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Abstract

Circular RNAs (circRNAs) are a new acknowledged class of RNAs that has been shown to

play a major role in several biological functions both in physiological and pathological condi-

tions, operating as critical part of regulatory processes, like competing endogenous RNA

(ceRNA) networks. The ceRNA hypothesis is a recently discovered molecular mechanism

that adds a new key layer of post-transcriptional regulation, whereby various types of RNAs

can reciprocally influence each other’s expression competing for binding the same pool of

microRNAs, even affecting disease development. In this study, we build a network of cir-

cRNA-miRNA-mRNA interactions in human breast cancer, called CERNOMA, that is a

bipartite graph with one class of nodes corresponding to differentially expressed miRNAs

(DEMs) and the other one corresponding to differentially expressed circRNAs (DEC) and

mRNAs (DEGs). A link between a DEC (or DEG) and DEM is placed if it is predicted to be a

target of the DEM and shows an opposite expression level trend with respect to the DEM.

Within the CERNOMA, we highlighted an interesting deregulated circRNA-miRNA-mRNA

triplet, including the up-regulated hsa_circRNA_102908 (BRCA1 associated RING domain

1), the down-regulated miR-410-3p, and the up-regulated ESM1, whose overexpression

has been already shown to promote tumor dissemination and metastasis in breast cancer.

Introduction

Circular RNAs (circRNAs) are a special class of non-coding RNAs that are generated by a pro-

cess of non-canonical splicing that joins a 5’ splice site to an upstream 3’ splice site, resulting in

a covalent closed loop [1–3]. CircRNAs are widely observed in both plants [4] and animals [5],

and even if their biological functions remain broadly unknown, increasing evidence suggests

them as crucial regulators of multiple biological processes, including the development and pro-

gression of human diseases such as cancers [6–13]. The high resistance to degradation of cir-

cRNAs, which is dependent on their circular structure, makes them different from other linear

RNAs. This stability causes tissues such as blood and plasma to be especially enriched with
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circular RNAs compared to messenger RNAs (mRNAs) and other non-coding RNAs [14].

Thus, when released into the bloodstream by tumoral cells, circRNAs can be more easily

detected with respect to other transcripts, revealing them as good potential biomarkers for

early diagnosis, metastasis, and prognosis [15]. Several findings reported that circRNAs are

aberrantly modulated in human cancer tissues, thus affecting carcinogenesis and metastatiza-

tion, and can also be useful for predicting and monitoring treatment response [12, 16, 17].

Even though no circRNA have been effectively used as biomarkers in clinical trials yet, the

impact of circRNA-mediated regulation on various cell transcriptome showed a great potential

to be investigated especially in human diseases [14, 18]. Interestingly, recent studies have been

focusing on the possibility that circRNAs can operate as part of competing endogenous RNA

(ceRNA) regulatory networks, playing major roles in normal development and in pathologic

conditions like human cancer [12, 15, 18–25].

The ceRNA mechanism is a recent discovery providing a possible explanation of fine-tuned

post-transcriptional gene regulation orchestrated by the competing endogenous RNAs and

microRNAs (miRNAs) [26–30]. microRNAs are small non-coding RNAs (* 20–22 nucleotides

long) responsible for RNA silencing and post-transcriptional regulation of gene expression

[31]. The ceRNA hypothesis states that various types of RNAs can reciprocally influence each

other’s expression competing for binding the same pool of miRNAs, thus preventing mRNAs to

be targeted [26]. This RNA-RNA crosstalk can add a new level to the understanding of complex

regulatory networks that, when perturbed, could lead to disease development [19, 32–35].

Among several computation tools for ceRNAs discovery, we recently developed SPINNA-

KER [36], the R-implementation of the well-established model [37] that was acknowledged as

the best one in terms of percentage of identified RNAs acting as ceRNA in breast cancer tissues

[38]. By exploiting a multivariate statistical analysis, SPINNAKER first searches for highly corre-

lated RNA pairs (i.e., co-expressed) and then evaluates the extent to which this correlation is

direct or mediated by miRNAs, via the computation of the sensitivity correlation [37]. Finally,

SPINNAKER selects only those RNA pairs whose interaction is mediated by some miRNAs (i.e.,

highest sensitivity correlation) and builds a ceRNA network where nodes are ceRNAs and links

are miRNAs mediating their interactions. The ceRNA network can be optionally refined by con-

sidering only those triplets with ceRNAs showing a predicted binding site for the miRNA.

To run SPINNAKER and build the ceRNA network, we need as input three matrices of

RNA expression levels from the same cohort of tissues/cells (i.e., two matrices for the two clas-

ses of candidate competing RNAs and one for the miRNAs). Unfortunately, these types of data

are not always available, especially for the recently acknowledged class of circRNAs. To tackle

this issue, in this study we developed a new computational pipeline to unveil the regulatory

role of circRNA in the miRNA-target interaction network (Fig 1), when we are unable to apply

SPINNAKER.

First, we build a miRNA-target regulatory network (MRN), where nodes are miRNAs and

their target genes (in this case are circRNAs and mRNAs) being significantly differentially

expressed between normal and cancer tissues. Then, we generate its mapping onto the space of

ceRNA network, ending up with the here-defined CERNOMA. The CERNOMA network is

obtained from the MRN: (i) by selecting only the circRNAs and mRNAs sharing the predicted

binding site for the same miRNAs, and (ii) by narrowing the circRNA-miRNA-mRNA triplets

to those ones with a specific expression pattern. Specifically, we selected those triplets whose

mRNA and circRNA show the same expression level direction (significantly up- or down-reg-

ulated) and whose miRNA shows an opposite direction (significantly down- or up-regulated).

This selection should mirror the action provided by SPINNAKER to retain only the highly cor-

related pairs with a highest sensitivity correlation, when the correlation and thus the sensitivity

correlation cannot be computed.
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By applying the pipeline to study breast invasive carcinoma, within the CERNOMA net-

work we can identify some circRNAs modulated in breast cancer exhibiting a putative regula-

tory activity with respect to other RNAs.

Fig 1. Workflow of the study. The input data are: (i) RNA- and miRNA-sequencing expression data from breast

invasive carcinoma (BRCA) and matched-normal tissues retrieved from TCGA, (ii) microarray data of circRNAs from

breast cancer and adjacent no-tumor breast tissues retrieved from GEO (GSE182471). Expression data were processed

to obtain differential expressed RNAs (DEGs), differential expressed miRNAs (DEMs), and differential expressed

circRNAs (DECs) between normal and breast cancer tissues. Next, the miRNAs predicted to target DEGs and DECs

were obtained from TargetScan and circFunBase, respectively. The predicted miRNAs and the DEMs were intersected

and a miRNA-target regulatory network (MRN) was constructed. Then, mRNA-circRNA pairs sharing the same

miRNA and showing an opposite expression level trend with respect to the miRNA were retained. The so-called

CERNOMA network was thus obtained and released as final output of the analysis.

https://doi.org/10.1371/journal.pone.0289051.g001
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Materials and methods

Expression data collection

High throughput RNA-sequencing and miRNA-sequencing expression data of breast invasive

carcinoma (brca) were acquired from The Cancer Genome Atlas (TCGA) data portal on Feb-

ruary 2022 [39]. RNA-sequencing data correspond to read counts calculated by HT-Seq and

FPKM normalized. miRNA-sequencing data correspond to normalized counts in reads-per-

million-miRNA-mapped. A total of 204 samples, 102 tumor and 102 matched-normal tissues

(i.e., the matched-normal tissue is defined as the tissue that is adjacent to the tumor and taken

from the same patient) for both RNA- and miRNA-sequencing experiments were retained for

the subsequent analysis.

Microarray dataset providing circular RNA (circRNAs) expression profile data, detected

with 074301 Arraystar Human CircRNA microarray V2 on August 2021, from 5 breast cancer

tissues and 5 adjacent non-tumor breast tissues were acquired from Gene Expression Omnibus

(GEO) [40] database (GSE182471).

Differential expression analysis

Collected expression data were first analyzed by performing the following two phases, follow-

ing the same procedure implemented in [41–43]:

Pre-processing. Expression data were first processed by applying a logarithmic (log2)

transformation and then were filtered out those genes having too many missing values among

the samples (i.e., we filtered out entries showing missing values for more than 75% of the sam-

ples) and those genes with a little variation—measured by the Inter Quartile Range (IQR) per-

centile—across the samples (i.e., we filtered out entries showing an IQR lower than the 10th

percentile of the IQR distribution).

Filtering. The logarithmic ratio of the average expression levels of tumor samples and

matched-normal samples (log fold-change) was computed and those genes falling behind, in

absolute value, a fixed cutoff on the log fold-change were removed. Then, according to the

type of samples distribution, a parametric (Student’s t-test for RNAs and miRNAs) or non-

parametric (Wilcoxon test for circRNAs) statistical test was performed. Finally, the obtained

p-values were independently adjusted for each type of data set by using False Discovery Rate

(FDR) method and those genes showing an FDR lower than a chosen cut-off were considered

as statically significant.

At end of this step, the differentially expressed RNAs (DEGs), the differentially expressed

miRNAs (DEMs), and the differentially expressed circRNAs (DECs) between tumor and nor-

mal samples were obtained.

miRNA-target regulatory network

Starting from DEGs, DECs, and DEMs, a miRNA-target regulatory network is built via the fol-

lowing two phases:

Prediction of miRNA-target interactions. Predictions of miRNAs targeting the differen-

tially expressed mRNAs were obtained by querying TargetScan [44], which is the most up-to-

date tool providing computationally predicted miRNA-mRNA interactions by searching for

the exact matching between the seed region of a miRNA and the 3’ UTR of its targets.

Predictions of miRNAs targeting the differentially expressed circRNAs were obtained by

querying circFunBase [45], which is a comprehensive database of functionally annotated cir-

cRNAs with more than 7000 functional circRNA entries regularly updated with newly pub-

lished data, and including also computationally predicted miRNA-circRNA interactions.
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Names and features for circRNAs and miRNAs refer to circBase [46] and miRBase [47]

sources, respectively.

Network construction. The miRNAs predicted to target DECs and DEGs were then inter-

sected with DEMs and a miRNA-target regulatory network (MRN) was constructed as a bipar-

tite network, where one class of node corresponds to DEMs and the other one corresponds to

DECs or DEGs. A link between them is placed if a DEC or DEG is predicted to be target of the

same DEM (Fig 2A).

At the end of this step the miRNA-target regulatory network is released.

CERNOMA

The miRNA-target regulatory network is finally mapped onto a ceRNA space, where first the

circRNAs and mRNAs sharing the same miRNAs were selected. Then, following the expres-

sion direction suggested by a ceRNA mechanism, the circRNA-miRNA-mRNA triplets were

filtered in order to retain only those ones where the miRNA showed an opposite expression

level trend with respect both to the circRNA and mRNA predicted to be its targets (i.e., up-reg-

ulated miRNA, down-regulated circRNA and mRNA or viceversa). Thus, the so-called

Fig 2. Regulatory network sketches. A) miRNA-target Regulatory Network (MRN). It is a bipartite network, where one class of nodes corresponds to differential

expressed miRNAs (diamond), the other one corresponds to differential expressed circRNAs (octagons) or differentially expressed mRNAs (circles), a link between them

occurs if a circRNA or mRNA is predicted to be target of the miRNA. B) CERNOMA. It is the mapping of MRN onto a ceRNA space. It is a bipartite network with the

same classes of MRN nodes, but a link between them occurs (light blue color) both if the circRNA and mRNA are predicted to be target of the same miRNA and they show

an opposite expression level trend with respect to the miRNA targeting them (up-regulated circRNA and mRNA, down-regulated miRNA or viceversa). Yellow and blue

nodes refer to up- and down-regulated genes in breast cancer tissues, respectively. Grey nodes refer to unselected nodes when mapping MRN onto CERNOMA. Grey links

refer to links of MRN that are not in CERNOMA, light blue links refer to links of MRN that are mapped in the CERNOMA.

https://doi.org/10.1371/journal.pone.0289051.g002
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CERNOMA was built as a bipartite network, where one class of nodes corresponds to DEMs

and the other one corresponds to DECs and DEGs. A link between them is placed if both the

DEC and DEG are predicted to be target of the DEM and show an opposite expression level

trend with respect to the DEM (Fig 2B).

At the end of this step the CERNOMA is released and draw by using Cytoscape software [48].

Functional enrichment analysis

enrichR software [49] was used to perform Gene Ontology (GO) analysis and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway enrichment analysis about the differentially

expressed genes appearing in the CERNOMA network that were targets of at least one differ-

entially expressed miRNAs. An adjusted p-value� 0.05 was set as threshold to identify signifi-

cantly enriched functional annotations amongst the selected gene list.

Results

Differential expression analysis

RNAs, miRNAs, and circRNAs expression data were first pre-processed and then analyzed by

conducting a differential expressed analysis in order to extract genes that were significantly

deregulated in breast cancer tissues (cf. Materials and Methods). According to the parameter set-

tings defined in Table 1, we obtained a total of 562 DEGs, 265 DEMs, and 3267 DECs (S1

Table), whose expression profiles are able to clearly discriminate between breast cancer and non-

tumoral adjacent breast tissues, as observed by the well-defined hierarchical clustering (Fig 3).

miRNA-target regulatory network

To investigate the ability of DECs and DEGs to bind miRNAs, we searched for predictions of

miRNA-mRNA and miRNA-circRNA interactions by querying TargetScan and circFunBase

database, respectively. We thus obtained a total of 39 miRNAs predicted to target 10 DECs and

231 DEGs. We then retained only those 17 miRNAs that were also differentially expressed in

breast cancer and we constructed a miRNA-target regulatory network as a bipartite network

composed of ten circRNAs (3 down-regulated and 7 up-regulated), 302 mRNAs (223 down-

regulated, 79 up-regulated), 136 miRNAs (71 down-regulated, 65 up-regulated), and 2107

edges (S2 Table).

CERNOMA

In order to identify a putative RNA-RNA cross-talk in breast cancer tissues, starting from the

miRNA-target regulatory network (MRN), we generated the CERNOMA, i.e., the MRN map-

ping onto a ceRNA space, where circRNAs and mRNAs share the same miRNA and are char-

acterized by opposite expression levels trend with respect to the miRNA predicted to target

both of them. The CERNOMA shows a total 208 circRNA-miRNA-mRNA triplets, and it is

composed of 218 miRNA-mRNA/circRNA interactions (edges), four circRNAs (2 up-

Table 1. Summary of differential expression analysis thresholds and results. DE (Differentially expressed), FC (Fold-change).

Adjusted p-value threshold FC threshold # of DE # of UP # of DOWN

RNAs 0.05 3 562 158 (28%) 404 (72%)

miRNAs 0.05 1.5 265 150 (57%) 115 (43%)

circRNAs 0.1 1.5 3267 1164 (36%) 2103 (64%)

https://doi.org/10.1371/journal.pone.0289051.t001
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regulated and 2 down-regulated in breast cancer tissues), ten miRNAs (8 up-regulated and 2

down-regulated in breast cancer tissues), and 103 mRNAs (12 up-regulated and 91 down-reg-

ulated in breast cancer tissues) (S2 Table).

The basic features of the four circRNAs modulated in breast cancer and appearing in the

CERNOMA were summarized in Table 2.

Notably, the CERNOMA is marked by a clear segregation into two internally well-con-

nected components (Figs 4 and 6), including genes involved in different pathways and biologi-

cal processes (Figs 5 and 7). In particular, the first largest component (Fig 4) is composed of

eight up-regulated miRNAs (hsa-miR-128-3p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-

29a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-301a-3p, hsa-miR-425-5p, hsa-miR-7-

5p), two down-regulated circRNAs (hsa-circRNA-407041 and hsa-circRNA-104342), and 91

down-regulated mRNAs, mainly enriched in MAPK, PI3K, RAS, WTN, RAP1 signaling path-

ways, breast cancer pathway, cytokine-cytokine receptor interaction, and cytokine-related bio-

logical processes (S3 Table and Fig 5).

The smaller connected component (Fig 6) encompasses instead two down-regulated miR-

NAs (hsa-miR-410-3p and hsa-miR-29a-3p), two up-regulated circRNAs (hsa-circRNA-

102908 and hsa-circRNA-403236), and involves 12 up-regulated mRNAs, mainly enriched in

pathways and biological processes related to cell-cell communication, such as focal adhesion

and extracellular matrix interaction (S3 Table and Fig 7).

Fig 3. Heatmap and dendrogram of (A) differentially expressed RNAs (DEGs), (B) differentially expressed miRNAs (DEMs), and (C) differentially expressed circRNAs

(DECs). The expression profiles of DEGs, DEMs, and DECs are clustered according to rows (genes) and columns (samples) by using as distance metrics 1-ρ, where ρ is the

Pearson correlation and complete linkage algorithm as clustering method. Heatmap colors represent different expression levels (z-score normalized) that increase from

blue to yellow. Red bars refer to breast cancer tissues, while green bars refer to matched-normal breast tissues.

https://doi.org/10.1371/journal.pone.0289051.g003

Table 2. Main features of circRNAs appearing in the CERNOMA, retrieved from circFunBase [45].

circRNA Gene symbol Gene description Location hg19 (strand) UP/DOWN in brca

hsa_circRNA_407041 MSR1 macrophage scavenger receptor 1 chr8:16353301–16372347 (-) DOWN

hsa_circRNA_104342 BBS9 Bardet-Biedl Syndrome 9 chr7:33185853–33217203 (+) DOWN

hsa_circRNA_102908 BARD1 BRCA1 associated RING domain 1 chr2:215632205–215646233 (-) UP

hsa_circRNA_403236 ZNF827 zinc finger protein 827 chr4:146767107-146824367(-) UP

https://doi.org/10.1371/journal.pone.0289051.t002
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Discussion

CircRNAs are discovered as a special type of non-coding RNAs [3] likely plays a pivotal role in

regulatory pathways controlling lineage determination, cell differentiation, and function of

various cell types [20]. Due to their circular shape, circRNAs are resistant to degradation by

exonuclease activity, making them more stable than linear RNAs and reliable biomarker. Cir-

cRNAs have been also revealed key players in diverse human cancers, functioning as regulator

of the expression of their parental genes and exhibiting a ceRNA activity that may even affect

disease [7, 8, 10, 12, 15, 22, 24]. Yet, the impact of circRNA-mediated regulation on various

transcriptomes in cancer scenario still remains controversial and open-challenging field to

explore [18].

In this study, we investigated the deregulation of circRNAs and their potential regulatory

activity in human breast cancer via the development of a new computational pipeline, which

first constructs a miRNA-target regulatory network composed of significantly deregulated cir-

cRNAs and mRNAs predicted to be target of significantly deregulated miRNAs; and then

maps it onto a ceRNA space, ending up with the so-called CERNOMA, composed of cir-

cRNA-miRNA–mRNA triplets that could putatively exhibit RNA-RNA cross-talk activity.

Within the released CERNOMA network, we can distinguish two connected components: the

larger one including eight up-regulated miRNAs, two down-regulated circRNAs, and 91

Fig 4. First largest connected component of CERNOMA for breast cancer dataset. Network showing the circRNA-miRNA-mRNA interactions. Diamonds represents

miRNAs, octagons represent circRNAs, circles represent mRNAs. Gradual changes in node color represent differences in the expression levels of different genes

(increasing from blue to yellow).

https://doi.org/10.1371/journal.pone.0289051.g004

PLOS ONE Circular RNAs-based ceRNA network in human breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0289051 July 26, 2023 8 / 15

https://doi.org/10.1371/journal.pone.0289051.g004
https://doi.org/10.1371/journal.pone.0289051


down-regulated mRNAs (Fig 4); the smaller one including two down-regulated miRNAs, two

up-regulated circRNAs, and 12 up-regulated mRNAs (Fig 6).

In the first connected component, we observe the down-regulated circular RNA hsa_-

circRNA_407041 showing a predicted binding site for: (i) two members of miR-200 family

(hsa-miR-200b-3p and has-miR-200c-3p), whose deregulation have been already associated to

human breast cancer development and progression [50–54]; (ii) hsa-miR-425-5p, whose over-

expression has been recently observed to significantly promote breast cancer cell growth and

predicted a poor prognosis for breast cancer patients [55]; (iii) hsa-miR-301a-3p, an oncogenic

miRNA whose expression is associated with tumor development, metastases, and overall poor

prognosis in breast cancer [56]; and (iv) hsa-miR-7-5p, which was already known to be inhib-

ited by ciRS-7 [22] and whose over expression was found to be associated to poor prognosis in

other cancers such as lung carcinomas [57]. We identified also the down-regulated hsa_-

circRNA_104342 showing a predicted binding for two members of miR-15 family (hsa-miR-

15a-5p and hsa-miR-15b-5p), recently associated to breast cancer metastasis [58], and for hsa-

miR-128-3p that has been shown to function as oncomiR in breast cancer tissues and cell

lines, by increasing cell invasion, proliferation, and reducing apoptosis [59]. Downregulation

of circRNAs is frequent in cancer cells, as observed in hepatocellular carcinoma, colorectal

adenocarcinoma, prostate and ovarian cancer, lung adenocarcinoma [12]. In an attempt to

better understand the potential role of molecular players in the disease development and pro-

gression, we studied the pathways and functional gene ontology (GO) processes in which they

were involved. The KEGG pathway analysis indicated that the down-regulated DEGs of the

Fig 5. Enrichment analysis for first connected component of CERNOMA. Dot plot showing the top 20 KEGG pathways (A) and GO Biological Processes (B) (y axis) in

which the mRNAs of the first connected component were enriched (adjusted p-value< 0.05) as function of the number of mRNAs found in each category (x axis). Nodes

scale with the gene ratio (i.e., number of mRNAs over the total number of genes in that functional category) and are colored according to the adjusted p-value.

https://doi.org/10.1371/journal.pone.0289051.g005
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first connected component were mainly associated with MAPK, PI3K, RAP1, WNT signaling

pathways, breast cancer, cytokine-cytokine receptor interaction pathway (Fig 5A); and the GO

analysis revealed that they were involved in cellular response to cytokine stimulus, positive reg-

ulation of transcription, regulation of Mitogen-Activated Protein Kinase (MAPK) cascades

(Fig 5B). MAPK pathway is evolutionarily conserved kinase module, which participates in sev-

eral intracellular signaling pathways and plays an important role in controlling a wide spec-

trum of cellular processes, including proliferation, growth, migration, differentiation, and

apoptosis. Abnormal functioning of MAPK signaling pathways can play a crucial role in can-

cer development and progression [60, 61].

In the second connected component, we can observe the up-regulated circular RNA hsa_-

circRNA_102908 showing a predicted binding for hsa-miR-410-3p, which has been predicted

to bind also the up-regulated ESM1 gene. Increased expression level of ESM1 has been shown

to exhibited significantly enhanced proliferation, migration, and invasion in breast cancer cells

[10], as well as an aberrant expression of hsa-miR-410-3p is common in a variety of cancers

Fig 6. Second connected component of CERNOMA for breast cancer dataset. Network showing the circRNA-miRNA-mRNA

interactions. Diamonds represents miRNAs, octagons represent circRNAs, circles represent mRNAs. Gradual changes in node color

represent differences in the expression levels of different genes (increasing from blue to yellow).

https://doi.org/10.1371/journal.pone.0289051.g006
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including breast cancer, suggesting that miR-410-3p may play an important role in cancer

development and progression [21]. The circular RNA hsa_circRNA_102908 is originated from

the BRCA1 associated RING domain 1 and has been already found significantly up-regulated

in human radioresistant esophageal cancer cell line KYSE-150R when compared with the

parental cell line KYSE-150, suggesting its possible involvement in the development of radia-

tion resistance and treatment failure [62]. We also found the up-regulated circular RNA hsa_-

circRNA_403236 predicted to bind hsa-miR-29a-3p, which in turn could target several genes

encoding for the collagens family of proteins that strengthen and support many tissues. Cell-

cell adhesion is well-known to be a fundamental process for tissue architecture and morpho-

genesis, and its alteration can disrupt important cellular processes and lead to a variety of dis-

eases, including cancer [63]. Both KEGG and GO functional analyses confirmed that the up-

regulated DEGs of the second connected component were mainly enriched in cell communi-

cation processes, such as extracellular matrix interaction and focal adhesion pathways (Fig

7A), as well as extracellular matrix organization and structure biological processes (Fig 7B).

The analysis conducted in this study can be generalized to investigate other pathologies and

could offer potential insights for the disease understanding that are worthy of further

investigation.

Fig 7. Enrichment analysis for second connected component of CERNOMA. Dot plot showing the top 10 KEGG pathways (A) and the GO Biological Processes (B) (y

axis) in which the mRNAs of the second connected component were enriched (adjusted p-value< 0.05) as function of the number of mRNAs found in each category (x

axis). Nodes scale with the gene ratio (i.e., number of mRNAs over the total number of genes in that functional category) and are colored according to the adjusted p-value.

https://doi.org/10.1371/journal.pone.0289051.g007
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