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Simple Summary: Renal cell carcinoma (RCC) is frequently diagnosed at the early localized stage as
an incidental finding (about 60% of cases). Imaging procedures (ultrasound, CT, MRI) represent the
only way to diagnose RCC, but they are not always reliable for the discrimination between malignant
and benign tumors, in particular when the renal mass is small (<4 cm) because they demonstrate
low diagnostic specificity. The quantitative analysis of contrast-enhanced CT in venous phase using
radiomics could provide additional information for the accurate characterization of small renal
masses (SRMs).

Abstract: (1) Background and (2) Methods: In this retrospective, observational, monocentric study,
we selected a cohort of eighty-five patients (age range 38–87 years old, 51 men), enrolled between
January 2014 and December 2020, with a newly diagnosed renal mass smaller than 4 cm (SRM)
that later underwent nephrectomy surgery (partial or total) or tumorectomy with an associated
histopatological study of the lesion. The radiomic features (RFs) of eighty-five SRMs were extracted
from abdominal CTs bought in the portal venous phase using three different CT scanners. Lesions
were manually segmented by an abdominal radiologist. Image analysis was performed with the
Pyradiomic library of 3D-Slicer. A total of 108 RFs were included for each volume. A machine learning
model based on radiomic features was developed to distinguish between benign and malignant
small renal masses. The pipeline included redundant RFs elimination, RFs standardization, dataset
balancing, exclusion of non-reproducible RFs, feature selection (FS), model training, model tuning
and validation of unseen data. (3) Results: The study population was composed of fifty-one RCCs
and thirty-four benign lesions (twenty-five oncocytomas, seven lipid-poor angiomyolipomas and
two renal leiomyomas). The final radiomic signature included 10 RFs. The average performance of
the model on unseen data was 0.79 ± 0.12 for ROC-AUC, 0.73 ± 0.12 for accuracy, 0.78 ± 0.19 for
sensitivity and 0.63 ± 0.15 for specificity. (4) Conclusions: Using a robust pipeline, we found that the
developed RFs signature is capable of distinguishing RCCs from benign renal tumors.

Keywords: small renal masses; radiomics; malignant; benign; characterization; kidney cancer;
oncocytoma; renal cell carcinoma

1. Introduction

Renal cell carcinoma is a malignant tumor with a prevalence rate of 3% in Europe,
ranking eighth among the most frequent cancers in the general population in Italy [1,2]. In

Cancers 2023, 15, 4565. https://doi.org/10.3390/cancers15184565 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15184565
https://doi.org/10.3390/cancers15184565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6436-0932
https://orcid.org/0000-0002-0256-5115
https://orcid.org/0000-0002-3066-9798
https://orcid.org/0000-0002-0877-4954
https://orcid.org/0000-0001-9285-4764
https://orcid.org/0000-0002-3531-8858
https://doi.org/10.3390/cancers15184565
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15184565?type=check_update&version=1


Cancers 2023, 15, 4565 2 of 14

the last decades, the number of diagnoses of renal carcinoma has progressively risen due to
both the improvement of imaging techniques and their increasing use in clinical practice [3].
The diagnosis of these tumors is increasingly frequent as an incidental finding (about 60%
of cases), with an increasing number of lesions diagnosed at an early localized stage [2,4].
The diagnosis of renal cell carcinoma (RCC) can only be performed by imaging (ultrasound,
CT, MRI), however, imaging methods are also not always reliable in distinguishing between
benign neoplasms (oncocytoma and angiomyolipoma are among the most frequent) and
malignant cancer (in particular, clear cell carcinoma, papillary carcinoma and chromophobe
carcinoma) [5]. Diagnostic uncertainty in the differentiation between benign and malignant
cases is particularly high when dealing with small renal masses (SRMs), i.e., a renal mass
that has a diameter of less than 4 cm, as the specificities of contrast-enhanced CT and MRI
for predicting RCC are as low as 44.4 and 33.3%, respectively [6,7].

Histological characterization of the mass by renal mass biopsy (RMB) could be a useful
tool for correct diagnosis to avoid the potential morbidity associated with the overtreatment
of SRMs. Nonetheless, RMB is not risk-free, as bleeding and tumor seeding [8] could occur;
concerning complications of RMB, the most common are hematoma (4.9%) and clinically
significant pain (1.2%), but gross hematuria (1.0%), pneumothorax (0.6%) and hemorrhage
(0.4%) have also been reported in some patients [9].

It is important to also note that pre-procedural biopsies are non-diagnostic in a percent-
age as high as 15–22% of cases [10,11], with a median 29% nondiagnostic rate in patients
presenting with cystic lesions [8]. Another important predictor is tumor size; the smaller the
lesion, the more likely it is to have a nondiagnostic biopsy; SRMs have high false negative
rates, with a low reported negative predictive value of 60%. Furthermore, benign biopsy
histology cannot rule out malignancy in the rest of the tumor, particularly in chromophobe
varieties. A definitive benign diagnosis may be inferred from an RMB when the pathology
is consistent with angiomyolipoma, metanephric adenoma or focal infection. A biopsy spec-
imen showing non-diagnostic or non-malignant findings must be considered with caution,
and surveillance imaging, repeat biopsy or surgery are currently recommended [10].

The accurate characterization of SRMs, therefore, becomes fundamental for correct
diagnostic classification, defining the best therapeutic procedure for the patient, avoiding
unnecessary surgery in the case of benign renal masses and expanding the use of percu-
taneous image-guided minimally invasive ablative treatments of small masses [11–13],
especially for unfit and comorbid patients with masses < 3 cm, according to European
urological guidelines [2].

Novel methods for the characterization of renal masses that make use of radiomics
to evaluate tumor characteristics and enhance diagnostic capabilities by extracting quan-
titative features from medical images are currently under investigation [14–20]. Among
the studies that have questioned the utility of radiomics for the characterization of re-
nal masses, only a few of them have focused on SRMs [10,21–23], trying to address the
problem of the extremely low specificity that characterizes their radiological evaluation.
However, the majority of these studies developed their predictive models on multi-phase
contrast-enhanced CT specifically designed for renal mass characterization, not exploring
the possibility of a wider applicability of radiomics using venous phase CT where renal
masses are incidentally found.

The aim of the present study was to develop a predictive model based on radiomics in
order to improve the diagnostic capability of imaging in distinguishing between benign
and malignant small renal masses only using venous phase CT acquisitions, which were
routinely acquired during exams made for other reasons.

In this way, we developed a radiomic signature that is more extensively applicable
and easier to reproduce.

2. Materials and Methods

In this retrospective, observational, monocentric study, we selected a cohort of patients,
enrolled between January 2014 and December 2020, with a newly diagnosed renal mass
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smaller than 4 cm (SRM) that later underwent nephrectomy surgery (partial or total) or a
tumorectomy with an associated histopathological study of the lesion. The Institutional
Review Board approved this study and informed consent was retrieved for enrolled patients
when feasible given the retrospective nature of the study and the analysis used anonymous
clinical data.

2.1. Patients

Adult patients presenting for surgical resection of renal masses at the AOU of Parma
were considered for inclusion if contrast-enhanced abdominal CT studies in the venous
phase were available. Only renal masses with the largest diameter of 40 mm in any direc-
tion were included in this study. Exclusion criteria were diffuse infiltrative renal disease
(i.e., lymphoma), CT artifacts that could compromise renal lesion segmentation or acute
intralesional complications (e.g., hemorrhage). Patients with lipid-rich angiomyolipo-
mas, identified by the presence of macroscopic fat on CT, were excluded from radiomic
evaluation. The effect of the inclusion/exclusion criteria is provided as a flow chart in
Supplementary Materials (Figure S1).

Demographics and clinical data were collected and included in a dedicated anonymous
database, including the surgical treatment performed. By applying these enrollment criteria,
we found 85 patients (range 38–87 years old; 51 men), of whom 51 had malignant histology
and 34 had benign histology.

2.2. CT Imaging

All patients underwent contrast-enhanced CT with an iodine contrast injection of
high concentration (300 mg I/mL, Iomeron 300, Bracco, Italy), a 90–130 mL volume (based
on patient weight), and a 3–4 mL/s flow rate. The contrast-enhanced scan was triggered
by 150 HU density in the abdominal aorta (at the level of the celiac axis) and the portal
venous phase was acquired with a 60 s delay (standard protocol). Both the single portal
venous phase and the venous phase of a multi-phase CT were included. The CT scans
were acquired using three different CT scanners (Siemens SOMATOM Emotion 6, Siemens
SOMATOM Sensation Cardiac 64 and Siemens SOMATOM Definition Flash—Siemens
Healthcare, Berlin, Germany) with different acquisition parameters: tube voltage between
100 and 130 kVp, variable values between 0.61 and 0.98 mm for pixel spacing and between
1.5 mm and 2.5 mm for slice thickness; five different values for the reconstruction kernel
(B31s, B40s, B20f, B30f, Br32f). The DICOM header of images was analyzed to retrieve
the acquisition and reconstruction parameters for a subsequent reproducibility analysis of
radiomic features.

2.3. Region of Interest (ROI) Detection and Calculation of Radiomic Features

The CT images and related radiological data were extrapolated from the PACS data
archiving system of Parma University Hospital. Images were anonymized before their
export. Two readers (R1, a radiologist with 15 years of experience in abdominal imaging;
R2, a radiologist with 3 years of experience in abdominal imaging) reviewed the CT scans
(blinded to clinical and pathological information). The abdominal CTs of the patients
included in the study were then imported into 3D Slicer software version 4.10.2 [24]. The
radiologist with 3 years of experience (R2) manually delineated the region of interest (ROI)
along the edge of the lesion, layer by layer, on the portal venous phase by manually drawing
the tumor boundaries. The ROI was used to delineate the boundary of all planes of the renal
mass, including necrosis, cystic degeneration and hemorrhage; however, it did not include
normal renal tissue or perirenal fat. The volume of interest (VOI) of the lesion was then
automatically generated by the software. Finally, another senior radiologist (R1) examined
the outlined results on multiplanar reconstruction (MPR) images. Examples of benign
and malignant small renal masses with respective segmentations are depicted in Figure 1.
No image preprocessing such as wavelet and LoG transformations was performed on CT
images before radiomic analysis, so only RFs belonging to the original type were considered.
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Subsequently, 108 RFs were extracted from the VOI using the SlicerRadiomics® tool [25].
The extracted RFs included both first-order and subsequent-order features, including shape,
first-order, Gray-Level-Co-occurrence-Matrix (GLCM), Gray-Level-Run-Length-Matrix
(GLRLM), Gray-Level-Size—Zone-Matrix (GLSZM), Neighboring-Gray-Tone-Difference-
Matrix (NGTDM) and Gray-Level-Dependence-Matrix (GLDM) functions.
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Figure 1. Segmentation (in red) of a benign (a) and a malignant (b) small renal mass (SRM) hardly
distinguishable on portal venous phase CT images.

2.4. Radiomic Analysis

The analysis pipeline is schematized in Figure 2.
Training and test sets were obtained by randomly and blindly splitting the dataset

into two parts considering a proportion of 80–20% and balancing with respect to the
outcome variable. On the training set, two consecutive Monte Carlo cross-validations
(MCCVs) with 100 rounds were implemented using the same proportion of 80–20% and
endpoint balancing, one was used for feature selection and one for model training. MCCV
systematically repeats (100 times) a random split of the database into training/validation
subsets (slightly changing the patients included in both subsets each time), and thus,
it allows testing of the stability of the model by evaluating the change in the model
performances due to a different inclusion of cases in the training subset. Feature selection
and model training represented two independent steps of the analysis (Figure 2). The
feature selection step was performed on the training subset (80% of the training set). It
ended with a unique subset of selected RFs, which was then passed as input for the
model training (second step). In the second step, the model was iteratively trained using
different training subsets (80% of the training set) and then applied without modification
on the validation subset (20% of the training set) for unbiased evaluation of the model’s
performances. During each round of the second step, the models were also evaluated on
the test set. The steps of the analysis pipeline are described below in detail.

Feature selection and model training are two independent steps, but they use exactly
the same operations on RF values (i.e., the z-score) and on the number of instances (i.e.,
the oversampling algorithm). In the first step, the preprocessing consists of redundant RF
elimination, RF standardization, minority class oversampling and reproducibility analysis.
Regarding redundant RF elimination, a cross-correlation matrix between RFs was calcu-
lated to detect highly correlated features. RF pairs with a correlation coefficient R > 0.99
were identified as redundant and excluded for later analysis. Then, RFs were scaled and
centered using a z-score. Endpoint imbalance was addressed by over-sampling the minor-
ity class in the training set with synthetic examples through Random walk oversampling
(RWO). RWO attempted to preserve the variance and mean of the minority class. The last
step of preprocessing concerns the reproducibility of RFs related to the acquisition and
reconstruction parameters. Reproducibility was investigated using the Kruskal Wallis (KW)
test for categorical parameters (i.e., scanner model, convolution kernel) and by Spearman
correlation for continuous ones (i.e., pixel spacing, slice thickness, tube voltage). An RF
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was removed from later analysis if it was significantly associated with at least one cate-
gorical parameter (p-value of KW < 0.05) or was strongly correlated with at least one of
the continuous parameters (correlation coefficient R > 0.75). Reproducibility analysis was
carried out as a chain of consecutive tests applied in the following order: test n.1—scanner
model, test n.2—convolution kernel, test n.3—pixel spacing, test n.4—slice thickness and
test n.5—tube voltage. All preprocessing operations were performed on the training subset
and then transferred without modification to both the validation subset and test set, except
for RWO, which was not applied at all.
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Figure 2. Whole analysis pipeline to develop the radiomics signature, including CT images segmen-
tation, ROI analysis with Slicer Software, features selection and the model training and validation.
(a) Generic overview of the whole pipeline, from CT image segmentation to model training and
testing, (b) Detailed focus on the two steps of the machine learning method, i.e., the feature selection
and the model training. The employed classifier was kNN: each patient was represented by a point
in the feature space and it was classified by the algorithm based on its fist k neighbors and on the
Euclidean distance with respect to each of them. In the example of figure (b), the patient marked with
F is compared to the three (k = 3) closer patients which could have either a benign (marked with •)
or a malign (marked with •) lesion.
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Most predictive RFs were found using the nonparametric Mann-Whitney (MW) test,
which acted as a univariable feature selection filter. RFs were selected if the p-value of
the test was less than a significance level of 0.05. A Monte Carlo cross-validation of
100 iterations was implemented for the FS step. During each iteration of MCCV, the RFs
were scored if the MW p-value was less than 0.05. Finally, the 10 RFs that had higher
cumulative scores (i.e., the sum of scores of all MCCV rounds) were selected: they were
fixed as input for the second MCCV of model training.

In the second step, after the preprocessing operations of RFs standardization and mi-
nority class oversampling, the training algorithm consisted of a k-nearest neighbors (kNN)
classifier preceded by a dimensionality reduction technique; that is, principal component
analysis (PCA) or independent component analysis (ICA). The tuning parameters were
the technique used for dimensionality reduction, the number of components (d) and the
number of neighbors (k). During the MCCV, the model parameters were kept fixed. The
second step was then repeated several times by changing the values of the parameters
for optimization. The final model with tuned parameters was identified as the one that
maximized the average F1 score across the 100 rounds of MCCV on the validation subset.
Test performances were only extracted for the final model. The performance metrics of
training (validation subset) and test sets included ROC-AUC, accuracy, sensitivity and
specificity, and were expressed as mean values of 100 iterations with associated standard
deviations. The analysis pipeline was developed using the R software environment (version
4.0.4). The R packages used were Caret and Imbalance (for the RWO algorithm).

The above methodology was carried out by adhering as much as possible with respect
to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM).

3. Results
3.1. Patients

The study population was composed of fifty-one RCC (thirty-seven clear cell, seven
chromophobe and seven papillary), seven lipid-poor angiomyolipoma, twenty-five oncocy-
toma, and two renal leiomyomas (Table 1).

Table 1. Characteristics of small renal masses and patients.

Histotype Gender Age (Years) Size (mm)

Benign
(n = 34)

Lipid poor
angiomyolipoma (7) M = 47.1%

F = 52.9%
64 (23) 22.6 (16.4)Oncocytoma (25)

Renal leiomyoma (2)

Malignant (n = 51)
Clear cell RCC (37)

M = 68.6%
F = 31.4%

67 (13) 28.5 (13.6)Chromophobe RCC (7)
Papillary RCC (7)

M: Male; F: Female. Age and size are reported as median and interquartile range.

3.2. Radiomic Analysis

Regarding the first step of feature selection, the first available RFs were filtered by
correlation analysis, reproducibility analysis and the feature selection algorithm itself.
Regarding the correlation matrix, the heatmap of cross-correlation among RFs is depicted
in Figure 3. A relevant percentage of redundant RFs, i.e., (26.6 ± 2.8)%, was detected.

Of the resulting non-redundant RFs, approximately 30% were identified as non-
reproducible against the scanner model during test n.1 of the reproducibility analysis.
In test n.2, about 4% was removed as they were significantly affected by the convolution
kernel. No RFs were found to be unreproducible concerning pixel spacing, slice thickness
and tube voltage.

After these redundancy and reproducibility analyses, a significantly decreased number
of RFs from 107 to (52 ± 8) was passed to the features selection algorithm. At the end of
the first step, the scored RFs after 100 rounds of MCCV are reported in Figure 4.
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The top scored RFs included three first-order features (i.e., Ten Percentile, Mean and
Skewness) that accounted of the distribution of voxel intensities and seven higher-order
features that evaluated the image texture inside the segmented volume. The selected
textural parameters described the spatial relationship of voxel intensities (i.e., ClusterShade,
Autocorrelation of Gray Level Cooccurrence Matrix), identified homogeneous regions
having voxels with same intensities (i.e., ShortRunHighGrayLevelEmphasis of Gray Level
Run Length Matrix and GrayLevelNonUniformityNormalized of Gray Level Size Zone
Matrix) and quantified difference of intensity between a voxel and its neighborhood (i.e.,
Busyness, Coarseness and Strength of Neighbouring Gray Tone Difference Matrix).

The second step was then repeated several times by changing the parameter values
to perfect them. The optimization of model parameters is shown in Figure 5, where the
F1 score of the validation subset is plotted against the number of neighbors k for different
combinations of other parameters (i.e., the technique for dimensionality reduction and the
number of dimensions d). To preserve the simplicity and explainability of the model, and
to avoid the curse of dimensionality pitfall, d was constrained to values of two and three.
Finally, the tuned parameters that maximized the F1 score were PCA with two components
and k equal to seven.
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Finally, for each round of MCCV, the final model with tuned parameters was evaluated
on unseen data of the test set. Performance metrics (mean ± standard deviation) of the
final model in the training set (validation subset) and in the test set are reported in Table 2.

Table 2. Mean performances of the final model with the associated standard deviation of the mean.

Training Set Test Set

ROC-AUC 0.79 ± 0.12 0.79 ± 0.04
Accuracy 0.75 ± 0.12 0.73 ± 0.04
Sensitivity 0.77 ± 0.19 0. 78 ± 0.07
Specificity 0.73 ± 0.15 0.63 ± 0.05
PPV 0.82 ± 0.12 0.77 ± 0.06
NPV 0.70 ± 0.17 0.66 ± 0.07
F1 score † 0.71 ± 0.15 0.64 ± 0.08

† The reported F1 score refers to minority class, i.e., benign cases.

The performances in the training and test sets were substantially in agreement. A
greater difference was seen for specificity. However, the mean test specificity and the mean
training specificity differed by less than one standard deviation of the sample.
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An example of model explainability is depicted in Figure 6, which was extracted
from the test results of the rounds that had random seeds equal to 99. It stands for the
components space of the features in two dimensions (d = 2), in which the 7−NN algorithm
evaluates distances between patients’ pairs (i.e., points in the feature components space)
and individuates the seven nearest neighbors.
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The tumor histotypes of the 17 patients belonging to the test set and the ones that
are mislabelled are reported in Supplementary Materials (Table S1). The data in Table S1
represents a rough/tentative failure analysis of incorrectly classified cases, limited to the
influence of the histotype of the success or failure of SRM classification.

The evaluation of methodology adherence of the present study with respect to
the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) is provided in
Supplementary Materials (Table S2).

4. Discussion

The differentiation between benign and malignant renal masses using radiomics
represents an innovative field in radiology and oncology; studies in the literature have
reported radiomic-based machine learning or deep learning models that successfully
predicted the nature of the lesion [15,18,19,21]. In our study, the selected RFs and the
identified ML algorithm only obtained from segmentation in the portal venous phase
demonstrated good diagnostic accuracy in predicting the malignancy of a renal lesion, both
in training sets with an ROC-AUC of 0.79 ± 0.04, an accuracy of 0.75 ± 0.04, a sensitivity
of 0.77 ± 0.07 and a specificity of 0.73 ± 0.05 in the final model, and test sets with an
ROC-AUC of 0.79 ± 0.12, an accuracy of 0.73 ± 0.12, a sensitivity of 0.78 ± 0.19 and a
specificity of 0.63 ± 0.15.

In the clinical context of SRM characterization, the double aim of developing a robust
radiomic signature is: (1) to determine which patients have benign SRMs and should
not have surgery, as the overtreatment of SRMs yields an unknown survival benefit, can
expose patients to psychosocial stressors, perioperative complications and reduced renal
function; (2) to allow active surveillance or minimally invasive treatment in patients with
small localized malignancies. Even if the accuracy of contrast-enhanced CT and MR in
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differentiating malignant from benign renal masses is high [26,27], it dramatically decreases
when only SRMs are included. By only focusing on small renal masses, the specificity
reached by our radiomic signature is higher than the reported specificity of contrast-
enhanced MR and CT [6,28] with a comparable sensitivity. In particular, our radiomic
signature can better identify both benign and malignant lesions succeeding in the aim of
decreasing the overtreatment and of better delineating a malignancy risk stratification and
subsequent approach for malignant SRMs. Moreover, these data can be implemented with
clinical, deep learning, radiometabolomics, SPECT and transcriptomics data [29–33] to
improve performances. Klontzas et al. [32] showed that the radiomics-only performance
for distinguishing benign from malignant renal masses was 70%, while the integration of
radiomics and metabolomics increased the performance in differentiating malignant lesions
(solid, cystic or mixed) to at least 86%. Furthermore, Klontzas et al. [30], by combining
the 99mTc Sestamibi uptake with radiomics in distinguishing benign oncocytic neoplasia,
increased the diagnostic accuracy and improved positive and negative predictive value.
Finally, transcriptomics and radiomics have been combined to assess the prognosis of
RCC patients, as mentioned by Tang et al. [29] (C-index: 0.927 and 0.879 for OS- and
DFS-predicting, respectively).

The patient cohort in our study showed characteristics consistent with the prevalence
of renal carcinomas in the general population. Specifically, there was a male predominance,
with males forming 60% of our study population, and the mean age of our study partici-
pants was 61 years old, in line with the peak incidence of SRMs occurring between 60 and
70 years. Notably, the proportion of benign renal masses compared to renal cell carcinomas
(RCCs) was 40%, which is higher than the range reported in the literature (20–30%). This
can be explained by the practice routinely adopted at our center of conducting fewer biop-
sies and often resorting to surgical intervention. As a result, benign cases that would have
been otherwise excluded if a diagnostic biopsy was performed, were included, contributing
to the higher proportion of benign tumors in our dataset. A similar proportion between
benign SRMs and RCCs was observed by Li et al. (40%) [22], while a lower proportion
was observed by Feng et al. (30%) [21], Edirm et al. (25%) [18], Uhlig et al. (20%) [19]
and Yu et al. (8%) [17]. Therefore, the differentiation between benign and malignant
renal masses suffers from an imbalanced class problem that should be addressed because
most ML algorithms require balanced representations of endpoint classes to effectively
perform [34,35]. If the imbalance problem is not adequately managed, the classification
may be biased towards the majority class and accuracy becomes a misleading metric, thus
providing inaccurate results [36].

Our results are in line with several recent studies that have explored the use of
radiomics in the characterization of renal masses. Uhlig et al. [19] developed models to
distinguish between benign and malignant lesions and tested five different ML algorithms.
They found the best performances using Random Forest, which yielded a cross-validated
ROC-AUC of 0.83. Kunapuli et al. [15] explored forty features extracted from four-phase
contrast-enhanced computed tomography (CECT) images of one hundred and fifty patients
with various benign and malignant lesions and reported AUC values of 0.83. Li et al. [22]
compared radiomic and clinical models on the validation set, achieving an ROC-AUC
equal to 0.84 and 0.76, respectively; in that of Coy et al. [20], oncocytomas and ccRCC were
compared and the performance of volume segmentation in the excretory phase showed an
accuracy of 74.4%, a sensitivity of 85.8% and a PPV of 80.1%.

Higher performances have been obtained by some recent studies. Erdim et al. [18]
compared eight ML algorithms to construct a prediction model for renal mass diagnosis
based on CECT imaging from both benign and malignant lesions, specificity rates and AUC
values were reported to be 0.917 and 0.916, respectively, in a patient cohort numerically
similar to our study (63 patients). Feng et al. [21] proposed a support vector machine
(SVM) model that achieved good accuracy in discriminating between fat-poor AML and
RCC in a cohort of 58 patients (AUC of 93.9%), while Yu et al. [17] implemented a SVM
algorithm to differentiate oncocytoma from other tumors, obtaining a ROC-AUC of 0.86.
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Kocak et al. [14] developed a radiomic model for the differentiation between renal cell
carcinoma subtypes; their radiomic model achieved high performance both on internal
(ROC-AUC = 91.6) and external validation using public datasets (ROC-AUC = 84.6).

Compared to earlier studies, our study has several strengths. One important consid-
eration is the population of renal masses that have been studied: our radiomic signature
was specifically developed for the characterization of small renal masses (<4 cm), as they
present the major diagnostic dilemma among renal masses. Indeed, it is well known that
size is statistically related to the malignancy of a mass [22], in particular, it has been stated
that each 1 cm increase in tumor size is associated with a 16% increase in the odds of
malignancy [37] and, as tumors grow in size, other radiologic elements tend to be present,
such as necrosis, calcification, pseudocapsule or a central scar, making it easier to suggest
a diagnostic hypothesis, even if still huge oncocytomas could pose a diagnostic dilemma.
Only considering masses < 4 cm, we excluded from the radiomic signature renal masses
that inherently exhibited a high intrinsic malignant potential. The aforementioned size
limit was not applied in numerous previous studies that included tumors without any size
limit [18,19,38] or were limited to T1 (<7 cm) [19].

Another factor that should be considered in the evaluation of radiomic signatures is
the potential variability introduced by different CT scanners. It is essential to assess the
robustness of the radiomic signature to ensure its applicability in different clinical settings.
Previous studies have typically included one or two different CT scanners, with limited
generalizability to other devices (two scanners in Erdim et al. [18], Kocak et al. [14] and
Li et al. [22], and one scanner in Sun et al. [38], Kunapuli et al. [15] and Yu et al. [17]).
Furthermore, those studies that made use of more than one CT device did not perform a
reproducibility analysis or a harmonization strategy. In contrast, our study incorporated
data from three different image acquisition devices and included the evaluation of RF
robustness in the feature selection strategy. This analysis guarantees the reproducibility of
our radiomic signature across a wider range of imaging platforms, enhancing its clinical
relevance and potential for broader applications.

A further improvement of the present study concerned the CT clinical protocol used
and its applicability in the routine clinical scenario. While the cited studies have reported
promising results in the development of radiomic models for renal masses, their algorithms
have primarily been developed based on CT scans acquired in multiple phases of con-
trast medium distribution [39]. However, this approach may limit the applicability and
reproducibility of these models in a clinical routine scenario, as the non-enhanced and the
arterial phase are not routinely performed, while the venous phase is the most performed
in abdomen evaluation, in a real-life approach. Considering that the majority of SRMs are
discovered during exams performed for other medical reasons, we decided to develop an
algorithm that specifically analyzes lesions segmented on only the venous phase, eliminat-
ing the need for further imaging studies to characterize the lesion. In contrast, previous
studies, such as those conducted by Erdim et al. [18], Kunapuli et al. [15], Kocak et al. [14]
and Feng et al. [21], utilized a standardized multi-phase CT imaging protocol, providing
more comprehensive information on mass features that perhaps justify higher diagnostic
performances, but potentially reducing the applicability of the radiomic signature to a
wider range of clinical scenarios.

Finally, a strength of our study was the use of a radiomics signature only based on
10 radiomic features. The use of a smaller number of radiomic features allows for a more
focused and streamlined analysis, reducing the potential for overfitting and improving
the interpretability of our results. By reducing the number of radiomic features, we were
able to reduce the complexity of our model and make it more accessible to radiologists and
other healthcare professionals, who could use it to improve patient management. Other
studies that dealt with the same application included many more features in their models
(40 RFs [15], 11–22 RFs [38], 43 RFs [17]).

The current study has certain limitations that should be acknowledged. Firstly, it
was retrospectively designed, which can result in inherent disadvantages and data loss.
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However, it is important to note that most studies that involve CT texture analysis and
machine-learning-based algorithms are retrospective in nature. Secondly, the sample size
was relatively small due to the strict inclusion criteria that were applied. Nonetheless, these
criteria were necessary to ensure correct analysis and to avoid extracting broad features
that could have limited specificity.

Another limitation of this study is the lack of a clinical model to be integrated with
the radiomic signature, or the implementation of radiometabolomics, transcriptomics
or deep learning data. Although the radiomic analysis supplies valuable insights, the
implementation of a clinical model and other datasets could enhance the diagnostic utility
of the model.

According to the revised WHO classification of renal tumors [40], a subset of entities
previously classified as chromophobe renal cell carcinomas have been reclassified as low-
grade oncocytic tumors (LOT), falling within the benign spectrum. Regrettably, our study
did not account for these updated classifications, representing a limitation in our analysis.

Finally, a last important limitation regards the lack of an external validation that could
provide evidence of the model’s generalizability. Further study will be addressed to offset
up an independent external dataset for independent validation of the classifiers developed
in the study.

5. Conclusions

In conclusion, the results of this study prove the feasibility of a radiomic model for
the characterization of small renal masses. The use of radiomics in the evaluation of small
renal masses has the potential to improve patient management and to facilitate the accurate
diagnosis of malignancy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15184565/s1, Figure S1: Flow chart of inclusion
and exclusion criteria; Table S1: Histotypes analysis in test set; Table S2: Checklist for Artificial
Intelligence in Medical Imaging (CLAIM).
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