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Abstract Using an approach based on Doi-Peliti field theory, we study several different Active Ising Models
(AIMs), in each of which collective motion (flocking) of self-propelled particles arises from the spontaneous
breaking of a discrete symmetry. We test the predictive power of our field theories by deriving the hydrody-
namic equations for the different microscopic choices of aligning processes that define our various models.
At deterministic level, the resulting equations largely confirm known results, but our approach has the
advantage of allowing systematic generalization to include noise terms. Study of the resulting hydrody-
namics allows us to confirm that the various AIMs share the same phenomenology of a first-order transition
from isotropic to flocked states whenever the self-propulsion speed is nonzero, with an important excep-
tion for the case where particles align only pairwise locally. Remarkably, this variant fails entirely to give
flocking—an outcome that was foreseen in previous work, but is confirmed here and explained in terms
of the scalings of various terms in the hydrodynamic limit. Finally, we discuss our AIMs in the limit of
zero self-propulsion where the ordering transition is continuous. In this limit, each model is still out of
equilibrium because the dynamical rules continue to break detailed balance, yet it has been argued that
an equilibrium universality class (Model C) prevails. We study field-theoretically the connection between
our AIMs and Model C, arguing that these particular models (though not AIMs in general) lie outside the
Model C class. We link this to the fact that in our AIMs without self-propulsion, detailed balance is not
merely still broken, but replaced by a different dynamical symmetry in which the dynamics of the particle
density is independent of the spin state.

1 Introduction

Flocking, in which a group of self-propelled particles
align and move in the same direction, is displayed
by a wide variety of biological and soft-matter sys-
tems [1]. The alignment effect creates many similari-
ties between flocking and ferromagnetism, but flocking
exhibits a richer phenomenology. Indeed, because the
alignment interaction is among particle velocities rather
than spatially fixed spin variables, flocking systems are
inherently active and driven far from thermal equilib-
rium. Much recent research has addressed collective
behaviour and phase transitions in this and other active
matter systems, with many open questions remaining
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[2]. In this paper we address some questions concern-
ing minimal models of active matter (specifically, flock-
ing), exploiting similarities to magnetism (specifically,
the Ising model). In doing so we follow a path exempli-
fied decades ago by Fyl Pincus, who was among the first
to properly explore the similarities between solid-state
magnetism and liquid-crystal ordering in soft matter
systems (e.g. [3,4]).

In their seminal paper on flocking—also known as
collective motion—Vicsek et al. [5] studied a system of
active particles with fixed speed that align their veloc-
ities through a ferromagnetic interaction. The Vicsek
model is thus an active version of the XY or Heisen-
berg model, in 2d and 3d, respectively. Crucially, activ-
ity breaks the precepts of the Mermin-Wagner theorem,
stabilizing the ordered phase even in two dimensions
[6]. Moreover, the phase transition from disorder to the
ordered (flocked) phase exhibits clear evidence of being
first order [7–9], in contrast to the usual second-order
nature of the ordering transition in equilibrium ferro-
magnets.
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To help understand the transition, Solon and Tailleur
introduced the Active Ising Model [10,11]. Here flocking
can emerge only along one privileged axis (the x-axis,
say), just as the magnetization axis is pre-determined in
the equilibrium Ising model. Although the Active Ising
Model was introduced with a specific choice of spin-
alignment dynamics, below we will refer to any model
in which velocities locally tend to align along a fixed
axis as an Active Ising Model (or AIM).

In the present work, we study the behaviour of var-
ious AIMs through a field-theoretical approach. As in
equilibrium, a main advantage of using field theory is
that any large-scale, collective, behaviours that do not
depend on the specific microscopic details can be sim-
pler to study and understand. This happens because,
once the emergent (hydrodynamic) variables are identi-
fied, an expansion in small, slowly variating fluctuations
is typically possible—either directly, or by re-expressing
as an expansion in dimensionality via the renormalisa-
tion group (RG).

Below, starting from the Master Equation for AIM
systems, we derive a field theory through a coherent-
state path-integral representation. This approach, known
as Doi-Peliti field theory, offers an exact mapping
between the coefficients of the microscopic model and
the bare couplings of a field-theoretic action. It not
only enables standard field-theoretical approximations
including RG, but also gives the exact deterministic
hydrodynamic equations, together with their lowest
order fluctuation corrections [12].

Using our field theory, we will present several new
results, some in line with prior expectations based on
less formal analyses, but some others contradicting such
expectations. Our results add significantly to what is
known about Active Ising Models, although many ques-
tions lie beyond our scope and must remain unanswered
here.

The rest of this paper is structured as follows: in
Sect. 2 we define the various Active Ising Models stud-
ied and review their main phenomenology. In Sect. 3
we briefly review the derivation of the Doi-Peliti field
theory, connecting it to physical variables through the
so-called Cole–Hopf transformation. In Sect. 4 we derive
the hydrodynamic equations, together with lowest order
noise terms, and give a linear stability analysis of homo-
geneous states. In Sect. 5 we focus on a specific AIM in
which spins align only pairwise, finding this unable to
sustain flocking at any finite noise level, in agreement
with previous arguments [13]. In Sect. 6 we address
the continuous ordering transition of our Active Ising
Models that arises in the limit of zero self-propulsion.
As previously noted [10,11], such models remain active
(i.e. out of equilibrium) because the remaining combi-
nation of unbiased spin hopping and alignment already
breaks detailed balance. We discuss whether this transi-
tion shares a universality class with equilibrium models
as previously argued [11] (a result also seen in other
active models of Ising symmetry [14]). We establish a
connection between our stochastic hydrodynamic equa-
tions and Model C (which describes an equilibrium
Ising dynamics coupled to a conserved scalar density)

but argue that AIMs may nonetheless inhabit a new,
nonequilibrium universality class—a view supported by
explicit RG calculations that we will publish elsewhere.
Finally, in Sect. 7 we offer some concluding remarks.

2 Active Ising models

An Active Ising Model (AIM) is a minimal description
of a system in which individuals align their directions
of motion. Contrary to the Vicsek model [5], where col-
lective motion may occur in any possible direction in
space, in an AIM, individuals prefer to move parallel to
a given axis, which we identify without loss of generality
as the x axis. The state of each particle is thus defined
by its lattice position and a spin variable ±1 that tells
which direction ±x̂ it prefers to move in. The parti-
cles reside on a d-dimensional square lattice without
any occupation number constraint and move through
space by hopping onto neighbouring sites. In the x
direction (only) the hopping rates are actively biased:
particles with positive (negative) spin will hop prefer-
entially towards more positive (negative) x values. In
all directions other than x, particles undergo unbiased,
diffusive hopping. Finally, imitative behaviour among
individuals, effectively encoded in a ferromagnetic spin
alignment interaction among particles on the same site,
creates a tendency towards mutual alignment and hence
collective motion.

Thus an AIM represents a minimal, Ising-like model
of flocking, with a discrete symmetry replacing the full
rotational symmetry of the Vicsek model. Two crucial
differences between an AIM and the equilibrium Ising
Model must be borne in mind: (i) an AIM has no occu-
pancy constraint on each lattice site, and (ii) the align-
ment interaction occurs only between same-site parti-
cles instead of between particles on nearest neighbour
sites. The former means that particles are never blocked
from hopping by excluded volume, allowing a simpler
treatment of the bias. The latter choice is likewise made
for simplicity in the hope that same-site interactions are
sufficient to describe emergent properties; in most cases
one expects diffusion to mix particles enough that on-
site and nearest neighbour alignment interactions are
equivalent.

The state of the k-th particle is defined by its position
on the lattice i(k) =

(
i
(k)
1 , . . . , i

(k)
d

)
and its spin sk =

±1. The state of the whole system can then be identified
via the number of +1 and −1 spin particles on each
site i, respectively, n+

i and n−
i , or equivalently via the

local density ρi = n+
i + n−

i , and magnetisation mi =
n+

i − n−
i . With no occupational constraint, ρi has no

upper bound, but the magnetisation mi is bounded by
ρi , since −ρi ≤ mi ≤ ρi .

2.1 Description using reactions

Due to its on-lattice definition, the dynamics of an AIM
can be described as a set of reactions between two-
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particle species Ai and Bi , representing, respectively,
particles at site i having +1 and −1 spin. The model
is completely defined once the following two processes
are specified:

i. how particles move in space, namely with what
rates they undergo hopping reactions

Ai −→ Aj Bi −→ Bj (1)

ii. how particles change direction, namely with what
rate they undergo the spin-flip reactions

Ai −→ Bi Bi −→ Ai (2)

We next address these processes in turn.

2.1.1 Hopping

In an AIM, particles are assumed to hop with a fixed
rate D in all spatial directions, except for the x̂ direc-
tion where there is a preferred motion set by the spin
variable. We thus introduce biased hopping reactions in
the x̂ direction as

Ai −→ Ai±x̂ rate: D(1 ± ε) (3)
Bi −→ Bi±x̂ rate: D(1∓ε) (4)

In all other directions ŷ �= x̂ instead, the hopping is
unbiased and hence

Ai −→ Ai±ŷ rate: D

Bi −→ Bi±ŷ rate: D
(5)

Here the bias parameter 0 ≤ ε ≤ 1 quantifies self-
propulsive activity. The hopping reactions are not influ-
enced by the presence of other particles and hence are
independent of particle concentration.

2.1.2 Spin-flipping

In this work we address three different types of AIM
(AIM0, AIM1 and AIM2, the latter with several sub-
variants), which are distinguished by different choices
of spin-flip reaction rates.

AIM0: Original Ising flip rates
In the original formulation of the AIM, as introduced in
[10], the rates for a spin-flipping event took inspiration
from equilibrium dynamics of a fully connected Ising
model in the canonical ensemble. This means that, in
absence of any hopping, each site behaves as a fully
connected Ising model. In terms of reactions between
A and B particles, this choice of rates leads to

Ai −→ Bi rate: γ exp
(

−β
mi

ρi

)

Bi −→ Ai rate: γ exp
(

β
mi

ρi

) (6)

which we shall refer to as AIM0. Here γ is the rate of
particle flipping in the m = 0 case, while β plays the
role of an inverse temperature.

This choice of flip rates is however unfeasible to
implement in a Doi-Peliti framework: although we were
able to formally derive a field-theoretical action for this
choice, we could not express it in terms of simple func-
tions but only as an infinite series. Given that the choice
of rates in [10] is somewhat arbitrary, we are at liberty
to make others for which the field theory is simpler.
AIM1: Alternative Ising-like flip rates

From a technical point of view, what makes it diffi-
cult to study the rates of (6) is the presence of the
ρi in the denominator of the exponential argument.
Hence, a choice of reactions which still mimics equi-
librium dynamics of Ising spins is given by [15]

Ai −→ Bi rate: γ exp (−βmi)
Bi −→ Ai rate: γ exp (βmi)

(7)

We shall refer to this model as AIM1. The two set
of reactions (6) and (7) are expected to give qualita-
tively similar phase diagrams, but quantitative agree-
ment is not expected. In particular, strong differences
are expected to emerge in the zero and infinite density
limits, where the absence of a normalization of mi by
ρi might lead to drastic consequences. However, we will
later show how, at finite densities, the behaviour near
the ordering transition is extremely similar.
AIM2: Collisional flip rates

In the context of off-equilibrium systems such as active
matter, we have no particular reason to argue that the
flip dynamics should mimic that of any equilibrium
spin system. The rates that will be introduced here are
inspired by the process of multiple-particle collisions,
involving a finite and fixed number of particles (cho-
sen at random from the same site), in contrast with
the equilibrium-inspired rates, where all particles on
the same site interact to set the rates. We consider the
following three reaction processes:
AIM2.1: One-body collisional flip rate

Ai −→ Bi rate: γ

Bi −→ Ai rate: γ
(8)

AIM2.2: Two-body collisional flip rate

Ai + Bi −→ 2Bi rate: λ

Ai + Bi −→ 2Ai rate: λ
(9)

AIM2.3: Three-body collisional flip rate

2Ai + Bi −→ 3Ai rate: τ

Ai + 2Bi −→ 3Bi rate: τ
(10)

The one-body collision (or random) spin-flipping (8)
introduces a random error in the alignment process, not
dissimilar to thermal noise. In fact, AIM2.1 is exactly
equivalent to the infinite-temperature limit β → 0 of
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both AIM0 (6) and AIM1 (7). It amounts to a random
interconversion of A and B particles, and there is no
phase transition.

On the other hand, the two- (9) and three-body (10)
collisional terms favour alignment. For both cases, in
the absence of any additional random spin-flipping,
the two fully ordered states (all A or all B particles)
are absorbing states: once the system reaches them, it
will remain there forever. We might therefore expect
AIM2.2 and AIM2.3 to give rise to a phenomenology
similar to the original AIM0, at least qualitatively, with
spontaneous symmetry breaking leading to a strongly
flocked state of positive or negative spins. However,
in Sect. 5, we will show how this expectation fails for
AIM2.2: the two-body flip reaction cannot create order-
ing in the presence of any random (one-body) spin-
flipping rate, no matter how small. Therefore a three-
body interaction (AIM2.3) will be needed below to get
an ordering transition. With this term present, one can
add back two- and one- body collisional flips without
qualitatively altering the outcome; we use the inclusive
nomenclature ‘AIM2’ for this most general case.

In the current work we restrict attention to AIM1
and AIM2 as described above. For these (like AIM0)
the hopping and spin-flip rules do not obey detailed
balance even in the propulsion-free limit (ε → 0) [10,
11]. A different AIM variant was recently constructed
specifically to restore detailed balance in this limit [16],
but we do not address it here.

2.2 Master Equation

Having specified the hopping and flip rates, the behavi-
our of the model can be studied via a Master Equa-
tion ∂tP = L [P ] for the probability distribution
P (n+,n−; t) in configuration space. The Master Equa-
tion is linear in P , and each different process gives an
independent contribution to L:

∂tP = LD [P ] + Lε [P ] + Lflip [P ] (11)

where Lflip is the contribution of the alignment pro-
cess, LD arises from the unbiased hopping dynamics,
while Lε takes into account the hopping bias and is
linear in the bias parameter ε. In the cases of AIM2,
the alignment contribution can be further written as
Lflip = Lγ + Lλ + Lτ , with terms stemming from reac-
tion (8), (9) and (10), respectively. The explicit form of
all the evolution operators is given in Appendix A.

3 The Doi-Peliti field theory

The Master Equation is exactly represented by a
field-theoretic action, constructed through a coherent-
state path integral representation of the evolution
operator L, following the second-quantization formal-
ism to reaction-diffusion processes introduced by Doi
[18,19] and Peliti [20]. Although originally introduced

to describe reaction-diffusion systems, it has recently
started being used to study active matter systems as
well [21,22]. For a pedagogical review of Doi-Peliti for-
malism, which is beyond our scopes, we refer the reader
to [12,17].

3.1 Building the action

Briefly, the Doi-Peliti construction is as follows. For
each particle species, creation and annihilation fields
are introduced. The Master Equation is first writ-
ten in a second-quantisation formalism, such that the
state of the system—namely the probability generating
function—evolves via an imaginary-time Schrödinger
equation with an evolution operator Ĥ derived from L.
From this imaginary-time Schrödinger equation, a field
theory can be derived through a coherent-state path
integral representation. In this representation, for each
particle species two fields are introduced, φ and φ∗, rep-
resenting the eigenvalues of the creation and annihila-
tion operators, respectively. The field-theoretical action
S for these fields is obtained by computing the matrix
elements of Ĥ in the basis of the eigenvectors of creation
and annihilation operators, of which our fields are the
associated eigenvalues. Operationally, one first writes Ĥ
in normal ordered form and then replaces annihilation
and creation operators with their corresponding fields.
See Appendix B for more details.

3.2 Building the operators

The main drawback of the Doi-Peliti formalism is that
the fields it describes are of difficult physical interpreta-
tion. In fact, not only does the evolution operator have
to be written in a second-quantised formalism, but so
do the observables of the theory. For example, consider
a model with a single species of particles on a lattice.
The number of particles on a given site i can then be
expressed as ni = a†

iai , where a† and a are creation
and annihilation operators. Say we wanted to compute
the expectation value of some observable containing
products of ni at different sites and times. The rule
to construct the corresponding field-theoretical opera-
tor is very similar to that needed to build the action.
First, particle numbers are written in terms of creation
and annihilation operators, then such operators have to
be normal ordered, and then operators are substituted
by fields. A simplifying feature of the Doi-Peliti theory
is that any creation operators appearing at the last of
the chosen times can then be dropped. The underlying
reason is causality: the event of a particle created after
all the measurements should not affect the averages we
are computing.

Accordingly, the field-theoretical operator whose aver-
age is equal to the expected value of ni at time t is con-
structed as follows: ni(t) = a†

i (t)ai(t) → ai(t) → φi(t)
with φ the annihilation field. (The creation operator at
time t can be dropped as stated above.) Therefore, the
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following relation for the expected value of n holds

E [ni(t)] = 〈φi(t)〉 (12)

where we denote with E [·] expected values for the
microscopic stochastic process, while 〈·〉 indicates the
average over the field-theoretic measure, namely

〈O〉 =
1
Z

∫
Dφ

∫
Dφ∗ O e−S[φ,φ∗] (13)

Here S is the field-theoretic action, while the factor Z
ensures the correct normalization 〈1〉 = 1. This case is
simple, but more complicate operators are not always
so intuitive. For example, the correlation between ni at
time t and nj at time t′ < t is

E [ni(t)nj (t′)] = 〈φi(t)φ∗
j (t

′)φj (t′)〉 (14)

where φ∗ is the creation field. Meanwhile the equal time
and equal position correlator obeys

E
[
ni(t)2

]
= 〈φi(t)2 + φi(t)〉 (15)

This follows from normal ordering whereby

n2 →
(
a†

iai

)2

= a†
ia

†
iai ai + a†

iai → φ2
i + φi .

3.3 The Doi-Peliti action for AIMs

Active Ising Models have two distinct particle types
A,B corresponding to spins ±1, respectively, so along-
side annihilation and creation fields φ, φ∗ for species A
we need counterparts ψ and ψ∗ for B. Just as for the
Master Equation, the spacetime action S of the field
theory is additive over the various hopping and jump
processes, and also over spatial (site) and temporal vari-
ables. Thus S =

∑
i

∫
dt S with the action density

S = φ∗
i (t)∂tφi(t) + ψ∗

i (t)∂tψi(t)
+ + SD + Sε + Sflip (16)

Since the spin-flip dynamics involves only same-site par-
ticles, Sflip is fully local in both space and time, while
the diffusive SD and propulsive Sε hopping contribu-
tions connect neighbouring sites. The explicit form of
these various contributions for the different AIMs is
given in Appendix C.

3.4 The Cole–Hopf transformation

In the attempt to derive a set of Langevin equations
describing the behaviour of our fields, by interpreting
the Doi-Peliti field theory through a Martin–Siggia–
Rose [31] formalism, it is convenient to first perform
a Cole–Hopf transformation [12,23]. This transforma-
tion connects the somewhat abstract Doi-Peliti fields
to physical observables, namely number-density fields

for A and B particles. Moreover, the Cole–Hopf trans-
formation avoids the well-known problem of imaginary-
noise Langevin equations, which are obtained if the
Martin–Siggia–Rose interpretation is performed directly
on the Doi-Peliti action [12,17,24]. For the one-species
example of Sect. 3.2, the transformed fields ρ and ρ̃
obey

φ∗ = eρ̃, φ = e−ρ̃ρ (17)

Thus the density field ρ = φ∗φ is analogue to the
second-quantised number operator n̂ = a†a, while the
correlation function of Eq. (14) now takes the more
intuitive form

E [ni(t)nj (t′)] = 〈ρi(t)ρj (t′)〉 (18)

More generally, for all density correlators evaluated
at different times and/or different sites, one can now
replace the expectation value by the average over the
field-theoretical measure and replace the particle num-
ber operators by the corresponding ρ fields.

However, to compute correlation functions on the
same site at the same time, subtleties remain, because
the corresponding number operators must remain
normal-ordered. Thus the correlator given in Eq. (15)
obeys E

[
ni(t)2

]
= 〈ρi(t)2 + ρi(t)〉. This nonintuitive

result is the unavoidable price for building an exact
theory in terms of (almost!) physical density fields.
Below we therefore pay careful attention when com-
puting equal-time correlators.

4 The hydrodynamic limit

Here we derive hydrodynamic-level equations for the
various Active Ising Models proposed in Sect. 2. (We
exclude AIM0 because, as mentioned there, its Doi-
Peliti action is intractable.) The derivation is lengthy,
but offers important insights. The strategy is as fol-
lows: starting from the Master Equation we derive the
Doi-Peliti field theory following Sect. 3. Converting to
physical fields via Cole–Hopf (as in Sect. 3.4), we use
a reverse Martin–Siggia–Rose procedure (detailed in
Appendix D). In this procedure, a link is made between
the field-theoretic action and Langevin equation for the
fields. This programme can be followed exactly to the
last stage, at which point the non-Gaussian noise that
emerges at exact level (see Appendix D) can be either
gaussianized (to give the Langevin equations) or sup-
pressed (to give deterministic hydrodynamics). The last
stage is achieved by sending the linear size of the system
L → ∞ while keeping fixed the density of particles. In
this limit, exact hydrodynamic PDEs emerge, describ-
ing the behaviour of hydrodynamic variables on scales
comparable with L, while the leading-order stochastic
corrections give the Gaussian (Langevin) noises.
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4.1 Preliminaries

The Cole–Hopf transformed action density reads

S = ρ̃+i ∂tρ
+
i + ρ̃−

i ∂tρ
−
i + SCH

D + SCH
ε + SCH

flip (19)

where ρ̃+ and ρ+ have replaced φ and φ∗, and ρ̃−
and ρ− have replaced ψ and ψ∗. The fields ρ+ and ρ−
approach the physical densities for A and B particles,
respectively. The contributions to SCH are found via
the change of variables (17); their forms are given as
needed, below.

We first set, without loss of generality, the lattice
spacing to h = 1 and then consider the system at
diffusive hydrodynamic scales, achieved by a further
rescaling of spatial coordinates, x̃ = i/L, and of time,
t̃ = t/L2. This choice of rescaling follows from requir-
ing diffusion to be the process that fixes the hydro-
dynamic timescale. Under these rescalings, we have∑

i = Ld
∫

dx̃ ;
∫

dt = L2
∫

dt̃, and S =
∫

dx̃dt̃ S̃,
where S̃ is the hydrodynamic action density, which
absorbs all the powers of L coming from space-time
rescaling. This action density can be expanded in pow-
ers of L−1, dropping subleading terms as L → ∞. We
continue to split S̃ into contributions from spin-flip, dif-
fusive and biased hopping processes, whose rates must
however be rescaled such that all three contribute in the
hydrodynamic limit. Finally, the conjugate fields must
also be rescaled as ρ̃ → L−dρ̃.

4.2 Hydrodynamics for AIM1

For AIM1, with spin-flip rates given by (7), the deter-
ministic hydrodynamic equations are known from Ref.
[15], offering an important cross-check on our methods.
At leading order in L−1, the action terms (dropping the
CH superscript) are:

S̃D = −LdDρ̃+∇̃2ρ+ − LdDρ̃−∇̃2ρ− −
−LdDρ+

(
∇̃ρ̃+

)2

− LdDρ−
(
∇̃ρ̃−

)2

(20)

S̃ε = Ld+1vρ̃+∂ˆ̃xρ+ − Ld+1vρ̃−∂ˆ̃xρ− (21)

S̃flip = Ld+2γ e−β
(
eρ̃+ − eρ̃−)

×

×
(
e−ρ̃+

ρ+e(eβ−1)ρ−+(e−β−1)ρ+−

− e−ρ̃−
ρ−e(e−β−1)ρ−+(eβ−1)ρ+

)
(22)

For all three to contribute in the hydrodynamic limit,
as previously discussed, then if D is fixed of order unity,
we must choose γ ∼ L−2 in (22) and v ∼ L−1 in (21)
and redefine these parameters now to absorb such fac-
tors. These choices ensure that the number of spin flips
is order one in the time ∼ L2/D needed for a particle to
diffuse a distance L, and that propulsion likewise com-
petes with both flipping and diffusion at this hydrody-
namic scale. After the final rescaling mentioned above,
ρ̃ → L−dρ̃, we can look at all terms in S̃ (including the

time derivative terms) scaling as L0, as is required for
the L → ∞ limit to now be taken. We finally get to the
hydrodynamic action density

S̃ = ρ̃+
(
∂t̃ − D∇̃2 + v∂ˆ̃x

)
ρ++

+ ρ̃−
(
∂t̃ − D∇̃2 − v∂ˆ̃x

)
ρ−+

+ γ e−β
(
ρ̃+ − ρ̃−) ×

×
(
ρ+e(eβ−1)ρ−+(e−β−1)ρ+−

− ρ−e(e−β−1)ρ−+(eβ−1)ρ+
)

(23)

The absence of higher powers of the ρ̃ fields finally
allows us to map this field theory, via the inverse
Martin–Siggia–Rose procedure outlined in Appendix D.
This procedures involves mapping the action onto the
noiseless limit of a set of stochastic PDEs (the noisy ver-
sion is given in Sect. 4.2.1 below). The hydrodynamic
equations governing ρ+ and ρ− are thereby found as

∂tρ
+ = D∇2ρ+ − v∂x̂ρ+ − F (ρ+, ρ−) (24)

∂tρ
− = D∇2ρ− + v∂x̂ρ− + F (ρ+, ρ−) (25)

where

F (ρ+, ρ−) = γ e−β
(
ρ+e(eβ−1)ρ−+(e−β−1)ρ+−

− ρ−e(e−β−1)ρ−+(eβ−1)ρ+
)

If written in terms of magnetisation m = ρ+ − ρ− and
total number of particles ρ = ρ+ + ρ−, these equations
become

∂tm = D∇2m − v∂x̂ρ − 2F (m, ρ) (26)

∂tρ = D∇2ρ − v∂x̂m (27)

where

F (m, ρ) = γ e−β−ρ+ρ cosh β

×(m cosh [m sinh β] − ρ sinh [m sinh β])
(28)

Notably, the ‘aligning force’ F is exactly as found
in Ref. [15]. There the hydrodynamic equations were
derived directly by averaging the microscopic process
over a local Poisson measure. Although the derivation
is quite different, the Doi-Peliti formalism ultimately
gives an equivalent result because it is constructed from
coherent states that also correspond to a Poisson dis-
tribution [12].

4.2.1 Fluctuating hydrodynamics

An advantage of our Doi-Peliti field theory is that it
provides a systematic way to address fluctuating hydro-
dynamics. This can be done by keeping the next order
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in L−d beyond action (23). This captures for finite
size systems the leading-order (small, Gaussian) fluctu-
ations around Equations (26), (27), by adding to them
Langevin noises scaling as L−d/2. Adding these terms
to action (23), the equations for m and ρ become

∂tm = D∇2m − v∂x̂ρ − 2F (m, ρ) +
1√
Ld

θ (29)

∂tρ = D∇2ρ − v∂x̂m +
1√
Ld

∇ · ζ (30)

where F (m, ρ) is still given by (28), but now we have the
noise contributions θ and ζ. The noise θ can be further
split in two contributions θ = η + ∇ · ξ, where the
latter arises from diffusion and thus conserves the total
magnetisation. The statistics of these Gaussian noises
is fully determined by a covariance matrix comprising

〈η(x, t)η(y, s)〉 = 4 γ e−β−ρ+ρ cosh(β) ×
× (ρ cosh [m sinh(β)]−
− m sinh [m sinh(β)])×
× δ (x − y) δ (t − s)

with other noise covariances being zero except for

〈ξi(x, t)ξj(y, s)〉 = 2D ρδi,jδ (x − y) δ (t − s)
〈ζi(x, t)ζj(y, s)〉 = 2D ρδi,jδ (x − y) δ (t − s)
〈ξi(x, t)ζj(y, s)〉 = 2D mδi,jδ (x − y) δ (t − s)

Note that ξ and ζ, namely the conservative noises, are
Gaussian also beyond the large L limit. This can be
seen from the fact that they arise from action terms
(20) and (21), where no term is more than quadratic
in ρ̃±. The nonconservative noise η, on the other hand,
has a non-Gaussian statistics (higher powers of ρ̃± in
(22)) which becomes Gaussian only al large L in virtue
of the central limit theorem.

4.3 Hydrodynamics for AIM2

The same procedure as used above for flip rates obey-
ing (7) can be applied to many-body rates (8)–(10).
Spatial hopping is not affected, so all the contributions
proportional to D and ε will remain unchanged. But
the contribution S̃flip to the hydrodynamic action now
takes the form (before rescaling parameters)

S̃flip = Ld+2γ
(
eρ̃+ − eρ̃−)

×

×
(
e−ρ̃+

ρ+ − e−ρ̃−
ρ−

)
−

− Ld+2 λ
(
eρ̃+ − eρ̃−)2

×
× e−ρ̃+−ρ̃−

ρ+ ρ−+

+ Ld+2 τ

2

(
e−ρ̃+ − eρ̃−)

×

×
(
eρ̃+

ρ+ − eρ̃−
ρ+

)
ρ+ ρ−

(31)

As done previously, we now rescale the rates γ, λ
and τ by L−2 such that each type of flip competes
with diffusion (and propulsion). Finally rescaling again
ρ̃ → L−dρ̃ and taking L → ∞, the resulting hydrody-
namic action becomes equivalent to same partial differ-
ential equations (25), (24), but with a different choice
of F (ρ+, ρ−). Again rewriting this in terms of magneti-
sation m = ρ+ − ρ− and particle density ρ = ρ+ + ρ−,
we recover (26) and (27), with (28) replaced by

F (m, ρ) = m

(
γ + τ

m2 − ρ2

8

)
(32)

Just as in Sect. 4.2.1, we can compute leading-order
fluctuation corrections, recovering (29) and (30), in
which F (m, ρ) obeys (32) and the noise correlator of
η given by

〈η(x, t)η(y, s)〉 = δ (x − y) δ (t − s)

×
[
2γρ +

(
λ + ρ

τ

4

)
(ρ2 − m2)

]

(33)

while all other correlators remain the same.

4.4 Homogeneous solutions

Spatially homogeneous but time-dependent solutions
of the noiseless hydrodynamic equations are found by
assuming m (x, t) = m(t) and ρ (x, t) = ρ(t) in (26, 27),
which become

∂tm = −2F (m, ρ) (34)
∂tρ = 0 (35)

The second of these expresses particle conservation:
ρ(t) = ρ0, the initial density. In contrast, m relaxes
via the spin-flip dynamics, with an asymptotic solution
(limt→+∞ m(t) = m0) obeying F (m0, ρ0) = 0. For both
choices of F considered above in (28), (32), m0 = 0 is
always a solution but is unstable if ∂mF (m0, ρ0) < 0,
giving a magnetized phase. For definiteness we focus on
AIM2 here (though AIM1 is similar [15]) for which the
force F (m, ρ) obeys (32) so that

∂mF =
(
γ − τ

8
ρ2

)
− 3τ

8
m2 (36)

The state m0 = 0 is thus stable for ρ0 ≤ ρc = (8γ/τ)1/2

and unstable for ρ0 > ρc, where one has a symmet-
ric pair of stable, magnetized states m0 = ±m̄ with
m̄2 = ρ20 − ρ2c . This resembles a standard, Ising-like
spontaneous symmetry breaking where two vanishingly
magnetic states merge at the critical point ρ0 = ρc.
However, in the passive Ising model, for all ρ0 > ρc the
two solutions m = ±m0 = ±m̄ remain stable against
inhomogeneous perturbations. For AIMs this is not the
case: there is a region of parameter space where no
homogeneous solution is stable. The AIM transition is

123



  103 Page 8 of 18 Eur. Phys. J. E          (2023) 46:103 

thus better understood as a first-order transition, akin
to a liquid–gas transition [11].

4.4.1 Linear stability of uniform states

To check the linear stability of homogeneous solutions
m = m0, ρ = ρ0, we linearise the equations of motion
and examine small perturbations δm and δρ which then
obey:

∂tδm = D ∇2δm − v ∂xδρ

−2α (ρ0) δm − 2 g (ρ0) δρ (37)
∂tδρ = D ∇2δρ − v ∂xδm (38)

where

α (ρ0) = ∂mF (m0, ρ0) (39)
g (ρ0) = ∂ρF (m0, ρ0) (40)

In Fourier space (f (k, t) =
∫

ddx f (x, t) e−ix·k), the
linearised dynamics becomes

∂t

(
δm
δρ

)
= M (k)

(
δm
δρ

)
(41)

Here

M(k) =
(−D k2 − 2α(ρ0) −i v kx − 2 g(ρ0)

−i v kx −D k2

)

(42)

and stability against perturbations at wavevector k
require both eigenvalues of M(k) to have a nonposi-
tive real part. These eigenvalues are

λ1 (k) = −
√

α(ρ0)2 + 2i v g(ρ0)kx − v2k2
x

−α(ρ0) − Dk2 (43)

λ2 (k) =
√

α(ρ0)2 + 2i v g(ρ0)kx − v2k2
x

−α(ρ0) − Dk2 (44)

Studying the eigenvalues at k = 0 (where λ1 = −2α(ρ0)
and λ2 = 0) we confirm the analysis made above con-
cerning stability within the subspace of homogeneous
(mean-field) solutions.

What happens if instead we perturb the system, not
with a homogeneous perturbation, but with a slowly
varying one? For a system with finite positive α(ρ0)
(hence stable against uniform perturbations) continuity
in k requires � (λ1(k)) < 0 at small k. In contrast, λ2

at small k takes the form

λ2 (k) = −Dk2 + v2 g (ρ0)
2 − α (ρ0)

2

2α (ρ0)
3 k2

x+

+ i
v g (ρ0)
α (ρ0)

kx + O(k3)

(45)

We distinguish the cases ρ0 < ρc and ρ0 > ρc:

1. At ρ0 < ρc, the only solution is m0 = 0, g (ρ0) = 0
and α (ρ0) = τ

8

(
ρ2c − ρ20

)
> 0. Hence, the eigenvalue

λ2 becomes

λ2 (k) = −Dk2 − v2

2α(ρ0)
k2

x + O(k3) (46)

indicating stability of the uniform, nonmagnetic
solution for all ρ0 < ρc, in agreement with the pre-
dictions of mean field theory.

2. At ρ0 > ρc the homogeneous solutions that appear
stable from a mean-field argument have m2

0 =
ρ20 − ρ2c �= 0. In this case, we have that α(ρ0) =
τ
4

(
ρ20 − ρ2c

)
> 0 and g(ρ0) = ∓ τρ0

4

(
ρ20 − ρ2c

)1/2.
Therefore,

λ2 (k) = −Dk2 + v2 2ρ2c

τ (ρ20 − ρ2c)
2 k2

x+

∓i
ρ0 v

(ρ20 − ρ2c)
1/2

kx + O(k3)
(47)

The linear part (in k) of λ2 (k) is always imaginary
and hence does not affect the stability analysis. The
quadratic part may, however, become positive for
values of ρ0 close to ρc. In particular, this happens
when

ρ20 − ρ2c <

√
2

τD
ρc v ⇒ (48)

ρ0 < ρl :=

√
ρ2c +

√
2

τD
ρc v =

= ρc +
v√
2τD

+ O(v2) (49)

In this second scenario, which arises for nonzero propul-
sion v, the homogeneous magnetic phase becomes
unstable with respect to long wavelength perturbations.
Only for v = 0 is the passive-Ising-like second-order
transition recovered; for all v �= 0 there is a range of
densities, ρc(γ, τ) < ρ0 < ρl(γ, τ,D), in which no homo-
geneous solution is stable. In this range the system is
therefore driven towards a spatiotemporal pattern.

Although we will not reproduce here the full calcu-
lation, note that the same qualitative behaviour arises
for AIM1, in which the force F in (34) is replaced by
(28): here it is again possible to show that for v �= 0
there is a finite range of densities ρc < ρ0 < ρl in which
the ordered homogeneous solution is linearly unstable
with respect to long-wavelength spatial perturbations.
Hence, the transition is not second-order, but is better
understood as a liquid–gas phase transition as in [11].
In both cases, for the zero propulsion limit v → 0, we
find ρl → ρc, so that the homogeneous ordered and dis-
ordered phases are linearly stable on either side of ρc,
and we predict a second-order transition in that limit.
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5 Role of two-body collisions

In the previous section we analysed the hydrodynamic
behaviour of AIM2, where the spin-flipping process was
given by the set of reactions (9, 10). Strikingly, the crit-
ical density ρc = (8γ/τ)1/2 depends on the one-body
(random) spin-flip rate γ, and the three-body rate τ ,
but not on the two-body rate λ. This means that, con-
trary to naive expectation, two-body collisional align-
ment cannot by itself lead to ordering, no matter how
large the rate λ at which this occurs.

A physical interpretation of the relevant process is
that two close enough particles, i.e. sharing the same
lattice site, bump into each other with some rate λ.
When such a collision occurs, if the particles have oppo-
site spin, they align (randomly choosing which of the
two orientations to share). Since the spin sets the pre-
ferred direction of motion of the particle, the two col-
liding particles move in the same direction after the
collision. This seems to capture a basic and intuitive
mechanism through which flocking might occur, yet we
find no ordered phase. Something closer to a ‘majority
rule’ (which gets encoded in the three-body collision
rate τ) is instead required.

Intriguingly, several recent studies have proposed
that two-body interactions are indeed not enough to
sustain global alignment via a spontaneous breaking
of an Ising-like symmetry [13,25–27]. Our work con-
firms this prediction, which we believe has not been
given enough emphasis in the community. The advan-
tage of our field-theoretical approach is that our exact
analysis can cleanly and unambiguously rule out any
ordered state induced by the two-body collision term
in the hydrodynamic limit addressed here. Specifically,
if we retain only the one-body (randomizing) and two-
body terms in by setting τ = 0 in AIM2, we obtain (26,
27) with a force term F (m, ρ) = γm. The homogeneous
solution at zero magnetization, m0 = 0, is then stable
for all γ > 0, regardless of the global density ρ0. There-
fore, for any finite amount of random spin-flipping, the
two-body collision process described by reaction (9) is
not sufficient to induce collective motion.

At γ = 0, things look slightly different. Without the
two-body term (λ = 0), all solutions can be written as a
superposition of waves which travel in the ±x direction
with speed v and damping Dk2. These solutions not
only conserve the total density, but also the total mag-
netisation; accordingly a state of uniform magnetiza-
tion cannot emerge from an unmagnetized initial state.
Remarkably, this result is sustained, at hydrodynamic
level, even when two-particle interaction (9) is switched
on. This result seems counter-intuitive. Indeed, in the
absence of random spin-flipping but with two-body col-
lisions (γ = 0, λ > 0) the system has two absorbing
states: whenever particles are all either of the A or B
kind, no further spin-flipping can occur. Either state
would represent a permanently stable flock.

As we have seen, this physics does not emerge in the
hydrodynamic limit; we now ask why. A key factor will
be that absorbing states are reached in a finite time only

in finite-size system. We must therefore switch attention
to the fluctuating hydrodynamics of this system arising
at finite L.

The finite-size behaviour of the two-particle interac-
tion model, at large L, is given by

∂tm = D∇2m − v∂x̂ρ +
1√
Ld

(η + ∇ · ξ) (50)

∂tρ = D∇2ρ − v∂x̂m +
1√
Ld

∇ · ζ (51)

We have already set γ = 0, so this is ‘pure’ AIM2.2 as
defined by (9). As in the previous models, η, ξ and ζ are
Gaussian noises whose correlators are found by setting
γ = τ = 0 in the more general results given already for
AIM2 in Sect. 4.3.

The noises ξ and ζ arise from the diffusive motion
of particles and hence conserve the total magnetisa-
tion. Flocking, were it to emerge, would have to stem
from the η noise term. But, as seen from the covari-
ance results in Sect. 4.3, specifically (33), the noise η is
larger the smaller the magnetisation. When m ∼ 0, this
noise therefore pushes the system towards magnetised
states with m �= 0. The noise then weakens, so it is less
likely for the system to return to m ∼ 0. When eventu-
ally the system reaches the absorbing state m = ±ρ, all
particles flock in the same direction forever after. The η
term therefore does push the system towards a flocking
state, but it is the only term that does so. This means
that for AIM2.2 any collective motion arises by a purely
stochastic mechanism, not a deterministic drift—a fact
also clear from the shape of F (m, ρ) when τ = 0. As
previously discussed, stochasticity, and hence the prob-
ability of achieving this flocked state, vanishes in the
hydrodynamic limit L → ∞. Therefore, exact conser-
vation of the total magnetisation at deterministic level
is not because spin-flipping processes are absent alto-
gether, but because the probability of having a fluc-
tuation that macroscopically changes m vanishes when
L → ∞. This peculiar scenario is of course radically
changed by the three-body collisional coupling term
τ , which restores a deterministic drift towards flocking
that wins out above the critical density ρc.

6 The unbiased AIM critical point

The linear stability analysis performed in Sect. 4.4.1
shows that AIMs generically undergo a first-order tran-
sition, with a continuous transition recovered for unbi-
ased hopping rates ε = 0 (equivalently v = 0): this
accordingly defines the unbiased AIM critical point.
Note how this critical point is unstable in the RG sense,
since any infinitesimal value of v brings back first-order
behaviour. An important question concerns the univer-
sality class of this critical transition. The answer would
be obvious if this limit recovered a reversible model,
which would surely lie in the kinetic Ising class known
as Model C [28], as discussed further below. Indeed,
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numerical simulations in 2 dimensions of the AIM0 give
results compatible with this prediction [11]. However,
this outcome is not guaranteed because, as also shown
in [11], the dynamics of AIM0 violates detailed balance
even at v = 0, making the system out of equilibrium
even in the absence of self-propulsion. This is equally
true of AIM1 and AIM2, and given their shared sym-
metries one can expect all these models to lie in a single
universality class (that may or may not be that of equi-
librium Model C).

A major advantage of our field-theoretic approach
is that it creates a clear and unambiguous foundation
for resolving this issue via a full renormalization group
(RG) analysis. Such an analysis lies beyond our present
scope and will be presented elsewhere [29]. Here we
derive a suitable starting point for RG calculations,
compare it with the corresponding Model C equations,
and review what is known about the two cases. Our
starting point is AIM2 where spin-flipping is given by
reactions (8) and (10). We set two-body collision term
(9) to zero but have checked that the results below are
unchanged by this, and also checked that they hold for
AIM1 with rates (7).

6.1 Relevant and irrelevant terms

The hydrodynamic methods used in Sect. 4 generally
identify a limit in which noiseless, mean-field critical
behaviour is recovered; this approach does not capture
all relevant terms for RG purposes. To identify these,
we start instead from a coarse-grained continuous ver-
sion of the microscopic theory, describing the system on
mesoscopic scales (much larger than h, the lattice spac-
ing, and much smaller than L, the system size). We
are hence not assuming anymore the scaling with L of
the coefficients investigated in Sect. 4. We will instead
take a continuum limit by sending the lattice spacing
h → 0. The continuum limit therefore represents a way
to investigate the dynamics on scales much larger than
h, but yet much smaller than L. To take the continuum
limit h → 0, we must then appropriately rescale the
hopping and flipping rates and also the particle density
fields; see Appendix E.

After these rescalings, the action becomes S =∫
(SD + Sflip) dxdt where

SD = −Dρ̃+∇̃2ρ+ − Dρ̃−∇̃2ρ− −
−Dρ+

(
∇̃ρ̃+

)2

− Dρ−
(
∇̃ρ̃−

)2

(52)

Sflip = γ
(
eρ̃+ − eρ̃−)

×

×
(
e−ρ̃+

ρ+ − e−ρ̃−
ρ−

)
−

+
τ

2

(
e−ρ̃+ − eρ̃−)

×

×
(
eρ̃+

ρ+ − eρ̃−
ρ+

)
ρ+ ρ− (53)

We now want to change variables from ρ+ and ρ− to
m and ρ. To do this in the field theory, we must also

transform the ρ̃ fields. It is sufficient for RG purposes
to work as usual in a Landau-Ginzburg expansion in
fluctuations around the homogeneous disordered state
at m = 0, ρ = ρ0. Hence we shall write ρ = ρ0 + δρ,
and expand in powers of m and δρ. The resulting action
contains an infinite set of nonlinear terms of which only
the first few are relevant, in the RG sense, near dc = 4
dimensions, which is the upper critical dimension of the
model. Retaining only these terms, the result is the sum
of a Gaussian action density S0 and a non-Gaussian
interaction part SI

S0 = m̃
(
∂t − D ∇2 + a

)
m − λ̃ m̃2 +

+ρ̃
(
∂t − D ∇2

)
δρ − D̃ (∇ρ̃)2 (54)

SI = b m̃ m3 + g m̃mδρ + irrelevant (55)

with coefficients derived from microscopic parameters
as follows:

a =
1
4

(
8γ − τρ20

)
, b =

τ

4
, g = −τ ρ0

2
λ̃ =

ρ0
4

(
8γ + ρ20τ

)
, D̃ = ρ0 D

This action can be cast in more familiar form as a pair
of Langevin equations, which read

∂tm = D∇2m − am − bm3 − g δρm +
√

2λ̃ η
(56)

∂tδρ = −∇ · J ; J = −D ∇δρ +
√

2D̃ ζ (57)

with η and ζi independent Gaussian white noises of unit
variance.

Note that any nonlinearity of the form ∇(m2) in the
current J of (57), or equivalently a term ρ̃ ∇2(m2) in
action (55), if present, would also be relevant in d < 4.
However, since it is absent in the bare theory and there
are no other non-Gaussian terms linear in ρ̃, it will not
be generated during an RG transformation. More gen-
erally one expects any relevant term, even if absent in
the original action, to be generated during the RG flow,
unless its absence is protected by some kind of symme-
try or conservation law. The physics that prevents the
generation of this term in our case is as follows: when
v = 0, the dynamics of the mass density ρ is indepen-
dent of the state of magnetisation m. Such a condition
clearly survives coarse-graining and can arguably be
viewed as a symmetry between A and B particles (or
up- and down-spins) at microscopic level, stating that
the diffusive jump rates of a particle are independent
of its spin state1. The symmetry is however absent in a

1 Note also that even in the presence of v �= 0, the term
∇(m2) in the current J that would lead to Model C-like
behaviour (see Eq. (59) below) is not generated. This is pre-
vented by the absence of any deterministic nonlinear cou-
pling in the density equation so that other deterministic
nonlinear couplings cannot arise under the RG flow.
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model with detailed balance, where the hopping rates
must depend on the energy change caused by the hop,
which does depend on the spin state. Since it is possible
to construct an AIM that recovers detailed balance at
v = 0 [16], one cannot view the symmetry found here
as fundamental to all AIMs, but it remains a defining
feature of all the AIMs studied in this paper (including
AIM0).

6.2 Connection with Model C

The stochastic dynamics of Model C are [28]

∂tm = λ∇2m − λr m − λum3 − λγ δρm +
√

2λ η

∂tδρ = −∇ · J (58)

J = −D ∇δρ − Dγ

2
∇(m2) +

√
2D ζ (59)

Here λ is a mobility parameter (unrelated to pre-
vious use of the same symbol in this paper), while
r, u, γ are coefficients in the free energy functional F =∫

ddx 1
2 (∇m)2 + r

2m2 + u
4m4 + 1

2ρ2 + γ
2m2ρ that under-

lies the model. Model C obeys detailed balance with
respect to this F . The noise terms η and ζ are indepen-
dent Gaussian white noises of unit variance, just as in
(56, 57).

Strikingly, the only difference between (56, 57) for
the AIMs under study and Model C is the absence in
the AIM case of the term ∇(m2) in the current J . As
already discussed, this term is relevant but structurally
absent in our chosen AIMs, while in contrast it is struc-
turally present, with a coefficient fixed by detailed bal-
ance, in Model C. The difference between these two
cases need not be accessible via any approach that
attempts to perturbatively deform one model into the
other, for instance by considering small departures from
detailed balance. The change in parameters is not small
and moreover replaces one symmetry (time-reversal)
with a different and unrelated one (spin-independent
density dynamics).

Interestingly, a generalized model that includes both
AIM and Model C as special cases has previously been
introduced and studied using RG methods [30]. The
model is defined by

∂tm = λ ∇2m − am − bm3 − gm mδρ +
√

2λ̃ η

(60)
∂tδρ = −∇ · J

J = −D ∇δρ − gρ

2
∇(m2) +

√
2D̃ ζ (61)

The AIM2 dynamics of (56, 57) is recovered as

gρ = 0 gm = g λ = D (62)

while equilibrium Model C corresponds to

a = λr λ = λ̃ gm = λγ (63)

b = λu D = D̃ gρ = Dγ (64)

6.2.1 RG flows

In the present paper we do not review in detail the
comprehensive perturbative RG study of this class of
models offered by Akkineni and Taueber in [30] (which
in fact addresses a much larger class spanning Heisen-
berg as well as Ising symmetry, and Model D as well as
Model C dynamics).

Briefly, for the model governed by (60, 61), various
fixed points of potential relevance to AIMs are consid-
ered in [30]. A Gaussian fixed point, stable for d > 4,
becomes unstable for ε = 4 − d > 0. In the absence of
gm, the unstable flow is towards a Model A fixed point,
at which the m dynamics is decoupled from ρ which
is then ignorable. For nonzero gm, however, the Model
A fixed point is unstable towards an equilibrium-like
Model C fixed point where detailed balance is restored.
This is perturbatively stable against detailed-balance
violations; its basin of attraction should include all
models in which such violation is weak. Beyond this
basin, in addition to the gm = 0 manifold where Model
A behaviour is recovered, lies a further unstable man-
ifold at gρ = 0. The strongly nonequilibrium dynam-
ics on this manifold describes situations, like the AIMs
studied here, in which it is the dynamics of ρ that
decouples from m. On this unstable manifold, a fur-
ther fixed point was found, whose strongly nonequilib-
rium dynamics describes a situation in which m relaxes
much faster than ρ at large scales. This fixed point
is however unstable also within the gρ = 0 manifold.
Interestingly, Akkineni and Tauber also found another
nonequilibrium fixed point at gρ = 0 for which the cou-
pling gm seemingly flows to infinity for d < 4. The latter
caused them to conclude that no true nonequilibrium
fixed point is accessible at order ε [30].

Elsewhere [29], we calculate the RG flow on the sub-
manifold where gρ = 0 to which, as we have explained,
the AIMs studied in this paper are confined; we argue
that despite the conclusions of [30] a nonequilibrium
critical point describing the AIM critical point in these
strongly nonequilibrium models can be found within
the one loop perturbative RG approach. This is caused
by the fact that, although gm flows to infinity, also
w = D/λ does [30]. However, in this limit the crit-
ical exponents turn out to depend only on the ratio
gm/w, which remains finite along the RG flow [29],
giving access to a novel fixed point ruling the unbi-
ased AIM critical behaviour. Further discussion of these
issues lies beyond our scope, and we refer the interested
reader to [29].

More importantly for the present discussion, the
gρ = 0 submanifold does not contain the Model C crit-
ical point. This can be seen directly from the following
argument. As previously explained, the Model C fixed
point splits off from the Gaussian one below d = 4.
Here the coupling term involving gρ is relevant. Only if
it were irrelevant could the fixed-point value of this cou-
pling constant become zero at the Model C fixed point.
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Therefore, this fixed point cannot lie on the gρ = 0
manifold to which our AIMs are confined. This strongly
suggests that, whether or not the AIM critical point is
perturbatively accessible to order ε [29,30], it should
indeed lie in different universality class from Model C.

This suggestion is different from the one made con-
cerning AIM0 in [11]. The situation is however delicate
because, as previously stated, our result depends on a
symmetry of all the AIMs considered here (including
AIM0 of [11]) which might nonetheless be broken in
more general models. Specifically, we know it must be
broken in any AIM that restores detailed balance by
construction at the critical point (e.g. [16]), in which
case there can be little doubt that the Model C univer-
sality class prevails. We also note that numerical evi-
dence favours equilibrium Ising exponents for AIMs in
d = 2 [11]—which we have also confirmed for ourselves
numerically. It is unusual for universality classes to
actually merge on reducing dimensionality, so this could
indicate that while the Model C and AIM classes retain
distinct exponents, these are hard to distinguish numer-
ically in two (and therefore possibly three) dimensions.

7 Conclusion

We have considered a Doi-Peliti field theoretical for-
malism and exploited it to derive an exact field the-
ory able to describe the behaviour of a class of Active
Ising Models (AIMs) that allows different choices of
the spin-alignment interactions. We showed how field
theory provides, as it so often does, a powerful frame-
work to understand collective behaviour in active sys-
tems. We were able first to derive several previously
known results within this framework. These include the
deterministic hydrodynamic equations [15]; the pecu-
liar behaviour of the two-body collisional interaction,
which cannot sustain flocking via spontaneous symme-
try breaking in the presence of noise [13]; and the linear
instability of the homogeneous ordered phase close to
the transition, leading to phase-separated profiles and
a first-order scenario [7–9]. Thereafter we showed how
the Doi-Peliti framework can take us far beyond these
results. For example, we used it to go beyond the deter-
ministic hydrodynamic equations, complementing them
with sub-leading fluctuation terms needed to describe
the system on finite scales. Developing the same field
theory in a different manner allowed us to address the
unbiased AIM critical point, defined as the second-order
alignment transition arising when the self-propulsion
term is turned off. We defer to a separate paper a
full analysis of the resulting RG flow [29]. Even with-
out this, we could elucidate the relationship between
the critical point of the AIMs studied here and Model
C. The latter has the same combination of a noncon-
served magnetisation with Ising symmetry, coupled to
a conserved density, but unlike our AIMs also respects
detailed balance. Based on this comparison, we argued
that the AIM critical points studied here, contrary to
expectation [11], are not governed by the Model C uni-

versality class. However, this conclusion stems from a
‘symmetry’ of these particular models whereby diffu-
sive jump rates are not affected by the spin state of a
particle. This symmetry need not hold for more gen-
eral Active Ising Models and specifically cannot hold in
AIMs constructed so that detailed balance gets restored
in the zero self-propulsion limit, such as that of [16],
which can then behave like Model C at criticality.
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Appendix A: Master Equation

Here we will give the explicit form of the Master Equation
for the different AIMs introduced in Sect. 2.2. Since the
Master Equation is linear in P , each different process gives
an independent contribution. For the AIMs considered here
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the Master Equation can be always written in the form of
Eq. (11)

∂tP = LD [P ] + Lε [P ] + Lflip [P ] (A1)

where Lflip is the contribution coming from spin-flipping,
while we split in two the contribution of hopping. The first,
LD, is obtained by setting ε = 0 and therefore gives rise
to simple, unbiased, diffusion. The second, Lε, is instead
the contribution arising from active self-propulsion and will
vanish if ε does.

A.1 Hopping

For all the AIMs introduced here, the dynamics in space is
represented by the biased hopping, described by the reac-
tions

Ai −→ Ai±x̂

rate: D(1 ± ε) Bi −→ Bi±x̂ rate: D(1∓ε)
(A2)

Ai −→ Ai±ŷ rate: D Bi −→ Bi±ŷ rate: D (A3)

These rates for a random jump, expressed in terms of the
number of Ai and Bi particles, n+

i and n−
i , respectively,

then take the following form

Ai →Ai±ŷ W
(
n+

i −1, n+
i±ŷ+1|n+

i , n+
i±ŷ

)
=n+

i D ∀ŷ �= x̂

(A4)

Bi →Bi±ŷ W
(
n−

i −1, n−
i±ŷ+1|n−

i , n−
i±ŷ

)
=n−

i D ∀ŷ �= x̂

(A5)

Ai →Ai±x̂ W
(
n+

i −1, n+
i±x̂+1|n+

i , n+
i±̂x

)
=n+

i D(1 ± ε)

(A6)

Bi → Bi±x̂ W
(
n−

i − 1, n−
i±x̂ + 1|n−

i , n−
i±x̂

)
= n−

i D(1∓ε)
(A7)

Hence, LD and Lε always take the form

LD[P ] = D
∑

i

∑
j :|i−j |=1

(n+
i + 1)P (n+ + 1i − 1j , n

−; t)

−n+
i P (n+, n−; t) +

+(n−
i + 1)P (n+, n− + 1i − 1j ; t)

−n−
i P (n+, n−; t) (A8)

Lε[P ] = ε D
∑

i

(n+
i + 1)P (n+ + 1i − 1i+x̂, n−; t)

−(n+
i + 1)P (n+ + 1i − 1i−x̂, n−; t) −

−(n−
i + 1)P (n+, n− + 1i − 1i+x̂; t)

+(n−
i + 1)P (n+, n− + 1i − 1i−x̂; t) (A9)

Here we used a compact notation, denoting by n± the vec-
tor collecting the number of ± particles on all sites i of the
lattice

{
n±

i

}
, representing the state of the system. The vec-

tor 1i has the same dimension as n± and contains a 1 in the
entry i, while all the other entries are 0. In this way, adding
1i to n+ corresponds to the addition of one + particle to
the i site.

A.2 Spin-flipping

A.2.1 AIM1 rates

In the AIM1, the spin-flipping process occurs with rates
which are reminiscent of some Ising-like behaviour, namely
given by

Ai −→ Bi rate: γ exp (−β mi )

= γ exp
[
β

(
n−

i − n+
i

)]
(A10)

Bi −→ Ai rate: γ exp (β mi )

= γ exp
[
β

(
n+

i − n−
i

)]
(A11)

The global rates associated to this process are

Ai → BiW
(
n+

i − 1, n−
i + 1|n+

i , n−
i

)
= γ n−

i

exp
(
β (n+

i − n−
i )

)
(A12)

Bi → AiW
(
n+

i + 1, n−
i − 1|n+

i , n−
i

)
= γ n+

i

exp
(
β (n−

i − n+
i )

)
(A13)

which contribute to the Master Equation as

Lflip[P ] = γ
∑

i

(n+
i + 1) exp

[
β

(
n−

i − n+
I − 2

)]

P (n+ + 1i , n
− − 1I ; t)

− n+
i exp

[
β

(
n−

i − n+
I

)]
P (n+, n−; t)

+ (n−
i + 1) exp

[
β

(
n+

i − n−
I − 2

)]

P (n+ − 1i , n
− + 1I ; t)

− n−
i exp

[
β

(
n+

i − n−
I

)]
P (n+, n−; t)

(A14)

A.2.2 AIM2

In the case of the AIM2, particles undergo multiple-particle
collisions. Here, we consider one-, two- and three-particle
collision processes, with rates denoted γ, λ and τ , respec-
tively. These three processes are what we call in the main
AIM2.1, AIM2.2 and AIM2.3. In this case, the contribution
Lflip can be further written as

Lflip = Lγ + Lλ + Lτ (A15)

AIM2.1: one-particle collision
The one-particle collision (random) spin-flipping process is
defined by the reactions

Ai −→ Bi rate: γ Bi −→ Ai rate: γ
(A16)

The rates for a random spin-flipping, expressed in terms of
the number of Ai and Bi particles, n+

i and n−
i , respectively,

take the following form

W (n+
i + 1, n−

i − 1|n+
i , n−

i ) = γ n−
i (A17)

W (n+
i − 1, n−

i + 1|n+
i , n−

i ) = γ n+
i (A18)

From these rates, we can write down the contribution Lγ [P ]
of the random spin-flipping to the Master Equation, as

Lγ [P ] = γ
∑

i

(n+
i + 1) P (n+ + 1i , n− − 1i ; t)
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−n+
i P (n+, n−; t)

+(n−
i + 1) P (n+ − 1i , n

− + 1i ; t)

−n−
i P (n+, n−; t) (A19)

AIM2.2: two-particle collision
In terms of reactions, the two-particle collision process can
be expressed as

Ai + Bi −→ 2 Bi rate: λ Ai + Bi −→ 2 Ai rate: λ
(A20)

Note that the two rates must be equal if we want to preserve
the symmetry by spin inversion, which is a symmetry under
exchange of A and B particles. The rates associated to this
process are

W (n+
i + 1, n−

i − 1|n+
i , n−

i ) = λ n+
i n−

i (A21)

W (n+
i − 1, n−

i + 1|n+
i , n−

i ) = λ n+
i n−

i (A22)

which contribute to the Master Equation as

Lλ[P ] = λ
∑

i

(n+
i + 1)(n−

i − 1) P (n+ + 1i , n− − 1i ; t)

−n+
i n−

i P (n+, n−; t) +

+(n−
i + 1)(n+

i − 1) P (n+ − 1i , n− + 1i ; t)

−n+
i n−

i P (n+, n−; t) (A23)

AIM2.2: two-particle collision
In terms of reactions, the three-particle collision process can
be expressed as

2 Ai + Bi −→ 3 Ai rate: τ Ai + 2 Bi −→ 3 Bi rate: τ
(A24)

Again, if we want the system to obey a symmetry under
exchange of A and B species, which is a symmetry under
global spin-flipping, the rates with which the two reactions
take place must be the same. The global rates associated to
this process are

W (n+
i + 1, n−

i − 1|n+
i , n−

i ) =
τ

2
n+

i

(
n+

i − 1
)
n−

i

(A25)

W (n+
i − 1, n−

i + 1|n+
i , n−

i ) =
τ

2
n+

i n−
i

(
n−

i − 1
)

(A26)

which contribute to the Master Equation as

Lτ [P ] =
τ

2

∑
i

(n+
i + 1)n+

i (n−
i − 1)

P (n+ + 1i , n− − 1i ; t)

− n+
i (n+

i − 1)n−
i P (n+, n−; t)+

+ (n−
i + 1)n−

i (n+
i − 1)

P (n+ − 1i , n− + 1i ; t)

− n+
i n−

i (n−
i − 1) P (n+, n−; t)

(A27)

Appendix B: From Master Equation to field
theory

We start by writing the Master Equation for our microscopic
model in the form

∂tP (n, t) = L [P (n, t)] (B28)

Here L is a linear operator acting on P (n, t) in which n
specifies a microstate at time t. (That is, n lists the occu-
pancies of each type of particle at every site in the system.)
The second step is to define a second-quantised Fock space
representation: for a single site and particle type we will call
|n〉 the state in which n particles are present. More gener-
ally, we have a Fock state |n1, n2, n3, . . .〉 = |n〉. The state
of the system at time t, represented by the probability gen-
erating function, can be written as a superposition in Fock
space as

|ψ(t)〉 =
∑
n

P (n, t)|n〉 (B29)

On this Fock space, we can furthermore define a bosonic
ladder operator algebra, with a creation operator a† and
annihilation operator a that act on the system in the fol-
lowing way

a†
i |ni〉 = |ni + 1〉 ai|ni〉 = ni|ni − 1〉 (B30)

Note that this normalisation convention differs from that
usually introduced in many-body quantum systems. How-
ever, the usual commutation relations still hold

[
ai, aj

]
=

[
a†

i , a
†
j

]
= 0

[
ai, a

†
j

]
= δij (B31)

In this new notation, we can express |ψ(t)〉 as

|ψ(t)〉 =
∑
n

P (n, t)
∏

i

(
a†

i

)ni |0〉 (B32)

where |0〉 is the vacuum state, where no particles are present.

The evolution of |ψ(t)〉 is described by an operator Ĥ
through the relation

∂t|ψ(t)〉 = −Ĥ|ψ(t)〉 (B33)

where Ĥ is the second-quantised version of the operator L
of (B28). Given L in (B28), an explicit expression of the

operator Ĥ in (B33) can be constructed from it.
The action of the Doi-Peliti field theory is then given by

S =
∑

i

∫
dt φ∗

i (t)∂tφi(t) +

∫
dt

〈φ∗(t)|Ĥ|φ(t)〉
〈φ∗(t)|φ(t)〉

(B34)

where |φ〉 and 〈φ∗| are the coherent states:

|φ〉 =

(∏
i

eφia
†
i

)
|0〉 〈φ∗| = 〈0|

(∏
i

eφ∗
i ai

)
(B35)

The last step to get an explicit form for the Doi-Peliti action
is to compute the second term of (B34), and in particu-

lar 〈φ∗(t)|Ĥ|φ(t)〉. This is straightforward if Ĥ is normal
ordered, but might become a more complicate task when it
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is not. At a practical level, it is thus usually easier to find the
normal ordered representation of Ĥ and then substitute a
operators with φ field and a† operators with φ∗ fields. If dif-
ficulties arise, one can revert to finding the normal ordered
form directly by computing 〈φ∗(t)|Ĥ|φ(t)〉, bearing in mind
that

eφia
†
i =

∑
l

(φi)
l

l!

(
a†

i

)n

eφ∗
i ai =

∑
l

(φ∗
i )

l

l!
(ai)

n

(B36)

Appendix C: Doi-Peliti action

The action of the Doi-Peliti field theory of an AIM will have
a form similar to that presented in Appendix B. Since two-
particle species are present in an AIM, namely A and B
particles with +1 and −1 spin, respectively, we will need to
take this into account by introducing two sets of creation
and annihilation fields. The action therefore reads

S =
∑

i

∫
dt φ∗

i (t)∂tφi(t) + ψ∗
i (t)∂tψi(t)

+

∫
dt

〈φ∗(t), ψ∗(t)|Ĥ|φ(t), ψ(t)〉
〈φ∗(t), ψ∗(t)|φ(t), ψ(t)〉 (C37)

where Ĥ is derived from L through the procedure described
in Appendix B. Since L = LD + Lε + Lflip, therefore also

Ĥ = ĤD + Ĥε + Ĥflip (C38)

and in turn the action can be written as S =
∑

i

∫
dt S

where

S = φ∗
i (t)∂tφi(t) + ψ∗

i (t)∂tψi(t)

+SD + Sε + Sflip (C39)

C.1 Hopping

As done for the Master Equation in Appendix A, we split in
two the contribution of hopping also in the field-theoretical
action.

C.1.1 Passive diffusion

Starting from the diffusive contribution to the Master Equa-
tion LD, we can derive the second-quantised evolution oper-
ator associated to it, given by

ĤD = −D
∑

i

∑

j :|i−j |=h

a†
j ai − a†

i ai + b†
j bi − b†

i bi =

= D
∑

i

∑

j :|i−j |=h

(
a†

i − a†
j

)
ai +

(
b†
i − b†

j

)
bi =

=
D

2

∑

i

∑

j :|i−j |=h

(
a†

i − a†
j

)
(ai−aj )+

(
b†
i −b†

j

)
(bi−bj ) ,

(C40)

Since ĤD is already normal-ordered, the contribution SD to
the Doi-Peliti action density is straightforward to compute
and takes the form

SD =
D

2

∑
j :|i−j |=h

[(
φ∗

i (t) − φ∗
j (t)

)
(φi (t) − φj (t))

+
(
ψ∗

i (t) − ψ∗
j (t)

)
(ψi (t) − ψj (t))

]
(C41)

The final contribution to the total action is obtained by
summing over sites i and integrating over time.

C.1.2 Active self-propulsion

Starting from the active self-propulsion contribution to the
Master Equation Lε, we can derive the second-quantised
evolution operator associated to it, given by

Ĥε = −εD
∑

i

a†
i+hx̂ ai − a†

i−hx̂ ai

− b†
i+hx̂ bi + b†

i−hx̂ bi =

= −εD
∑

i

(
a†

i+hx̂ − a†
i−hx̂

)
ai

−
(
b†
i+hx̂ − b†

i−hx̂

)
bi =

= −εD
∑

i

(
a†

i+hx̂ − a†
i−hx̂

)
ai

−
(
b†
i+hx̂ − b†

i−hx̂

)
bi

(C42)

Since Ĥε is already normal-ordered, the contribution Sε to
the Doi-Peliti action density is straightforward to compute
and takes the form

Sε = −ε D [(φ∗
i+hx̂(t) − φ∗

i−hx̂(t)) φi (t)

− (ψ∗
i+hx̂(t) − ψ∗

i−hx̂(t)) ψi (t)] (C43)

C.2 Spin-flipping

C.2.1 AIM1 action

For the AIM1, we can derive the contribution to the action
of spin-flipping starting from Lflip. The second-quantised
evolution operator associated to this process is given by

Ĥflip = γ
∑

i

(
a†

i − b†
i

) {
ai exp

[
β

(
b†
i bi − a†

i ai

)]

−bi exp
[
β

(
a†

i ai − b†
i bi

)]}
(C44)

From Ĥflip, it is possible to derive the contribution Sflip

to the Doi-Peliti action density by averaging over coherent
states, as discussed in Appendix A. This action density takes
the form

Sflip = γ (φ∗
i − ψ∗

i )e−β−ψ∗
i ψi −φ∗

i φi

(
φi eeβψ∗

i ψi +e−βφ∗
i φi

−ψi ee−βψ∗
i ψi +eβφ∗

i φi

)
(C45)

C.2.2 AIM2 action

In the case of the AIM2, the action Sflip can be written as

Sflip = Sγ + Sλ + Sτ (C46)

We derive in the following each contribution.
AIM2.1: one-particle collision
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Starting from Lγ , we can derive the associated second-
quantised evolution operator

Ĥγ = γ
∑

i

(
a†

i − b†
i

)
(ai − bi ) (C47)

which is already normal-ordered. Hence the contribution Sγ

to the Doi-Peliti action density is straightforward to com-
pute and takes the form

Sγ = γ (φ∗ − ψ∗) (φ − ψ) (C48)

AIM2.2: two-particle collision
Starting from Lλ, we can derive the associated second-
quantised evolution operator

Ĥλ = −λ
∑

i

(
a†

i − b†
i

)2

ai bi (C49)

Since Ĥλ is already normal-ordered, the contribution Sλ to
the Doi-Peliti action density is straightforward to compute
and takes the form

Sλ = −λ (φ∗ − ψ∗)2 φ ψ (C50)

AIM2.3: three-particle collision
Starting from Lτ , we can derive the associated second-
quantised evolution operator

Ĥτ = −τ

2

∑
i

(
a†

i − b†
i

) [(
a†

i

)2

ai

−
(
b†
i

)2

bi

]
ai bi (C51)

Since Ĥτ is already normal-ordered, the contribution Sτ

to the Doi-Peliti action is straightforward to compute and
takes the form

Sτ = −τ

2
(φ∗ − ψ∗)

[
(φ∗)2 φ − (ψ∗)2 ψ

]
φ ψ (C52)

Appendix D: From Langevin equations to
field theory

The Martin–Siggia–Rose (MSR) formalism [31], known also
as the Janssen-De Dominicis formalism [32,33], allows us
to describe the behaviour of fields evolving according to
stochastic differential equations in terms of a field theory
formulated using path integrals.

Let us assume the dynamic behaviour of the field φ is
defined by the following Ito stochastic differential equation

F [φ] − θ = 0 (D53)

with the noise θ characterised by the distribution Pθ, while
F is the deterministic evolution operator. The expected
value of a given observable O can be computed by averaging
O [φ] over the possible noise realisations while requiring φ
to obey (D53). This yields

〈O〉 =
1

Z

∫
Dφ O [φ]

∫
Dθ Pθ(θ) δ(F [φ] − θ) (D54)

where

Z =

∫
Dφ

∫
Dθ Pθ(θ) δ(F [φ] − θ) (D55)

By means of an integral representation of the delta-function
δ(x) = 1

2π

∫
dx̃ ei x̃ x, we can write 〈O〉 as

〈O〉 =
1

Z

∫
Dφ

∫
Dφ̃ O [φ] e−iφ̃ ·F[φ ]〈eiφ̃ ·θ 〉θ

=
1

iZ

∫
Dφ

∫
Dφ̃ O [φ] e−φ̃ ·F[φ ]+Kθ [φ̃ ] (D56)

where 〈 · 〉θ =
∫ Dθ · Pθ(θ) in the average over noise real-

isations. In the second equality we performed the substi-

tution φ̃ → iφ̃. Moreover, Kθ[x] = ln
[
〈eiφ̃ ·θ 〉θ

]
is the

cumulant-generating function of the distribution Pθ. In the
case of a Gaussian distribution with zero mean and covari-
ance matrix 2Lαβ , the cumulant-generating function is given
by Kθ[x] = xαLαβxβ .

The outcome of this algebraic manipulation is that the
statistics generated by the dynamical behaviour defined
through (D53) is reproduced by the field-theoretical action
S given by,

S[φ, φ̃] =

∫
dx dt φ̃ · F [φ] − Kθ[φ̃] (D57)

The introduction of the auxiliary field φ̃ in the action is the
price that has to be paid to exploit the path integral for-
mulation, using the standard rules of static renormalisation
and writing the perturbative series in terms of Feynman
diagrams. The field theoretical description reproduces the
stochastic dynamics in the sense that, for a given observ-
able O [φ],

〈O〉 = 〈O〉S (D58)

where 〈O〉 is the average value of O over all possible reali-
sations of the noise θ, while

〈O〉S =
1

Z
∫

Dφ

∫
Dφ̃ O [φ] e−S[φ ,φ̃ ] (D59)

is the average over the field-theoretic action. Thanks to this
equivalence, the dynamics can be investigated by studying
the action S through field-theoretical techniques, including
perturbation theory and the renormalisation group.

The Gaussian part of the action S corresponds to the
linear dynamics, namely the linear part of the operator F ,
while the interactions derive from nonlinear terms. Within
this formalism, an external source h introduced in the
dynamical equation of φ is coupled to φ̃ in the effective
action. Therefore the response function can be written as

δ〈φα (x, t)〉
δhβ (x′, t′)

= 〈φα

(
x, t

)
φ̃β

(
x′, t′)〉 (D60)

For this reason, φ̃ takes the name ‘response field’.
Note, crucially, that the equivalence derived in this sec-

tion works also the other way round: if one obtains a field
theoretical action like (D57) from other approaches, say a
Doi-Peliti approach, the resulting behaviour of φ is equiva-
lent to that which would arise, if φ obeyed (D53). In gen-
eral, the Doi-Peliti action allows for non-Gaussian noises
such as the Poisson noise linked to discrete chemical reac-
tions or other jumps; these are represented in the Master
Equation but cannot be written in strict Langevin equation
form for which noise is generally assumed to be Gaussian
and white. (Note that (D53) is more general than this.)
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Nonetheless, it is common to recover a standard Langevin
equation with Gaussian noise in particular limits, such as
the high-density limit, or indeed the hydrodynamic limit as
derived in Sect. 4.2.1.

Appendix E: Continuum limit

We will here develop the continuum limit of our theory. To
do so, we will need to send the lattice spacing h → 0, pay-
ing attention to the most physical way to rescale the various
parameters in this limit. Let us first change the spatial vari-
able used to describe the system. Instead of using the lattice
number i, we will use the continuous variable x = hi. Sums
over lattice sites i are thus replaced by integrals over x, with
the prescription∫

dxf(x) = hd
∑

i

fi , f(hi) = fi . (E61)

Second, we must carefully define the continuous-space fields.
Say that we have already performed a Cole–Hopf transfor-
mation, and have a theory that described the behaviour
of the number of particle field ρ. In case of more particle
species, as it is for AIMs, the same procedure described here
can be easily generalised.

While we leave the tilde fields ρ̃ unchanged, it is conve-
nient to rescale the ρ field with the volume around each
lattice site hd. This comes from the fact that, when the
h → 0 limit is taken at fixed total number of particles, the
expected number of particles on each site vanishes. What
remains constant is the density, namely the average number
of particles divided by the volume occupied by a single site
hd. Hence, it is convenient to rescale the annihilation fields
by hd, namely

ρ̃(hi, t) = ρ̃i (t) ρ(hi, t) = h−dρi (t) (E62)

Moreover, by observing that

f(x) − f(x + hŷ) = −h ∂ŷf(x) + o(h), (E63)

it is straightforward to write the action contributions that
describing processes involving different sites, namely the
hopping process in case of AIMs.

The final choice to be made concerns the scaling with h
of the reaction and jump rates. For example, in order to
keep finite the mean square displacement due to the diffu-
sive process, the microscopic hopping rate D must diverge
as h−2. Similarly, to make the propulsion speed not diverge
in the continuum limit, we require weak microscopic bias,
namely that ε vanishes with h. For the case of multiple-body
interactions, all the rates must be rescaled in order to com-
pensate the vanishing probability of finding more than one
particle on the same site. For example, the rate of an n-body
interaction should diverge as h−d(n−1) in order to guarantee
that a spin-flipping due to the n-body interaction occurs on
average on the same timescale as the other processes.
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