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Abstract: Malaria is a disease that affects millions of people worldwide with a consistent mortality
rate. The light microscope examination is the gold standard for detecting infection by malaria
parasites. Still, it is limited by long timescales and requires a high level of expertise from pathologists.
Early diagnosis of this disease is necessary to achieve timely and effective treatment, which avoids
tragic consequences, thus leading to the development of computer-aided diagnosis systems based on
artificial intelligence (AI) for the detection and classification of blood cells infected with the malaria
parasite in blood smear images. Such systems involve an articulated pipeline, culminating in the
use of machine learning and deep learning approaches, the main branches of AI. Here, we present a
systematic literature review of recent research on the use of automated algorithms to identify and
classify malaria parasites in blood smear images. Based on the PRISMA 2020 criteria, a search was
conducted using several electronic databases including PubMed, Scopus, and arXiv by applying
inclusion/exclusion filters. From the 606 initial records identified, 135 eligible studies were selected
and analyzed. Many promising results were achieved, and some mobile and web applications were
developed to address resource and expertise limitations in developing countries.

Keywords: malaria; parasite detection; blood smear images; optical microscope; computer-aided
diagnostics; artificial intelligence; machine learning; deep learning; web applications; mobile devices

1. Introduction

Malaria is a deadly disease worldwide and is known as a major cause of infant
mortality. Statistics from the World Malaria Report 2023 [1] compiled by the World Health
Organization (WHO) show that 249 million cases of malaria were detected globally in 2022,
5 million more than the previous year. The main countries contributing to the increase in
cases between 2021 and 2022 were Pakistan, Ethiopia, Nigeria, Uganda, and Papua New
Guinea. Between 2000 and 2022, the mortality rate for malaria halved from 28.8 per 100,000
population at risk to 14.3, and the proportion of total deaths from malaria among children
under the age of 5 decreased from 86.8% in 2000 to 76.0% in 2022.

1.1. Malaria Parasite Transmission and Life Cycle

Malaria transmission occurs through the bite of an infected female Anopheles mosquito,
which transfers the parasite to humans by attacking their red blood cells (RBCs). The para-
sitic protozoan that causes malaria infection is of the genus Plasmodium [2], which has four
types of species, namely P. falciparum, P. vivax, P. ovale, and P. malariae, of which the former
is the most dangerous. Plasmodium matures and reproduces through a complex cycle [3,4]
that varies in relation to the temperature of the environment [5], slowing down in cold
periods, and during which it undergoes a change in its shape, size, morphology, color and
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so on, depending on which phase it is in, i.e., ring, trophozoite, schizont, or gametocyte [6].
The different stages in the life cycle of the Plasmodium parasite are shown in Figure 1.

Figure 1. Plasmodium parasite transmission and life cycle.

1.2. Malaria Diagnosis and Treatment

To date, there has been no effective vaccine for the treatment of malaria due to the
high diversity and adaptability of Plasmodium antigens, which would, therefore, require
the development of specific solutions [7]. However, it is clear from recent WHO analyses
that there has been a decrease in malaria deaths in recent years, despite an increase in cases
worldwide. Malaria is a curable disease if diagnosed early. Currently, the gold standard for
diagnosis and detection of different types of malaria is a visual inspection of Giemsa-stained
blood smears using hand-held light microscopy [8], which requires an interpretation of the
results by an experienced pathologist. Microscopic examination can be conducted on both
thin and thick blood smears. The thick blood smear is 6 to 20 times thicker than a single
layer of RBCs, making it 20 to 40 times more sensitive in detecting malaria parasites than a
thin smear. Indeed, the blood smear method is often suitable for detecting parasites with
an 11-fold higher sensitivity rate [9], but not for counting infected RBCs; it is, therefore, a
method to be avoided in conditions of high parasitemia. In addition, further image artifacts
in thick smears interfere with reading and bring more image processing challenges. On the
other hand, the thin blood smear preserves the shape of the RBCs, allowing for them to be
counted, and is used to visualize a parasite within a cell. Additional techniques for malaria
detection include the antigen test, a fast but less precise process, and the polymerase
chain reaction process, precise but expensive. Microscopic analysis is, therefore, the one
generally used, but it requires laboratory instruments, a great deal of experience and time.
Since people can be infected with more than one malaria parasite at the same time, it is
necessary to examine the entire blood smear sample, a very time-consuming procedure for
pathologists who examine voluminous samples. The manual evaluation and cell count
in a thin blood smear sample takes an expert about 15 min [10], and the accuracy of the
diagnosis directly depends on their experience. Due to the lack of equipment and human
resources, malaria is difficult to detect in rural areas and developing countries, where only
the patient’s history and symptoms are considered to reach a diagnosis [11], resulting in a
delay in the diagnosis of the disease. To formulate an effective and timely treatment for
malaria, in addition to early diagnosis, it is essential to recognize the degree of spread,
quantify the number of parasites, and identify their life stages.
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1.3. Automatic Malaria Detection and Diagnosis

To overcome the obstacles just discussed and to ensure rapid and effective malaria
diagnosis, as well as a low cost and equal accuracies worldwide, automated methods
must be used. Conventional image processing techniques, whose simplicity and low
computational cost make them potentially suitable for contexts where it is impossible
to acquire large-scale marked data, have shown promising results in various scenarios
including the determination of blood film parasitization [12]. However, computer-aided
diagnosis (CAD) systems based on artificial intelligence (AI) have gained much more
popularity in recent decades [13] and can also be adapted for malaria parasite detection.
The traditional pipeline of CAD systems for malaria diagnosis follows the following steps:
data acquisition and pre-processing, cell segmentation, feature extraction, and finally
object detection and classification of infected cells, parasite type, and life stage. The first
step is to acquire images of the blood smears using the cameras already mounted on
the light microscopy device or using external devices such as smartphones. Samples are
generally stained with Giemsa, the recommended and most reliable procedure for staining
thick and thin blood films to detect and identify blood parasites. The Giemsa solution
consists of eosin, which colors the parasite nucleus in red, and methylene blue (light blue),
which colors the cytoplasm in blue. However, automated malaria diagnosis works have
been published in the literature that make use of the combination of the Giemsa reagent
with other types of dyes, e.g., Wright-Giemsa, May Grünwald–Giemsa, and Leishman–
Giemsa. Once the data have been acquired, pre-processing methods aim to improve the
quality of blood smear images by removing impurities that may affect the accuracy of
subsequent processing steps, especially cell segmentation. To this end, Gaussian, median,
and geometric filtering techniques and morphological operators are commonly used for
noise reduction [14–16], while adaptive thresholding and histogram equalization are used
to improve image resolution and contrast [12]. In addition, normalization techniques
are performed to reduce illumination variation in images. To increase the size of image
datasets and, consequently, the performance of AI models, some transformations of data
augmentation (DA) are applied to the initial data to create new artificial examples [17].
Among the classic operations used for data augmentation are rotation, zooming, cropping,
noise addition, scaling, and translation [18]. In addition to these standard operations,
more advanced transformations such as changing contrast or brightness can be applied.
DA techniques are also applied to balance the data in the different classes. The next step
of cell segmentation is significant in automatic malaria detection systems and aims to
identify RBCs, white blood cells (WBCs), parasites, and other artifacts, and then separate
them from each other and the background. This can be performed manually by experts,
requiring very long time frames, or by image processing techniques. In the latter case,
thresholding or watershed methods are the most frequently used, along with machine
learning (ML) and deep learning (DL) techniques such as clustering algorithms and deep
artificial neural networks (ANNs) for segmentation. Features relevant for their subsequent
classification are then extracted from the segmented cells and parasites. This can be carried
out manually, pointing to extract shape, color, and texture information preferring the HSV
color space and the green channel of the RGB color space [19], or automatically using AI
algorithms. The last step in the pipeline of CAD systems for automatic malaria diagnosis
is to detect and classify parasites. At this stage, once Plasmodium-infected cells have
been identified, a cell count can be performed to determine the degree of parasitemia,
but also to determine the infecting type of parasite and its life cycle stage. Classic ML
methods make use of the features extracted in the previous processing step, while DL
methods automatically extract the information most relevant to the purpose of the analysis.
Although these two approaches are generally used separately, some works propose hybrid
ML/DL models or even ensemble learning systems to increase the diagnostic performance
of CAD systems. In particular, ensemble learning reduces model variance by optimally
combining predictions from multiple models and decreasing sensitivity to the specification
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of training data and selection of training algorithms. The CAD systems pipeline for the
malaria just discussed is briefly summarized in Figure 2.

Figure 2. CAD’s pipeline for automatic malaria diagnosis.

CAD systems for malaria diagnosis are proving to be useful tools for increasing
diagnostic accuracy, limiting intra- and inter-operator variability, and reducing time and
human resources. Moreover, some of these systems have been integrated into mobile
applications that can be used by anyone anywhere in the world, even without an internet
connection. This systematic review aims to provide a comprehensive overview of the last
ten years of the literature on the applications of AI to the automatic diagnosis of malaria,
and to analyze its performance.

2. Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines [20] were followed in the present study. More details on the search, screening,
and article selection strategies are given in the following subsections.

2.1. Data Sources and Search Strategy

To identify the recently published articles concerning the use of ML and DL for malaria
diagnosis from tissue or cell images, the electronic databases PubMed, Scopus, and arXiv
were considered, imposing the timespan between 1 January 2014 and 13 February 2024.
The keywords Artificial Intelligence, Machine Learning, Deep Learning, Malaria, Images,
Classification, and Diagnosis were used and combined with the logical operators “AND”
and “OR” as illustrated in Figure 3.

Figure 3. Combination of keywords for the search strategy.
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In addition, we set filters to limit the publication language to English and to select
only original articles in the Scopus database. After collecting all the articles resulting from
the automatic search, duplicates were removed.

2.2. Inclusion and Exclusion Criteria

Since this systematic review aims to collect and analyze studies on the applications
of ML and DL to automatic diagnosis of malaria on images, we established the follow-
ing exclusion criteria for the articles selected: lack of application of automatic diagnosis
techniques, implementation of segmentation tasks not followed by the automatic classifi-
cation, focus on diseases other than from malaria, and analysis of data other than images.
In addition, we excluded reviews and systematic reviews, non-publicly accessible articles,
and work with unclear or non-explicit results. Moreover, the previous set of search criteria
excludes papers not written in English and those published before 2014. The inclusion
criteria were the negation of the exclusion criteria.

2.3. Quality Assessment

Quality assessment of primary research is a key step in systematic reviews. It is
necessary for a complete and transparent review process, the results of which are not
influenced by poorly conducted data collection. Therefore, in the present work, the standard
questions of the quality checklist (SCQ) designed in [21] were applied, and, following [22],
articles that answered “yes” to at least 7 of the 10 questions in Table 1 were deemed eligible.

Table 1. Quality checklist.

No Quality Question

SCQ1 Is the report clear and coherent?

SCQ2 Is the aim of the research clearly specified?

SCQ3 Is the data collection method clearly described?

SCQ4 Have the diversity contexts been well explored?

SCQ5 Are the findings of the study reliable?

SCQ6 Are there links between the data, interpretation, and conclusion?

SCQ7 Are the methodology and experimentation process clear?

SCQ8 Are the research procedures documented adequately?

SCQ9 Are they important, if credible?

SCQ10 Could the research findings be replicated?

2.4. Data Extraction

Data extraction was performed following the PRISMA guidelines [20] (Figure 4).
The examination and screening of all the search results were conducted by two in-

dependent authors (F.G. and A.A.). The initial search of electronic databases generated
606 articles (257 PubMed, 314 Scopus, and 35 arXiv). Among these articles, 398 were elimi-
nated because they were duplicated records. After reading the title and abstract, 45 articles
were discarded because they were outside the topic of the present review, following the
exclusion criteria described above. In the next step, articles were carefully selected by
reading the remaining 163 articles. Of these, 22 articles were excluded after reapplying
the previously established inclusion/exclusion criteria, and a further 6 failed the quality
analysis test. Finally, a total of 135 articles were deemed suitable for a full evaluation
of the reported results. Data were collected and extracted from the selected articles by
highlighting the following key aspects: malaria dataset used, pre-processing technique
applied, task performed, AI tools used, results obtained (quantified by evaluation metrics),
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cross-validation and external validation conducted, and eXplainable AI (XAI) method used,
where present. This information has been sorted and set out in summary table following
the manuscript organization.

Records removed before screening:

Duplicate records removed  (n = 
398):

- PubMed (n = 155)
- Scopus (n = 228)
- arXiv (n =15)

Title and abstract screened
(n = 208)

Records excluded (n = 45):

- other pathologies
- non-classification/object detection
- not on images
- review / systematic review

Full text assessed for eligibility
(n = 163)

Studies included in this Review
(n = 135)

Identification of studies via databases and registers

Id
en

tif
ic

at
io

n
Sc

re
en

in
g

In
cl

ud
ed

Records (n = 606) identified 
from:

- PubMed (n = 257)
- Scopus (n = 314)
- arXiv (n = 35)

Records excluded (n = 28):

- not free access
- non-classification/object detection
- non-explicit results
- unclear results

Figure 4. PRISMA flow diagram.

3. Artificial Intelligence Background

The purpose of this systematic review is to summarize and analyze recent applications
of AI and CAD systems to malaria diagnosis. In this section, we briefly summarize the
main information behind these concepts to provide a general overview of what is discussed
in the following sections.

3.1. ML and DL

AI, which tries to perform some of the tasks characteristic of human intelligence like
learning, has now become part of our daily lives, including medical applications. Two
main branches of AI are ML and DL, a series of models and algorithms that autonomously
extract useful information from data and learn from them with the aim of make predictions
on new data never seen before. The difference between these two types of approaches is
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that DL, the most successful ML solution, exploits complex architectures, characterized
by many layers and many parameters. The principal ML models include Decision Trees
(DT) [23], Support Vector Machines (SVM) [24], K-Nearest Neighbors (KNNs) [25], and sim-
ply ANNs [26]. For DL instead, the most effective and widely used algorithms in computer
vision (CV) are the convolutional neural networks (CNNs or ConvNets), networks com-
posed of several layers, such as convolutional, max-pooling, normalization, dropout, fully
connected, and output layers, each with its own specific function [27]; in fact, some of them
have trainable parameters, while others only have the task of implementing an established
function. Through these layers, each input is transformed down to the last layer where a
class-based probability of that image is produced. Other commonly used DL approaches in
CV are autoencoders (AEs) [28], widely applied in dimensionality reduction and feature
learning, and Generative Adversarial Networks (GANs) [29], a class of deep networks for
generative modeling. Training DL models with randomly initialized parameters requires a
large amount of labeled data not readily available. Transfer learning (TL) represents the
best solution by allowing the reuse of knowledge (the weights) extracted from a pre-trained
CNN model on large labeled datasets and achieving good results in the source domain.
This operation can be used as a feature extraction model but also to refine hyperparame-
ters by freezing or unfreezing various layers. Several CNN architectures are available as
pre-trained models [30–32], and the most commonly used ones are summarized in Table 2.

Table 2. Overview of common pre-trained models.

Model Variants Parameters Layers Input Size

ResNet

ResNet-18 11.17 M 18 224 × 224

ResNet-50 25.60 M 50 224 × 224

ResNet-101 44 M 101 224 × 224

DenseNet

DenseNet-121 17 M 121 224 × 224

DenseNet-169 29 M 169 224 × 224

DenseNet-201 20.2 M 201 224 × 224

Inception-ResNet
Inception-ResNetV1 24 M 60 299 × 299

Inception-ResNetV2 56 M 164 299 × 299

MobileNet
MobileNet 13 M 30 224 × 224

MobileNetV2 3.5 M 53 224 × 224

VGG
VGG-16 138 M 16 224 × 224

VGG-19 143 M 19 224 × 224

3.2. Evaluation Metrics

To evaluate the learning algorithms in a classification task, it is possible to use some
synthetic indices [33], summarized in Table 3, from the scores of the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions. By P and N we mean
the positive and negative instances (P = TP + FN; N = TN + FP), and by P′ and N′ those
for which the output of the classification (correct or incorrect) is the positive and negative
class (P′ = TP + FP; N′ = TN + FN).

In medical diagnosis, the goal is to have a high sensitivity, indicating the correct
classification of the disease, but also a low false positive rate (FPR) to reduce patient and
physician concerns. In addition, it is crucial to achieve a high diagnostic accuracy, that
is, a high frequency with which a cancer diagnosis is actually related to a sick patient.
If the dataset is balanced, the accuracy metric is valid for evaluating the model; otherwise,
the other metrics are more reliable. For example, Receiver Operating Characteristic (ROC)
curves [34] are used to select classification models based on their performance against
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true positive rate (TPR) and FPR values, calculated by varying the decision threshold of
the classifier. From the ROC graph, it is possible to derive the Area Under Curve (AUC),
representing the area enclosed under the ROC curve. The closer the AUC value is to 1,
the better the classifier.

Table 3. Summary of the evaluation metrics.

Metric Formula Description

Recall (REC) or Sensitivity TP
TP+FN

A measure of an algorithm’s
ability to correctly predict TP

from the total number of
positive observations

Specificity (SP) TN
TN+FP

Calculation of the percentage
of TN out of the total number

of negative observations
predicted by an algorithm

Precision (PR) TP
TP+FP

The extent to which the
algorithm is correct in terms of
positive results. It is calculated
as the TP over the total number

of positive observations

Accuracy (ACC) TP+TN
TP+TN+FP+FN

General description of the
performance of the model on
all classes. It is calculated as

the ratio of correct predictions
to the total number

of predictions

F1-score (F1) 2 × TP
P+P′

The harmonic mean of
precision and sensitivity

Matthews correlation
coefficient (MCC)

(TP×TN)−(FP×FN)√
(P′)(TP+FN)(TN+FP)(N′)

Evaluation of a binary
classification model

performance. Value in range
[−1, 1], where the minimum

value indicates a poor classifier
while the maximum value
indicates a correct classifier

3.3. Cross-Validation

After training, the ML and DL models are tested on new data to assess their perfor-
mance. In common practice, the dataset is divided into two parts, one of which is used to
train the model and the other to test it. This method, called Holdout Cross-Validation, is
easy to implement and computationally inexpensive. However, not all of the dataset is used
for training and the split can lead to estimates that are highly dependent on the way the
data were split. To obtain a reliable estimate of the model’s ability to generalize previously
unseen data, it is best to use other statistical cross-validation techniques. The most com-
monly used method is the k-fold one [35], in which the dataset is divided into k subgroups
(or “folds”) of approximately equal sizes; the model is trained k times, using each time
k − 1 fold for training and the remaining fold for validation; and finally, the performance
of the model is evaluated as the average of the performance on the k folds. Usually, k is
set as 5 or 10. The extreme case of k-fold cross-validation is the so-called Leave-One-Out
Cross-Validation, where k is equal to the number of instances in the dataset. In this variant,
every instance is used as a validation fold once, and all others are used for training.
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3.4. External Validation

External validation refers to the validation of ML and DL models on sources external
to those used during training and testing. In the medical field, such models tend to perform
well on data from the same cohort but do not perform as well on new data (of new patients,
perhaps from other centers), often due to overfitting or co-variate shifts [36]. Therefore,
to evaluate the application of medical AI, it is necessary to perform such validation [37]
on datasets that are either public or private.

4. Public Malaria Datasets

The growing interest in AI applications in the medical field, and in particular for the
diagnosis of malaria, has led researchers around the world to collect images of thick and
thin blood smears of malaria patients. Many of the data collected are then made public to
offer the possibility of using them to develop ML and DL approaches and to compare their
performance with other works. The most used public datasets for malaria classification are
listed below.

• The National Institutes of Health (NIH) dataset consists of a set of thick and thin
smears’ images of infected (P. falciparum and P. vivax) and uninfected patients [38] and a
set of already segmented data [39]. The latter is the most widely used and contains
27,558 cells segmented from images of thin Giemsa-stained blood films captured with
a mobile phone mounted on a microscope. The cells, manually annotated by an expert,
are perfectly balanced between healthy and infected from P. falciparum.

• The MaMic Image Database [40] contains images of blood slides that are used to
identify P. falciparum. These images are captured with a microscopic camera that scans
the entire slide, obtaining approximately 549 images with a resolution of 1280 × 1024
pixels. A total of 16,991 cells are segmented and manually annotated as definite or
uncertain parasites by a trained expert.

• The MP-IDB dataset [41] contains four different genera of malaria parasites including
P. vivax, P. falciparum, P. ovale and P. malaria, each with four distinct life cycle stages
(ring, trophozoite, schizont, and gametocyte). In total, 48,000 blood cells are extracted
from the 229 images of thin blood smears stained with Giemsa, which are then labeled
by experienced pathologists.

• The BBBC041 dataset [42] contains a total of 1364 images manually annotated by
three world-class experts. The 80,000 cells contained in the images belong to six distinct
classes, two of which are uninfected (RBCs and leucocytes) and four parasitized
(gametocytes, rings, trophozoites, and schizonts). In addition to the phase labels,
the coordinates of the bounding boxes for each cell are also provided.

5. Results

This section summarizes articles on the use of AI for malaria detection and diagnosis
collected from the literature. Of the 606 articles resulting from the initial search, 135 were
considered eligible (see Section 2.4 and Figure 4). The organization of these studies is as
follows: first, all articles using the public NIH malaria dataset are described; then, the
remaining ones are analyzed. Special subsections are then dedicated to articles proposing
generalizable approaches also tested on the automatic malaria diagnosis task and articles
proposing methods for multiple diagnoses, including malaria.

5.1. Articles Using the NIH Malaria Dataset

For the recognition and classification of malaria on the NIH dataset, several ML and
DL approaches (based on custom CNNs or pre-trained networks) have been proposed.
In this section, we summarize the work resulting from the research conducted, dividing it
according to the AI method used. The extracted information is summarized in dedicated
tables, reporting only ACC and AUC performance due to the balance of the data. We report
other metrics only if ACC and AUC are not present.
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5.1.1. Pre-Trained Networks

For the task of automatic diagnosis of malaria in RBC images, among the most fre-
quently adopted strategies is TL in pre-trained neural networks, which are considered an
excellent compromise between performance effectiveness and computational efficiency.
In this scenario, Zhao et al. [43] used SSD300 [44] for object detection in blood smears,
developed a resolution upscaling model using a Fast Super-Resolution CNN (FSRCNN) net-
work for all those cases where the resolution of RBCs images is insufficient, and classified
them using the modified VGG-16 network. Sriporn et al. [45] used a pre-trained Xception
with Mish activation function [46] and Nadam optimizer [47]. Kassim et al. [48] proposed
the PlasmodiumVF-Net framework for the analysis of thick smear microscopy images for
malaria diagnosis at the image and patient levels. They used two Mask R-CNNs to detect
candidate RBCs for the presence of the parasite, and then two pre-trained ResNet-50s (one
after each previous pattern) to filter FPs. Finally, they classified the patient based on the
number and score of parasites detected in the first step so that if less than two RBCs are
found to be parasitic, the patient is labeled as healthy. Sangameswaran et al. [49] developed
Mass-AI-Scope (MAIScope), a novel, low-cost, portable device that automatically detects
malaria parasites with two subsystems, the first of which is a pre-trained EfficientNet-
lite4 network that detects RBCs, followed by a pre-trained MobileNetV2 that recognizes
malaria parasites, while the second is the hardware, consisting of components such as
Raspberry Pi, a camera, a touchscreen display, and an innovative low-cost microscope.
Alnussairi et al. [50] classified segmented patches from microscopic images of RBC smears
using pre-trained networks such as VGG-19, ResNet-50, and MobileNetV2 trained for a
few epochs. Sinha et al. [51] report an automated CAD method to classify malarial thin
smear blood cell images as parasitized and uninfected by using the pre-trained ResNet-
50. Kundu et al. [52] proposed an intelligent hyper-parameter tuned DL-enabled malaria
parasite detection and classification (HPTDL-MPDC) technique for blood smear images,
which incorporates data pre-processing, VGG-19-based feature extraction, both deep ANN
with Long Short-Term Memory (LSTM) and custom CNN for classification, and Adagrad
optimization-based hyperparameter tuning.

Extra details on data manipulation, pre-trained network used, and results are given in
Table 4.

Table 4. Overview of cited works using pre-trained networks to classify NIH datasets (results have
been rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Pre-Processing Data
Augmentation Network Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
128 × 128 × 3 -

SSD300 +
modified

pre-trained
VGG-16

Original images:
ACC

96.00 ± 0.3%;
AUC

99.2 ± 0.2%.
Images after

FSRCNN: ACC
96.53 ± 0.43%;

AUC
99.40 ± 0.10%

5-fold BBBC041: AUC
94.50 ± 2.5%

Zhao et al.,
2020 [43]
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Table 4. Cont.

Pre-Processing Data
Augmentation Network Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
299 × 299 × 3;
normalization

[0, 1]

Random
rotation

between 0° and
270°

Pre-trained
Xception ACC 98.86% Hold-Out - Sriporn et al.,

2020 [45]

- -
Mask R-CNN +

2 pre-trained
ResNet-50

Image level: Av
ACC 83.9%.

Patient level: Av
ACC 92.3%

5-fold - Kassim et al.,
2021 [48]

Rescaling
224 × 224 × 3

Rotation, tone,
etc.

Pre-trained
EfficientDet-

lite4 +
MobileNetv2
(MAIScope)

Av ACC 89.90% Hold-Out

Images of
malaria field
microscope

slides provided
by Cancyte
Labs, India

Sangameswaran
et al., 2022 [49]

Rescaling
50 × 50 × 3;

normalization
[0, 1]; color

standardization

Rotation,
flipping, hori-

zontal/vertical
shift, lightning
or darkening,

zooming in and
out

Pre-trained
VGG-19,

ResNet-50,
MobileNetV2

ACC 100.00% Hold-Out - Alnussairi et al.,
2022 [50]

-
MixUp [53] and

CutMix [54]
algorithms

Pre-trained
ResNet-50 ACC 98.75% Hold-Out - Sinha et al.,

2023 [51]

Rescaling
120 × 120 × 3

Rotation (20◦),
zooming (0.05),
width/height

shifting (±0.05),
shearing (0.05),

and flipping

Pre-trained
VGG-19 +

Custom CNNs
(HPTDL-
MPDC)

ACC 89.00% 5-fold - Kundu et al.,
2023 [52]

Staying on the topic of using TL for automatic malaria diagnosis, several papers
report the results of comparing different networks, both customized and pre-trained, which
are generally superior using the latter. Rajaraman et al. [55] proposed a system for cell
segmentation and classification of infected and non-infected cells for which they tested
custom CNNs and several pre-trained networks, the best of which turned out to be ResNet-
50 after the optimization of hyperparameters with the randomized grid search method.
Rahman et al. [56] focused on improving malaria detection from segmented patches from
microscopic images of RBC smears by introducing a deep CNN. They tested a custom
CNN, the hybrid VGG-16 + SVM solution, an ensemble learning approach, and the pre-
trained VGG-16, of which the latter proved to be the best. Jameela et al. [57] developed
a Malaria Diagnosis System for automatic diagnosis based on the intensity features of
Plasmodium parasites and erythrocytes using ResNet-50, ResNet-34, VGG-16, and VGG-19
pre-trained, the last being the best. Loddo et al. [58] compared 11 existing architectures
for multiclass classification on parasite life stages and evaluated the robustness of the
models on two different public datasets. Turuk et al. [59] tested three pre-trained networks,
demonstrating the superiority of the modified VGG-19 over all of them. Furthermore,
Qadir et al. [60] tested different TL approaches and reported the best in DenseNet in its
variants DenseNet-121, DenseNet-169, and DenseNet-201. Hassan et al. [61] developed a
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malaria CNN by fine-tuning InceptionV3, ResNet-50, and VGG-19, the last of which had
the best classification result. Shewajo et al. [62] proposed an efficient and robust image
processing method based on tiles containing the malaria parasite and tested three variants
of YOLOV4-based object detectors: a modified version (YOLOV4-MOD) and two versions
with a lightweight architecture: YOLOV4-tiny with two detector heads and YOLOV4-tiny-
3L on three detector heads. To conduct a performance analysis of DL algorithms in the
diagnosis of malaria disease, Hemachandran et al. [63] compared a custom CNN with
MobileNetV2 and ResNet-50, with the latter being the best. Dath et al. [64], after applying
noise reduction techniques, image segmentation, and GANs as a DA strategy, implemented
a custom CNN, a pre-trained ResNet-50, and a pre-trained VGG-19, of which the latter was
the best.

Further information on the work just discussed is given in Table 5 to complete
the discussion.

Table 5. Overview of cited works comparing some custom and pre-trained CNN approaches to
classify NIH datasets (results have been rounded). The symbol “-” indicates that no information is
provided on a particular operation. The abbreviation “Av” indicates the average results over several
repetitions of the experiment.

Pre-Processing Data
Augmentation Best Model Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
224 × 224 × 3 - ResNet-50

Cellular level:
ACC 98.60%;
AUC 99.90%.
Patient level:

ACC
95.9 ± 0.8%;

AUC
99.10 ± 0.5%

5-fold - Rajaraman et al.,
2018 [55]

Rescaling
200 × 200 × 3;

Gaussian
blurring;

darkening and
lightening; ZCA

whitening;
feature-wise

standardization

Vertical/horizontal
flipping and

shifting,
rotation (±25◦),
clipping 0-20%

of height/width,
translation

(±0.2),
and cutting

(±25)

Pre-trained
VGG-16

Image level:
ACC

97.00 ± 0.5%.
Patient level:
ACC 93.00%;
AUC 86.50%.

5-fold and
Hold-Out - Rahman et al.,

2019 [56]

Rescaling
224 × 224 × 3;
normalization

- Pre-trained
VGG-19 ACC 97.21% Hold-Out - Jameela et al.,

2022 [57]

Color
adjustment

(multiplication
of each channel
by the ratio of
the average of

the three
channels to the
average of the
channel under
consideration)

Random
rotations (±90◦),

random
translations

(±10 pixels) on
the X-axis and

Y-axis, and 50%
reflection

around the
X-axis and

Y-axis.

Pre-trained
ResNet-18 and
DenseNet-201

ResNet-18
binary

classification on
NIH: 97.68%.
DenseNet-201

multiclass
classification on

MP-IDB-FC:
ACC 99.40%

5-fold

DenseNet-201
trained on NIH

and tuned to
MP-IDB-FC:

ACC
97.45 ± 1.40%.
DenseNet-201

trained on
MP-IDB-FC and

tuned to
MP-IDB-VC

(P. vivax): ACC
87.10 ± 1.15%

Loddo et al.,
2022 [58]
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Table 5. Cont.

Pre-Processing Data
Augmentation CNN Details Results Cross-

Validation
External

Validation
Author and

Year

- - Pre-trained
VGG-19 ACC 93.89% Hold-Out - Turuk et al.,

2022 [59]

- - Pre-trained
DenseNet

Densenet-121:
REC 94.90%.

DenseNet-169:
PR 95.97%.

DenseNet-201:
ACC 93.39%

Hold-Out - Qadir et al.,
2022 [60]

Rescaling
224 × 224 × 3;
normalization

[0, 1]

Rotation (range
of 20◦),

width/height
shift (0.2), shear
(0.2), horizon-

tal/vertical flip

Pre-trained
VGG-19 ACC 98.90% Hold-Out - Hassan et al.,

2022 [61]

Tile cropping -
Modified
YOLO-v4

(YOLO-v4-tiny)

REC 95.30%; Av
PR 87.10% Hold-Out

On [65]: Av PR
83.40%; REC

94.70%).
On [66]: Av PR

73.10%; REC
96.30%

Shewajo et al.,
2023 [62]

- - Pre-trained
ResNet-50 ACC 98.49% Hold-Out - Hemachandran

et al., 2023 [63]

- GAN Pre-trained
VGG-19 ACC 98.01% Hold-Out - Dath et al.,

2023 [64]

5.1.2. Custom CNN

Besides pre-trained networks, the most widely explored solutions for the task of
malaria parasite detection are custom CNNs. Many authors such as Sarkar et al. [67],
Masud et al. [68], Umer et al. [69], Alqudah et al. [70], Malhotra et al. [71], Delgado-
Ortet et al. [72], Irmak [73], Maqsood et al. [74], Magotra et al. [75], Uzun Ozsahin et al. [76],
Hcini et al. [77], Cho et al. [78], Yebasse et al. [79], and Shambhu et al. [80] have proposed
custom CNNs involving the types of layers commonly used in CV and optimized architec-
tures and hyperparameters to achieve the best performance. Some authors have conferred
a name to the developed CNN networks, for example, Optimized Step-Increase CNN [81],
DilationNet [82], Falcon [83], DACNN [84], Mosquito-Net [85], and MozzieNet [86]. In [87],
different CNN architectures were generated using an open-source DL framework, Autok-
eras, which identifies the optimal neural network to perform the classification task; the
optimal choice is based on performance analysis. Custom CNNs with unconventional
blocks are also proposed for malaria parasite classification. For example, Khan et al. [88]
proposed an STM-SB-RENet block-based CNN that consists of three split–transform–merge
(STM)-based convolutional blocks with the same topology, in each of which modified chan-
nel squeezing-boosting (SB) and TL are integrated; finally, fully connected and dropout
layers are added. Islam et al. [89] proposed a multiheaded attention-based transformer
model with a compact convolutional transformer and visualization of heat maps highlight-
ing the most significant regions for the network. Alonso-Ramírez et al. [90] used a cascade
of two networks: CNN-LSTM, which integrates the LSTM algorithm into CNN, and CNN-
BiLSTM, similar to the former but with Bidirectional LSTM (BiLSTM). Amin et al. [91]
developed a CAD system by combining a semi-supervised GAN and TL, called TL-SGAN,
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in which the model discriminator is replaced by a modified pre-trained VGG-16, while the
generator is a custom CNN.

Details of the operations performed on the data, the custom network developed,
and how the results were evaluated are given in Table 6.

Table 6. Overview of cited works using custom CNN approaches to classify NIH datasets (results have
been rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Pre-Processing Data
Augmentation CNN Details Results Cross-

Validation
External

Validation
Author and

Year

Rescaling;
median filtering - 3 convolutional

layers

Binary: ACC
98.93%.

Multi-class:
ACC 99.06%

10-fold - Sarkar et al.,
2020 [67]

Rescaling
64 × 64 × 3;

grayscale
conversion;
flattening

- 4 convolutional
blocks ACC 92.00% Hold-Out - Masud et al.,

2020 [68]

Rescaling
120 × 120 × 3;

YUV conversion;
intensity

equalization;
BGR conversion;

stain
normalization

- 22 layers ACC
99.96 ± 0.001% 5-fold - Umer et al.,

2020 [69]

Rescaling
64 × 64 × 3 - 18 layers ACC 98.85% Hold-Out - Alqudah et al.,

2020 [70]

Rescaling
64 × 64 × 3 - 5 convolutional

layers ACC 94.56% 4-fold - Malhotra et al.,
2020 [71]

Rescaling
181 × 181 × 3 - 13 layers ACC 95.00% Hold-Out

Thin and thick
blood films from
Core Laboratory
at the Hospital

Clínic of
Barcelona: ACC

75.39%

Delgado-
Ortet et al.,
2020 [72]

Rescaling
44 × 44 × 3 - 20 layers ACC. 95.28%;

AUC 98.86% 5-fold - Irmak, 2021 [73]

Rescaling
125 × 125 × 3;

bilateral
filtering

Zooming (0.1),
rotation (25◦),

shearing (0.05),
horizontal
flipping,

width/height
shifting (0.1)

5 convolutional
layers ACC 96.82% 5-fold - Maqsood et al.,

2021 [74]
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Table 6. Cont.

Pre-Processing Data
Augmentation CNN Details Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
134 × 134 × 3

Rotation,
shearing and

zooming,
width/height

shifting,
and horizontal

flipping

6 convolutional
layers ACC 96.23% Hold-Out - Magotra et al.,

2022 [75]

Rescaling
64 × 64 × 3 - 4 convolutional

layers

Thin blood
smears: ACC
96.06%. Thick
blood smears:
ACC 96.97%

Hold-Out -
Uzun

Ozsahin et al.,
2022 [76]

Rescaling
64 × 64 × 3 - - ACC 99.70% Hold-Out - Hcini et al.,

2022 [77]

Rescaling;
Gaussian
blurring

- 2 convolutional
layers ACC 97.81% 4-fold - Cho et al.,

2023 [78]

Adaptive
thresholding;

increased
intensity of the

red channel;
reassembly of

the 3 RGB
channels

- 1 convolutional
layer

ACC
97.21 ± 0.3% 5-fold - Yebasse et al.,

2023 [79]

Rescaling
64 × 64 × 3 - 2 convolutional

layers ACC 96.02% Hold-Out - Shambhu et al.,
2023 [80]

Rescaling
100 × 100 × 3

Rotations (90◦,
180◦, and 270◦),
and reflections

along X-axis
and Y-axis

4 convolutional
layers ACC 98.3% 5-fold - Kashtriya et al.,

2019 [81]

Rescaling
32 × 32 × 3,
64 × 64 × 3,

128 × 128 × 3,
256 × 256 × 3;
normalization

-

4 parallel CNNs
with 2

convolutional
layers each

ACC 99.50%;
AUC 99.90% Hold-Out - Mahmud et al.,

2020 [82]

Rescaling
128 × 128 × 3;
normalization

[0, 1]

- 9 layers ACC 92.94% Hold-Out - Banerjee et al.,
2022 [83]

-

Rotation (±20◦,
to the right or

left), translation
(±3 pixels), hori-
zontal/vertical
random scaling
(between ±1)

- ACC 94.79% Hold-Out - Oyewola et al.,
2022 [84]
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Table 6. Cont.

Pre-Processing Data
Augmentation CNN Details Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
120 × 120 × 3;
normalization

with mean of 0.5
and standard

deviation of 0.5

Random
rotation,
random

horizontal/
vertical flip,

and color jitter
of 0.05%

3 convolutional
layers

ACC 96.6%;
AUC 99.01% Hold-Out - Kumar et al.,

2022 [85]

Rescaling
50 × 50 × 3

Horizontal
flipping,

rotation (20◦),
width/height
shifting (0.1),

zooming (0.1),
shearing (0.1),

and filling mode
“nearest”

4 blocks ACC 96.73%;
AUC 99.35% Hold-Out - Asif et al.,

2024 [86]

Rescaling
32 × 32 × 3 - 2 convolutional

layers ACC 95.60% Hold-Out - Alaiad et al.,
2023 [87]

Rescaling
124 × 124 × 3;

discrete wavelet
transform

(DWT); merging
the inverse

DWTs at
low–low and

high–high
resolution,

moving to a size
82 × 82 × 1

Rotation (range
±5◦), shearing

(±0.05),
translation,

reflection (±1)

3 convolutional
blocks

ACC 97.98%;
AUC 99.6% Hold-Out - Khan et al.,

2022 [88]

Rescaling
96 × 96 × 3 - -

Original dataset:
ACC 96.41%;
AUC 99.11%.

Modified
dataset: ACC
99.25%; AUC

99.99%

Hold-Out - Islam et al.,
2022 [89]

Rescaling
96 × 96 × 3 - 3 convolutional

layers

CNN-LSTM:
ACC 99.86%.

CNN-BiLSTM:
ACC 99.89%

Hold-Out -
Alonso-

Ramírez et al.,
2022 [90]

Rescaling
128 × 128 × 3;
normalization

[0, 1]

- VGG-16 + CNN ACC 96.6%;
AUC 98.00% 5-fold - Amin et al.,

2023 [91]

5.1.3. Autoencoders

AE models, generally used as image generators or dimensionality reducers, have also
been employed as blood cell classifiers. In particular, Fuhad et al. [92] trained a complete
AE model, in which they then replaced the decoder with a flattened layer followed by
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two fully connected layers, the last of which is dedicated to binary image classification.
Huq et al. [93] proposed an image classification technique based on outlier detection, which
exploits an AE model called AnoMalNet; this model is trained entirely on non-infected
images, and in the inference phase images are labeled as parasitic if their reconstruction loss
value is greater than the mean plus three times the standard deviation of the loss obtained
on the training dataset.

Table 7 provides information on the works just mentioned.

Table 7. Overview of cited works using AE to classify NIH datasets (results have been rounded).
The symbol “-” indicates that no information is provided on a particular operation. The abbreviation
“Av” indicates the average results over several repetitions of the experiment.

Pre-Processing Data
Augmentation Model Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
32 × 32 × 3;

normalization
[0, 1]

Random
rotation (20◦)
and zooming

(0.05),
width/height
shift (±0.05),

shearing (0.05),
and horizontal

flipping

Custom CNN
based on AE ACC 99.23% Hold-Out On [94]: ACC

98.79%
Fuhad et al.,

2020 [92]

Rescaling
32 × 32 × 3;
grayscale

conversion

- Custom AE ACC 98.49% Hold-Out - Huq et al.,
2023 [93]

5.1.4. Hybrid Models

Hybrid models combining ML and DL have also been proposed for the classification of
malaria on the NIH dataset, exploiting CNN networks as feature extractors and classical ML
models as classifiers. Diker [95] optimized the parameters of a deep residual network with
the Bayesian method, performed neighborhood component analysis to select automatic
features and increase the classifiers’ performance, and finally used SVM and KNN to
perform the final classification. Raihan et al. [96] used a custom CNN to extract features
from images transformed using the 2d wavelet package, select the effective features by
using the Whale Optimization Algorithm (WOA), and finally classify the remaining features
with XGBoost. Li et al. [97] presented a new hybrid model dubbed RAL-CNN-SVM, which
incorporates residual attention learning into a ResNet-50-backbone CNN, and performs
the classification with an SVM with a radial basis function (RBF) kernel. Jones et al. [98]
extracted and selected features using a custom CNN method and an improved Grey–Wolf
optimization method, respectively. An SVM with RBF kernel was used as a classifier.
Goni et al. [99] combined a custom CNN-based feature extractor with a double hidden
layer extreme learning machine (ELM) classifier, called DELM. Abubakar et al. [100] tested
the combination of six different feature extractor pre-trained networks and four ML models,
from which VGG-16 + SVM was the best solution. Dutta et al. [101] introduced a new
Barnacles Mating Optimizer (BMO) with Deep TL (DTL) Enabled Biomedical Malaria
Parasite Detection and Classification (BMODTL-BMPC) model, which uses the ELM model
for the identification and classification of malaria parasites. Alassaf et al. [102] developed
an intelligent deep-TL-based malaria parasite detection and classification (IDTL-MPDC)
model which performs feature vector extraction with Res2Net, whose hyperparameters
were optimally adjusted with the differential evolution algorithm, and uses KNN for
classification. Imran et al. [103] merged the extracted features with pre-trained DarkNet-
53 and DenseNet-201 networks, performed vector dimensionality reduction using the
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WOA, and applied several ML classifiers among which Linear Regression (LR) was the
best. Madhu et al. [104] developed an innovative approach utilizing an urgent, inception-
based capsule network, a diagnostic model incorporating the pre-trained InceptionV3
network to extract features from images, and Imperative Capsule to detect the malaria
parasite. Qadri et al. [105] proposed the use of the pre-trained Neural Search Architecture
Network (NASNet) model to extract spatial features from images, the Random Forest (RF)
algorithm to derive class prediction probability features from spatial ones, and a final SVM
classifier. Amin et al. [106] performed feature extraction both manually and automatically
using pre-trained ResNet-50 and ResNet-18, selected a portion of these features with the
generalized normal distribution optimization method, and performed classification with
SVM (linear, quadratic, and cubic) and ANN classifiers (narrow, wide, and medium).
Finally, Murmu et al. [107] developed a hybrid Deep-CNN-RF model for malaria parasite
detection, combining pre-trained networks with RF.

Table 8 summarizes the hybrid models used to detect and classify malaria parasites on
the NIH dataset.

Table 8. Overview of cited works using hybrid models to classify NIH datasets (results have been
rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Pre-Processing Data
Augmentation Model Results Cross-

Validation
External

Validation
Author and

Year

Rescaling
224 × 224 × 3;

color constancy
method

-
Custom Deep

Residual CNN +
SVM

ACC 99.90% Hold-Out - Diker, 2022 [95]

Rescaling
120 × 120 × 3;

grayscale
conversion

- Custom CNN +
XGBoost ACC 94.78% Hold-Out - Raihan et al.,

2022 [96]

Rescaling
224 × 224 × 3;
normalization
[0, 1]; median
filtering; data

cleaning

-

Custom
RAL-CNN +
SVM (RAL-
CNN-SVM)

ACC 99.70%;
AUC 99.90% Hold-Out - Li et al.,

2022 [97]

Bilateral
filtering - Custom CNN +

SVM ACC 94.00% Hold-Out - Jones et al.,
2023 [98]

Rescaling
32 × 32 × 3;

normalization
[0, 1]

-
Custom CNN +

DELM
(CNN-DELM)

Original dataset:
ACC 97.79%;
AUC 99.52%.

Modified
dataset: ACC
99.66%; AUC

99.96%

Hold-Out - Goni et al.,
2023 [99]

Rescaling
224 × 224 × 3 - Pre-trained

VGG-16 + SVM
ACC 94.88%;
AUC 98.50% 10-fold - Abubakar et al.,

2021 [100]

Gaussian
filtering -

NasNetLarge +
ELM (BMODTL-

BMPC)
ACC 99.04% Hold-Out - Dutta et al.,

2022 [101]
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Table 8. Cont.

Pre-Processing Data
Augmentation Model Results Cross-

Validation
External

Validation
Author and

Year

Median filtering -
Pre-trained

Res2Net + KNN
(IDTL-MPDC)

ACC 95.86%;
AUC 98.63% Hold-Out - Alassaf et al.,

2022 [102]

L*a*b*
conversion;

intensity
adjustment;
histogram

equalization
and leveling

-

Pre-trained
DarkNet-53 and
DenseNet-201 +

LR

ACC 99.67% 5-fold - Imran et al.,
2022 [103]

Rescaling
128 × 128 × 3 -

Pre-trained
Inception-v3 +
Capsule ANN

ACC 99.35%;
AUC 99.73% Hold-Out - Madhu et al.,

2023 [104]

- -
Pre-trained

NASNet + RF +
SVM

ACC
98.60 ± 0.18% 10-fold - Qadri et al.,

2023 [105]

Bilateral
filtering -

Pre-trained
ResNet-18 +

Custom ANN

Wide ANN:
ACC 99.48%;
AUC 98.00%

10-fold - Amin et al.,
2024 [106]

Rescaling
224 × 224 × 3;
normalization

[0, 1];
thresholding

Rotation
Pre-trained

VGG-16 and
VGG-19 + RF

ACC 93.35% Hold-Out - Murmu et al.,
2024 [107]

5.1.5. Ensemble Learning

The technique of ensemble learning was also explored for the task of malaria parasite
detection and classification. In particular, Marques et al. [108] report an automatic malaria
detection model based on the ensemble of 10 modified pre-trained EfficientNetB0 models.
Zhu et al. [109] proposed a pre-trained ResNet-18 backbone network used as a feature
extractor, and the random vector functional link (RVFL), Schmidt neural network (SNN),
and ELM as classifiers. The final result is the ensemble output of the three networks
obtained by majority voting. Rajaraman et al. [110] combined the predictions of the
VGG-19 and SqueezeNet models to reduce the variance of the model, thus improving
its robustness and generalization. A combination of pre-trained VGG-16, VGG-19, and
DenseNet-201 was run two-by-two with the adaptive weighted average method in [111].
In addition, a maximum vote ensemble technique was applied in combination with adaptive
weighted average ensemble models to reduce the dispersion of the predictions. Finally,
Nayak et al. [112] proposed an ensemble AI-enabled IoMT automated diagnosis model to
classify malaria parasitized from microscopic images. This model involves two parallel
phases, the first of which is a CBRM Renealing Snapshot lightweight ensemble learning
model created from a combination of three distinct CNN layers, while the second is an
ensemble of the three transfer-learning models DenseNet-121, ResNet-101, and VGG-19
whose results are averaged. The final result of the two phases in parallel is a majority vote.

An overview of the ensemble learning models used for malaria parasite classification
performed on the NIH dataset is reported in Table 9.



Electronics 2024, 13, 3174 20 of 51

Table 9. Overview of cited works using ensemble learning approaches to classify NIH datasets
(results have been rounded). The symbol “-” indicates that no information is provided on a par-
ticular operation. The abbreviation “Av” indicates the average results over several repetitions of
the experiment.

Pre-Processing Data
Augmentation Model Results Cross-

Validation
External

Validation
Author and

Year

Normalization
[0, 1] -

Ensemble of 10
pre-trained

EfficientNetB0
ACC 96.23% 10-fold - Marques et al.,

2022 [108]

Rescaling
224 × 224 × 3 -

Pre-trained
ResNet-18 +
Ensemble

RVFL/SNN/
ELM

ACC
95.73 ± 2.63% 5-fold - Zhu et al.,

2022 [109]

Rescaling
100 × 100 × 3;

mean
normalization

Rotation,
translation,

cutting,
zooming,

and flipping

Ensemble
pre-trained
VGG-19/

SqueezeNet

ACC
99.51 ± 0.1%;

AUC
99.92 ± 0.1%

5-fold - Rajaraman et al.,
2019 [110]

Rescaling
64 × 64 × 3;

normalization
[0, 1]

Rotation (0.2),
zooming (0.2),

horizon-
tal/vertical

flipping

Ensemble of
pre-trained

VGG-16,
VGG-19,

and DenseNet-
201

ACC 97.92% Hold-Out - Bhuiyan et al.,
2023 [111]

Rescaling
224 × 224 × 3;
normalization

[0, 1]

Horizontal
flipping,

rotation (15◦),
zooming (10%),
lighting (20%)

Ensemble CNN/
pre-trained

DenseNet-121,
ResNet-101,

VGG-19

Av ensemble:
ACC 99.13%;
AUC 99.60%

Hold-Out - Nayak et al.,
2022 [112]

5.1.6. Classic ML Models

Although DL and hybrid approaches are in vogue both for CV tasks in general and for
the malaria recognition and classification on the NIH dataset, classical ML approaches have
also been proposed. In [113], a system is proposed that integrates Hossain et al. [113], a
variational quantum circuit (VQC) approach to parasite detection, and a rule-based expert
system to detect malaria types. The optimal ML-based automated malaria parasite detection
and classification (OML-AMPDC) model is proposed in [114] for pre-processing, feature
extraction using Local Derivative Radial Patterns, and classification of blood smear images
with an RF classifier, whose optimal parameters are chosen using the particle swarm
optimization algorithm. Phumkuea et al. [115] applied the Information Gain filter to select
the most significant features from the pre-processed images and analyzed the histogram
of the HSV images using a DT classifier. To improve the accuracy of malaria detection
and classification, Telang et al. [116] computed the first four statistical intensity moments
for pixels in each image RGB color channel, performed feature selection to reduce the
dimensionality of the previously obtained feature vectors, and classified the data using the
RF, KNN, Linear SVM + LR, DT, Kernel SVM, and Naïve Bayes (NB) approaches.

More details on the results just discussed are given in Table 10.
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Table 10. Overview of cited works using classic ML models to classify NIH datasets (results have
been rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Pre-Processing Data
Augmentation Model Results Cross-

Validation
External

Validation Author and Year

Rescaling; median
filtering - VQC

Binary: ACC
98.93%.

Multiclass: ACC
99.06%

10-fold - Hossain et al.,
2021 [113]

Noise removal and
contrast enhancement

using CLAHE
technique

- RF
(OML-AMPDC) ACC 90.32% Hold-Out - Kundu et al.,

2023 [114]

Rescaling
100 × 100 × 3; 24-bit

color code conversion;
HSV conversion

- DT ACC 95.60% 10-fold - Phumkuea et al.,
2023 [115]

- -

RF, KNN, Linear
SVM + LR, DT,

Kernel SVM and
NB

ACC between
95.00% and

99.00%
10-fold - Telang et al.,

2023 [116]

5.1.7. Mobile Applications

The aim of some of the work was to develop mobile applications to support rapid,
efficient, and cost-effective malaria diagnosis as a support tool in less developed areas.
In this sense, Yu et al. [117] designed an Android mobile application called Malaria Screener
that consists of a slide screening module with three sequential sub-modules for acquisition,
parasite detection, and display of results; a data management module that stores images
and corresponding metadata acquired during slide screening sessions; and finally, a data
upload module that transfers local data to an online repository for record keeping and
further training of the system. Yang et al. [118] developed an image processing method for
parasite candidates search using an iterative global minimum screening based on intensity
and their classification using a custom CNN.

Table 11 summarizes the results of mobile applications for malaria diagnosis on the
NIH dataset.

Table 11. Overview of cited works developing mobile applications for malaria diagnosis on NIH
datasets (results have been rounded). The symbol “-” indicates that no information is provided on a
particular operation. The abbreviation “Av” indicates the average results over several repetitions of
the experiment.

Pre-
Processing

Data
Augmentation Model Results Cross-Validation External

Validation Author and Year

- - Pre-trained
CNN

Thick smears: patch level
ACC 96.89%, AUC 98.48%;
patient level ACC 78.00%,
AUC 84.90%. Thin smears:

patch level ACC 98.60%,
AUC 99.90%; patient level
ACC 95.90%, AUC 99.10%

5-fold - Yu et al.,
2020 [117]

Rescaling
44 × 44 × 3 - Custom CNN ACC 93.46 ± 0.32%); AUC

98.39 ± 0.18% 5-fold

Part of the original
dataset: ACC
97.26%; AUC

97.34%

Yang et al.,
2019 [118]
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5.2. Articles Using Other Public and Private Datasets

In this section, we review works proposing AI methods for the automatic diagnosis of
malaria using private or public but non-NIH datasets. We summarize the results by distin-
guishing between works developing DL approaches, classical ML approaches, and those
developing web or mobile applications. The information extracted from the various articles
is reported in apposite tables that also highlight the specific task under consideration.

5.2.1. DL Approaches

This review considers recent research on the development of automatic image-based
malaria diagnosis applications. As this is a CV task, DL approaches are the most com-
monly used. Hung et al. [119] proposed the identification of RBCs and the recognition
of their stages in bright-field microscopic images of malaria-infected blood by using a
pre-trained Faster Region-based Convolutional Neural Network (Faster R-CNN) followed
by an AlexNet. A focus-stacking approach to the automated quantitative detection of
the malaria parasite Plasmodium falciparum was proposed by Gopakumar et al. [120].
Once the best-focused images are chosen for each field of view (FoV), an SVM trained on
the statistical and structural features extracted from the positions of suspected parasites
(A) is compared with a CNN trained on patches surrounding the suspected positions
(B), and with a CNN trained on the patch stack surrounding the suspected positions (C).
Jagtap D et al. proposed a Cuckoo Search-Based Ensemble Classifier (CSEC) [121] to over-
come the limitations of the monoclassifier strategy in the detection of malaria-infected
erythrocytes. For the identification of the malaria parasites in thick blood smears, Pat-
tanaik et al. proposed a CAD system that includes an ANN with two stacked models for
malaria parasite detection, followed by a softmax classifier for binary classification [122].
The same authors also conducted different experiments. For example, in [123], they present
a deep filter bridge combining multi-rolling stacked denoising AE, fisher vector, and ELM
to automatically classify the different types of single cells in microscopic blood smear
images as either infected or uninfected. In addition, for the automatic classification of
microscopic blood smear images at multiple magnifications, they [124] proposed an effec-
tive multi-enhanced deep residual neural network (MM-ResNet) consisting of ResNets
with different inputs, the results of which are concatenated and then classified using a
dense layer. For a rapid automated diagnosis of malaria, Manescu et al. [125] applied the
Extended Depth-of-Field (EDoF) in thick film microscopy and developed an EDoF-CNN
that can rapidly compute EDoF images from z-stacks while improving the spatial resolution
of the resulting image. The same authors also proposed the Deep Malaria Convolutional
Neural Network (DeepMCNN) classifier [126], which performs object detection with a
RetinaNet, and binary classification of stacks at the patient level using a pre-trained VGG-
19. Total malaria parasite (MP) and WBC counts are also performed, allowing for the
estimation of parasitemia in MP/µL, as recommended by the WHO. A low-cost, portable
digital microscope scanner capable of both bright-field and fluorescence imaging is being
developed by Holmström et al. [127]. Two supervised DL algorithms called DLS1 and
DLS2 are trained to detect P. falciparum parasites. The first network detects all RBCs, and
in a second step, the two networks in parallel tell whether the RBCs are healthy or diseased.
Vijayalakshmi [128] proposed a pre-trained VGG replacing the final layers with an SVM
classifier with RBF kernel. Pardede et al. [129] implemented the RetinaNet network with
ResNet-101 as a backend to detect normal and infected erythrocytes on a thin blood smear
image. The label counting of the detected objects and calculation of the malaria index values
were assessed to perform a diagnosis of malaria. Nakasi et al. [130] tested three networks,
identifying Fastest R-CNN as the best network for classification, and SSD as a possible
best solution for mobile implementation. The main objective of the project by Chowd-
hury et al. [131] was to create a low-cost CNN-based automated system to identify and
count blood cells (RBCs, platelets or thrombocytes, and different types of WBCs), and also
detect malaria infection from a digitized blood smear image. The proposed Modified Yolo
network is a modified version of the YOLO network made smaller and optimized without
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compromising performance too much but providing faster automatic detection in hardware
implementation. Lebel et al. [132] demonstrated that DL allows for both the life-stage
classification of malaria parasites and accurate quantification of parasitemia in unlabeled
images obtained by bright-field microscopy of live, unstained RBCs. To do this, a standard
optical microscope with visible and near-UV illumination and a microscope with deep UV
illumination were used, exhibiting superior performance compared to Giemsa’s manually
scored smears performed by experts. The workflow involved semantic cell segmentation
with ResNet-50, post-processing of the resulting masks, and parasite stage classification us-
ing GoogLeNet. To overcome the strong imbalance between classes, they used a weighted
cross-entropy loss function that introduces a normalization term for the weights based
on the fractional representation of each class. To automatically detect and quantify blood
cells at different life stages of the malaria parasite, Loh et al. [133] used a pre-trained Mask
R-CNN that returns binary masks and bounding coordinates. In addition, they performed
segmentation and cell counting, and then calculated the ratio between the infected and
healthy. Li et al. [134] developed a malaria stage recognition approach in blood smear
images using a deep transfer graph convolutional network (DTGCN) consisting of a feature
extractor based on the pre-trained ResNet-50, a source transfer graph construction compo-
nent, and an unsupervised GCN. Molina et al. [135] proposed the use of the pre-trained
VGG-16 model for the differentiation of RBCs, both normal erythrocytes and erythrocytes,
with other types of inclusions that have a parasite-like morphology. Davidson et al. [136]
performed RBC detection by pre-trained Faster R-CNN with ResNeto-50 as backbone,
cell differentiation into infected/uninfected by pre-trained ResNet-50, and parasite life
stage categorization by pre-trained ResNet-34. For the automated diagnosis of malaria,
Ufuktepe et al. [137] proposed the Channel-wise Feature Pyramid Network for Medicine
(CFPNet-M)—Detection, Extraction, and Counting (CFPNet-M-DEC), in which the cell
detection module includes a modified CFPNet-M network that takes two input images
and returns the truncated distance transformation for each, whereas the cell extraction
and counting module is based on a modified CFPNet with two-channel input, one for
each output of the previous module. To perform the P. falciparum automatic screening on
thick blood smears, Abdurahman et al. [138] modified the pre-trained YOLOv3 (YOLOv3-
MOD1 and YOLOv3-MOD2) and YOLOv4 (YOLOv4-MOD) to improve their ability to
detect small objects by extending the feature scales and adding more detection levels.
The YOLOv4-MOD turned out to be the best. Yang et al. [139] proposed a system for
segmentation and classification of malaria cells. The parasite segmentation is performed
using a modified U-Net (U-Net\VGG-19) with a VGG-19 encoder and a customized loss
function based on the Jaccard index. Next, the largest parasite detected in each image
is classified by a Light-Net. Jabbar et al. [140] compared three different CNN networks,
with/without DA and with/without noise reduction pre-processing, the best of which
has five layers and uses connected convolution architecture. For a quick classification
of RBCs, Preißinger et al. [141] proposed a system that, after choosing the microscopy
technique for acquisition and performing some pre-processing operations, selects the RBC
cross-sections that best captures the features associated with the presence/absence of the
parasites and their life stage and classifies them using a custom CNN. The localization,
detection, and counting of parasites and WBCs were performed by Nakasi et al. [66] using
the two pre-trained models Faster R-CNN with ResNet-101 backbone and Single Shot
Multibox Detector (SSD) MobileNetV2. While the former model had a better performance,
the latter was more suitable for the mobile application. For the life cycle classification of
P. vivax, Sengar et al. [142] designed a method that combines four modules, namely, image
acquisition, data augmentation, parasitic data generation with GAN, and classification,
with the vision transformer (ViT) model. The generation of additional training samples
increased the robustness of the resulting model. Arshad et al. [143] proposed a method
to locate Plasmodium parasites by segmentation with U-Net, on which the binary masks
produced are run by the watershed method, and to classify them in two stages: binary
classification and subsequent multiclass classification with ResNet50V2. For the pathogen
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detection on microscope images of thick blood smears, Koirala et al. [144] developed a
customized YOLO-mp architecture by modifying the pre-trained YOLO architecture with
three and four levels (YOLO-mp-3l and YOLO-mp-4l). Acherar et al. [145] constructed an
image dataset of P. falciparum-infected and non-infected blood components, thus evaluating
different networks for their classification. After segmenting the cells using the watershed
algorithm, a custom CNN and the pre-trained VGG-19, ResNet-50, and EfficientNetB7
networks were compared, with the latter being the best. Meng et al. [146] studied a multi-
stage malaria parasite recognition problem, proposing a novel Neighbor Correlated Graph
Convolutional Network (NCGCN) that extracts image representations using a ResNet-50,
uses them to formulate the correlated relationships between the samples by combining the
KNN and the EPSILON-radius graph construction methods, and finally performs the classi-
fication with a two-layer Graph Convolutional Network (GCN). To determine infected cells
in thin whole blood smear images, Sukumarran et al. [147] implemented and compared the
three object detectors YoloV4, modified Faster R-CNN, and modified SSD-300, of which
the first was the best for end-to-end identification and localization of malaria-infected
cells. Katharina et al. [148] proposed the Malaria Stage Classifier, which performs the
identification of individual RBCs, the one-dimensional cross-section feature extraction, and
the classification of malaria blood stages with a custom CNN. Liu et al. [149] developed an
AI-based object detection system for malaria diagnosis, called AIDMAN, that combines
YOLOV5 for cell recognition and a CNN with an attentional alignment model for cell
classification. This model was optimized by changing the number of heads, achieving the
best performance with a value of 2. For the automatic identification of Plasmodium species
and their developmental stages in thin blood smears, Wang et al. [150] used the YOLOV7
network with the Cross Stage Partial Network as a backbone, and the PAN algorithm for
multiscale detection and feature fusion. Fasihfar et al. [151] proposed a cell segmentation
approach and subsequent classification using custom six-layer CNNs. Fu et al. [152] used
the ResNetSt-50 attention mechanism, applying the BYOL self-supervised learning to pre-
train the network with positive samples and alleviate the problem of insufficient labeled
data. To detect malaria parasites with a high efficiency and accuracy, Zedda et al. [153]
proposed a modified version of the pre-trained YOLOV8m architecture, called YOLO-PAM.
With a trial-and-error approach, Saxena et al. [154] developed five DL models, of which the
best was a custom CNN with four convolutional layers without dropout layers and cate-
gorical output. Guemas et al. [155] proposed a real-time detection transformer (RT-DETR)
object detection algorithm for discriminating plasmodium species. The proposed architec-
ture consists of a backbone, an efficient hybrid encoder, and a transformer decoder with
auxiliary prediction heads. Ilyas et al. [156] simultaneously addressed domain variation,
life cycle, and magnification with a new encoder–decoder architecture with a multiclass
focus for robust malaria diagnosis. In particular, they used the Fourier Adaptive Recogni-
tion System (FARS) with the integration of adversarial training and color Domain Aware
Fourier Domain Adaptation for normalizing staining in histopathology, and the Segment
Anything Model as a binary segmentation model. This integrated approach offers a ro-
bust and reliable solution for cross-domain, multi-stage, and multi-magnification malaria
parasite recognition.

An overview of the articles just summarized is given in Table 12.
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Table 12. Overview of cited works using DL approaches to malaria parasite diagnosis (results have
been rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

1300
Giemsa-stained
images infected

with P. vivax,
containing

approximately
100,000 cells

Binary
classification

Faster R-CNN +
AlexNet ACC 98% Hold-Out - Hung et al.,

2017 [119]

Images of slides
colored by
Leishman,

from which 1400
positive patches

and 326,934
negative patches

are cut out

Binary
classification and

cell counting

SVM and custom
CNN

Binary
classification:

(A) SE
96.38 ± 0.88%; SP

95.43 ± 0.85%;
MCC

91.81 ± 1.50%;
AUC

99.10 ± 0.37%.
(B) SE

98.91 ± 0.36%; SP
99.39 ± 0.31%;

MCC
98.31 ± 0.39%;

AUC
99.87 ± 9.9871
×10−2%. (C) SE

99.14 ± 0.37%; SP
99.62 ± 0.18%;

MCC
98.77 ± 0.32%;

AUC
99.92 ± 7.5764

×10−2%.
Cell counting:
(A) SE 92.87%;

SP 93.84%;
MCC 44.35%.
(B) SE 96.56%;

SP 98.27%;
MCC 70.33%.
(C) SE 96.98%;

SP 98.50%;
MCC 73.02%

10-fold - Gopakumar et al.,
2018 [120]

2867 samples of
which 1244

normal and 1623
infected

Binary
classification

Ensemble learning
(CSEC)

PR 95.64%;
SE 92.80%; SP
94.96%; ACC

93.78%;

3-fold - Jagtap D et al.,
2019 [121]

1182 microscopic
images of thick
blood smears

collected by the
Makerere

University AI
research group

Binary
classification

ANN with
stacked models

ACC 89.10%;
SE 93.90%;
SP 83.10%;
F1 94.50%

10-fold - Pattanaik et al.,
2020 [122]
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Table 12. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

DPDx dataset:
39,000 cells

extracted from 108
patch-cut

images [157]

Binary and
multiclass

classification
Deep filter bridge

Binary:
Av F1 98.36%; Av

ACC 98.12%.
Multiclass: ACC

P. falciparum
90.00%, P. ovale
98.80%, P. vivax

87.47%, P. malariae
98.60%,

and P. knowlesi
90.00%

10-fold - Pattanaik et al.,
2021 [123]

1182 images with
3 different

magnifications
and frames of
7245 parasites

Binary
classification MM-ResNet Av ACC 98.08% 5-fold - Pattanaik et al.,

2022 [124]

Z-stacks of thick
blood smears
stained with

Giemsa

Malaria parasite
detection EDoF-CNN REC 74.00%;

PR 79.00% Hold-Out - Manescu et al.,
2019 [125]

Z-stacks of
Giemsa-stained
thick and thin

blood smears from
239 patients.

The 4168 extracted
cells are annotated

by pathologists

Binary
classification

RetinaNet +
VGG-19

(DeepMCNN)

SE 92.00%;
SP 90.00%;
PR 91.00%;

PPV 92.00%;
NPV 90.00%

Hold-Out - Manescu et al.,
2020 [126]

125 thin blood
smears stained

with DAPI
collected from 100

patients

Malaria detection DLS 1 e DLS 2 r = 0.99, p < 0.01 Hold-Out - Holmström et al.,
2020 [127]

50 microscopic
images obtained

from
Giemsa-stained
blood smears +

MaMic Database

Binary
classification VGG19 - SVM

ACC 93.13%;
SE 93.44%;
SP 92.92%;
PR 89.95%;
F1 91.66%

5-fold - Vijayalakshmi,
2020 [128]

27 images
from [119] and 79
images from Dr.

Yani Triyani
repository.

Object detection
RetinaNet

(ResNet-101
backbone)

Object detection:
Av PR 94.00%; Av
REC 74.00%; Av

ACC 73.00%.
Diagnosis:
SP 98.00%;
SE 99.00%

Hold-Out - Pardede et al.,
2020 [129]

643 images of
thick blood
smears with

parasite
delineation boxes

annotated by
experienced
laboratory
technicians

Parasite detection
Faster R-CNN
(ResNet-101
backbone)

Av PR 94.48%; PR
77.91%;

REC 89.81%
Hold-Out - Nakasi et al.,

2020 [130]
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Table 12. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

(1) Leukocyte
Images for

Segmentation and
Classification

(LISC)
database [158]
(five types of
WBCs on a

background of
RBCs); (2) Isfahan

University of
Medical Science

(IUMC)
database [159]

(individual WBCs
with binary
masks); (3)

MAMIC Database;
(4) segmented

NIH

Multiclass
classification +

object detection

ModifiedYolo
network

Cell classification:
Av PR 95.56%.

Malaria detection:
SE 100.00%;
SP 97.47%

Hold-Out

Combination of
LISC and MAMIC

images not
contained in the
training set: Av

PR 93.66%

Chowdhury et al.,
2020 [131]

64,966 cells from
the first system
and 14,219 from

the second.
The images are
annotated by

hand in 4 classes

Multiclass
classification

ResNet50 +
GoogLeNet

First system: ACC
96.80%. Second
system: ACC

98.80%

Hold-Out - Lebel, et al.,
2021 [132]

297 images
acquired from

Giemsa-stained
samples and
annotated by

hand

Multiclass
classification

Pre-trained Mask
R-CNN

Detection:
ACC 94.57%;

Av PR 73.10%;
PR 82.00%.

Cell counting:
ACC 89.56%

Hold-Out - Loh et al.,
2021 [133]

BBBC041
Multi-stage

classification +
binary adaptation

DTGCN

Staging: ACC
98.30 ± 0.03%; PR

98.50 ± 0.02%;
REC 98.30 ± 0.02%;
F1 98.30 ± 0.03%

-

Binary
classification on

NIH: ACC
95.4 ± 0.05%;

PR 95.4 ± 0.07%;
REC 95.4 ± 0.06%;

F1 95.4 ± 0.07%

Li et al., 2021 [134]

6415 images of
RBCs segmented

from 53 thin
peripheral blood
smears stained

with May
Grünwald-

Giemsa.

Multiclass
classification at

the cellular level,
and binary at the

patient level

Pre-trained
VGG-16

ACC 99.75%; PR
97.00%; SE

100.00%
Hold-Out

23 independent
blood smears:
ACC 99.50%;
PR 95.70%;
F1 97.40%;

SE 99.20%, and SP
99.90% on RBCs.
SE 100.00% and

SP 91.70% at
patient level

Molina et al.,
2021 [135]

38,000 RBCs from
Giemsa-stained

blood smears with
P. falciparum and

P. vivax

Parasite detection
+ binary

classification

Faster R-CNN +
ResNet-50 and

ResNet-34

Object detection:
Av PR 98.00% on

P. vivax; Av PR
99.00% on

P. falciparum.
Binary

classification:
ACC 99.80%; AUC

97.90%

Hold-Out - Davidson et al.,
2021 [136]
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Table 12. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

955 microscopy
images from

193 patients (148 P.
falciparum and

45 non-infected)

Cell counting CFPNet-M-DEC

Image level: ACC
92.28%. Patient

level: ACC:
92.20%

Hold-Out - Ufuktepe et al.,
2021 [137]

1182 images of
which 948 were
malaria-infected

(with 7628
P. falciparum

parasites) and 234
normal with

artifacts due to
impurities [65]

Object detection

YOLOv3-MOD1,
YOLOv3-MOD2,

and YOLOv4-
MOD

YOLOv4-MOD:
Av PR 96.32%; PR

95.00%;
REC 94.00%;
F1 94.00%.

YOLOV3-MOD2:
Av PR 96.14%.

YOLOV3-MOD1:
Av PR 95.46%

Hold-Out - Abdurahman
et al., 2021 [138]

Giemsa-stained
images from

MP-IDB dataset
(1) and [160] (2).

Multiclass
classification

U-Net_VGG-19 +
Custom CNN

(Light-Net)

Cell classification:
Av PR 88.00% (1);
ACC 99.50% (2).

Patient
classification: ACC

100.00% (1) (2).

Hold-Out

Detection rate (dt)
99.00% on [161].

Species
classification (SpC)

ACC 63.00%
on [55]. dt 99.00%

and SpC ACC
84.00% on [162]. dt

85.00% and SpC
ACC 31.00%

on [163]

Yang et al.,
2021 [139]

2565 RBC images
belonging to two

classes

Binary
classification Custom CNN

ACC 99.22%; REC
98.37%; PR
100.00%; F1

99.17%

Hold-Out - Jabbar et al.,
2022 [140]

792
Giemsa-stained

microscopy images
of 17

malaria-infected
patients, totaling
26,223 cells [160]
manually labeled
by three experts

Multiclass
classification Custom CNN ACC 97.90% Hold-Out

Same training data
acquired by
fluorescence

microscopy (FM)
(1232 images,

45,726 RBC): ACC
96.30%; and

acquired by atomic
force microscopy

(AFM) (173 images,
7386 RBCs): ACC

98.90%

Preißinger et al.,
2022 [141]

903 field stain
images of blood

smears often
manually

annotated by
experienced
laboratory
technicians

Multiclass
detection

Faster R-CNN and
SSD MobileNetV2

Faster R-CNN: Av
PR 66.09%. SSD

MobileNetV2: Av
PR 62.69%

Hold-Out - Nakasi et al.,
2021 [66]

345 images
from thin

Giemsa-stained
blood smears,

each containing
approximately 111

cells. The labels
refer to the stage

and location of the
parasite

Parasite life stage
classification ViT ACC: 90.03% Hold-Out - Sengar et al.,

2022 [142]
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Table 12. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

Dataset–IML-
Malaria: 345

images of
Giemsa-stained
blood samples

containing P. vivax
in four phases.

A total of 38,000
cells

Binary +
multiclass

classification
ResNet50V2 Av ACC 79.61%;

F1 82.04% Hold-Out

NIH: Av ACC
96.26%; F1 96.18%.
BBBC041: Av ACC
99.62%; F1 93.07%

Arshad et al.,
2022 [143]

1182 images of
thick blood

smears treated
with field stain

(948 P. falciparum
infected and 234
negative) [164]

Binary
classification YOLO-mp

YOLO-mp-3l: Av
PR 93.99%
(IoU = 0.5).

YOLO-mp-4l: Av
PR 94.07%
(IoU = 0.5)

5-fold

2703 images from
133 thick smears
treated with field

stain.
YOLO-mp-3l: Av

PR 79.32%.
YOLO-mp-4l: Av

PR 80.92%.

Koirala et al.,
2022 [144]

Images of
Giemsa-stained

thin blood smears
of 202 patients

(half healthy, half
malaria)

Binary
classification

Pre-trained
networks

Cells level
ResNet50: ACC

99.40 ± 0.3%;
PR 99.10 ± 0.4%;
SE 98.50 ± 0.5%;
SP 99.70 ± 0.1%;
F1 98.80 ± 0.5%.

Patient level
VGG-19:

SE 98.00%;
SP 56.00%

5-fold

NIH. Cells level:
ACC 98.50 ± 0.1%;
PR 98.60 ± 1.2%;
SE 98.40 ± 0.6%;

SP 98.6 ± 1%;
F1 98.60 ± 1.2%.

Patient level:
SE 100.00%;

SP 0.02%

Acherar et al.,
2022 [145]

1364 images of
cells captured

from
Giemsa-stained

blood smears and
labeled in six

classes

Multiclass
classification NCGCN

ACC 94.17%; PR
94.84%; REC

94.17%; F1 94.20%;
AUC 99.00%

Hold-Out

Binary
classification on

2149 infected and
5302 healthy cells.
ACC 95.46%; REC

95.21%; PR
95.46%; F1 95.12%

Meng et al.,
2022 [146]

MP-IDB Dataset +
236

Giemsa-stained
thin blood films

and 3038 cells (all
parasite types in
various stages of

infection)

Object detection YOLOV4
Av PR 93.87%; PR

83.00%; REC
95.00%; F1 89.00%

Hold-Out - Sukumarran et al.,
2023 [147]

See [141] Multiclass
classification

Malaria Stage
Classifier ACC 98.70% Hold-Out

AFM images:
ACC 99.30%. FM

images: ACC
98.00%

Katharina et al.,
2023 [148]

1822
Giemsa-stained

thin-blood-smear
images (5654

patch) from 140
patients

Binary
classification AIDMAN

Patch level: ACC,
PR, SE, SP, F1
98.62%; AUC

99.92%. Whole
image level:

ACC 97.00%;
PR 97.13%;
SE 97.00%;
SP 94.18%;
F1 96.96%;

AUC 98.84%.

Hold-Out - Liu et al.,
2023 [149]
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Table 12. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

12,708
Wright-Giemsa

thin blood smear
images of 380

patients. 12,546
malaria RBCs in
various stages

Multiclass
classification YOLOV7

Av PR 90.20%;
REC 96.00%;
PR 94.90%;
SE 96.80%;
SP 99.30%;

AUC > 99.90%

Hold-Out - Wang et al.,
2023 [150]

624 images of
P. falciparum,

548 images of
P. vivax, 588 images

of P. ovale and
160 images of

suspected healthy
individuals

Multiclass
classification Custom CNN

ACC 99.59%;
SE 99.58%;
SP 99.59%;
PR 95.62%;

REC 99.58%;
F1 99.58%;

MMC 98.68%;

5-fold - Fasihfar et al.,
2023 [151]

Blood smear
images

Binary
classification

ResNetSt50 +
BYOL

ACC 97.80%; SE
96.50%; SP 98.90% Hold-Out - Fu et al.,

2023 [152]

MP-IDB +
Dataset–IML-
Malaria [143]

Multiclass
classification YOLO-PAM

MP-IDB Av PR
83.60%. IML Av

PR 59.90%
Hold-Out - Zedda et al.,

2023 [153]

352 images of
Leishman-

Giemsa-stained
peripheral blood

smears containing
normal and

infected RBCs

Multiclass
classification Custom CNN SE 85.00%; SP

94.00% Hold-Out - Saxena et al.,
2023 [154]

24,720 images
from 475 thin
blood smears

stained by May
Grunwald–

Giemsa
corresponding to
2,002,597 labels

Object detection +
binary

classification
RT-DETR - -

4508 images taken
from 170 thin

blood smears of 54
healthy and 116
infected patients.

Patient level:
6-classes ACC

68.20%; 5-classes
ACC 79.40%;
binary ACC

91.80%. Label level:
PR 68.60%; REC
66.90%; Av PR

63.80%; F1 67.70%;
MCC 63.30%

Guemas et al.,
2024 [155]

M5 Dataset [165].
7543 large-scale

multi-microscope
images, for a total
of 20,331 labeled

nucleus

Object detection FARS

Highest Av PR
67.13% (HCM at

1000×
magnification)

Hold-Out - Ilyas et al.,
2024 [156]

5.2.2. Classic ML Approaches

A minority of works have proposed classical ML approaches to automatic malaria
diagnosis, staging, and parasite counting. For example, Molina et al. [166] developed an
ML system that is able to discriminate parasitized RBCs not only from normal but also from
other erythrocyte inclusions. After performing an initial pre-processing and segmentation
phase, they extracted color and texture features from each component in different color
spaces. The proposed system is composed of three sequential modules, of which the
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first recognizes normal RBCs against RBCs containing inclusions (including malaria),
the second identifies whether the inclusion corresponds to malaria or not, and the third
discriminates between Howell–Jolly bodies, Pappenheimer bodies, basophilic stippling,
and platelets. The result of the overall system is the automatic classification of RBC
images into one of six classes. SVM, KNN, Linear Discriminant Analysis (LDA), RF,
and Gaussian NB models are tested at each stage, and the best models together with
the most appropriate number of features are chosen on the basis of the ACC: SVM +
the first 7 most relevant features for the first module; LDA + the first 610 most relevant
features for the second module; LDA + the first 700 most relevant features for the third
module. Abbas et al. [167] developed an automated approach to the detection, counting,
and classification of erythrocytes infected with the malaria parasite at different life cycle
stages. From the original images, cell segmentation is performed, followed by the detection
of clumps and overlapping RBCs, which are then cleaved. Once the individual RBCs
are obtained, the infected ones are detected by assessing the presence of “child” borders
within their outer edges, and automatic counting is then easily implemented. The results of
the automatic count are compared with those performed manually by the experts using
Pearson’s correlation coefficient. For the classification of the malaria parasite’s life cycle
(ring stage, trophozoite, schizont, gametocytes) on the basis of histograms of oriented
gradients (HOGs) and LBP, the KNN, NB, and SVM multiclass models are used, of which
SVM is the best. The automation of the process of malaria diagnosis through ML techniques
was executed by Sadiq et al. [168], who followed a pipeline consisting of several steps:
image pre-processing to improve their illumination and reduce noise; cell segmentation
and categorization using the K-means clustering algorithm; extraction of texture and
morphology features with subsequent selection of those with a high covariance between
the two classes; and finally, classification using DT. Kudisthalert et al. [169] proposed
an automated malaria parasite counting and classification system for Giemsa-stained
thin-film images. The morphological image processing technique was used to clean up
noise and reconstruct object structures, and the Hough transformation technique was
used to segment RBC objects. Color features are concatenated with those extracted using
a pre-trained AlexNet network and then classified with an improved version of ELM
called Weighted Similarity ELM (WELM). WELM is implemented with Euclidean kernel
and replaced at the last level of the Multi-Layer Perceptron (MLP). Poostchi et al. [170]
developed an end-to-end automatic detection system to identify and quantify P. faciparum
malaria parasites in thin Wright–Giemsa-stained blood smears from both humans and mice.
The image processing pipeline comprises an initial phase of cell segmentation, followed
by a phase of extraction, selection, and dimensionality reduction of color and texture
features, and finally, a phase of cell classification using the linear SVM and ANN classifiers.
Das et al. [171] proposed an automated system for the characterization and classification
of P. vivax- and P. falciparum-infected stages using Leishman-stained microscopic images
of thin blood smears. After segmenting the images with the watershed algorithm, the
authors extracted texture and morphological features, selected only the most relevant ones,
and finally classified them with different models among which MLP was the best. To
recognize the parasite species between P. falciparum and P. vivax and assess their staging,
Aris et al. [172] performed a standardized segmentation framework using thresholding
and grouping; extracted the features of size, shape, texture, and color from the thick smear,
including those of size, shape, and color from the thin smear; and finally designed a
multistage RF classifier with 32 trees. The work of RK et al. [173] focused on the design
of a new statistical image feature processing model that aims to negate the impact of
brightness and illumination variation caused by the lack of standardization in microscopic
settings, leading to increased performance in malaria classification. After segmenting the
erythrocytes, texture features are extracted using GLCM, and a non-linear regression model
is used to identify the optimum brightness factor (OBF) specific to a selected statistical
feature. The feature correction factor (CF) is estimated based on the OBF, and classification
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is performed using SVM. The significant increase in performance with the use of CF is
evidenced by the p-value analysis.

Table 13 provides an overview of the work using classic ML approaches to malaria
automatic diagnosis.

Table 13. Overview of cited works using ML approaches to malaria parasite diagnosis (results have
been rounded). The symbol “-” indicates that no information is provided on a particular operation.
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

15,660 RBC
images from

87 smears stained
with May

Grünwald–
Giemsa labeled by

experts

Multiclass
classification (6) SVM and LDA

Image level: ACC
97.7%. Patient

level: SE 100.00%;
SP 90.00%

5-fold - Molina et al.,
2020 [166]

DPDx
dataset [157]

Cell counting +
multiclass

classification (4)
SVM

Cell counting: PR
96.18%; REC

98.03%; F1 97.04%.
Object detection:

SE 83.79%; SP
95.67%.

Classification: SE
80.54%; SP 91.99%

Hold-Out Abbas et al.,
2019 [167]

MaMic dataset
and bio-Sig
data [174]

Binary
classification DT

ACC 92.60%; PR
96.64%; SE 93.12%;

SP 91.21%
Hold-Out - Sadiq et al.,

2017 [168]

23,248 RBC
images from

Giemsa-stained
thin blood smears:

22,290 healthy
WBCs, 437 ring

shapes,
327 trophozoites

and 194 schizonts

Binary
classification +

multiclass
classification of

infected RBC
(ring, trophozoite,

and schizont).

WELM

Cell counting:
ACC 97.94%.
Classification
ACC: 95.99%

10-fold SE 94.64% and SP
93.50% on NIH.

Kudisthalert et al.,
2020 [169]

Human-NIAID
dataset

Binary
classification SVM and ANN

ANN: ACC
88.00%; REC
91.00%; PR

99.00%; F1 90.00%.
SVM: ACC

83.00%; REC
91.00%; PR

98.00%; F1 97.00%

Hold-Out - Poostchi et al.,
2018 [170]

Leishman-stained
thin blood smear

images of
100 healthy

subjects and 50
with malaria.
750 images

obtained for
P. falciparum- and
P. vivax-infected

blood smears
labeled by a

pathologist, with a
total of 888 RBCs

Multiclass
classification

(6 classes:
5 infected and 1

healthy)

MLP
SP 98.64%; SE
100.00%; PR

96.84%
3-fold - Das et al.,

2015 [171]
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Table 13. Cont.

Dataset Task Model Results Cross-Validation External
Validation Author and Year

Private dataset: 50
Giemsa-stained
blood samples.
Public dataset:

MP-IDB

Binary
classification SVM

Private dataset:
ACC 86.11%; F1
90.90%. Public
dataset: ACC

95.38%; F1 97.11%.

Hold-Out - RK et al.,
2021 [173]

500 images from 4
thick blood
smears and

4035 images from
34 thin blood
smears, both

under different
illumination
conditions

Binary +
multiclass

classification
RF

Parasites
detection: ACC
86.89% on thick
smears; Species

recognition: ACC
98.82%. Parasite

staging: ACC
90.78%

Hold-Out - Aris et al.,
2023 [172]

5.2.3. Mobile and Web Applications

Several web and smartphone applications have been proposed for the rapid and ef-
fective diagnosis of malaria. The design and development of a web-based distributed
health management system for the automatic diagnosis of malaria was proposed by
Maity et al. [175]. The proposed methodology includes image pre-processing, erythro-
cyte segmentation, extraction, and selection of color, morphology and texture features,
and automatic classification using NB, Instance-Based Learning (IB1), and C4.5 DT in-
dividually, of which the last one coupled with Correlation-based Feature Selection was
the best in terms of performance. The primary entities of the proposed system are the
central server, local servers (indirectly connected to each other through the central server),
database (two separate modules, i.e., the local database that stores local health data for
patients visited in the local hospital, and the central database that periodically retrieves
the local database from all connected local centers and combines them all together for
one centralized database development), and network connectivity. Chibuta et al. [176]
developed an image processing pipeline to run in real-time on low-cost devices (mobile
phones and desktop computers with basic specifications). By mounting a mobile phone
or camera on an optical microscope and using the modified YOLOV3 detection algorithm,
they proposed a malaria diagnosis system in low-resource settings. The network was
trained using images resized to 224 × 224, 544 × 544, and 800 × 800 pixels, achieving the
best results with the largest size. Aiming to develop a new automated, low-cost, mobile-
based diagnostic system to identify P. falciparum species at the ring development stage,
Oliveira et al. [177] combined digital image processing techniques and a learning process
based on AI algorithms. The pre-processing phase is aimed at identifying RBCs and limit-
ing the algorithm’s search space, and then classification is performed by creating DTs called
classifier cascades, with a number of stages of 10, 15, and 20. The result of the training was
a degenerative DT with two classes that worked best using the 20-stage cascade. To use
both local and remote resources, Chen et al. [178] designed a diagnostic pipeline that is
implemented in a cloud-edge paradigm. The idea is that, after collecting the datasets sent
by the hospitals, pre-processing with automatic color equalization, and classification using
supervised U-Net are performed, and then the generated coarse probability maps and the
normalized images are uploaded to the cloud server. Maps are used to weakly supervise the
stacked dilated U-Net (SDU-Net), which performs segmentation by replacing the standard
second convolution module in each encoding/decoding operation with multiple dilated
convolutions, and concatenating all convolution outputs instead of a single second convolu-
tion output as input at the next level. Finally, the classification of parasite species and stage
is performed with a pre-trained MobileNetV1, and the result is sent to the original local
hospital immediately through the cloud. Blockchain technology is adopted during the data
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transmission process. To automate the malaria diagnostic process, Maturana et al. [179]
developed a system in which a prototype of 3D-printed parts is designed for the robotiza-
tion of conventional light microscopy, capable of automatically focusing the sample and
tracing the entire slide, and the pre-trained YOLOV5x is used for the Plasmodium parasites’
detection. The whole system, which also performs the calculation of parasite density in
thick blood smear samples, was integrated into the iMAGING smartphone application.
More details about the mobile and web applications for malaria detection are summarized
in Table 14.

Table 14. Overview of cited works developing mobile and web applications for malaria parasite
diagnosis (results have been rounded). The symbol “-” indicates that no information is provided on a
particular operation. The abbreviation “Av” indicates the average results over several repetitions of
the experiment.

Dataset Task Model Results Cross-
Validation

External
Validation

Author and
Year

500 images of
Leishman-

stained blood
smears from

different FoVs.
The ratio
between

P.falcuparum and
P. vivax is 2:3

Multiclass
classification

(6 classes:
5 infected and

1 healthy)

C4.5 DT

ACC 99.24%, SE
99.20%, SP
99.60%, F1

99.00%, AUC
100.00%

Hold-Out

10 images
acquired from
two different
microscopes

with different
settings.

The developed
model correctly
classifies each

image

Maity et al.,
2017 [175]

Dataset A:
coordinates of

49,900
P. falciparum

parasites in 2703
images. Dataset
B: coordinates of

7628
P. falciparum in

1182 images

Object (parasite)
detection at cell
and blood smear

image levels

Modified
pre-trained
YOLOV3

Parasite level:
Av PR 88.70%

(A) and 90.20%
(B). Whole
image level:

ACC 99.07% (A)
and 97.46% (B).

Hold-Out

Parasite level:
Av PR 80.10%

for the network
trained on

dataset A and
tested on

dataset B; Av PR
83.20% for the

network trained
on dataset B and

tested on
dataset A

Chibuta et al.,
2020 [176]

500 images of
Giemsa-stained

samples,
annotated by

expert
parasitologists

Binary
classification DT

ACC
91.62 ± 2.26%;

SP
96.11 ± 2.72%;

PR
66.34 ± 10.68%;

SE
54.91 ± 24.46%

10-fold - Oliveira et al.,
2017 [177]

MP-IDB Multiclass
classification

U-Net +
SDU-Net +

MobileNetV1

Parasite type:
ACC 98.47%; SP

96.80%; SE
97.99%. Parasite

stage: ACC
98.83%; SP
97.91%; SE

98.54%.

Hold-Out - Chen et al.,
2023 [178]
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Table 14. Cont.

Dataset Task Model Results Cross-
Validation

External
Validation

Author and
Year

2571 images of
Giemsa-stained

thick blood
smears infected
with parasites.

Object detection
and multiclass
classification

iMAGING

YOLOv5x: PR
92.10%; REC
93.50%; F1

92.79%; Av PR
94.40%; mAP

50.00%

Hold-Out

116 images of
negative

samples: ACC
96.98%. 50
images of

Plasmodium
samples: ACC

94.00%

Maturana et al.,
2023 [179]

5.3. Articles on Generalizing Malaria Diagnosis

This section is dedicated to summarizing all those studies that show the general-
izability of the approaches proposed for the malaria dataset. First of all, we review
studies that were not designed for a specific dataset or for the automatic diagnosis of a
specific disease, but rather for an overall view, and that show their ability to generalize
to different datasets including those of malaria. For example, Horstmeyer et al. [180]
presented a framework to jointly optimize the physical parameters of a microscope and
the CNN weights used to classify the images previously generated. Muthumbi et al. [181]
proposed a method to improve the image classification performance of a standard micro-
scope by adding a simple LED array and optimizing its illumination pattern within an
improved deep CNN. Hung et al. [182] created a programming interface called Keras
R-CNN that implements DL techniques for object detection, showing its potential for the
identification and classification of a large number of cells. Batch and online variational
learning was studied by Manouchehri et al. [183] by comparing four algorithms, the best
of which was the online variational multivariate Beta mixture model (OVMBMM). In
their work, Yao et al. [184] demonstrated a multi-lens microscopic imaging system that
superimposes multiple independent FoVs on a single sensor for automated sample anal-
ysis with a high efficiency. Schwarz Schuler et al. [185] proposed an improved scheme
to reduce the complexity of point convolutions in deep CNNs for image classification
based on interleaved grouped filters without divisibility constraints. Gupta et al. [186]
presented an innovative framework, called SimSearch, for quick and easy user-guided
training of a DL model for rapid ROI detection in large-scale microscopy experiments. A
new DL approach called IMNet, which combines multiple incremental modular CNNs,
was proposed by Ali et al. [187]; this approach is computationally efficient for exploit-
ing small data for learning generalizable, domain-invariant representations in various
medical imaging applications. Musaev et al. [188] proposed a CNN ensemble called
ICNN-Ensemble based on the representation of high-resolution image channels and a
systematic model dropout ensemble that allows for the selection of possible members.
In their research, El-Bana et al. [189] evaluated the efficiency of wavelet pooling (WP) in
lightweight MobileNets architectures showing that the use of WP achieves average data
savings of more than 30% compared to traditional pooling techniques.

Additional information on the methods just discussed can be found in Table 15.
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Table 15. Overview of cited works proposing general approaches tested on malaria diagnosis (results
have been rounded). The abbreviation “Av” indicates the average results over several repetitions of
the experiment.

Aim of the Study Malaria Dataset Method Used Results Author and Year

Optimize the image
acquisition and

classification methods

Hema-stained
single-layer smears.
563 uninfected and
695 infected data

Discretized physical
CNN (DP-CNN)

network
Av ACC 94.90 ± 2.0% Horstmeyer et al.,

2017 [180]

Co-opting image
illumination and

automated classification

15 images of Hema,
3 stained thin smears,

and 2126 samples from
thick smears

Custom CNN with
physical layers

Thin smears: Av ACC
88.20 ± 1.9%; PR

93.90%; REC 81.80%.
Thick smears: Av ACC

99.00 ± 0.1%; PR
99.90%; REC 98.10%

Muthumbi et al.,
2019 [181]

Identification and
classification of a large

number of cells
BBBC041 Keras R-CNN Av PR 78.00% Hung et al., 2020 [182]

Study of batch and
online variational

learning for multiple
tasks

NIH OVMBMM ACC 92.50%; PR 90.47%;
REC 95.11%; F1 92.68%

Manouchehri et al.,
2021 [183]

Study of multi-lens
microscopic imaging

system

SimuData [118]: 1800
large FOV images from
150 individual patients

10-layers VGG 2 lenses: AUC 98.50%.
7 lenses: AUC 95.30% Yao et al., 2022 [184]

Simplify the point
convolutions in deep

CNNs
NIH Modified

EfficientNet-B0
With 16 channels for
groups: ACC 97.61%

Schwarz Schuler et al.,
2022 [185]

Making training of a DL
model quick and easy BBBC041 Pre-trained ResNet-18 AUC > 70.00% Gupta et al., 2022 [186]

Provide an efficient
approach to medical
imaging applications

NIH IMNet (incremental
modular network)

ACC 97.00 ± 0.36%;
SP 97.90 ± 0.39%;
SE 96.10 ± 0.63%;

AUC 99.50 ± 0.1%

Ali et al., 2022 [187]

Improve model
accuracy using EL NIH ICNN-Ensemble ACC 99.67%; PR 96.60%;

REC 90.00%; F1 96.60% Musaev et al., 2023 [188]

Demonstrating the
efficiency of WP in
medical diagnostics

NIH Lightweight MobileNet

ACC 97.18%;
PR 97.43 ± 1.20;

REC 97.44 ± 1.28;
F1 97.4 ± 1.30

El-Bana et al., 2023 [189]

In addition to these results, some of the articles that emerged from the research
conducted for the present review are focused on the diagnosis of diseases other than
malaria, but they report tests of the proposed models on the detection of parasitized cells.
Ferreira et al. [190] aimed to distinguish five different cancer types through the RNA-Seq
datasets of the thyroid, skin, stomach, breast, and lung using a pre-trained AE bound to
the upper layers of a CNN. To demonstrate the generalizability of the proposed approach,
they performed tests for the classification of malaria and breast cancer. The effective and
early detection of acute lymphoblastic leukaemia (ALL) using CAD was proposed by Abd
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El-Ghany et al. [191], who developed a classification model based on EfficientNet-B3. This
model was also used to examine microscopic blood images to identify the malaria parasite.

See Table 16 for further details.

Table 16. Overview of cited works tested on parasite detection (results have been rounded). The ab-
breviation “Av” indicates the average results over several repetitions of the experiment.

Aim of the Study Generalization
Task Malaria Dataset Method Used Results Author and Year

Distinguish five
different types of
cancer through
RNA sequences

Malaria and breast
cancer diagnosis

26,839 samples and
1058 features,

collected by the
Fraunhofer AICOS
institution, through
the MalariaScope

project [192]

Pre-trained AE
bound to the final
layers of a custom

CNN

ACC 92.36 ± 0.46%;
MCC 84.00 ± 1%;
PR 88.91 ± 2.14%;

REC 91.11 ± 2.49%;
F1 89.95 ± 0.61%

Ferreira et al.,
2020 [190]

Automatic early
detection of ALL

Malaria parasite
identification NIH EfficientNet-B3

ACC 97.68%; Av
PR 97.69%; REC

97.68%; SP 97.67%

Abd
El-Ghany et al.,

2023 [191]

5.4. Articles on Multiple Diagnoses

The results of the research conducted for this review show that some articles are
not only focused on the identification and classification of malaria, but also propose
valid approaches to the automatic analysis of different diseases/conditions, including
malaria. Table 17 summarizes the details of this work, including the objective of the study,
the analysis conducted, the proposed approach, the dataset used for malaria classification,
and the results obtained.

Table 17. Overview of cited works focusing on multiple diagnoses (results have been rounded).
The abbreviation “Av” indicates the average results over several repetitions of the experiment.

Aim of the Study Task Malaria Dataset Method Used Results Author and Year

Development of
point-of-care

diagnostics using
microscopes and

smartphones

Automatic
diagnosis of

malaria,
tuberculosis,

and intestinal
parasites

Thick blood smears
stained with
Giemsa. 7245
Plasmodium

objects in 1182
annotated images

Custom CNN AUC 100.00%;
Av PR 97.00%

Quinn et al.,
2016 [193]

Make microscopes
able to indicate the

presence of an
epidemic pathogen

in a sample

Identification of the
malaria and vibrio
cholerae pathogen

Images
downloaded from

the web
Custom CNN ACC 94.64% Traore et al.,

2018 [194]

Show that
adversarial

learning can be
efficiently used in
the medical field

Human embryos
evaluation, human
sperm morphology

quantification,
and malaria

diagnosis

8 patients’ thin
blood smears
stained with

Giemsa captured
using 3 different

microscopes [195]

Unsupervised
adversarial neural

network using
ResNet-50 trained
on NIH dataset as
backbone (MD-net-

ResNet-50)

AUC 95.2%
(IC 95% = 93.5–96.6);

AUC 95.4%
(IC 95% = 92.6–97.4);

AUC 92.00%
(IC 95% = 88.5–94.7)

Kanakasabapathy
et al., 2021 [196]
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6. Discussion

Malaria is a disease that affects millions of people worldwide, with a consistent mortal-
ity rate. The early identification and diagnosis of malaria is essential to determine the best
treatment for the patient and to increase the survival rate. The light microscope examination
of blood smears is the gold standard for detecting infection by malaria parasites, but it
proves to be time-consuming and difficult. By using CAD systems, this procedure can
become much easier, faster, and more accurate. This systematic literature review aimed to
provide an overview of the development of CAD systems for the automatic identification
and diagnosis of malaria. Scientific publications published between 2014 and 2024 related
to ML and DL approaches to the detection and classification of malaria parasite were
selected. The searches, conducted in the PubMed, Scopus, and arXiv databases, resulted in
the selection of 135 research articles that focused on malaria detection and classification
using histological images and reported the results obtained in terms of model performance.
Based on the data collected from the selected articles, we conducted a qualitative and
quantitative analysis and highlighted the main critical issues found.

6.1. Qualitative and Quantitative Analysis

Although the search included publications since 2014, the first study that reported AI
approaches applied to malaria’s automatic diagnosis was published in 2015, and more than
half of the selected articles were published between 2022 and 2024. Interestingly, almost
86% of the selected articles were published within the past five years. In addition, over half
of the ML articles were published by 2021, and over half of the articles using DL, including
hybrid and ensemble learning models, were published from January 2022 to February 2024.
The trend of recent publications on the use of CAD systems for the automatic diagnosis of
malaria is shown in Figure 5.

Figure 5. The trend of publications over the past 10 years.

To provide as complete an overview as possible of the applications of AI to malaria
diagnosis, we have included both articles that used public datasets and those that exploited
private datasets in this systematic review. Slightly more than 20% of the total number of
articles analyzed used non-publicly available datasets for training automated models; of
the remaining articles, the NIH dataset was used in more than 50% of the total (69.16% of
public datasets). A graphical representation of this analysis is provided in Figure 6.
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Figure 6. Pie chart of the percentages of use of public and private datasets.

It is evident that the NIH dataset is the most considered among the public datasets
and as a whole; hence, we provide a more detailed analysis of the AI approaches involving
it in the training phase. Concerning the articles summarized in Section 5.1, the following
statistics are derived: DL techniques were used 94% of cases, including pre-trained net-
works (28.13%), custom CNN (43.75%), hybrid models (20.31%), and ensemble learning
(7.81%). In general, the most commonly used pre-trained network is VGG, and in particular
VGG-19. In hybrid approaches, SVM is the most popular ML model. Solutions based
entirely on ML models are proposed with an overall percentage of 6%, indicating that their
simplicity is not particularly suited to the task of malaria classification. Figure 7 shows the
results of the analysis conducted.

Figure 7. Analysis of models trained on the NIH dataset.

As previously introduced, for the NIH dataset, which is balanced in the classes of
infected and non-infected RBCs, we report in the summary Tables of Section 5.1 only the
performance in terms of ACC and AUC. However, we also want to point out in Table 18
the other performance metrics used by the authors of the cited articles to provide a possible
comparison for those interested.
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Table 18. Evaluation metrics used by articles based on the NIH dataset.

Evaluation Metrics References

PR [49–52,59–64,67–70,73,74,80,86–93,96–103,107,108,110–115,117,118]

REC [43,50–52,55,57,59–64,67–70,73–75,80,82,83,85–93,95–104,106–109,111–115,117,118]

SP [43,55,57,59,61,67,70,73–75,80,82,85,86,88,91,92,95,98,101–104,106,109,112,113,117,118]

F1 [43,50,52,55,57,59–61,63,64,67–69,74,80,83,85–93,95–104,107–112,114,115,117]

MCC [43,55,61,67,68,74,85,86,95,98,103,110]

Although the NIH dataset has been used in many applications, especially in recent
years, some authors have shown that segmented data contain annotation errors. In partic-
ular, Fuhad et al. [92] had the images evaluated by an expert, who eliminated 647 falsely
labeled parasites and 750 non-infected suspects. This modified dataset has been publicly
shared, and several authors have already used it in their studies. If these errors were
confirmed, most of the results published so far in the field of automatic malaria diagnosis
would be called into question. Therefore, further investigations should be carried out.

6.2. Validation Analysis

One of the critical aspects to consider when evaluating automated ML and DL systems
is their ability to generalize to data never seen before, and coming from sources other than
training data. Only in this way is it possible to estimate the extent to which these models are
applicable in the real world. Therefore, the so-called external validation is crucial, especially
in the medical field. What emerges from the analysis of the articles selected for this paper is
that only 22 of the 120 articles focusing solely on the diagnosis of malaria (18.33%) perform
this validation. Furthermore, to enhance the generalizability of the proposed models, it
would be appropriate to test them on public datasets so that performance can be compared
with that obtained by other researchers, a key point of scientific research.

6.3. Explainability

To introduce CAD systems into clinical and diagnostic practice, it is necessary to be
able to explain the decisions made by AI models. While ML algorithms are generally
transparent due to their simplicity, DL algorithms, and in particular CNNs, involve opacity
in decision-making due to the high complexity of the networks [197]. For this reason,
such models are also called “black boxes”. In an attempt to explain and interpret the
reasoning behind the decisions of DL models, reference can be made to the emerging XAI
techniques, which in CV aim to generate heat maps that highlight the regions and pixels of
the image that contribute the most to the final prediction. The most commonly used XAI
techniques are the Class Activation Mapping (CAM), with its gradient-weighted version
(Grad-CAM) [198], and the SHapley Additive exPlanations (SHAP) [199]. These techniques
help to increase the confidence of medical experts in CAD systems by providing a visual
explanation of automatic diagnosis models. The analysis of the papers selected for this
systematic review shows that only a small percentage of the published articles, i.e., 10%,
used XAI methods. These papers are shown in Table 19, distinguishing between those that
used the NIH dataset and those that exploited other data.

XAI methods are still poorly integrated into CAD systems for malaria diagnosis, but it
is worth remembering that their use is crucial in all fields where important decisions are
required, such as medicine.
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Table 19. XAI methods implemented in malaria CAD systems.

XAI Method Dataset Used References

CAM
NIH [70,73,107]

Other [146]

Grad-CAM
NIH [67,85–87,89,97,106]

Other -

SHAP
NIH [96]

Other -

6.4. Mobile and Web Applications

Malaria is a widespread disease throughout the world, but its mortality rate is higher
in less developed areas. This fact is linked to the reduced availability of instrumental and
human resources. Therefore, mobile applications using smartphones and web applications
with simple graphical interfaces are a useful tool in these disadvantaged situations. In
Sections 5.1.7 and 5.2.3, mobile and web applications supporting the rapid and cost-effective
diagnosis of malaria are discussed. Although the primary focus of other works is not the
same, many have developed solutions for the online and offline diagnoses of malaria.
Table 20 shows the works that contribute to this, distinguishing between mobile and
web applications.

Table 20. Overview of articles on developing mobile and web applications for automatic malaria diagnosis.

Applications

Mobile Web

[57,59,85,92,110,136] [43,66,68,86,92,143,179]

To introduce these mobile and web-based systems in real-world settings such as
underdeveloped countries where malaria is a serious health problem, some considerations
have to be made regarding their feasibility, which is highly dependent on the type of device
required (type of smartphone/computer or specific equipment), the possibility of working
without an internet connection, and the availability of intelligent instruments that perform
well with heterogeneous, uncleaned data, with different acquisition conditions (type of
instrumentation, setting, and lighting), and for different sample staining. In addition, CAD
systems, in general, and those designed for digital pathology as in this case, must achieve a
performance that is not inferior to that of experts but, ideally, superior to be considered
suitable for diagnostic routines [200].

6.5. Future Directions of AI Approaches to Malaria Diagnosis

The histological evaluation of tissue samples remains a key tool for the assessment of
different types of diseases, including malaria infection. However, this examination is time-
consuming and tiring for operators, some of the limitations that prompted researchers to
investigate the effectiveness of AI techniques in this field. Although ML and DL techniques
have shown exciting results in histopathological diagnosis by reducing diagnosis time
and achieving high performance, uncertainties remain as to the current feasibility of their
application in clinical practice due to several gaps to be filled, which include the absence of
standardization of image acquisition/storage/analysis protocols, validation of AI models
in real-world settings, and verification by experienced pathologists [201]. These and other
weaknesses were also found in the articles examined in this review. A lack of homogeneity



Electronics 2024, 13, 3174 42 of 51

was found in the choice of datasets used for training and testing of the proposed approaches,
as well as the lack of the validation phase with datasets other than the training datasets
and the expert validation conducted by pathologists. Furthermore, the NIH dataset has
been questioned by some authors. Since this dataset is the most frequently used public
data source, it is worthwhile to check its reliability and, consequently, the credibility of the
results obtained so far. Another limitation found in some of the articles analyzed is the lack
of detailed information on the models developed and the pre-processing and segmentation
techniques applied, a problem easily solved by making public the source code of the
algorithms, which would increase the transparency of the processes and provide a starting
point for further modifications in the future. Finally, a low rate of application of the model
explainability analysis, necessary to provide a clear and transparent picture to medical
users, was found to increase their confidence in these new intelligent systems. Despite
these weaknesses, overall, AI techniques to support medical diagnosis, and in particular
malaria, have attracted the interest of many researchers and have shown promising results.
However, to introduce AI in the medical field, the ethical aspects of cybersecurity, protecting
patients’ privacy, and ensuring fair access to AI-based healthcare must be considered in the
future [202], in addition to filling the above-mentioned gaps.

6.6. General Considerations on This Review

Like any systematic review, this work may suffer from biases related to search strate-
gies, inclusion and exclusion criteria, and the limited number of electronic databases
consulted (see Section 2). For the purpose of this work, the search strategies and in partic-
ular the keywords chosen and their combinations using the “AND” and “OR” operators
led to very satisfactory search results from both a quantitative and qualitative point of
view. With regard to the inclusion and exclusion criteria, language and time restrictions
do not seem to hinder the identification of relevant articles as we note that the number
of publications on automated applications for malaria diagnosis showed an increase after
2016 (2 years later than the lower end of the time range considered), and in addition, no
articles written in languages other than English were identified. Furthermore, although we
excluded articles focused on the diagnosis of diseases other than malaria, we still included
all those articles of generic applications or focused on different diseases but tested on
malaria datasets. The decision not to include articles that use AI approaches for tasks other
than classification and object detection (i.e., only for segmentation) left some work out
but did not affect the objective of reviewing recent research on CAD systems. Another
aspect to be assessed when conducting a systematic literature review is the quality of the
databases from which articles are selected. In particular, we wondered whether the arXiv
database, which is not peer-reviewed, could undermine the credibility and reliability of
the review results. To this end, we consulted the research of Gusenbauer et al. [203] who
aimed to outline guidance on which search systems are suitable for systematic searches.
Their study analyzed 28 academic search systems widely used by researchers, including
those used in this systematic review (PubMed, Scopus, and arXiv), making their qualities
and limitations transparent. As a result of this analysis, the electronic databases PubMed
and Scopus turned out to be principal resources, while arXiv was labeled as a supplemen-
tary resource, i.e., a resource to be used “in addition to a principal resource for its specific
qualities that could retrieve additional records and to further improve the evidence base”.
This database is also classified as gray literature, which the authors consider useful to
maximize the completeness of systematic reviews and mitigate publication bias. Based
on these findings, we decided to include the arXiv database in this systematic review,
also bearing in mind that the number of articles extracted from it is 8, a small amount
compared to the total number of papers reviewed. Therefore, the only real limitation of this
systematic review might be the limited number of databases considered (PubMed, Scopus,
and arXiv). However, we believe that these limitations may weigh less heavily than the
highlighted strengths.
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7. Conclusions

The current systematic review analyzes the literature evidence on the application of
AI to the improvement of malaria diagnosis. Although the results of our review may
be limited by the inclusion/exclusion criteria and the choice of electronic databases, its
strength can be attributed to the transparency of the methodology used for the search,
which makes the results reproducible and exhaustive in summarizing the evidence of AI
approaches in malaria diagnosis. Our analysis showed that since 2014, there has been
a progressive increase in the application of ML and DL algorithms to the diagnosis of
malaria. In particular, most of the studies analyzed chose to rely on DL for the automatic
analysis of blood smear images. Although these algorithms have demonstrated excellent
performance in CV tasks, the implications regarding the large amount of data and high
computational costs required to train the models must be considered. However, once the
model is trained, it can be deployed on mobile or web applications and used quickly and
easily even in underdeveloped areas. Interestingly, one promising AI approach emerged
as potentially translatable shortly. Indeed, according to what was highlighted by a very
recent systematic review [204], our analysis showed that DL approaches have notably
evolved in this field. In particular, we observed a passage from single CNNs (custom
or pre-trained) to hybrid models combining DL models and classical ML approaches,
up to more complex ensemble architectures that train multiple models and combine
their predictions for the specific task. These latter models often outperform the classical
approaches, but their performance strongly depends on several factors including the
ensemble system design, the choice of fusion method, and the high computational costs.
The implementation of these approaches could be of great relevance in the future to
enable early differential diagnosis of the malaria strain and its life cycle, thus providing
effective guidance for treatments. Notably, despite significant research progress in this
field, many challenges still need to be addressed before CAD systems can be safely and
reliably introduced into clinical and diagnostic practice. Future research should focus
on overcoming the problems outlined above, as well as on increased collaboration with
medical experts in the field to also try to close the gaps that limit the diagnostic accuracy
of intelligent systems.
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