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Abstract: In this work, we unveil the unique complex dynamics of multimode soliton interactions
in graded-index optical fibers through simulations and experiments. By generating two multimode
solitons from the fission of an input femtosecond pulse, we examine the evolution of their Raman-
induced red-shift when the input pulse energy grows larger. Remarkably, we find that the output
red-shift of the trailing multimode soliton may be reduced, so that it accelerates until it collides
with the leading multimode soliton. As a result of the inelastic collision, a significant energy
transfer occurs between the two multimode solitons: the trailing soliton captures energy from
the leading soliton, which ultimately enhances its red-shift, thus increasing temporal separation
between the two multimode solitons.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Solitons are nonlinear waves with particle-like behavior, with intriguing nonlinear dynamics.
Solitons are ubiquitous in physics: they appear in different contexts, ranging from fluids to
plasmas [1], Bose-Einstein condensates [2], and nonlinear lattices [3]. In fiber optics, temporal
solitons form due to a balance between nonlinear and dispersive effects. For ultrashort solitons
(e.g., for durations <100 fs), the soliton spectrum becomes so broad, that the longer-wavelength
spectral components experience Raman amplification, at the expense of shorter-wavelength
components. As a result, a continuous downshift of the mean frequency of the propagating
soliton occurs [4]. This phenomenon is referred to as the Raman-induced soliton self-frequency
shift (SSFS). The latter has been studied extensively [5], and many applications have been
demonstrated, including wavelength-tunable pulse femtosecond sources [6], analog-to-digital
converters [7], and tunable delay lines [8].

As the input pulse energy increases, higher-order solitons can be formed: these pulses have
no binding energy, so that they are unstable against higher-order dispersion and break-up into
individual fundamental solitons [9]. The resulting fundamental solitons are subject to interaction
forces: this is a problem of long-standing interest, thanks to the richness of its associated
physical effects [10]. Soliton interactions have been extensively theoretically studied [11] in
several different contexts [12–18]. For example, soliton interactions play an important role in the
formation of optical rogue waves [19–21], rogue solitons [22], and supercontinuum generation
[23].

Manipulating soliton dynamics is a key challenge for many applications of solitons and solitary
waves. In particular, many efforts were made for controlling the SSFS, e.g., for suppressing it by
means of a negative dispersion slope [24] or self-steepening [25]. On the other hand, the SSFS
can be enhanced by using tapered fibers [26], photonic crystal fibers [27], and metamaterials
[28]. The SSFS can also be controlled by using specially tailored Airy pulses [29]. These studies
mostly focus on the modification of dispersion and nonlinearity of a waveguide, because the
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relation between them affects the soliton properties, such as its temporal duration and power.
Therefore, for a given waveguide [e.g., a singlemode fiber (SMF)], the most convenient and direct
way to adjust the amount of SSFS (ΩR) is to control the propagation length z and the soliton
power P. The SSFS adjustment relation satisfies ΩR ∝ T−4

0 z ∝ P2A−2
effz , where T0 is the soliton

duration, and Aeff is the transverse effective mode area of the SMF.
The advent of multimode fibers (MMFs) unlocked the spatial degrees of freedom in nonlinear

fiber optics [30]. In recent years, various spatiotemporal nonlinear dynamical phenomena were
intensively studied, mostly using graded-index (GRIN) MMFs. These include, for example, Kerr
beam self-cleaning [31,32], geometric parametric instability (GPI) [33], spatial self-imaging
[34,35], spiral emission [36], multimode solitons (MMS) [37–39], spatiotemporal mode-locking
[40], and soliton molecules in MMF mode-locked lasers [41].

In contrast to the case of SMFs, in GRIN fibers MMS with the same initial temporal shape
can experience different nonlinear dynamics, depending on their modal composition: this is due
to the fact that modes have different effective areas, hence nonlinear coefficients. As we shall
see in this work, the multimode nature of MMS provides an additional flexibility in the control
of their SSFS. This can be achieved by properly managing the input modal composition of the
MMS, which is obviously something that cannot be done with their singlemode counterparts.
Moreover, in terms of SSFS, multimode Raman solitons with different mode compositions may
exhibit different amounts of SSFS ΩR, for the same peak power P and at the same propagation
length z, as shown in Fig. 1. Generally, MMSs with larger SSFS exhibit a larger group delay.
Such a different SSFS entails that the MMS have different group velocities. This provides the
necessary condition for observing the temporal collision of two MMSs with similar peak power
P at a given fiber position.
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Fig. 1. Conceptual comparison of SSFS dependence for SMF and GRIN fibers. The SSFS
of a soliton in a SMF depends on the soliton power P and propagation length z. Whereas
multimode solitons carrying modes with different mode effective areas exhibit an additional
dependence of SSFS on mode composition.

In our present study we unveil the previously undisclosed complex nonlinear dynamics of
MMS interactions in GRIN optical fibers. Under appropriate input coupling conditions, one
obtains that the fission of a femtosecond input pulse generates two separate MMSs. For relatively
low input pulse energies, the SSFS of the two MMSs increases, as the input pulse energy grows
larger. Unexpectedly we found out that, above a threshold value of input energy, the trailing
MMS reduces its rate of SSFS, in spite of the growing input pulse energy. As a result, a temporal
collision with the leading MMS may occur: this collision is inelastic, which means that energy
exchange between the solitons takes place. Specifically, after the collision the trailing soliton
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gains energy at the expense of the leading soliton: hence, the SSFS (or group delay) of the
trailing soliton grows larger, which leads to temporal separation among the two MMSs.

This paper is organized as follows. In section 2, the model and physical parameters are
introduced. Next, we study the properties of a soliton carrying only one specific mode in a GRIN
fiber, by considering its group velocity (GV), group delay (GD) and SSFS. Next, the dynamics of
a two-MMS collision originating from high-order MMS fission is theoretically studied. Finally, a
detailed example of MMS temporal collision occurring during propagation along the GRIN fiber
is numerically analyzed. Section 3. introduces the experimental setup and results. We reproduce
the predicted soliton collision features by varying the input pulse energy. Finally, Section 4.
draws the conclusions of the manuscript.

2. Model and simulations

2.1. Model and parameters

The model we used to describe soliton propagation in GRIN MMFs is based on the generalized
multimode nonlinear Schrödinger equations (GMMNLSEs) [42,43]. The field envelope in the
fiber can be expanded on the basis of its eigenmodes:

E(x, y, z, t) =
N∑︂

p=1
Fp(x, y)Ap(z, t), (1)

where Fp(x, y) are the transverse mode patterns. For GRIN fibers, the eigenmodes are the
Laguerre-Gauss (LG) modes. These modes are orthogonal; we normalize them, so that the mode
amplitudes Ap are expressed in

√
W. The evolution of the field envelope Ap of mode p is governed

by the GMMNLSEs [42,43]:
∂Ap(z, t)
∂z

= D{Ap(z, t)} +N{Ap(z, t)}, (2)

where the dispersion terms are

D = i(β(p)0 − β
(1)
0 )Ap − (β

(p)
1 − β

(1)
1 )
∂Ap

∂t
+ i

4∑︂
q≥2

β
(p)
q

q!

(︃
i
∂

∂t

)︃q
Ap, (3)

and the nonlinear terms read as

N = i
n2ω0

c

(︃
1 +

i
ω0

∂

∂t

)︃ N∑︂
l,m,n

[(1 − fR)SplmnAlAmA∗
n

+ fRSplmnAl

∫ t

−∞

dτhR ∗ (Am(z, t − τ)A∗
n(z, t − τ))].

(4)

The GRIN fiber we used in simulations and experiments has a 50 µm diameter core with a
parabolic refractive index profile, where the difference between the core center and the cladding
is ∆n = 0.015. The field profile Fp(x, y) for mode p and the corresponding q-th derivative of the
propagation constant β(p)q were directly calculated on the basis of the parabolic index distribution
of the fiber [44] [see details in Sec. 1 in Supplemental Document]. In the top panel of Fig. 2, we
draw Fp(x, y) for p = 1, . . . , 15. The nonlinear mode coupling coefficients are

Splmn =

∫
dxdyFpFlFmFn√︂∫

dxdyF2
p
∫

dxdyF2
l

∫
dxdyF2

m
∫

dxdyF2
n

. (5)

For the nonlinear response of the fiber, we consider the standard parameters of silica [45,46]:
the nonlinear index n2 = 2.7 × 10−20 m2W−1, the coefficient of the Raman contribution to the
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Fig. 2. Top panel: LG modes of the GRIN fiber used in this work. For compactness of
notation, we use a single index n to refer to these modes. (a,b) Linear relative group velocity
in (a) ∆vg,n = (β

(n)
1 )−1 − (β

(1)
1 )−1 and inverse of mode effective area A−1

eff, mode n in (b) vs.
mode index n. (c,d) Group delay and wavelength of singlemode solitons emerging from a 2
m long fiber, as a function of mode index n. (e,f) Group delay τd and relative group velocity
∆vg of singlemode solitons with mode n = 1, 6, 15, as a function of propagation distance,
when the input pulse energy is Ein = 3 nJ. (g) Evolution of group delay τd of singlemode
solitons (mode n = 1, 6, 15) vs. input energy Ein and propagation distance z.

Kerr effect fR = 0.18, the Raman response is hR, with the two time constants τ1 = 12.2 fs and
τ2 = 32 fs [46].

For the simulations presented in the following sections, the fiber length is 2 m. Dispersion
coefficients with up to N = 4 in Eq. (3) are taken into account. The input pulses have T0 = 70 fs
FWHM duration, and λ0 = 2πc/ω0 = 1400 nm center wavelength, but may have different
mode contents, as described in the following. Equations (2–4) are solved by the so-called
massively parallel algorithm (MPA) [43] with the following parameters: step size ∆z = 25 µm,
parallelization extent M = 20, temporal resolution ∆t = 4.89 fs, and temporal window T = 20 ps.

2.2. Group velocity of singlemode soliton in GRIN fiber

Let us start by considering the simplest case of a soliton carried by a single specific mode in the
MMF. This case is helpful for understanding the mechanism of proper MMS collisions. Temporal
soliton collision is a strong interaction of two solitons. A necessary condition for a collision to
occur is that the trailing soliton propagates faster than the leading one, so that the two solitons
gradually approach each other.
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In the absence of nonlinearity, the GV of a propagating pulse mainly depends on the first-order
dispersion coefficient: vg,n = (β

(n)
1 )−1. Since in GRIN fibers the β(n)1 values for the different

modes are equally spaced, the relative GV ∆vg,n = (β
(n)
1 )−1 − (β

(1)
1 )−1 ≈ (β

(1)
1 − β

(n)
1 )(β

(1)
1 )−2 are

almost equally spaced, as shown in Fig. 2(a). Therefore, in the absence of nonlinear effects, a
pulse carried by a low-order mode (LOM) propagates faster than a pulse carried by high-order
modes (HOMs). These different velocities can be easily identified by checking the group delay τd
[temporal shift of the pulse peak, with respect to a reference frame moving with the fundamental
mode velocity vF = 1/β(1)1 = 2.029 × 108 m/s]. By solving Eq. (2), we calculated the values of τd
for different singlemode pulses as a function of their mode index n, emerging from a 2 m long
GRIN fiber. We carried out the calculation including the nonlinear term for different values of
the input pulse energy: the corresponding results are shown in Fig. 2(c). Indeed, we can see that
in the low input energy regime (e.g., for Ein = 1 nJ), LOMs have less GD than high-order ones.

However, as the input pulse energy increases, the GD of singlemode solitons is affected by the
presence of (Raman) nonlinearity. We have checked that the output pulses are not temporally
broadened by dispersion when Ein ≥ 2 nJ, which indicates that a soliton is formed, since the
linear dispersion length of the fiber is LD = T2

0/|β2 | = 0.034 m ≪ 2 m. In Fig. 2(c), we can see
that the GD of LOM solitons increases faster with input energy, with respect to the case of HOM.
Finally, whenever Ein ≥ 3 nJ, LOM solitons have a larger GD with respect to HOM. This means
that, soliton GVs change with the input energy, so that by choosing a suitable input energy, two
singlemode solitons in different modes could have the same GD at the fiber output.

In the spectral domain, the SSFS of solitons exhibits a similar behavior to that of τd, as shown
in Fig. 2(d). In fact, the mode distributions of the GD and the SSFS for different input pulse
energies have a similar trend, see Fig. 2(c,d). This is because of the different effective mode areas
Aeff,n, which lead to different strengths of their nonlinearity. The strength of the Raman effect is
proportional to the mode overlap factors Splmn [see Eq. (4)]. For a singlemode soliton in GRIN
fibers, this term in Eq. (5) is simplified, and it is equal to the inverse of the mode effective area
Snnnn = A−1

eff, mode n, which is shown in Fig. 2(b): the resulting decrease of the inverse effective
area with mode n is in agreement with the corresponding decrease of GD and SSFS, which are
shown in Figs. 2(b,d). In addition, the mode effective area increases with the wavelength [see
Fig. 2(c)]. This indicates the nonlinearity strength reduces as the wavelength increases.

It is also interesting to consider how the velocity of singlemode solitons varies upon propagation
along the GRIN MMF. One example of temporal delay τd(z) of a singlemode soliton as a function
of distance z for modes 1, 6 , or 15, respectively, is shown in Fig. 2(e), for an input pulse energy
Ein = 3 nJ. The local group velocity along distance z can be calculated as

vg(z) =
dz
dt
=

(︃
d(tframe + τd)

dz

)︃−1
=

(︃
β
(1)
1 +

dτd
dz

)︃−1
. (6)

This leads to the relative local group velocity with respect to a reference frame moving with the
fundamental mode speed

∆vg(z) = vg(z) − (β
(1)
1 )−1 ≈ −(β

(1)
1 )−2 dτd

dz
. (7)

The values of ∆vg(z) for the three different monomode solitons are shown in Fig. 2(f). As we can
see in Fig. 2(f), initially (i.e., at z = 0) all solitons have the GVs which are predicted according to
Fig. 2(a). The GV of the soliton carried by mode n = 1 is the largest in the beginning of the
fiber but, due to the slowing down induced by the SSFS, it also experiences the fastest decay [see
Fig. 2(f)]. This gives the soliton carried by mode n = 6 (or mode n = 15) the chance to catch up
with the mode n = 1 soliton at 0.2 m (or 0.38 m) [see Fig. 2(e)]. The solitons carried by mode
n = 6 and n = 15 also have the same GD at 1.73 m. These equal GD points vary when the input
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energy changes. The evolution of the GD τd as a function of both input pulse energy Ein and
propagation distance z is shown in Fig. 2(g). Here the three white lines represent points of equal
GDs for any pair of singlemode solitons for a specific input pulse energy value. This indicates
that two propagating solitons carried by different modes have the possibility to temporally overlap
at a specific position in the fiber, owing to the nonlinear dependence of their GV.

For MMSs, the properties of the GV, GD and SSFS are more complex than in the case of
singlemode solitons. For a MMS, the GD (under the influence of SSFS) not only depends on
the values of peak power, propagation length, and mode effective area, but it also varies with its
specific mode composition. As discussed in details in Sec. 3 in Supplemental Document, MMSs
carrying a larger portion of LOMs experience a larger amount of SSFS and GD with respect to
MMSs carried by HOM. Therefore, two MMSs with different mode compositions, will exhibit a
different evolution of their GVs. As a result, under suitable conditions the two MMSs can acquire
the same GD at a specific position in the fiber. For two MMSs originating from a MMS fission,
these equal GD points provide the necessary condition for their collision, as we are going to see
in the next section.

2.3. Numerical simulations of soliton collision

Because of the previous considerations, we may expect that the fission of a high-order MMS
could provide the testbed for the collision of two separate MMSs, carrying different mode
contents. In this section we investigate evolution of MMSs. For doing that, we shall keep the
same simulation parameters as before, except for increasing the input pulse energy, and varying
the mode composition of the input pulse.

As a matter of fact, setting the appropriate mode composition for the input pulse is a critical
condition for controlling the occurrence of a soliton collision. In order to quantify the input
mode content for a given input laser beam, we decomposed the input Gaussian beam with
full-width-at-half-maximum (FWHM) w, and offset s with respect to the fiber axis, on the basis
of the LG modes. These two parameters are normalized with respect to the FWHM wLG01 = 8.79
µm of the fundamental mode |F1(x, y)|2 at 1400 nm. Therefore, by tuning the dimensionless
parameters rw = w/wLG01 and rs = s/wLG01 , we can sweep over different modal compositions
[Details about the dependence of the input mode content on these parameters can be found in
Sec. 2 of the Supplemental Document]. Generally, the larger the beam size w, the higher the
mode content of the input beam.

2.3.1. Output field evolution with input pulse energy

We investigate by numerical simulations how the output field evolves with input pulse energy, as
the input coupling conditions are varied. Figure 3(a) shows a first example of the input pulse
energy dependence of the output spectra from a 2 m GRIN fiber. Here we consider injecting a
beam with rw = 2, rs = 0. As it can be seen, in the low energy regime (Ein<6 nJ), only one MMS
(S1) is formed. Whereas, a second MMS (S2) appears at Ein>6 nJ, owing to higher-order soliton
fission. Both of these MMSs experience larger GD and SSFS, as the input energy increases [see
Visualization 1]. As a result, the output wavelengths of S1 and S2 are 2.1 µm and 1.75 µm for
Ein = 25 nJ, respectively.

By introducing a higher-order mode content at the fiber input, i.e., rw = 2.8, rs = 0.5, we
obtain the result shown in Fig. 3(b). Here the second soliton S2 appears at the same input energy
as before, i.e., Ein>6 nJ. Unexpectedly, when Ein>17 nJ, the two MMSs exhibit a completely
different dynamics, when compared with the one in Fig. 3(a): namely, now S1 undergoes a
reduced amount of SSFS, as the input energy increases. This brings the two MMSs both spectrally
(and temporally) closer and closer to each other, however they remain spectrally distinct [see
Visualization 2]. Whereas, for Ein>24 nJ the two MMSs start to separate again. In addition, the

https://doi.org/10.6084/m9.figshare.19425473
https://doi.org/10.6084/m9.figshare.19425470
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Fig. 3. (a-d) Simulation results of output spectra vs. input pulse energy for an input
Gaussian beam width rw = 2 and center offset rs = 0 in (a), rw = 2.8 and rs = 0.5 in (b),
rw = 2.8 and rs = 1 in (c) and rw = 3.2 and rs = 1.7 in (d). The two MMSs are marked by
S1 and S2. (e,f) Spectrum evolution of mode 1 (S1M1 and S2M1) and of the remaining 14
modes (S1M2-15 and S2M2-15) for the simulation in (d) are shown in panels (e) and (f),
respectively. (g) Soliton GDs, their separation and the propagation distance Zc where the
collision occurs for the simulation in (d), vs. input pulse energy. (h) Peak power of S1 and
S2 and their fundamental mode peak power (S1M1 and S2M1), vs. input pulse energy.

output wavelengths of S1 and S2 are 1.9 µm and 1.8 µm at 25 nJ: the former is smaller than what
previously reported in Fig. 3(a).

By further increasing the HOM content at the fiber input, i.e., when setting rw = 2.8, rs = 1, we
obtain the result shown in Fig. 3(c) [see temporal and spectral evolution of the two MMSs along
the fiber in Visualization 3]. As can be seen, in this case for all input energies S1 experiences
a much smaller SSFS when compared with the case of Fig. 3(b): as a result, S1 and S2 fully
spectrally overlap at around Ein = 25 nJ. Upon further increasing the input energy, the spectra
of the two MMSs separate, until they overlap again for Ein = 27 nJ. The two spectral fringe
patterns at Ein = 25 nJ and Ein = 27 nJ imply that the two MMSs are very close to each other in
the temporal domain.

By acting on the input mode composition, one may further tune the interactions between two
MMSs. As an example, in Fig. 3(d), we report the case of rw = 3.2, rs = 1.7 [see their evolution
along the fiber in Visualization 4]. As one can visibly appreciate, in this case the dynamics is
similar to that of Fig. 3(c); however, the collision wavelength and energy are reduced down to
1.72 µm and 22.5 nJ, respectively. Thus we can see that by increasing the input HOM content, one
may shift the collision point to occur at shorter wavelengths and lower energies. This tendency is
similar to the the behavior that we previously described for singlemode solitons in Fig. 2(d).

In order to reveal the physical mechanism leading to the unexpected evolution of the SSFS
for S1, and the resulting soliton collisions, it is necessary to analyze how the mode content of
the MMS evolves as the input energy is varied. In order to do that, we decompose the total

https://doi.org/10.6084/m9.figshare.19425461
https://doi.org/10.6084/m9.figshare.19425467
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spectrum of Fig. 3(d) into its different modal components. In particular, this permits to highlight
the specific contribution of mode 1. The latter is shown in Fig. 3(e), whereas the remaining mode
content (ranging from mode 2 up to mode 15) is illustrated in Fig. 3(f). These spectra are labeled
S1M1, S1M2-15 for S1 and S2M1, S2M2-15 for S2, respectively. By comparing Figs. 3(e,f), we
can ascribe the reduced SSFS of S1 to its decreased fundamental mode content S1M1. Indeed,
the latter progressively reduces when increasing the input energy, i.e., at >16 nJ. To the contrary,
the power increase in HOM content S1M2-15 does not provide a sufficient boost to the SSFS.

In order to quantitatively estimate the role of the modal content on the temporal evolution
of MMSs, in Fig. 3(g) we plot the evolution with input pulse energy of the temporal GD (and
temporal separation) of S1 and S2, respectively. Whereas in Fig. 3(h) we show the corresponding
evolution of peak power of S1, S2, S1M1 and S2M1. As we can see, whenever Ein<22.5 nJ, the
peak power of S1 and S2 increases as the input energy grows larger; for any input energy value, the
power of S1 is larger than that of S2. However, the power of S1M1 starts to dramatically decrease
at E>15 nJ. Correspondingly, the GD and SSFS experienced by S1 are both reduced, until they
become comparable to the values of S2. This leads to generating temporally overlapping solitons
when E = 22.5 nJ, thus further confirming that the fundamental mode content plays a key role in
determining the properties of the MMSs.

It is worth to mention that, in the input energy range between 22.5 nJ<Ein<26 nJ, the fiber
position where the collision of two MMSs occurs depends on the specific input energy value.
Notably, for the specific cases of Ein = 22.5 nJ or Ein = 26 nJ, the MMS collision occurs at 2 m.
In Fig. 3(g) we plot the propagation distance Zc where the two MMSs have the closest temporal
separation, i.e. the collision occurs, as a function of input pulse energy [see evolution of the
temporal and spectral intensity profiles at different fiber lengths in Visualization 4]. We found
that the largest value of SSFS for S1 occurs when the input energy is 24 nJ, which leads to MMS
collision after 0.3 m of propagation. This is because, under this peculiar input condition, S1 gains
energy from S2 after a minimal distance of propagation. Therefore, S1 propagates for the longest
available fiber length, thus accumulating the maximum SSFS. For the other collision cases in
this energy region, the smaller the SSFS (or GD) of S1, the longer the distance where collision
occurs. One may expect that, for a longer fiber, collisions may occur for a wider energy range. A
particular evolution of two colliding MMSs along the fiber is discussed in the next section.

2.3.2. Field evolution inside the GRIN fiber

So far, we have shown the spectral features of the field which is observed at the fiber output.
Thus, at this point, one may naturally wonder: how do MMSs exactly collide inside the fiber?

An example of soliton collision in the fiber with the same parameters (rw = 3.2, rs = 1.7) of
Fig. 3(d), and the input energy Ein = 22.7 nJ, is depicted in Fig. 4(a). A 70 fs pulse is injected at
the beginning of the fiber, and it splits into two MMSs, marked as S1 and S2. The GVs of both
solitons are slower than the moving speed of the temporal reference frame. As a consequence,
we can see that their temporal delay increases, as both solitons propagate along the fiber. In order
to better display the temporal evolution of the solitons around the collision region [which occurs
between 1.1 m and 2 m, see the grey dashed parallelogram in Fig. 4(a)], the total fields (S1,S2),
the projection on mode n = 1 (S1M1,S2M1) and the sum of the remaining modes (S1M2-15,
S2M2-15) are processed by temporal translations, and re-plotted in Fig. 4(c-e). Here we can
clearly see the power exchange between the two MMSs, as they approach each other, and collide
around 1.6 m.

The evolution of the spectrum vs. propagation distance is shown in Fig. 4(b). We may note the
occurrence of an interference pattern in the spectral domain, which occurs in correspondence
with the collision point. The two interacting solitons can be better visualized by looking at
spectrograms computed at 1 m, 1.3 m, 1.6 m, and 2 m, respectively, as reported in the insets
of Fig. 4(a). We may notice that the two solitons have almost the same value of SSFS before
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S2M1, S1M2-15, S2M2-15) in (f), and the relative group velocities of S1 and S2 and their
temporal separation in (g) as a function of propagation length z. (h) Mode energy distribution
comparison between the input and the output of the fiber.

the collision occurs. Conversely, after the collision, S1 acquires energy from S2, which leads
to boosting both its SSFS and GD. The entire evolution of the temporal intensity profile (with
corresponding spectrograms) along the fiber is shown in Visualization 5.

In order to better display the influence of the mode content on the evolution of a MMS, in
Fig. 4(f) we plot the peak power of both S1 and S2, along with their fundamental (S1M1, S1M1)
and HOM content (S1M2-15, S2M2-15), as a function of the propagation distance. Furthermore,
by extracting from Fig. 4(a) the soliton delay τd(z) as a function of propagation distance z, we
calculated the relative GV ∆vg(z) by using Eq. (7), as well as the temporal separation between
the two solitons, both which are plotted in Fig. 4(g).

Based on Fig. 4(f,g), we may highlight the following three main phases of the collision process:
(i) Before the collision. After the fission which takes place at 0.1 m, the input pulse is splitted
into two separate MMSs. As a result, S2 is generated, which initially propagates faster than S1
[see Fig. 4(g)]. The peak power of both S1 and S2 exhibits an asynchronous oscillatory behavior
[see Fig. 4(f)]. As discussed before, the SSFS and the GD are influenced by the Raman effect,
whose impact is dominated by the contribution of the fundamental mode. Therefore, although
the total power of S2 is smaller than that of S1, the peak power of S2M1 is larger than that of
S1M1. Thus, S2 experiences a larger Raman effect than S1. Hence, we see that the GV of S2
reduces faster than that of S1, until it gets even smaller that the velocity of S1 at 0.86 m. (ii) At

https://doi.org/10.6084/m9.figshare.19425464
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the Collision. As a result of the GV dynamics, the two MMSs eventually collide at 1.6 m. It
is worth mentioning that the occurrence of a collision can be fully ascribed to the multimode
nature of S1 and S2. As a matter of fact, when considering soliton fission in a singlemode fiber,
the trailing soliton S1 with a larger energy can never accelerate and reach S2, which removes
the possibility of any soliton collision to occur. Due to the inelastic collision, S1 gains energy
from S2. Specifically, the energy of S1M1 increases, while S2M1 decreases. (iii) After the
collision. Thanks to its increased fundamental mode content, now S1 undergoes a larger SSFS,
and a lower GV with respect to S2. Therefore, the two MMSs progressively separate in time,
without experiencing any further interaction. Finally, in Fig. 4(h) we compare the mode content
at the fiber input and output. Here, we can see that the radial modes (modes with n = 1, 6, 15)
lose their energy, which is conversely acquired by non-radial modes.

It is worth mentioning that such collision is harder to be observed in step-index fibers due to
their larger modal dispersion. For example, in Fig. 2(a), for the GRIN fiber, the linear group
velocity difference between radial modes is ∆vg,n=6 ≈ 104 m/s. This group velocity difference
can be reduced when increasing the input pulse energy due to the Raman nonlinearity [See
Fig. 2(c): here the group delay difference for different modes at the fiber output reduces when
increasing the input energy from 1 nJ to 10 nJ]. Since this group velocity difference is small, it is
very sensitive to modifications by the Raman nonlinearity. This provides a larger possibility for
the temporal collision of two MMSs. To the contrary, for fibers with larger modal dispersion,
for example, the step-index fiber with the same radius R = 25 µm, the group velocity difference
among radial modes is around ∆vg ≈ 105 m/s. In addition, the fundamental mode effective area of
the step-index fiber is five times larger than that of the GRIN fiber. Such a bigger group velocity
difference and weaker nonlinearity make it harder to observe the soliton collision of two MMSs.

3. Experiments

In order to confirm the simulation results in Sec. 2, we have carried out a set of experimental
tests. Let us start by describing the experimental setup, before reporting the observations which
closely match our theoretical predictions.

3.1. Experimental setup

In our experiments, we used the same type of GRIN fiber as previously described. The
experimental setup is shown in Fig. 5. Linearly polarized optical pulses (with 70 fs temporal
duration, 1400 nm center wavelength and 100 kHz repetition rate) are emitted by a hybrid optical
parametric amplifier (Light Conversion ORPHEUS-F), pumped by a femtosecond Yb-based
laser (Light Conversion PHAROS-SP-HP). The input pulse energy is controlled by rotating
the computer motorized λ/2 waveplate, as shown in Fig. 5. A beam splitter (BS) is used for
monitoring the input power by means of a power meter (Thorlabs PM16-122). The laser beam,
which has a Gaussian profile (M2 = 1.1), is injected by means of a 50 mm lens into the GRIN
fiber, with a diameter of approximately 30 µm at 1/e2 of peak intensity on the fiber input facet.
At the fiber output, the beam is collected by an achromatic microlens, and separated into three
paths, in order to measure the output beams near-field, their spectra, as well as the MMS temporal
separation, by using an InGaAs camera (Hamamatsu C12741-03), a spectrometer (Fastlite
Mozza), and an autocorrelator (APE pulse check 50), respectively. The latter is appropriately
equipped with a 1500 nm longpass filter, in order to extract the Raman soliton out of the total
output spectrum.

The accurate control of the coupling conditions of the input pulses into the GRIN fiber is a
critical condition for studying the dynamics of MMS collisions. Whenever the input beam is
symmetrically coupled at the center of the fiber, one obtains a spectral evolution which is similar
to the case reported in the simulation of Fig. 4(a). Therefore, in order to unveil the peculiar MMS
collision-induced spectral dynamics, we offset the input laser beam by around 7 µm with respect
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Fig. 5. Sketch of the experimental set-up.

to the center of the fiber core. This leads to the generation of MMSs with far greater HOM
content at the beginning of the fiber. This beam offset and the value of the input pulse energy
need to be finely tuned, until we find out the occurrence of an interference fringe spectrum. As
we have seen before, this is a signature of the collision of two MMSs at the fiber output. Once
this is done, the only parameter to be adjusted is the input pulse energy, in order to record the
corresponding nonlinear evolution of the output spectrum.

3.2. Experimental results

Since we aim at experimentally retrieving the simulation predictions of Sec. 2, we used L1 = 2 m
of GRIN fiber. Next, we further confirmed the generality of our findings by using a L2 = 10 m
long GRIN fiber span.

In Fig. 6 we show the results of our experiments with the 2 m fiber. Specifically, in Figs. 6(a,b)
we illustrate the measured output spectra, along with their corresponding autocorrelation traces, at
different input pulse energies. For Ein<19 nJ, we can clearly identify the presence of two distinct
solitons, both in the spectral domain and in the temporal domain. The temporal separation of the
two solitons can be inferred by the autocorrelation traces in Fig. 6(c). Figure 6(a) shows that,
when Ein increases, the spectra of the two MMSs get progressively closer in the frequency domain.
However, one cannot clearly distinguish the presence of two separate solitons by just examining
the fringe pattern which appears in the spectrum, for energies between 20 nJ<Ein<21 nJ. This
is why we need to complement our spectral measurements with the temporal domain results of
Figs. 6(b,c), which reveal the presence of two MMSs with a separation of less than 0.5 ps for
Ein = 20.5 nJ. For 21 nJ<Ein<23 nJ, we detected the presence of a single dominant soliton in the
middle of autocorrelation trace of Fig. 6(b). Nevertheless, this figure also shows the occurrence
of a weak peak at ±4 ps for input energies in the same range 21 nJ<Ein<23 nJ. This indicates that
the two solitons do not overlap in the temporal domain at the fiber output. To the contrary, they
are well-separated in time after the occurrence of a collision at a previous position Zc<L1 in the
fiber. The presence of well-separated solitons is confirmed by the occurrence of distinct spectra
in Fig. 6(a) in the same input energy range. The two solitons are separated at the fiber output
because the trailing soliton S1 acquires energy from the leading soliton S2 at the collision point in
the fiber. This leads to enhancing the red-shift for S1. For input energies larger than the collision
region (i.e., for Ein>23 nJ), Figs. 6(b,c) shows that the two MMSs are again well-separated at the
fiber output. In addition, we may note in Fig. 6(d), showing four beams and their corresponding
spectra, that different MMSs exhibit a multimode transverse profile which varies with the input
pulse energy.

Now, it is interesting to both qualitatively and quantitatively compare simulation and exper-
imental results. To better show the comparison between theory and experiments, the regions
where collisions occur are marked by the dashed rectangles, both for the simulation result in
Fig. 3(d) and for the experimental result in Fig. 6(d). Figure 6(d) shows that the first soliton
overlap point at the fiber output occurs at 1.65 µm, for an input energy of 20.5 nJ. This energy
value is slightly lower than for the soliton overlap point that was found numerically at the soliton
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overlap point, which occurs at 22.5 nJ [cfr. Figure 3(d)]. The small discrepancy is likely to be
due to the limited number of modes which is used in simulations.

So far, we have shown spectral and temporal properties of the field emerging at the fiber
output. In order to experimentally monitor the collision dynamics along the fiber, similarly to
what reported by simulations in Sec. 2, one would need to carry out a cut-back experiment.
However, this is a challenging task, since performing a cut-back experiment may lead to changing
the bending properties of the fiber, which can be detrimental for our study. Therefore, we limit
ourselves to validate our conclusions by repeating the experiments with a longer, 10 m span
of GRIN fiber. In Fig. 7(a) we show the corresponding measured output spectrum, again as a
function of the input energy Ein. As we can see, the solitons experience larger amounts of SSFS,
when compared with the former result in Fig. 6(a). In a first stage (i.e., for Ein<6 nJ) a MMS
(S1) is formed, whose wavelength increases with Ein. For Ein>6 nJ, the fission of the input pulse
generates an additional MMS (S2). When Ein grows larger, S1 and S2 undergo different amounts
of SSFS. Again, when Ein>20 nJ, we observed that the SSFS of S1 is reduced as the input pulse
energy increases: this appears as a relative “blue-shift” in Fig. 7(b). Once again, the observed
spectral evolution is qualitatively remarkably similar to simulation predictions. A spectral overlap
of the two solitons is reached for Ein ≃ 26.9 nJ. The relevant output spectra, corresponding to
input energies such that collision occurs at some point inside the fiber, are marked by the red
dashed box in Fig. 7(b). Finally, for Ein>45 nJ, the two solitons S1 and S2 clearly separate again.
Examples of four spectra with their corresponding beams at different values of Ein are illustrated
in Fig. 7(b). The detailed evolution of these spectra can be seen in Visualization 6.

It is worth mentioning that, for such multimode solitons, the field intensity periodically
oscillates in GRIN fibers owing to mode beating, an effect which is known as self-imaging [35].
This could result in generating a series of spectral peaks, associated with resonant dispersive
radiation [47,48] in the anomalous dispersion, and with geometric-type parametric instability
[33] in the normal dispersion. However, such spectral peaks are not observed in the present
work, nor in our previous reports [38,39], due to the different pumping conditions. The pumping
pulse in our work has much smaller energy (<30 nJ) and shorter duration (70 fs), when compared
with the pumping pulses (>200 nJ and >400 fs) in Ref. [47,48]. Based on these different initial
conditions, we could infer that, in our case, sideband instabilities are negligible. The possible
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reasons for this could be: (1) in our case, the pumping pulse energy does not reach the level for
significantly triggering the instability; (2) The interaction between dispersion, experienced by 70
fs pulses with broader bandwidth, and combined Kerr and Raman nonlinearity is the dominant
effect, whose dynamics weakens the sideband instability.

4. Conclusions

To summarize, in this work we have numerically and experimentally studied the interaction of
MMSs, resulting from the fission of femtosecond pulses in GRIN fibers. We have revealed the
surprising result that, as a result of the variation of the MMS mode content, the SSFS of the
trailing MMS is reduced, in spite of the growing energy of the input pulse. This is an anomalous
behavior, which has no counterpart in the realm of singlemode fiber solitons. The physical
mechanism behind such an effect is the variation, with input energy, of the mode composition of
the MMS that results from the fission of the input pulse. Specifically, the fundamental mode is
depleted in favour of HOMs. This results in an input energy dependence of the group velocity of
the trailing MMS. As a result, an inelastic collision may occur between the two fission-generated
multimode solitons. In turn, the collision leads to a redistribution of both energy and mode
content between the two interacting solitons. The nonlinear collision dynamics predicted by
numerical simulations is well confirmed by experiments. From a fundamental standpoint, our
analysis unveils the previously undisclosed complexity of MMS interactions. Such an abrupt
redistribution of energy between modes during collisions might be exploited for the design
of multimode solitons with a specific modal distribution. In addition, our results deepen the
current understanding of the dynamics of MMSs, which may lead to rogue wave formation,
supercontinuum generation, and spatiotemporal mode-locking in multimode fiber lasers.
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