �̃��̃�(3)0 =

[

−2𝑖𝜔±�̃�(𝜙±
1 + 𝜙±

2 )𝐷2𝐴
± (C.18b)

− 3�̃� (3)
(

(𝐴±)2�̄�±(𝜙±
2 )

3 + 2𝐴±𝐴∓�̄�∓𝜙±
2 (𝜙

∓
2 )

2
)]

𝑒𝑖𝜔
±𝑇0 +𝑁𝑆𝑇 + 𝑐.𝑐..

By enforcing the solvability condition in equations (C.18a) and (C.18b), one renders the inhomogeneous terms orthogonal to the
solution of the adjoint problem, [�̃�∗

0 , �̃�
∗
0]

⊤ = [𝜙±
1 , 𝜙

±
2 ]𝑒

−𝑖𝜔±𝑇0 , to obtain

𝜙±
1

{

−2𝑖𝜔±�̃�𝐻𝜙±
1𝐷2𝐴

± − 2𝑖�̃�𝜔±(𝜙±
1 + 𝜙±

2 )𝐷2𝐴
± + 2�̃�(�̃�1, �̃�2)𝜙

±
1 (�̃�11

�̃�21𝜕
2𝐴±

𝜕�̃�22

+ (2�̃�12 + 4�̃�66)(
�̃�21𝜕

2𝐴±

𝜕�̃�22
+

�̃�22𝜕
2𝐴±

𝜕�̃�22
) + �̃�22

�̃�22𝜕
2𝐴±

𝜕�̃�22
)
}

+ 𝜙±
2

{

−2𝑖𝜔±�̃�(𝜙±
2 + 𝜙±

1 )𝐷2𝐴
± − 3�̃� (3) ( (𝜙±

2 )
3(𝐴±)2�̄�± + 2𝐴±𝐴∓�̄�∓𝜙±

2 (𝜙
∓
2 )

2 )
}

= 0.

(C.19)

Setting the slow space derivative terms to zero (i.e., the nonlinear frequency modulation of the waves is sought) yields the modulation
equation as

− 2𝑖𝜔±[�̃�𝐻 (𝜙±
1 )

2 + �̃�((𝜙±
1 )

2 + (𝜙±
2 )

2 + 2𝜙±
1 𝜙

±
2 )]𝐷2𝐴

±

− 3�̃� (3) [ (𝜙±
2 )

4(𝐴±)2�̄�± + 2𝐴±𝐴∓�̄�∓(𝜙±
2 )

2(𝜙∓
2 )

2 ]= 0,
(C.20)

By taking into account in Eq. (C.20) of the eigenvector normalization condition

(�̃�𝐻 + �̃�)(𝜙±
1 )

2 + 2�̃�𝜙±
2 𝜙

±
1 + �̃�(𝜙±

2 )
2 = 1, (C.21)

one obtains the final modulation equation as

2𝑖𝜔±𝐷2𝐴
± + 3�̃� (3) [(𝜙±

2 )
4(𝐴±)2�̄�± + 2𝐴±𝐴∓�̄�∓(𝜙±

2 )
2(𝜙∓

2 )
2] = 0. (C.22)

The equations obtained here by direct asymptotic treatment are exactly the same as Eq. (29).

References

[1] G.U. Patil, K.H. Matlack, Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses, Acta Mech. (2021) 1–46.
[2] L. Van Belle, C. Claeys, E. Deckers, W. Desmet, Implications of nonsub-wavelength resonator spacing on the sound transmission loss predictions of locally

resonant metamaterial partitions, J. Vib. Acoust. 143 (4) (2021) 044503.
[3] X. Fang, K.-C. Chuang, X.-L. Jin, D.-F. Wang, Z.-L. Huang, An inertant elastic metamaterial plate with extra wide low-frequency flexural band gaps, J.

Appl. Mech. 88 (2) (2021) 021002.
[4] Y. Xue, J. Li, Y. Wang, F. Li, Tunable nonlinear band gaps in a sandwich-like meta-plate, Nonlinear Dynam. 106 (2021) 2841–2857.
[5] H. Danawe, S. Tol, Experimental realization of negative refraction and subwavelength imaging for flexural waves in phononic crystal plates, J. Sound Vib.

518 (2022) 116552.
[6] A. Foehr, O.R. Bilal, S.D. Huber, C. Daraio, Spiral-based phononic plates: From wave beaming to topological insulators, Phys. Rev. Lett. 120 (20) (2018)

205501.
[7] V.F. Dal Poggetto, A.L. Serpa, Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method, J. Sound Vib.

495 (2021) 115909.
[8] L. Liu, A. Sridhar, M. Geers, V. Kouznetsova, Computational homogenization of locally resonant acoustic metamaterial panels towards enriched continuum

beam/shell structures, Comput. Methods Appl. Mech. Engrg. 387 (2021) 114161.
[9] L. Fan, Y. He, X.-a. Chen, X. Zhao, A frequency response function-based optimization for metamaterial beams considering both location and mass

distributions of local resonators, J. Appl. Phys. 130 (11) (2021) 115101.
[10] J. Jung, S. Goo, S. Wang, Investigation of flexural wave band gaps in a locally resonant metamaterial with plate-like resonators, Wave Motion 93 (2020)

102492.
[11] C. Lim, J.T. Li, Z. Zhao, et al., Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics, Extreme

Mech. Lett. 41 (2020) 100994.
[12] R. Chaunsali, C.-W. Chen, J. Yang, Subwavelength and directional control of flexural waves in zone-folding induced topological plates, Phys. Rev. B 97

(5) (2018) 054307.
[13] E. Miranda Jr., S. Rodrigues, C. Aranas Jr., J. Dos Santos, Plane wave expansion and extended plane wave expansion formulations for Mindlin–Reissner

elastic metamaterial thick plates, J. Math. Anal. Appl. 505 (2) (2022) 125503.
[14] W. Guo, Z. Yang, Q. Feng, C. Dai, J. Yang, X. Lei, A new method for band gap analysis of periodic structures using virtual spring model and energy

functional variational principle, Mech. Syst. Signal Process. 168 (2022) 108634.
[15] A. Bacigalupo, L. Gambarotta, Simplified modelling of chiral lattice materials with local resonators, Int. J. Solids Struct. 83 (2016) 126–141.
[16] C. Comi, L. Driemeier, Wave propagation in cellular locally resonant metamaterials, Lat. Am. J. Solids Struct. 15 (2018).
[17] K.H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, C. Daraio, Composite 3D-printed metastructures for low-frequency and broadband vibration absorption,

Proc. Natl. Acad. Sci. 113 (30) (2016) 8386–8390.
[18] E. Miranda Jr., E. Nobrega, S. Rodrigues, C. Aranas Jr., J. Dos Santos, Wave attenuation in elastic metamaterial thick plates: Analytical, numerical and

experimental investigations, Int. J. Solids Struct. 204 (2020) 138–152.
[19] Q. Wang, J. Li, Y. Zhang, Y. Xue, F. Li, Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators, Mech. Syst.

Signal Process. 151 (2021) 107375.
[20] C. Cai, J. Zhou, K. Wang, H. Pan, D. Tan, D. Xu, G. Wen, Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators,

Mech. Syst. Signal Process. 174 (2022) 109119.
[21] G.L. Holst, G.H. Teichert, B.D. Jensen, Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms, J.

Mech. Des. 133 (5) (2011).
18

[22] Y.-H. Chen, C.-C. Lan, An adjustable constant-force mechanism for adaptive end-effector operations, J. Mech. Des. 134 (3) (2012).

http://refhub.elsevier.com/S0022-460X(23)00270-5/sb1
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb2
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb2
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb2
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb3
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb3
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb3
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb4
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb5
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb5
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb5
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb6
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb6
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb6
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb7
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb7
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb7
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb8
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb8
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb8
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb9
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb9
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb9
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb10
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb10
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb10
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb11
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb11
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb11
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb12
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb12
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb12
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb13
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb13
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb13
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb14
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb14
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb14
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb15
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb16
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb17
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb17
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb17
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb18
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb18
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb18
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb19
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb19
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb19
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb20
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb20
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb20
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb21
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb21
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb21
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb22


Journal of Sound and Vibration 562 (2023) 117821Y. Shen and W. Lacarbonara
[23] C.-W. Hou, C.-C. Lan, Functional joint mechanisms with constant-torque outputs, Mech. Mach. Theory 62 (2013) 166–181.
[24] J.R. Raney, N. Nadkarni, C. Daraio, D.M. Kochmann, J.A. Lewis, K. Bertoldi, Stable propagation of mechanical signals in soft media using stored elastic

energy, Proc. Natl. Acad. Sci. 113 (35) (2016) 9722–9727.
[25] C. Lim, Z. Yaw, Z. Chen, et al., Periodic and aperiodic 3-D composite metastructures with ultrawide bandgap for vibration and noise control, Compos.

Struct. 287 (2022) 115324.
[26] Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (5485) (2000) 1734–1736.
[27] A. Casalotti, S. El-Borgi, W. Lacarbonara, Metamaterial beam with embedded nonlinear vibration absorbers, Int. J. Non-Linear Mech. 98 (2018) 32–42.
[28] Y. Shen, W. Lacarbonara, Nonlinear dispersion properties of metamaterial beams hosting nonlinear resonators and stop band optimization, Mech. Syst.

Signal Process. 187 (2023) 109920.
[29] A. Fortunati, A. Bacigalupo, M. Lepidi, A. Arena, W. Lacarbonara, Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian

perturbation approach, Nonlinear Dynam. 108 (2) (2022) 765–787.
[30] Y. Xiao, J. Wen, X. Wen, Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators, J. Phys. D: Appl.

Phys. 45 (19) (2012) 195401.
[31] E. Miranda Jr., J. Dos Santos, Flexural wave band gaps in elastic metamaterial thin plate, in: Proceedings of the IX Mechanical Engineering Brazilian

Congress, 2016, pp. 1–10.
[32] Q. Qin, M.-P. Sheng, Analyses of multi-bandgap property of a locally resonant plate composed of periodic resonant subsystems, Internat. J. Modern Phys.

B 32 (24) (2018) 1850269.
[33] Q. Li, M. Sheng, An improved method for bandgap calculation of a locally resonant plate with multi-periodic of multiple degree-of-freedom resonators, J.

Appl. Phys. 129 (24) (2021) 245110.
[34] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, John Wiley & sons, New-York, 1979.
[35] R.K. Narisetti, M.J. Leamy, M. Ruzzene, A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures, J. Vib.

Acoust. 132 (2010) 031001–11.
[36] M.D. Fronk, M.J. Leamy, Direction-dependent invariant waveforms and stability in two-dimensional, weakly nonlinear lattices, J. Sound Vib. 447 (2019)

137–154.
[37] M. Bukhari, O. Barry, Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators, Nonlinear Dynam. 99 (2020) 1539–1560.
[38] M. Lepidi, A. Bacigalupo, Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure, Nonlinear

Dynam. 98 (2019) 2711–2735.
[39] M.D. Fronk, M.J. Leamy, Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials, Phys. Rev. E 100 (2019) 032213.
[40] K. Manktelow, M.J. Leamy, M. Ruzzene, Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain, Nonlinear Dynam.

63 (2011) 193–203.
[41] M.D. Fronk, M.J. Leamy, Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems, J. Vib. Acoust. 139

(2017) 051003–13.
[42] L. Fang, M.J. Leamy, Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain, Phys. Rev. E 105 (2022) 014203.
[43] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, second ed., in: Cambridge Solid State Science Series, Cambridge University Press, 1997,

http://dx.doi.org/10.1017/CBO9781139878326.
[44] S. Malek, L. Gibson, Effective elastic properties of periodic hexagonal honeycombs, Mech. Mater. 91 (2015) 226–240.
[45] S. Sorohan, D.M. Constantinescu, M. Sandu, A.G. Sandu, On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical

formulation for free skin effect, Mech. Mater. 119 (2018) 74–91.
[46] M. Murer, S. Guruva, G. Formica, W. Lacarbonara, A multi-bandgap metamaterial with multi-frequency resonators, J. Compos. Mater. (2023) 1–22.
[47] W. Lacarbonara, Nonlinear Structural Mechanics. Theory, Dynamical Phenomena and Modeling, first ed., Springer, 2013.
[48] W. Lacarbonara, R. Camillacci, Nonlinear normal modes of structural systems via asymptotic approach, Int. J. Solids Struct. 41 (2004) 5565–5594.
[49] V. Settimi, M. Lepidi, A. Bacigalupo, Nonlinear dispersion properties of one-dimensional mechanical metamaterials with inertia amplification, Int. J. Mech.

Sci. 201 (2021) 106461.
19

http://refhub.elsevier.com/S0022-460X(23)00270-5/sb23
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb24
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb24
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb24
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb25
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb25
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb25
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb26
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb27
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb28
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb28
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb28
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb29
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb29
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb29
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb30
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb30
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb30
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb31
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb31
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb31
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb32
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb32
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb32
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb33
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb33
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb33
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb34
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb35
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb35
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb35
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb36
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb36
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb36
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb37
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb38
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb38
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb38
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb39
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb40
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb40
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb40
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb41
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb41
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb41
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb42
http://dx.doi.org/10.1017/CBO9781139878326
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb44
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb45
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb45
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb45
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb46
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb47
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb48
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb49
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb49
http://refhub.elsevier.com/S0022-460X(23)00270-5/sb49

	Nonlinearity enhanced wave bandgaps in metamaterial honeycombs embedding spider web-like resonators
	Introduction
	Problem formulation and metamaterial modeling
	Linear dispersion functions and eigenvectors
	Nonlinear asymptotic solution
	Numerical examples
	Dispersion properties
	Design of the nonlinear resonators with certain targeted frequency
	Numerical example: target frequency ω=5

	Numerical validation of the stop band behavior with damping

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. The orthotropic bending coefficients and the density of the equivalent plate
	Appendix B. The limit values for the linear dispersion function
	Appendix C. Direct asymptotic treatment and the Floquet–Bloch solution
	References


