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Abstract

The prolonged circulation of the SARS-CoV-2 virus resulted in the emergence of sev-

eral viral variants, with different spreading features. Moreover, the increased number

of recovered and/or vaccinated people introduced a selective pressure toward vari-

ants able to evade the immune system, developed against the former viral versions.

This process results in reinfections. Aiming to study the latter process, we first col-

lected a large structural dataset of antibodies in complex with the original version of

SARS-CoV-2 Spike protein. We characterized the peculiarities of such antibodies

population with respect to a control dataset of antibody-protein complexes,

highlighting some statistically significant differences between these two sets of anti-

bodies. Thus, moving our attention to the Spike side of the complexes, we identify

the Spike region most prone to interaction with antibodies, describing in detail also

the energetic mechanisms used by antibodies to recognize different epitopes. In this

framework, fast protocols able to assess the effect of novel mutations on the cohort

of developed antibodies would help establish the impact of the variants on the popu-

lation. Performing a molecular dynamics simulation of the trimeric form of the SARS-

CoV-2 Spike protein for the wild type and two variants of concern, that is, the Delta

and Omicron variants, we described the physicochemical features and the conforma-

tional changes experienced locally by the variants with respect to the original version.

Hence, combining the dynamical information with the structural study on the

antibody-spike dataset, we quantitatively explain why the Omicron variant has a

higher capability of escaping the immune system than the Delta variant, due to the

higher conformational variability of the most immunogenic regions. Overall, our

results shed light on the molecular mechanism behind the different responses the

SARS-CoV-2 variants display against the immune response induced by either vac-

cines or previous infections. Moreover, our analysis proposes an approach that can

be easily extended to both other SARS-CoV-2 variants or different molecular

systems.
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1 | INTRODUCTION

Since late 2019, the Coronavirus Disease 2019 (COVID-19), a condi-

tion involving the human respiratory system, has been causing a

worldwide pandemic.1,2 The causative agent, the Severe Acute Respi-

ratory Syndrome Coronavirus 2 (SARS-CoV-2), belongs to the family

of beta coronaviruses and represents the third highly pathogenic

coronavirus with a zoonotic origin that emerged in humans causing

respiratory illness.3,4 Despite the social distancing measures intro-

duced several times around the world, COVID-19 infection is still

largely present and has caused, according to World Health Organiza-

tion on August 18, 2022, over 600 million cases and 6 million deaths.

The SARS-CoV-2 cell entry mechanism relies on the viral Spike

(S) glycoprotein, which forms a homotrimeric structure that contacts

receptors on the cell surface.5,6 Since S protrudes from the viral capsid

exposing itself to the external environment, unsurprisingly this protein

is the human immune system's main target.7 In addition, almost all the

designed vaccines, both protein, and mRNA based, have focused on

it.8,9 Indeed, antibodies (also called immunoglobulins) are Y-shaped

molecules that play a key role in the immune system, used to identify

any nonself pathogens, such as SARS-CoV-2. The two tips of the mol-

ecule host two twin antigen binding sites, each one formed by the

pairing of two chains, called heavy and light chains. Each antigen bind-

ing site is formed by six hyper-variable loops of complementary deter-

mining regions (CDRs), three being part of the heavy and three of the

light chain. It is important to note that the capability of the antibodies

to recognize virtually any nonself antigen is due to the high sequence

variability they experience in CDRs, while the global architecture of

the molecule is conserved.10–12

In light of these considerations, a very large portion of the anti-

bodies elicited against SARS-CoV-2, both caused by infection or vac-

cination, actually target S protein.13 In particular, structural studies

have shown that the antibodies preferentially bind to specific regions

on S protein,14 located in the N-terminal domain (NTD), the region apt

to bindings with sialoside molecules,15 or in the receptor binding

domain (RBD), the region where S contacts its main cellular receptor,

ACE2.16,17 As for the other coronaviruses, mutations in the SARS-

CoV-2 genetic code randomly occur in viral replication, where the

ones that increase the fitness are preserved giving rise to new

variants.18–22 For instance, concerning the original line of the SARS-

CoV-2, one of the first registered mutations regards the amino acid

substitution D614G in S protein. Established in March 2020, this

mutation allowed the Spike RBD to assume a conformation more suit-

able for binding ACE2 and rapidly became dominant.23–25 Indeed,

RNA viruses are characterized by a low replicative fidelity: this allows

the adaptation to different environments and evolutive pressure, in

turn enabling them to escape the host immunity.18,26 In this scenario,

during the spreading pandemic several SARS-CoV-2 variants have

emerged: some of them, such as Delta (B.1.612.2) and Omicron

(B.1.1.529) variants, have been defined as “variants of concerns”
(VOC) by the World Health Organization.27,28 In this framework, one

of the major issues of the emerging variants is the escaping ability

from the immune system, which has developed antibodies against a

different version of the virus.29,30 Indeed, the initial infections and the

vaccination campaign have originated an immunity against the original

version of the S protein. This protection can be endangered if the

emerged variants are characterized by many mutations on the S pro-

tein, especially if these mutations sensibly alter the physical–chemical

properties of antibody-targeted S regions.30–32

Interestingly, in the past years, several computational approaches

have been attempted to predict the structural determinants of the S-

antibody recognition and the effects that mutations can have on

them. For instance, molecular dynamics studies highlighted that epi-

tope regions on S are characterized by low-intensity energetic cou-

pling with the rest of the structure33 and that the RBD rigidity can

explain the increased affinity of this virus compared to SARS-CoV.34

Molecular dynamics have been also utilized to predict the molecular

mechanisms driving the virulence of emerging SARS-CoV-2 variants35

and to understand how the epitope regions were affected by these

variants.36 In addition to this, integrating a very large amount of het-

erogeneous data, Wang et al. discuss the viral evolution mechanism

and forecast the next possible vaccine-breakthrough variants.30 These

data are then used in an artificial intelligence model, proving its effec-

tiveness by comparing its prediction with the actual data about the

emerging variants in the past year.37,38

In this work, we explore from a structural point of view the

antibody-S interactions, identifying the main peculiarities of such

bindings. We also relate them with the main differences S protein reg-

isters when Delta and Omicron variants are considered.

First, we collected two structural datasets of antibodies in interac-

tion with their antigens. The first one, termed Spike Dataset, collects

297 nonredundant complex structures involving antibodies recognizing

SARS-CoV-2 S protein; the second one, General dataset, is composed

of 684 nonredundant complexes of antibodies binding nonspecific pro-

teins. By analyzing these two datasets in terms of sequence and struc-

ture, we highlighted some differences in S-binding antibodies, in terms

of sequence, CDR length, and antigen-contacting residues.

Thus, examining the Spike dataset we identified the S region most

frequently recognized by antibodies. Indeed, we associated each S

residue with an immunogenicity index, reflecting the number of com-

plexes whose residues are in interaction with the antibody. Moreover,

such analysis allowed us to define three classes of anti-S antibodies,

according to the S region they bind. Calculating the nonbonded van

der Walls and Coulomb energies at the molecular interface, we under-

lined some differences in the binding mechanisms between these

three classes.

Hence, we asked how the mutations in the S sequence carried by

the variants can impact this scenario, locally modifying the character-

istics of the exposed regions of the S protein. In particular, we

selected Delta and Omicron variants and we studied through molecu-

lar dynamics simulations the trimeric form of both the original and the

two variants of S protein. Adopting a molecular dynamics approach

allowed us to consider, beyond the short-range effects of the muta-

tions, also the dynamics, and the long-range protein behavior.

Along the trajectory, we investigated which regions experience

the highest difference between the mutated and the original S
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protein, in terms of shape similarity and hydropathy. To study the

shape we adopted a method we recently developed employing the

Zernike polynomials formalism.39 In this method, each protein surface

region is associated with an ordered set of numerical descriptors,

defining the shape geometry of that molecular patch. Such characteri-

zation, independent of the orientation of the protein, permits an easy

comparison between molecular patches and has already proven its

efficacy in the evaluation of patch similarity or complementarity.40–49

In addition to this, we studied the local changes in chemical properties

of S surface regions. Using the residue hydropathy scale introduced

by Di Rienzo et al.50 each surface point can be indeed labeled with

the value of hydrophobicity of the residues generating it. The hydro-

phobicity index of a patch is then defined as the mean of the values

associated with the points included in that surface region.

Starting from the shape and hydrophobicity characterizations, we

defined two variability indexes reflecting the changeability of each

Spike residue. These indexes, which can be computed independently

for Delta or Omicron variants, allowed us to compare the chemico-

physical properties in the variants with respect to the original S pro-

tein. Lastly, we related the variability indexes with the immunogenicity

index, to give further insights into the escaping ability these two vari-

ants exhibit against antibodies elicited against the original version of S

protein.

2 | RESULTS AND DISCUSSION

2.1 | Sequence and structural analysis of anti-spike
antibodies

In this section, we analyze the peculiar traits characterizing anti-S pro-

tein antibodies.

Starting from the very first phases of the pandemic, the interac-

tion between Spike and antibodies has been studied. In this work,51

polyclonal immunoglobulins from COVID-19 convalescent individuals

have been characterized, providing some preliminary considerations

regarding the antibodies side of the interface. Thus, the effort of the

scientific community has been mainly focused on the description of

the most immunogenic regions of the Spike protein, and how the vari-

ant's amino acid substitutions can impact the binding with known

antibodies.52–55 A complete overview of the various antibody-spike

complexes experimentally determined has been furnished in this

recent paper, with particular attention to the epitope region the anti-

bodies are bound to.56

However, we focused on a different aspect. We study antibody

sequences (using the Chotia numbering scheme10,11), the number of

residues composing CDRs, and the position of the antigen-contacting

residues. To highlight eventual originalities, we select two distinct

structural datasets composed of experimental structures of antibody–

antigen complexes: in the Spike dataset, 298 antibody-S complexes

are present while in the General dataset, we gather 684 antibody–

antigen structures, to work as a control.

The results of these analyses are shown in Figure 1.

First, we investigate if the sequences of anti-Spike antibodies are

statistically different with respect to the control sequences (antibodies

binding proteins different from SARS-CoV-2 Spike). In particular,

Figure 1. A shows the logo representations of both the heavy and the

light antibodies chain belonging to the Spike dataset, obtained with a

multiple sequence alignment and the WebLogo application.57 For

each residue in the antibody sequence, the probability to find the indi-

cated amino acid in that position is indicated by the height of the cor-

responding letter. In Figure 1B, we report the positions where the

differences with the control case are more evident. In particular,

focusing on the positions populated almost in 75% of the antibodies

(both in the Spike dataset and in the General dataset) we select the

cases where it occurs a 25% difference in an amino acid frequency

between the two datasets. It turns out that some important differ-

ences exist in positions H5, H40, H60, H83, and L43: compared to the

control case, the anti-S antibodies use with more probability ALA in

H40, H60, and L43 while they prefer VAL and ARG in H5 and H83,

respectively.

Next, we focus our attention on the length of antibodies CDRs.

For each of the six loops, we build the histogram regarding the num-

ber of residues composing the loop, using separately the Spike dataset

and the General dataset. We thus compare the loop length distribu-

tions using the Kolmogorov–Smirnov statistical test. We report in

Figure 1C the loops that result to be different (p-value < .01): it can

be noted that anti-spike antibodies typically employ an H2 CDR

shorter than the control, while both L1 and L3 are characterized by a

higher number of residues.

Lastly, we identify the antibody residues that are more involved

in the interaction with the antigen (intuitively, in the Spike dataset the

antigen is always the S protein). In our approach, an antibody residue

is in contact with the antigen if its CA atom is closer than 8 Å to any

antigen CA atom. In Figure 1D, we report the result of this analysis. In

the left bar plots, we report the probability of antigen interaction

regarding each antibody position, as obtained using the Spike dataset.

As expected, both for heavy (upper panel) and light (lower panel)

chains, the interaction with the antigen is mediated by the CDRs, as

three well-separated peaks emerge from the plot. Interestingly, in the

right panels, we show the comparison between the results in the Spike

dataset and the General dataset: the residues with the most marked

differences are reported in the upper and the lower panel for heavy

and light chains, respectively. It has to be noted that anti-S protein

antibodies use H1 residues to contact the antigen with more fre-

quency than in the control case, while H3 is less preferred. Analo-

gously, the interaction involving L1 residues is more common in anti-S

antibodies than in the general case.

2.2 | Preferential epitopes and energy of spike-
antibodies interaction

Here, we focus our attention on the S protein side of the complexes,

investigating where the S regions most prone to antibody binding are

located and which the energetic mechanisms for the recognition are.

1118 DI RIENZO ET AL.
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F IGURE 1 Legend on next page.
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Working on the Spike dataset, we define the intermolecular contact as

in the previous section (i.e., an S residue is in contact with the anti-

body if its CA atom is closer than 8 Åto any CA of the antibody).

Figure 2A shows the interaction frequency computed for each residue

considering all the complexes in the dataset. The bars in yellow regard

residues from the S NTD, whereas the bars in cyan refer to the ones

in the RBD: among these residues, we depict in blue the ones involved

in ACE2 recognition. This frequency determines the residue

immunogenicity index, represented in Figure 2B, where the higher the

red intensity, the higher the residue immunogenicity.

These results allow us to classify the antibody-Spike complexes in

three categories, according to the S region used for the recognition:

N-ter (27 complexes, 9% of the dataset), RBD (antibodies bound to

RBD but not in the ACE2 binding site, 77 complexes, 26% of the data-

set), ACE2 BS (antibodies whose epitope residues are at least 25% in

common with ACE2 binding site, 188 complexes, 64% of the

F IGURE 1 Analysis of the antibodies structural datasets. In the central panel, we insert the molecular representation of an antibody–antigen
interaction. (A) Variable domain sequence logo representation of antibodies in the Spike dataset. (B) Histograms of amino acid occurrences in the
antibody position characterized by the most evident difference between the Spike dataset and the General dataset. (C) Histograms of the
distributions of the number of residues composing CDRs. The three selected CDRs are characterized by a statistically relevant difference in the
two datasets, according to the Kolmogorov–Smirnov test. (D) Position probability of antigen interaction, considering the heavy (upper panel) and
light (lower panel) chain. On the left, the frequency with which each position is seen in interaction with the antigen within the Spike dataset. On
the right, the frequency calculated in the Spike and the General dataset for the positions with the most marked differences.

F IGURE 2 Analysis of the spike-antibodies interactions. (A) Frequency with which each Spike residue interacts with an antibody in the Spike
dataset. (B) Molecular representation of the Spike protein, colored according to the frequencies reported in panel (A). (C) Boxplots of the
intermolecular energies distributions for the three classes of antibody-Spike complexes described in the main text. The right panel accounts for
Coulombic interactions and the left panel for Lennard-Jones ones. (D) Residues characterized by the most favorable or unfavorable mean strength
of the Coulombic (upper panels) and Lennard-Jones (lower panels) interactions.

1120 DI RIENZO ET AL.
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complexes). Therefore, it emerges that in most known cases anti-

bodies recognize Spike epitopes overlapping with the ACE2 binding

site. Nevertheless, a non-negligible part of the antibodies exerts their

activity by binding Spike in other regions that are part of the RDB or

the NTD.

It has to be noted that in previous years various works have pro-

vided insightful and interesting classifications of Spike-binding anti-

bodies depending on their binding properties.58 In particular, these

experimental papers, typically based on tens of antibody structures,

cataloged antibodies depending on the Spike regions they bind,

observing immunogenic regions on the RBD,7,59,60 NTD,7,61 and

S2.7,62 Here, we provide a comprehensive study based on 297 anti-

body-Spike complexes, where the diversity between antibodies is

ensured by modulating the sequence identity.

Thus, we investigate if, from an energetic point of view, the

mechanisms of interaction differ among these classes. To achieve this

purpose, for each antibody-spike complex we calculate the Coulombic

and Lennard-Jones intermolecular interaction energies between all

couples of residues closer than 12 Å (see “Materials and Methods”
Section for details), as we did in our previous works.63,64 We report

the distribution of the interface energies in the boxplots in Figure 2C,

where the antibodies are separated into the three categories

described above. It is worth commenting that the N-ter and RBD anti-

bodies are characterized by a higher number of strong favorable Cou-

lombic energies than the ACE2 BS ones (left panel). On the other

hand, the three classes of antibody-Spike structures do not differ in

what concerns the Lennard-Jones energies.

Lastly, we study which residues are on average responsible for

the energy at the interaction. We define the residue strength as the

sum of the energies of all the intermolecular interactions involving

that residue. In Figure 2D, we show the residues characterized by the

most favorable (right panels) and unfavorable (left panels) mean

strength values, both for Coulombic (upper panels) and Lennard-Jones

(lower panel) energies. This analysis is conducted on the residues seen

in contact with the antibody at least five times. As expected, residues

with high mean Coulombic strength are in the NTD or RBD

(as indicated in Figure 2A by the yellow and cyan bars respectively). In

addition, ACE2 binding site residues are characterized by a good mean

Lennard-Jones strength (lower left panel, blue bars), while NTD and

RBD residues can have strong unfavorable Lennard-Jones strength

(lower right panel, cyan and yellow bars). The results of the energetic

analyses might help in the design of effective antibodies against the

virus and its future variants on specific regions.

2.3 | Analysis of the spike molecular dynamics
simulations

All the above analyses, including the structural characteristics study of

the interaction with antibodies, were conducted on the original S pro-

tein. Thus, to investigate the impact of SARS-CoV-2 variants on the

immune response generated against the original S protein, it is neces-

sary to understand how much the antibody-targeted S regions are

different in the viral variants. With this aim, we select the original

Spike (hereafter referred to as wild type) and two well-known VOC,

that is, the Delta and Omicron variants, and we perform a 100-ns long

molecular dynamics simulation of the trimeric form of all these three

Spike variants. Indeed, the differences in the local dynamical behavior

the variants experience with respect to the wild type can give us

insights into the persistence of bindings with antibodies.

We then compared the three variants Spike molecular dynamics

simulation. We use the root mean square deviation (RMSD) observ-

able, calculated over some different portions of the S molecule. The

results of this analysis are reported in Figure 3A. The upper left panel

regards the whole proteins: after a short equilibration time, all three

proteins reach equilibrium with a similar displacement from the initial

configuration, highlighting overall comparable stability. In the next

three panels (Figure 3B–D) we report the RMSD obtained locally over

the NTD, the RBD, and the ACE2 binding site. As evident from the

upper right panel, the NTD in all the cases is very mobile: however, it

is worth noting that both variants show a behavior more unstable

than the wild type. Interestingly, ACE2 appears to present an opposite

tendency. Indeed, while the stability of the RBD as a whole is compa-

rable in the three simulations (lower left panel), the mutations seem to

lower the RMSD and stabilize the ACE2 binding site (lower right

panel), especially for the Omicron case. Moreover, we consider the

root mean square fluctuation (RMSF), calculated over each residue of

the NTD and RBD in all three molecular simulations. The results can

be found in Figure 3B, where the upper, the central, and the bottom

panel regard the wild type, the Delta, and the Omicron S protein,

respectively. It should be remarked that the variants that improved

mobility of the NTD previously discussed have different origins in

Delta and Omicron. Indeed, by comparing the three plots it becomes

evident that the RMSF of residues around 240 is responsible for the

higher mobility of the Delta S protein. Conversely, the omicron RMSF

results show very high mobility in the residues around 140, while the

peak around 240 disappears. However, the differences in the RBD are

less evident: this notwithstanding, looking at the ACE2 binding site

residues (blue bars), a decrease in the RMSF of such residues

emerges.

It has to be noted that, as known, SARS-CoV-2 Spike protein is

mostly covered by glycans and they play an essential role in various

aspects of the Spike structure and dynamics. In fact, besides the

shielding role shared with other fusion proteins, many authors have

hypothesized that they have a functional role in binding with ACE2 or

in maintaining a stable conformation of Spike itself.65 However, some

papers underline that glycans' presence influences the dynamical

behavior of the Spike protein on a very long time scale (at least tens

of microseconds),66,67 while on shorter time scales, such as the ones

we investigated in this work, it seems that their influence is lower.68

In addition, we focused on characterizing the binding mechanism

between Spike and antibodies: it has been shown that antibody recog-

nition can occur mainly in Spike regions where the glycan shield is not

present, thus we considered that the absence of glycans in the Spike

simulations was not expected to significantly affect our findings, while

allowed for a relevant decrease of the computational cost. In this

DI RIENZO ET AL. 1121
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panorama, we performed two additional 250 ns-long molecular

dynamics simulations of the Spike S1 domain, in its WT sequence, one

with the glycans and one without them. Overall, the results of these

analyses represent a convincing indication that residue mobility on a

short time scale is not strongly affected by the presence/absence of

glycans (See Data S1).

F IGURE 3 Analysis of the molecular dynamics simulations. (A) root mean square deviation (RMSD) as a function of time for the Spike protein
of the wild type (light blue) and the Delta (blue) and Omicron (dark blue) variants. The RMSD is computed for four different portions of the
molecule: from left to right and from top to bottom the whole protein, the N-terminal domain, the receptor binding domain, and the ACE2
binding site are considered. (B) Root mean square fluctuations of the Spike residues of the N-teminal domain and the receptor binding domain.
The top, central, and bottom panels report the results for wild type, Delta, and Omicron, respectively. Residues from a different portion of the
Spike are differently colored: orange for the N-terminal, cyan for the receptor binding domain, and blue for the ACE2 binding site.

1122 DI RIENZO ET AL.

 10970134, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26497 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [28/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.4 | Modeling the physico-chemical changes in
SARS-CoV-2 variants and their importance for
antibody recognition

To further analyze the local differences in the S protein induced by

the variants mutations, we introduce two descriptors to quantitatively

characterize the local shape and hydrophobicity. For this purpose, we

build for each frame of the molecular dynamics simulations the corre-

sponding molecular surface, using the DMS software.69 We then

exhaustively sample the molecular surface, selecting 10% of its points.

Each point is used to determine a patch, defined as the set of molecu-

lar surface points closer than a threshold to that point. Finally, we

assign each patch to the residue generating its center.

The shape of each patch can be thus characterized in terms of 2D

Zernike descriptors, according to a method we recently developed39:

the geometrical features of the patch are summarized in an ordered

set of numerical descriptors, allowing an easy patch-to-patch compari-

son applying a standard Euclidean metrics between their descriptors.

Moreover, we characterize also the hydrophobicity of a patch: using a

residue molecular-dynamics-based hydrophobicity scale we recently

published,50 the hydrophobicity of a patch is defined as the weighted

mean hydrophobicity of the residues generating its points (see “Mate-

rials and Methods” for details).
In Figure 4A, we report the results of the shape analysis con-

ducted over the three molecular dynamics simulations of the wild-

type and variants of S protein. The top panel concerns the wild-type

simulation and highlights which regions on S show the highest shape

variability. To measure the shape variability of a patch, we start by cal-

culating its Zernike descriptors for all the frames of the simulation and

computing the distances between all these descriptions. The average

of such distances quantifies the shape variability this patch experi-

ences along the simulation. Then, we perform a mean on the patches

relative to the same residue. Lastly, we standardize our results by sub-

tracting to each residue value the global mean. In this way, we can

identify which regions are more variable in shape: a positive high

value means a high variability while a negative high value indicates

F IGURE 4 Physico-chemical analysis of the changes exhibited by the variants Spike protein. (A) Shape conservation index for all the residues
of the wild type (top), Delta (middle), and Omicron (bottom) spike protein obtained as the average of the Zernike distances of the molecular
surface portion centered around each spike residue during the molecular dynamics simulation. (B) Same as in panel (A) but considering the
hydropathic index (see Methods). (C) Molecular representation of the Delta variants, where the intensity of the blue color is determined by the
shape changes with respect to the wild type. (D) Same as in panel (C) but for the Omicron variant. (E), (F) Same as in panels (C) and (D) but for the
hydrophatic index.
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high shape conservation. Looking at the top panel of Figure 4A we

confirm the relative instability of the wild-type NTD, overall charac-

terized by a high number of positive peaks. Interestingly, one of the

most variable regions in the RBD includes some residues responsible

for ACE2 binding.

The central and the bottom panels are in Figure 4A represents

the shape variability, with respect to the wild type, exhibited by the

Delta and Omicron S protein variants, respectively. To obtain these

graphs, we characterize each patch of each frame with the Zernike

descriptors. As a next step, we calculate the distances between its

shape description in all the frames of the considered variant simula-

tion and its shape description in all the frames of the wild-type sim-

ulation. In this way, we define a measure of the shape changes

between each variant and the wild type. We call this measure the

shape variability index. Intuitively, the regions mostly characterized

by large shape changes induced by the mutations should be the

most unstable in the wild-type case: this is true for both the Delta

variant (central panel, Pearson correlation coefficient of 0.90) and

the Omicron case (bottom panel, Pearson correlation coefficient

of 0.92).

The same analysis is performed in terms of hydrophobicity in

Figure 4B: the peculiarity here is that the patch hydrophobicity is

summarized in a single numerical value. The top panel regards the

wild-type Spike protein simulation, where a high positive value indi-

cates a residue whose patches tend to modify its hydrophobic behav-

ior during the simulation while high hydrophobicity conservation is

shown by residues characterized by negative values. Here, even if the

lowest conservation is still in the NTD, the exposed regions are

equally characterized by low conservation. As in the previous shape

analysis, the central and bottom panels of Figure 4B measure the

changes exhibited by the variant forms of S with respect to the wild

type. Symmetrically, we call this residue-level measure the hydropho-

bicity variability index of either Delta or Omicron.

To offer a more understandable representation of these results,

in Figure 4C, D, we report a molecular representation of the two vari-

ants, where the intensity of the blue color is determined by the shape

changes with respect to the wild-type. Analogously, in Figure 4E, F

the Spike protein of the two variants is colored according to hydro-

phobicity changes: the higher the intensity of brown the higher the

difference experienced in that region by the variant.

2.5 | Relationship between physico-chemical
changes and immunogenicity

In the previous sections, we characterized the S protein regions both

by looking at immunogenicity, (i.e., the frequency with which anti-

bodies bind that region), and variability (i.e., the changes that that

region experiences due to the variants mutations). Therefore, each S

residue is now described by several indexes: an immunogenicity index

reflecting how many times it was experimentally observed in interac-

tion with an antibody; a shape variability index indicating how much

the molecular regions surrounding the antibody binding site change

their shape because of the mutations in the variants; a hydrophobicity

variability index summarizing the chemical changes in hydrophobicity

of the patches around the antibody binding site when the variants are

considered.

To relate these quantities, we adopt a conditional probability

approach. Indeed, if the variant's physico-chemical changes occur in

regions characterized by a high antibody binding frequency, it is more

likely that the antibodies generated against the wild-type version of S

protein cannot recognize anymore the Spike mutated version. There-

fore, we want to know the probability of a residue having surface

regions highly variable in shape and/or hydrophobicity, conditioned to

its high immunogenicity.

To do this, we binary classify residues in strongly immunogenic

and weakly immunogenic, highly shape-variable and lowly shape-

variable (for both delta and omicron), highly hydrophobic variable and

lowly hydrophobic variable (for both Delta and Omicron). Therefore,

we can define the conditional probabilities:

PδS ¼P Vδ
SjI

� �¼P Vδ
S\ I

� �
P Ið Þ

PoS ¼P Vo
SjI

� �¼P Vo
S \ I

� �
P Ið Þ

PδH ¼P Vδ
HjI

� �¼P Vδ
H\ I

� �
P Ið Þ

PoH ¼P Vo
HjI

� �¼P Vo
H\ I

� �
P Ið Þ ,

ð1Þ

where the subscripts S or H mean shape and hydrophobicity, respec-

tively. δ and o superscripts stand for the results relative to the two

corresponding variants. V indicates the highly variable state of a

F IGURE 5 Conditional probability analysis. Conditional
probabilities of finding a residue with a high variance of shape or
hydrophatic indexes given that such residue shows high
immunogenicity. Green bars display the conditional probabilities
computed using Delta spike residues, while red bars are obtained
considering Omicron spike residues.
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residue, while I indicates the classification as highly immunogenic of a

residue.

We show such probabilities in Figure 5. It emerges that the condi-

tional probabilities obtained by the Omicron variant are higher than

the ones of the Delta, both in terms of shape and hydrophobicity. This

means the S protein of the Omicron variant is more different from the

wild type in the antibody interested regions than the Delta variant:

this could imply a more pronounced escape capability from antibodies

elicited against the wild-type S protein, as confirmed by literature.70,71

3 | CONCLUSIONS

After more than 2 years of the SARS-CoV-2 pandemic worldwide

spreading, the onset of viral variants still represents a dangerous issue

for public health. Indeed, even if the vaccination campaign and the

previous infections have generated an immunization against the origi-

nal version, the mutations acquired by such variants can virtually con-

fer to the virus the capability to escape the immune system. From this

point of view, the new vaccines, updated with some VOC, can repre-

sent an effective way to contain the phenomenon.

To quantify this effect we preliminary studied the peculiarities of

the interaction between antibodies and the original version of the

SARS-CoV-2 Spike protein, which is the main target of the antiviral

antibodies both in case of infection or vaccination. Interestingly, we

identified some features of these antibodies that are statistically dif-

ferent from the wider population of generic protein-binding anti-

bodies. Moreover, we identified the immunogenic regions of the

Spike protein, adopting the frequency of interaction with antibodies

as a proxy.

Thus we selected two important SARS-CoV-2 variants of con-

cern, Delta and Omicron, to investigate how their Spike protein muta-

tions impact the interaction with the antibodies elicited against the

original version of Spike. The molecular dynamics we performed, we

simulated the trimeric form of original and variants Spike protein,

allowing us to evaluate the long-range effects of the mutations and to

obtain a sample of the possible conformations that Spike can assume

in all the variants.

Studying the intensity of the geometrical and chemical changes

experienced by the two variants, we identified in both cases the Spike

regions most affected by the mutations. We, therefore, obtained

insights on the physicochemical variability of Spike regions using

molecular dynamics data, while we reaped information about the

immunogenicity of such regions using experimental complexes.

It is already known that Omicron can escape antibodies better

than the Delta variant. Correlating the information of our two

approaches we suggested a possible explanation: even if the overall

variability between the two variants is comparable, Omicron presents

a higher variability in the highly immunogenic regions compared to

Delta.

In addition, it is worth noting the general validity of our approach,

which could be applied both to new SARS-CoV-2 variants of concern

and on other viral pathogens.

4 | MATERIALS AND METHODS

4.1 | Datasets

The Spike dataset was built using CoV-AbDab72 and the General

dataset with SabDab.73 Separately for both datasets, we selected the

antibody complexes with a level of redundancy lower than 90% using

cd-hit.74 All the structures are renumbered according to Chotia

numbering scheme10,11 with an in-house Python script.

The sequences of the original, Delta and Omicron Spike protein

have been taken from the GitHub repository of a recent work.75 We

then modeled the three trimeric structures with Swiss Model,76 using

the structure deposited in Protein Data Bank77 with the code 6vxx as

a template.

The Spike NTD comprises residues 1–305. The Spike RBD is

composed of residues 319–541. The residues forming the ACE2 bind-

ing sites, as defined here,44 are 439, 446, 449, 453, 455, 456,

473, 475, 476, 477, 486, 487, 489, 490, 492, 493, 496, 497,

498, 500, 501, 502, 505.

4.2 | Nonbonded energy calculation

The partial charges were assigned to atoms using the PDB2PQR

software,78 with standard options. Before the proper energy calcula-

tion, the structures were minimized with Gromacs 2020.6.79

To compute intermolecular interactions we used the parameters

of the CHARMM force field.80 In particular, given two atoms, l and m,

with partial charges ql and qm, the Coulombic interaction between

them is defined as:

EClm ¼ 1
4πε0

qlqm
rlm

, ð2Þ

where rlm is the distance between the two atoms, and ε0 is the vac-

uum permittivity.

The Lennard-Jones potential is defined as in the following

equation:

ELJlm ¼ ffiffiffiffiffiffiffiffiffi
εlεm

p Rmin
lþRm

min

rlm

 !12

�2
Rmin

lþRm
min

rlm

 !6
2
4

3
5, ð3Þ

where εl and εm are the potential well depths for l and m, respectively.

Rl
min and Rm

min represent potential minima distances.

Summing over all the atoms pairings, the total interaction energy

between residue i and residue j is:

EXAAij
¼
XNi
atom

l¼1

XNj
atom

m¼1

EXlm, ð4Þ

where X stands for Coulombic (X¼C) or Lennard-Jones (X¼ LJ).
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4.3 | Molecular dynamics simulations

The simulations of the Spike trimers were performed using Gromacs

2019.6,79 using the the CHARMM-36 force field.81 Proteins were

placed in a dodecahedric simulative box, with periodic boundary con-

ditions. We used the TIP3P model for water molecules.82 In all the

systems, all protein atoms were at least at a distance of 1:1nm from

the box borders. The minimizations were performed with the steepest

descent algorithm. Next, a two-step thermalization of the system was

run in NVT and NPT environments each for 0.1 ns at 2 fs time-step.

Using the v-rescale thermostat, the temperature was kept constant at

300K. In the production runs of 100ns, the pressure was set at 1bar

with the Parrinello–Rahman barostat.83 We adopted the LINCS algo-

rithm84 to constrain bonds involving hydrogen atoms. Short-range

nonbonded interactions were evaluated with a cutoff of 12Å. The

Particle Mesh Ewald method85 was adopted for the long-range elec-

trostatic interactions.

4.4 | Patches definition

All the molecular surfaces used in this work have been calculated

using the DMS software with standard parameters.69

The center of the patches have been defined using the starting

structure of the Spike protein original version, sampling one point per

Å
2
from the molecular surface of such structure. Each of the resulting

27179 points has been used to build a patch. In the starting structure

of the wild-type Spike protein, a patch is defined as the set of molecu-

lar surface points closer than 6Å to the patch center. To determine

the patch centers in all the other simulation frames and for the vari-

ants, we super-positioned each structure with the starting structure

of the original Spike. The points closest to the ones selected on this

original version were taken as the patches center of that structure.

The patch was then constructed using the same threshold of 6Å.

4.5 | Zernike descriptors

The points composing a patch can be projected with a conical symme-

try onto a plane, in a way able to maintain the geometrically relevant

information.39 Therefore, each patch can be summarized as a 2D

function f r,ϕð Þ defined in the unitary circle (region r <1). Therefore it

can be expanded in the Zernike polynomials basis

f r,ϕð Þ¼
X∞
n¼0

Xm¼n

m¼0

cnmZnm, ð5Þ

where

cnm ¼ nþ1ð Þ
π

Znmjfh i¼

¼ nþ1ð Þ
π

ð1
0
drr
ð2π
0
dϕZ�

nm r,ϕð Þf r,ϕð Þ
ð6Þ

are the Zernike moments, the expansion coefficients. Znm r,ϕð Þ are the

Zernike polynomials, made by a radial and an angular factor:

Znm ¼Rnm rð Þeimϕ: ð7Þ

The radius dependence, given n and m, is expressed by the fol-

lowing expression:

Rnm rð Þ¼
Xn�m

2

k¼0

�1ð Þk n�kð Þ!
k! nþm

2 �k
� �

! n�m
2 �k

� �
!
rn�2k: ð8Þ

For each couple of polynomials, it holds:

ZnmjZn0m0h i ¼ π

nþ1ð Þδnn0δmm0 : ð9Þ

Therefore, the set of polynomials forms a basis. The knowledge

of all the coefficients cnmf g permits the description of the original

function, while the detail level of the description is determined by the

order of expansion, N¼ max nð Þ.
The modulus of a coefficient (znm ¼j cnm j) does not depend on the

phase, being invariant if we perform a rotation around the origin. The

znm is the Zernike invariant descriptors.

The shape similarity between two patches is, therefore, studied

by comparing their Zernike invariants. In particular, we measured the

similarity between patch i and j as the Euclidean distance between

their invariant vectors. We adopted N=20, therefore dealing with

121 invariant descriptors for each patch.

4.6 | Hydropathy of patches

Each point of a patch has been generated from one residue. Each

amino acid is characterized by a hydrophobic value.50 Therefore each

patch point can be associated to the hydrophobic value of the residue

generating it. The hydrophobicity of a patch is the mean of all the

patch points hydrophobicity.
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