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Abstract: In civil engineering, structural elements characterized by hysteresis are often encountered,
such as materials with limited elastic fields, microsliding friction and elastomeric absorbers. Hys-
teretic nonlinearities produce a wide variety of dynamical phenomena, such as significant modal
coupling, bifurcations and superabundant modes. This paper investigates nonlinear modal interac-
tions in the dynamic response of a two-degree-of-freedom system (2DOF) with hysteretic elements.
These phenomena are notably important in internal resonance conditions, where modal interactions
produce strong modifications in the response with possible beneficial effects. In specific conditions,
the transfer of energy between the two modes leads to a notable reduction in the maximum response
amplitude; the exploitation of this feature to achieve vibration mitigation of the forced response is
the main goal of the paper. Two configurations are investigated: the hysteretic element at the top
(vibration damper) and the hysteretic element at the base (isolator). In both cases, several internal
resonance conditions occur since, by increasing the excitation intensity, the frequencies of the hys-
teretic system change, as well as their ratio. Qualitative similar results are obtained, characterized by
a transfer of energy between the two modes. For both configurations, the usefulness of exploiting
these nonlinear phenomena in vibration mitigation has been shown.
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1. Introduction

In the last decades, great interest has been given to the dynamic phenomena typical
of nonlinear systems in view of exploiting them to mitigate the effects of dynamic excita-
tions [1–4]. One of the usual techniques used to reduce structural vibration is to introduce
elements that guarantee a higher dissipation capacity [5]; here, the choice of introducing
hysteretic elements allows the combination of two strategies, which increase the ability of
the structure to dissipate energy and, at the same time, exploit the beneficial aspects of the
nonlinear dynamic coupling caused by the hysteresis itself [6–9].

The variety of the nonlinear phenomena is very large [10]; in particular, the modifica-
tion of the modal quantities, with the oscillation amplitude, assumes great importance and
entails change in the natural frequencies and in the linear modes. They are no longer orthog-
onal, and in a periodic cycle, they change their shape, leading to modal trajectories that are
no longer straight in the configuration plane [11,12]. The occurrence of internal resonance
conditions is easily met, and in these conditions, the modal coupling is exalted [4,7].

Several nonlinear motions can take place, such as multifrequencies or quasiperiodic
and chaotic oscillations [10,13,14]; however, the attention here is focused on more robust
phenomena related to periodic motion and features related to cases of strong nonlinearities.
Under these conditions, an unusual phenomenon occurs when a novel mode arises with
respect to the linear ones, as already observed in [7,11,15,16].

Hysteretic behavior is widespread among materials and elements; it is easily encoun-
tered in civil, mechanical, aeronautical and electrical engineering, and it is characterized
by an intrinsic capacity for energy dissipation [6–9,17,18]. Some examples are materials
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with limited elastic fields, elastomeric absorbers, shape-memory alloys, contacts exhibiting
microsliding friction and magnetostrictive materials. Compared to geometric nonlinear-
ities, those introduced by hysteresis can produce more marked effects on the dynamic
response [14,17–22] and give rise to phenomena typical of nonlinear dynamics, such as
modal coupling, bifurcations and the emergence of superabundant modes [12,16,23,24].

A system is said to be endowed with hysteresis if the output depends, in a rate-independent
way, on the history of the input [25]; however, this definition does not consider that rate-
dependent hysteresis can be encountered in a number of applications involving smart
materials, piezoelectric actuators or other specific devices [26]. According to this definition,
the main characteristic of hysteresis is thus its dependence on the history of the input;
while rate independence relatively eases the treatment of the problem, the dependence
on the history makes it very difficult to obtain analytically tractable formulations. Thus,
beyond the high number of different restoring forces encountered in the real world, this
explains the high number of models proposed in the literature, even when limited to the
mechanical field. Among the differential models, the Bouc–Wen model [27,28] was adopted
because it is very versatile in describing various hysteretic behaviors and simple due to its
ability to give analytical piecewise smooth representations of stress–strain relationships.
The versatility of the model in describing restoring forces with different characteristics has
been demonstrated in several papers [14,29–31]; however, here, the Bouc–Wen law was
adopted in its basic formulation because the interest is mainly devoted to exploiting the
use of generic hysteretic behaviors for vibration mitigation.

For this aim, a 2DOF system with one hysteretic element, representative of a multidegree-
of-freedom system under harmonic excitation, was investigated. Two configurations were
considered: in the first, the hysteretic element was between the two masses, and in the
second, it was between the base and the first mass, developing and enlarging the results
already obtained separately in [4,7] and updating the cases developed in [32] with specific
attention to vibration mitigation. The favorable effects in the mitigation of the system
response through the combined use of the nonlinear dynamic phenomena and the high
dissipation capacity of hysteretic elements were illustrated, showing a very promising area
for structural applications.

2. Response to Harmonic Excitation of a Hysteretic SDOF Oscillator

Several models have been proposed in the literature to represent hysteretic behav-
ior. For its simplicity and versatility, the differential model by Bouc–Wen is used here;
by properly tuning the model parameters, it is possible to capture the real mechanical
characteristics of many mechanical devices with hysteresis [29–31].

A single-degree-of-freedom (SDOF) oscillator with Bouc–Wen hysteresis and under
harmonic excitation was first investigated, Figure 1a. The mass m1 was connected to the
moving support by an element that provides a restoring force f due to an elastic and a
hysteretic component:

f = k1x1 + z (1)

The elastic component was characterized by stiffness k1, whereas the hysteretic part z
was provided by the Bouc–Wen law by solving the following nonlinear differential equation:

dz
dt

=

{
kd −

[
γ + β sgn

(
z

dx1

dt

)]
|z|n

}
dx1

dt
(2)

where kd, γ, β, n are the constitutive parameters of the Bouc–Wen law.
The element stiffness depended on the oscillation amplitude, which varied from an

initial value kA = k1 + kd to a final value kB corresponding to the post-elastic stiffness,
kB = k1, Figure 1b. The yield-restoring force f y and the yield displacement xy = fy/kA are
reported in Figure 1b. The ratio between the final and initial stiffness values is defined as
the hardening coefficient and denoted by δ: δ = kB/kA. The parameter n in Equation (2)
defines the degree of smoothness of the transition from the elastic to post-elastic branches
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and is assumed here to be unitary, as in most mechanical applications. The parameters β
and γ tune the extent of the restoring force loop; more precisely, their sum (β + γ) affects
the maximum value of the hysteretic force, while their ratio γ/β controls the shape of the
cycles and, consequently, the dissipative capacity of the element, Figure 1c. In particular,
for fixed (β + γ), the maximum loop area, and therefore, the maximum energy dissipation
is obtained when γ = β [7]; under this condition, the restoring force is defined as fully
hysteretic. For γ

β > 1, there is a smaller cycle area and, therefore, decreasing dissipated
energy; a reduced hysteresis is said to occur in this case.

Appl. Sci. 2022, 12, 10079 3 of 14 
 

The element stiffness depended on the oscillation amplitude, which varied from an 
initial value 𝑘 = 𝑘 + 𝑘  to a final value 𝑘  corresponding to the post-elastic stiffness, 𝑘 = 𝑘 , Figure 1b. The yield-restoring force fy and the yield displacement 𝑥 = 𝑓 /𝑘  are 
reported in Figure 1b. The ratio between the final and initial stiffness values is defined as 
the hardening coefficient and denoted by 𝛿: 𝛿 = 𝑘 /𝑘 . The parameter 𝑛 in Equation (2) 
defines the degree of smoothness of the transition from the elastic to post-elastic branches 
and is assumed here to be unitary, as in most mechanical applications. The parameters 𝛽 
and 𝛾 tune the extent of the restoring force loop; more precisely, their sum (𝛽 + 𝛾) af-
fects the maximum value of the hysteretic force, while their ratio 𝛾/𝛽 controls the shape 
of the cycles and, consequently, the dissipative capacity of the element, Figure 1c. In par-
ticular, for fixed (𝛽 + 𝛾), the maximum loop area, and therefore, the maximum energy 
dissipation is obtained when 𝛾 = 𝛽 [7]; under this condition, the restoring force is defined 
as fully hysteretic. For > 1, there is a smaller cycle area and, therefore, decreasing dissi-
pated energy; a reduced hysteresis is said to occur in this case. 

 
Figure 1. (a) SDOF Bouc–Wen oscillator; (b) first loading branch; (c) restoring force loops for 𝛾/𝛽 =1, 10, 50. 

The equation of motion of a SDOF under a harmonic base excitation, which is char-
acterized by amplitude 𝑎  and frequency Ω, is: 𝑚 𝑑 𝑥𝑑𝑡 + 𝑘 𝑥 + 𝑧 = −𝑚 𝑎 sin(Ω𝑡) (3)

where 𝑧 is provided by Equation (2). It is useful to introduce some quantities related to 
the parameters of the Bouc–Wen hysteretic element with clear mechanical meanings, such 
as the hardening coefficient 𝛿, the yield strength 𝑓  and the yield displacement 𝑥 . These 
can be expressed as: 𝛿 = ,   𝑓 = ,  𝑥 = , (4)

Additionally, the initial and final frequency, 𝜔  and 𝜔 , which are associated with small 
and large oscillation amplitudes, the adimensional force intensity 𝐴 and the driven fre-
quency η are defined as: 𝜔 = ,  𝜔 = ,  𝐴 =  ,  η =  (5)

As demonstrated in [4], the stiffness and damping characteristics of the hysteretic 
absorber depend on the vibration amplitude �̅�. In particular, the equivalent stiffness 𝑘  
as a function of �̅� can be expressed in the following form: 𝑘 (�̅�) = 𝑘 + 𝑘�̅�(𝛽 + 𝛾) 1 − 𝑒 ̅( )  (6)

According to Equation (6), it decreases with the excitation intensity varying from 𝑘  
to 𝑘 . To characterize the damping properties, the equivalent damping coefficient 𝜁  was 

Figure 1. (a) SDOF Bouc–Wen oscillator; (b) first loading branch; (c) restoring force loops for γ/β = 1,
10, 50.

The equation of motion of a SDOF under a harmonic base excitation, which is charac-
terized by amplitude ag and frequency Ω, is:

m1
d2x1

dt2 + k1x1 + z = −m1ag sin(Ωt) (3)

where z is provided by Equation (2). It is useful to introduce some quantities related to the
parameters of the Bouc–Wen hysteretic element with clear mechanical meanings, such as
the hardening coefficient δ, the yield strength fy and the yield displacement xy. These can
be expressed as:

δ =
kB
kA

, fy =
kA
kd

(
kd

β + γ

) 1
n

, xy =
fy

kA
, (4)

Additionally, the initial and final frequency, ωA and ωB, which are associated with
small and large oscillation amplitudes, the adimensional force intensity A and the driven
frequency η are defined as:

ωA =

√
kA
m

, ωB =

√
kB
m

, A =
mag

fy
, η =

Ω
ωA

(5)

As demonstrated in [4], the stiffness and damping characteristics of the hysteretic
absorber depend on the vibration amplitude x. In particular, the equivalent stiffness ke as a
function of x can be expressed in the following form:

ke(x) = k1 +
kd

x(β + γ)

(
1− e−x(β+γ)

)
(6)

According to Equation (6), it decreases with the excitation intensity varying from kA
to kB. To characterize the damping properties, the equivalent damping coefficient ζe was
introduced and defined as the value of damping of a viscoelastic oscillator that dissipates
the same energy EBW of the hysteretic device in an oscillation with the same frequency and
amplitude x:

ζe(x) =
EBW

2πkex2 (7)
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The frequency response curves (FRCs) of the hysteretic SDOF (Table A1 in the Appendix A)
with γ/β = 1, 10 are reported in Figure 2a,b for increasing values of the excitation intensity.
In Figure 2a the case of full hysteresis (BW1) is illustrated. The nonlinearity of hysteresis is
of the softening type, and the frequency–amplitude curve drawn by the resonance peaks is
bent on the left. The nonlinear frequency of the oscillator is close to ωA for low amplitudes
and decreases, moving towards the post-elastic frequency ωB for increasing response
amplitudes. The curves are made by stable periodic solutions; the branch nearly vertical
which connects the non-resonant and resonant branches is marginally stable [33].
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A = 0.01–0.63; (b) γ/β = 10, A = 0.01–0.57 (ωA = 7.83 Hz, ωB = 4.31 Hz); (c) equivalent damping
coefficient ζe vs. response amplitude; (d) excitation intensity vs. response amplitude.

Figure 2b shows a response with reduced hysteresis loops, γ/β = 10 (BW2). For
the same excitation intensity, greater response amplitudes are obtained at resonance with
respect to the previous case BW1, as evident in Figure 2d. This is expected behavior
related to a lower level of equivalent damping, Figure 2c. A more specific difference is
the coexistence of the resonant and non-resonant branches in a small range of frequency,
leading to multivalued curves with the classical jump phenomenon. This range of coexisting
solutions widens with γ/β, while disappearing with increasing force intensity, as evidenced
by different constitutive laws [33]; this is because the dissipation capacity between full and
reduced hysteresis is not more appreciable at high amplitudes.

The trend of the equivalent damping coefficient ζe versus the response amplitude
(Equation (7)) is reported in Figure 2c for fully and reduced hysteretic systems; ζe increases
with amplitude, reaches a maximum, and then decreases, which means that in the inter-
mediate range of amplitudes, the dissipation capacity is greater. This is the reason why,
although the equivalent stiffness decreases with amplitude, the relation between force
and resonance response amplitude is steeper with respect to the ranges of small and large
values, Figure 2d.
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3. 2DOF Systems with Hysteretic Dampers

The phenomena of nonlinear modal interactions in a multidegree-of-freedom system
can be suitably investigated by means of a 2DOF oscillator [7,24]. The analysis was de-
veloped for two different realizations: (a) top configuration (Figure 3a), where the second
element was hysteretic, and the goal was to reduce the response of the main mass m1 and
(b) base configuration (Figure 3b), where the first element was hysteretic, and the goal was
to reduce the action transmitted from the ground to the superstructure represented by mass
m2 and the elastic second element.
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The equations of motion which govern the forced vibrations of the two systems are
two dynamic equilibrium equations of the two masses and the differential equation which
describes the hysteretic restoring force, leading to a five first-order differential equations in
the state space.

In the case of the TC scheme, Figure 3a, the equations of motion are:

m1
d2x1

dt2 + k1x1 − k2(x2 − x1) + c1
dx1

dt
− z(x2 − x1) = −m1ag sin(Ωt) (8)

m2
d2x2

dt2 + k2(x2 − x1) + z(x2 − x1) = −m2ag sin(Ωt) (9)

dz
dt

=

{
kd −

[
γ + βsgn

(
z

d(x2 − x1)

dt

)]
|z|n

}
d(x2 − x1)

dt
(10)

where the hysteretic component is a function of the relative displacement between the two
masses (x2 − x1) and acts on both masses.

In the case of the BC scheme, Figure 3b, the equations of motion are:

m1
d2x1

dt2 + k1x1 − k2(x2 − x1) + z(x1) = −m1ag sin(Ωt) (11)

m2
d2x2

dt2 + k2(x2 − x1) = −m2ag sin(Ωt) (12)

dz
dt

=

{
kd −

[
γ + βsgn

(
z

dx1

dt

)]
|z|n

}
dx1

dt
(13)

where the hysteretic component acts on the mass m1 only. The initial and post-elastic
stiffnesses of the hysteretic element of the 2DOF oscillators are:

kA = ki + kd, kB = ki (14)

where i = 1, 2 for the base and top configurations, respectively.
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Modal Features

The hysteretic device introduced strong nonlinearity in the dynamic response of this
type of oscillator. This means that the modal characteristics of the system in both the TC and
BC configurations essentially depended on the response amplitude. As shown in [7], when
the oscillation amplitudes were small, the hysteretic element exhibited an approximately
linear behavior with stiffness kA, Equation (14)1. Conversely, when the amplitudes of
oscillation were large, the hysteretic element exhibited an approximately linear behavior
with stiffness kB, Equation (14)2. Two limit linear systems can therefore be identified:
System A and System B, obtained by replacing the hysteretic element with a linear spring
with stiffness kA and kB, respectively. As the response amplitude varies, the resonance
frequency can be approximated by considering, in the place of the hysteretic element,
a spring of which the stiffness ke depends on the amplitude, according to Equation (6),
kA ≥ ke ≥ kB. Since the ratio between the two frequencies also depends on the response
amplitude, depending on the mechanical parameters of the system, internal resonance
conditions n : m (nω1

∼= mω2, n and m integers) can easily arise. In such conditions, the
response to the harmonic force is strongly modified by the nonlinear modal coupling.

In the following, due to the change in a period of the nonlinear modal shapes, the
concept of nonlinear modal shape (NMS) is introduced; it represents the configuration of
the system at one specific instant, as defined in [7]. This is also useful in characterizing
the resonance response of the hysteretic oscillator at each excitation intensity. It is worth
noticing that the NMSs can be compared with the linear modes by observing that for
increasing amplitude they pass from the modal shapes of system A to those of system B.

Systems in the two configurations, TC and BC, will be examined below; the related
mechanical and constitutive parameters are shown in Table A2 of the Appendix A. By
way of example, Figure 3c,d report the modes of system A and system B in the case of an
oscillator, respectively, with top and base configurations.

4. The Phenomenon of Modal Coupling

Nonlinearity creates the possibility for interaction among modes that are no longer
orthogonal. In particular, in the presence of strong nonlinearities, peculiar dynamic phe-
nomena occur through bifurcations of the steady-state motions. This subject is developed
in the following, dealing separately with the cases of top and base configurations.

4.1. Top-Hysteresis Configuration (TC)

The top-hysteresis configuration models a primary structure, represented by the mass
m1, connected to the base, and an attachment, represented by the mass m2, connected to the
main structure with a hysteretic element. The hysteretic device, when properly designed,
can mitigate the vibrations of the main structure using a mass m2 which is much smaller
than m1 (light attachment). In the linear field, the importance of the Den Hartog viscoelastic
tuned mass damper (TMD) [34,35] is well recognized. By adding a linear attachment with
proper parameters, the peak exhibited by the FRC of the primary system response could be
divided into two much lower peaks of equal value.

In recent years, much work has been devoted to nonlinear attachments after the pio-
neering work of [36]; however, few of these have dealt with hysteretic devices [3,4,6,37–42] or
related to friction damping [43]. In the following, a hysteretic vibration absorber (HVA)
was adopted, and therefore, the calibration of the parameters should be more accurate.
In fact, as seen in the previous section, the 2DOF resonance frequencies depend on the
oscillation amplitude; thus, at the design stage, it is necessary to take into account the
oscillation amplitudes reached by the primary system to obtain the suitable frequency ratio
ω2/ω1 that is close to optimal.

In order to simulate the behavior of the TMD, it is necessary to tune the characteristics
of the added mass m2 and of the constitutive law so that the frequency of the primary
system is similar to that of the hysteretic attachment, approaching the 1:1 internal resonance
condition. This requires greater attention, as shown by the analysis of the following cases.
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Figure 4 depicts the response to the harmonically excited 2DOF system TC1; its mechanical
characteristics are provided in Table A2 of the Appendix A. The system presents a ratio of
the initial frequencies ω2A/ω1A ∼= 1.3, which is greater than the optimal value of 1.25 of
the TMD. As the amplitude increases, the frequency ratio approaches optimum, leading to
a reduction in the response for a definite range of forcing amplitudes.
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The frequency response curves of the primary structure displacement are reported
in Figure 4a with increasing excitation. For the optimal operation of the HVA, in analogy
with the behavior of the TMD, the external excitation should generate two equal peaks
in the FRC of m1; this occurs for ag = 0.065g, which corresponds with the red curve in
Figure 4a,b. For lower intensities, the equivalent stiffness ke of the device is lower than
the optimal stiffness value of TDM, and as a result, the first peak exceeds the second. On
the other hand, for larger amplitudes, the equivalent stiffness of the device exceeds the
optimal stiffness of the TMD, and consequently, the second peak predominates. When
the amplitude of the external excitation is close to ag = 0.065g, the ratio ω2

ω1
of the system

with a hysteretic attachment is close to the value of the optimal visco-elastic tuned mass
damper. At this level of excitation, the HVA is as effective as the TMD; in fact, in Figure 4b,
there is an 80% reduction in the oscillation amplitudes compared to those that would occur
on the non-controlled primary structure (NC). As shown in Figure 4c, the effectiveness of
the HVA is maintained even for higher values of the external intensity, provided that the
driven frequency is close to the first resonance. In Figure 4c, by means of a color map, the
maximum displacements of the NC and HVA oscillators are compared for different forcing
intensities and frequencies: blue dots refer to reductions of 40 to 85% with respect to the
non-controlled case; green dots are related to slight variations and warm colors indicate the
cases where the HVA is not beneficial and leads to an increase in the response, even though
this is in a small range of low excitation intensities (yellow regions).

In the previous case of internal resonance 1:1, a hysteretic nonlinear attachment used
to reduce the vibrations of the primary structure, simply simulates the behavior of the
classic TMD; therefore, the results described above are similar to what has already been
observed within the framework of linear dynamics. Although the advantage of this device
lies in its simplicity because hysteretic elements combine elastic and dissipative capacities
without the need for a viscous damper [41], the effectiveness is, however, limited to definite
excitation intensities. Furthermore, the nonlinearity resides in the constitutive law of
the attachment. However, no typical phenomena of nonlinear dynamics are triggered;
this novel contribution could be usefully investigated for the mitigation of vibrations, as
illustrated below.
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The occurrence of internal resonance conditions n:1, with n > 1 integer [43–46], is more
interesting, and the relevant phenomena can be exploited to achieve a reduction in the
forced response for certain values of excitation and frequency, as shown in the following.
As the hysteretic restoring force is a highly nonlinear constitutive law, various internal
resonance conditions are likely to occur. In the following, an oscillator that undergoes a 2:1
internal resonance was analyzed, Figure 5. Similar outcomes could be observed for n > 2
and also for other internal resonance conditions of the kind nω1

∼= mω2.
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Figure 5. TC2 oscillator close to a (2:1) internal resonance (ω2A/ω1A ∼= 2.15, ω2B/ω1B ∼= 1.46):
(a) FRCs of oscillation amplitudes of mass m1 for increasing intensity (ag = [0.025–1.5]g), optimal
excitation ag = 0.83g (red curve); (b) color map of the maximum response normalized to the excitation
amplitude for different excitation frequencies and intensities (warm colors reveal peaks related to
modes); (c) non-controlled (NC) and HVA responses at ag = 0.83g; (d) Color map comparing the
maximum displacements of NC and HVA oscillators (cold colors reveal amplitude reductions, warm
colors relate to amplitude increments, and green is related to slight variations).

On the same main structure of the TC1 system, an HVA was applied with mass m2,
and the stiffness k2 was calibrated in order to obtain a frequency ratio close to 2:1; the
mechanical parameters of this oscillator (TC2) are reported in Table A2 of the Appendix A.
In Figure 5a, the FRCs of the primary mass displacement is reported with increasing
excitation intensity. For low intensities, the resonance frequencies were close to those of
linear system A (ω1A = 5.35 Hz, ω2A = 11.5 Hz, with an initial value rA = ω2A/ω1A ∼= 2.15);
for high intensities, the resonance frequencies were close to those of linear system B (with
a final ratio rB = ω2B/ω1B ∼= 1.5). For intermediate intensities, the ratio approached
the internal resonance condition 2:1, where the FRC around the first mode experienced
a bifurcation and, instantaneously, the curve of the 2DOFs system showed two peaks (I1
and I2), in addition to the peak related to the second resonance (I I), which was much
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smaller due to the distribution of excitation, the projection of which was limited on the
second mode.

In more detail, the I1 peak, corresponding to the first resonance frequency, doubled,
following a trend that recalls the response of the VMTD and the previous TC1 system.
However, unlike those cases, a typical bifurcation scenario of the nonlinear dynamic
response was activated here. In fact, in the TC2 system, the rise of the I2 peak in the FRC
is related to a novel superabundant mode generated by a bifurcation associated with an
internal 2:1 resonance. An insight into this phenomenon is provided by the color map
in Figure 5b, where, for different excitation amplitudes and frequencies, the resonance
amplitudes of the m1 steady-state responses are evidenced. For small excitation amplitudes,
two branches develop, starting from the two linear frequencies A. At the critical value
of ag = 0.79g, the novel mode related to I2 arises. For increasing excitation intensity,
the value of peak I2 equals that of peak I1 at ag = 0.83g (red curve) and then prevails.
Along the branch I1 the nonlinear modal shape evolves passing from the linear mode A,
for small excitation, to the linear mode B, for high excitation, Figure 3c. Similarly, the
nonlinear modal shape of the superabundant mode evolves reaching the linear mode B,
Figure 3c. At ag = 0.83g, when the two peaks I1 and I2 are equivalent, the reduction in the
vibration amplitude of the main structure reaches its maximum, about 80% with respect
to the non-controlled case, Figure 5c. Then, the optimal excitation can be assumed as that
which produces an extra peak I2, equal to the preexistent one I1 in the FRC of m1. For
different forcing intensities, the hysteretic absorber mitigated the system vibrations as well:
as shown in Figure 5d, the effectiveness of the HVA was maintained in a wide range of
intensities and frequencies (blue regions).

4.2. Base-Hysteresis Configuration (BC)

To explore the ability of a hysteretic isolator to reduce the transmission of excitation
from the base to the superstructure by nonlinear modal coupling, the system with a
hysteretic element at the base (Figure 3b) and with the BC1 characteristics (reported in
Table A2 of the Appendix A), is considered in Figure 6. The small amplitude frequencies
were ω1A = 3.89 Hz and ω2A = 11.32 Hz with a ratio ω2A/ω1A = 2.90, which are close to
the internal resonance condition 3:1.
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Figure 6a focuses on the FRCs of the m2 displacement amplitude centered on the first
resonance. Initially, for small excitation intensities, the single peak I is present close to the
first natural frequency; however, with increasing intensity, at the critical value A = 0.024,
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a second peak I2 appears which grows until it reaches I1, at A = 0.1 (red FRC curve), and
then overcomes it. As shown by the color map in Figure 6b, the fundamental branchω–A
of the first resonance experiences a bifurcation and then shows a new branch in addition to
the preexisting one, which is destined to disappear; the new branch I2 is the only surviving
one for large excitation intensities.

It is worth noticing that the nonlinear modal trajectories in the physical plane x1 − x2,
related to the steady-state responses of I1 and I2, always exhibit opposite curvatures. This
is shown in Figure 7: the novel mode I2 arises at A = 0.024, showing a

∫
-shaped modal

trajectory, whereas the preexisting mode I1 exhibits a o-shaped one; as soon as I2 prevails
over I1 (A > 0.1), its modal trajectory becomes o-shaped, while the other turns

∫
-shaped

and disappears. Finally, along both branches, the nonlinear modal shapes evolve, passing
from the linear mode A, for small excitation, to the linear mode B, for high excitation,
Figure 3d.
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and I2 as excitation increases.

The comparison of the dynamic behavior of two different systems, BC1, close to
an internal resonance condition 3:1, and BC1n, far from an internal resonance condition
(Table A2 in the Appendix A) with a frequency ratio ω2A/ω1A = 3.40, makes it possible to
clearly illustrate the favorable effects of nonlinear modal interactions [1,2,29]. For BC1n, in
this case, there is only a single branch related to the first resonance, Figure 8a, which, as
expected, occurs at lower frequencies for increasing forcing intensities due to hysteretic
softening. On the contrary, the maximum displacement of the two masses is much smaller
for the system BC1 in conditions of internal resonance, with a reduction of about 70% for
m2 with respect to the non-resonant case (BC1n), Figure 8b. As shown in Figure 8c, the
closeness to internal resonance conditions leads to a relevant displacement reduction in a
wide range of forcing frequency and amplitude in the blue regions.

Internal resonance conditions n:1 with n even can also occur. As an example, a BC2
system close to internal resonance 2:1 is considered in Figure 9.

At small intensities, the amplification of the second mode I I is much smaller than the
first I1 due to the distribution of excitation. For increasing intensity, Figure 9a, the zone
of the first resonance widens, and a novel peak I2 emerges and reaches the peak I1 near
A = 0.32, leading to a flattening of the FRCs, with a notable reduction in the first resonance
peaks in a large range of force intensities. The resonance amplitudes of the m2 steady-state
responses are evidenced in Figure 9b for different excitation amplitudes and frequencies:
the branches related to the peaks I1, I2 and I I are well-evidenced, together with a short
branch of superharmonic solutions arising for low excitation frequencies.
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5. Conclusions

The aim of this paper is to investigate nonlinear modal interactions in multidegree-of-freedom
systems with hysteresis in view of exploiting this phenomenon to achieve mitigation of the
forced response. In particular, a simple 2DOF structure that consisted of two masses and
two elements, one elastic and one hysteretic, was investigated by considering two different
configurations: top configuration, with the hysteretic element at the top (TC) between the
two masses; and base configuration (BC), with the hysteretic element at the base.

The nonlinearity of the hysteretic element is described by the Bouc–Wen model and
can be classified as a strong nonlinearity due to the notable dependence of stiffness and
damping on the oscillation amplitude. The main dynamic effects of hysteresis are first
illustrated by the FRCs of a SDOF hysteretic system under harmonic excitation. The FRCs
were always single-valued functions, which meant that the steady-state solutions were
always stable for the full hysteresis model considered. Due to the reduction in stiffness with
amplitude, the nonlinearity was of the softening type: the resonance frequency decreased
from ωA for small amplitudes, to ωB for high amplitudes, where ωA and ωB were the
frequencies of the linear oscillator with a stiffness that was, respectively, equal to the initial
and post-elastic stiffness of the hysteretic element.

The nonlinear behavior the 2DOF system, as already observed for the SDOF, is again
comprised between those of two linear systems: system A for small amplitudes, system
B for large amplitudes. The modal properties of the system change with the oscillation
amplitude. Accordingly, natural frequencies, and their ratio, changed and the conditions
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of internal resonance, where the phenomena of nonlinear interaction are exalted, were
easily met.

For the top configuration, first, the case where the hysteretic device had a frequency
close to that of the main structure was considered, which recalled the case of the well-known
tuned mass damper. The hysteretic element, which combined stiffness and dissipation
characteristics, made it possible to avoid the viscous device, but the performance was
similar to that of the viscoelastic damper, only in a certain range of force intensity, due to
the dependence on the oscillation amplitude.

However, the introduction of a hysteretic element could take advantage of the phe-
nomena of nonlinear interactions, which occurred when the system was close to internal
resonance conditions n:1 with n > 1. The 2:1 condition was investigated for TC systems, and
the 3:1 and 2:1 conditions were investigated for BC systems. A large variety of behaviors
were observed; however, concerning the beneficial effects in vibration mitigation, similar
outcomes were found for both configurations. At a certain force intensity, the FRCs around
the resonance of the first mode exhibited a bifurcation with the arising of a novel mode.
The existence of two resonant peaks around the first mode was the result of the involve-
ment of the second mode, which strongly modified the modal trajectories and, mainly, the
response amplitude.

In conclusion, the novel contribution of the paper is the enlightenment of the use of
hysteretic devices, which offers the possibility of increasing the dissipation characteristics
of the system and, at the same time, due to its intrinsic nonlinear behavior, facilitates the
transfer of energy from the mode, directly excited to the other not directly excited, with
appreciable mitigation of vibrations of the structure.
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Appendix A

In the following tables, the parameters of the SDOF and 2DOF hysteretic systems
investigated in this paper are reported.

Table A1. Mechanical characteristics of SDOF systems.

SDOF Name m1
kg

k1
kN/m δ

γ
[1/m] γ/β kA

kN/m
f y

kN
xy
m

BW1 600 440 0.3 55 1 1466.7 13.3 0.0091
BW2 600 440 0.3 100 10 1466.7 13.3 0.0091

Table A2. Mechanical characteristics of 2DOF systems.

2DOF Name m1
kg

m2
kg

k1
kN/m

kd
kN/m

γ
[1/m] γ/β δ ζ1

k2
kN/m ζ2

ω1A
Hz

ω2A
Hz

TC1
1:1 1220 61 1532.6 82 82 1 0.14 0.02 14.51 0 5.27 6.95

TC2
2:1 1220 101 1532.6 408 55 1 0.15 0.02 72 0 5.35 11.5
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Table A2. Cont.

2DOF Name m1
kg

m2
kg

k1
kN/m

kd
kN/m

γ
[1/m] γ/β δ ζ1

k2
kN/m ζ2

ω1A
Hz

ω2A
Hz

BC1
3:1 256 420 440 300 55 1 0.6 0 440 0.01 3.89 11.32

BC1n 256 420 353 1606 55 1 0.6 0 889 0.01 3.93 13.3
BC2
2:1 1220 549 440 2493 55 1 0.15 0 440 0.01 4.1 8.57
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