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Abstract
The main goal of this paper is to prove existence and non-existence results for deterministic
Kardar–Parisi–Zhang type equations involving non-local “gradient terms”. More precisely,
let � ⊂ R

N , N ≥ 2, be a bounded domain with boundary ∂� of class C2. For s ∈ (0, 1),
we consider problems of the form

{
(−�)su = μ(x) |D(u)|q + λ f (x), in �,

u = 0, in R
N \ �,

(KPZ)

where q > 1 and λ > 0 are real parameters, f belongs to a suitable Lebesgue space,
μ ∈ L∞(�) and D represents a nonlocal “gradient term”. Depending on the size of λ > 0,
we derive existence and non-existence results. In particular, we solve several open problems
posed in [Abdellaoui in Nonlinearity 31(4): 1260-1298 (2018), Section 6] and [Abdellaoui
in Proc Roy Soc Edinburgh Sect A 150(5): 2682-2718 (2020), Section 7]
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1 Introduction

In this paper we analyse the existence and non–existence of solutions for deterministic
Kardar–Parisi–Zhang type equations involving non-local “gradient terms”. For s, t ∈ (0, 1),
we consider problems of the form{

(−�)su = μ(x) |Dt (u)|q + λ f (x), in �,

u = 0, in R
N \ �,

(KPZ)

depending on a real parameter λ > 0. Here, � ⊂ R
N , N ≥ 2, is a bounded domain with

boundary ∂� of classC2, f belongs to a suitable Lebesgue space,μ ∈ L∞(�), q ∈ (1,+∞)

and Dt represents one of the following nonlocal “gradient terms”:

◦ (−�)
t
2 u(x) := aN , t2

P.V.

∫
RN

u(x) − u(y)

|x − y|N+t
dy (Half t − Laplacian), (KPZ1)

◦ ∇ t u(x) := μN ,t

∫
RN

(x − y)(u(x) − u(y))

|x − y|N+t+1 dy (Riesz t − Gradient), (KPZ2)

◦ Dt u(x) :=
(
aN ,t

2

∫
RN

(u(x) − u(y))2

|x − y|N+2t dy.

) 1
2

(Stein t − Functional). (KPZ3)

Note that the previous definitions make sense for any function u ∈ C∞
c (RN ). Also, let us

point out that

aN ,σ := − 22σ �
( N
2 + σ

)
π

N
2 �(−σ)

and μN ,σ := 2σ �( N+σ+1
2 )

π
N
2 �( 1−σ

2 )
,

are normalization constants and “P.V.” stands for “in the principal value sense”. Since both
these constants and the “principal value sense” will not play an important role in our work,
we will omit them from now on.

Before going further,wewould like to emphasize that the three different nonlocal “gradient
terms” that we consider can be traced back many years ago. Since nowadays the fractional
Laplacian does not need any further presentation, let us focus on the other two terms. As very
well explained in [23, page 3], the origin of the Riesz t–Gradient seems to be [19]. Note also
that this operator has been rediscovered several times since [19] and has received considerable
attention in the last few years. See for instance [10, 15, 22, 27]. On the other hand, the Stein
t–Functional can be at least traced back to [25]. Moreover, this operator naturally appears
as the nonlocal equivalent to the gradient when considering the minimization of fractional
Harmonic maps into the sphere. See for instance the recent papers [7, 16, 21].

In contrast with the local case{
−�u = μ(x)|∇u|q + λ f (x), in �,

u = 0, on ∂�,
(1.1)

for which the literature is very extensive, there exist very few results dealing with equations
of the form (KPZ). We refer to [2], by the first two authors, for a detailed introduction to the
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Deterministic KPZ-type equations… 1453

subject. However, since the publication of [2], some results have been published. For instance,
we would like to mention the recent paper [1], where the authors establish existence and non–
existence results for problems of the form (KPZ) with a local operator (the Laplacian instead
of the fractional Laplacian) and a nonlocal nonlinearity. Also, let us mention [6], where the
authors establish the equivalence between different notions of solution to problems of the
form (KPZ). Finally, let us stress that solutions to equations with nonlocal diffusion and a
nonlocal “gradient term” with nonsingular kernels have been studied in [13].

In [2], the first two authors analyse the existence and non–existence of solutions to (KPZ),
under the additional assumption t = s ∈ (1/2, 1). The main goal of this paper is to refine
the approach of [2] in order to deal also with the cases where s ∈ (0, 1/2] and/or t �= s.
Depending on the real parameter λ > 0, we analyse the existence and non–existence of weak
solutions to (KPZ) under the assumptions⎧⎪⎨

⎪⎩
q ∈ (1,+∞),

0 < t < min{1, s(1 + (qN )−1)},
f ∈ Lm(�) for some m > N/s and μ ∈ L∞(�).

(A1)

Following [8, 9], we introduce the subsequent notion of weak solution to (KPZ) :

Definition 1.1 We say that u is a weak solution to (KPZ) if u and |Dt (u)|q belong to L1(�),
u ≡ 0 (a.e.) in R

N \ � and∫
�

u(−�)sφ dx =
∫

�

(
μ(x)|Dt (u)|q + λ f (x)

)
φ dx, (1.2)

for all φ belonging to

X
s(�) :=

{
φ ∈ Cs(RN ) : φ(x) = 0 for all x ∈ R

N \ � and (−�)sφ ∈ L∞(�)
}
.

Remark 1.2 With a slight abuse of notation we use (KPZ i ), i = 1, 2, 3, to refer to (KPZ)
with Dt = (−�)

t
2 , Dt = ∇ t and Dt = Dt respectively. See (KPZ1), (KPZ2) and (KPZ3) for

the corresponding definitions.

Our main existence result can be informally stated as follows:

Theorem 1.3 Assume that (A1) holds true. Then, there exists λ
 > 0 such that, for all
0 < λ ≤ λ
, (KPZ i ), i = 1, 2, 3, has aweak solutionu.Moreover, u ∈ Ws,p(RN )∩C0,s(RN )

for all 1 < p < +∞.

Theorem 1.3 is a particular case of the more general existence results proved in Sect. 3.
We refer directly to Sect. 3 for more general statements. In particular, let us emphasize that,
in Sect. 3, we substantially weaken the regularity on the datum f . Furthermore, arguing as
in the proof of [2, Theorem 1.3], it is possible to show that the regularity considered in Sect.
3 is almost optimal. Note also that our existence results solve several open problems posed
in [2, 4].

The proofs of our existence results rely on the combination of fixed point arguments in
the spirit of [14, 18] with global fractional Calderón–Zygmund regularity results for the
fractional Poisson equation {

(−�)su = h, in �,

u = 0, in R
N \ �.

(1.3)
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This approach was already implemented in [2] by the first two authors. However, the required
global fractional Calderón–Zygmund regularity theory was not available for s ∈ (0, 1/2].
Furthermore, the Calderón–Zygmund regularity used in [2] (cf. [2, Section 3]) contains
several imprecisions. In the recent paper [3], we establish sharp global fractional Calderón–
Zygmund regularity results for (1.3) in the full range s ∈ (0, 1) (fixing in particular the issues
of [2, Section 3]). Having at hand these regularity results, the proofs of our existence results
follow from a refinement of the fixed point approach implemented in [2]. We refer to Sect. 3
for more details.

Taking into accountTheorem1.3, it is very natural to askwhether the smallness assumption
on λ is necessary or not. Note that, in [2, Theorem1.2], the first two authors established a non–
existence result for (KPZ3) with t = s ∈ (0, 1). We focus here in proving a non-existence
result to (KPZ1). This was left as an open problem in [2, Section 7].

Theorem 1.4 Assume that (A1) holds true with t = s and q = 2 and suppose that μ(x) ≥
μ1 > 0 and f � 0. Then, there exists λ

 > 0 such that, for all λ > λ

, (KPZ1) has no
weak solution in Ws,2(RN ).

Remark 1.5 The non–existence for λ large in the case where Dt = ∇ t remains completely
open and a different approach is needed.

Organization of the paper

In the next section we introduce the main function spaces involved in our results and prove
the continuity and compactness of the solution map for the fractional Poisson equation with
L1–data. In Sect. 3, we prove our main existence results to (KPZ), from which Theorem
1.3 immediately follows. Finally, in Sect. 4, we prove non-existence results for (KPZ1) and
(KPZ3) when λ > 0 is large.

2 Function spaces and tools

We collect here the definitions of the main function spaces involved in our results and some
other tools. First of all, recall that, for all s ∈ (0, 1) and 1 ≤ p < +∞, the fractional Sobolev
space Ws,p(RN ) is defined as

Ws,p(RN ) :=
{
u ∈ L p(RN ) :

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy < +∞
}

.

It is a Banach space endowed with the usual norm

‖u‖Ws,p(RN ) =
(

‖u‖p
L p(RN )

+
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.

Also, having at hand Ws,p(RN ), we define the space Ws,p
0 (�) as

Ws,p
0 (�) :=

{
u ∈ Ws,p(RN ) : u ≡ 0 in R

N \ �
}

,

and recall that, thanks to the Sobolev inequality, it is a Banach space endowed with the norm

‖u‖Ws,p
0 (�) :=

(∫∫
D�

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

,
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Deterministic KPZ-type equations… 1455

where D� := (� × R
N ) ∪ ((RN \ �) × �).

Next, we remind that, for any s ∈ (0, 1) and 1 ≤ p < +∞, the Bessel potential space is
defined as

Ls,p(RN ) := {
u ∈ C∞

c (RN )
} |||·|||Ls,p (RN )

,

where

|||u|||Ls,p(RN ) = ‖(1 − �)
s
2 u‖L p(RN )

and (1 − �)
s
2 u = F−1((1 + | · |2) s

2Fu), for all u ∈ C∞
c (RN ).

Let us stress that, in the case where s ∈ (0, 1) and 1 < p < +∞,

‖u‖Ls,p(RN ) := ‖u‖L p(RN ) + ‖(−�)
s
2 u‖L p(RN )

is an equivalent norm for Ls,p(RN ) (see e.g. [25, Theorem 2]). By [25, Theorem 1.1], we
also know that, if in addition 2N/(N + 2s) < p < +∞, then Ls,p(RN ) can be equipped
with the equivalent norm

|||u|||Ls,p(RN ) := ‖u‖L p(RN ) + ‖Dsu‖L p(RN ).

In analogy with Ws,p
0 (�), let us define

Ls,p
0 (�) := {

u ∈ Ls,p(RN ) : u ≡ 0 in R
N \ �

}
,

and stress that, if 0 < s < 1 and 1 < p < +∞, it is a Banach space endowed with the norm

‖u‖Ls,p
0 (�) := ‖(−�)

s
2 u‖L p(RN ).

If in addition 2N/(N + 2s) < p < +∞, then Ls,p
0 (�) can also be equipped with the

equivalent norm

|||u|||Ls,p
0 (�) := ‖Ds(u)‖L p(RN ).

Let us as well recall that, for all 0 < ε < σ < 1 and all 1 < p < +∞, by [5, Theorem 7.63,
(g)], we have

Lσ+ε,p(RN ) ⊂ W σ,p(RN ) ⊂ Lσ−ε,p(RN ).

It is also well known that, for all 1 ≤ p < +∞ and all 0 < σ ≤ σ ′ < 1,

W σ ′,p(RN ) ⊂ W σ,p(RN ),

and that (cf. [5, Theorem 7.63 (c)]), if in addition 1 < p < +∞,

Lσ ′,p(RN ) ⊂ Lσ,p(RN ).

Since the constants will be useful later on, let us emphasize there exists k̃ := k̃(σ, σ ′, p) ≥ 1
such that

‖u‖Lσ,p(RN ) ≤ k̃‖u‖Lσ ′,p(RN )
, for all u ∈ Lσ ′,p(RN ), (2.1)

and

‖u‖W σ,p(RN ) ≤ k̃‖u‖W σ ′,p(RN )
, for all u ∈ W σ ′,p(RN ), (2.2)
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Now, for 0 < s ≤ t < min{1, s(1 + N−1)}, let us set1

p̃ (m, s, t) :=

⎧⎪⎪⎨
⎪⎪⎩

1

(t − s)+
, if m >

N

2s − t
,

min
{ mN

N − ms + mN (t − s)
,

1

(t − s)+
}
, if 1 ≤ m <

N

2s − t
.

In our next result, which will be very useful in the sequel, we describe the regularity of the
(unique) solution to (1.3). Note that such a result is contained in [3, Theorems 1.3 and 5.2,
Corollaries 5.3 – 5.6].

Proposition 2.1 Let 0 < s ≤ t < min{1, s(1 + N−1)} and let u be the (unique) weak
solution to (1.3) with h ∈ Lm(�) for some m ≥ 1. Then, for all 1 < p < p̃, there exists
C̃(N , s, p,m,�) > 0 such that

‖u‖Lt,p(RN ) ≤ C̃ ‖h‖Lm (�) and ‖u‖Wt,p(RN ) ≤ C̃ ‖h‖Lm (�). (2.3)

We also present here a technical but useful lemma proved in [3, Lemma 5.1] and a classical
result from harmonic analysis.

Lemma 2.2 Let s ∈ (0, 1), s ≤ t < min{1, 2s} and and let u be the (unique) weak solution
to (1.3) with h ∈ L1(�). Then, there exists C := C(N , s, t,�) > 0 such that∣∣(−�)

t
2 u(x)| ≤ C

[
g1(x) + | log δ(x)|g2(x) + 1

δt−s(x)
g3(x)

]
, for a.e. x ∈ �.

(2.4)

Here, δ(x) := dist(x, ∂�) and the functions gi , i = 1, 2, 3, satisfy:

• For all 0 < λ < 2s − t, there exists C := C(λ) > 0 such that

g1(x) ≤ C
∫

�

| f (y)|
|x − y|N−(2s−t−λ)

dy, (2.5)

• g2(x) :=
∫

�

| f (y)|
|x − y|N−(2s−t)

dy, (2.6)

• g3(x) := (t − s)
∫

�

| f (y)|
|x − y|N−s

dy. (2.7)

Moreover, for any R ≥ 1
3 + 4

3 (diam(�) + dist(0,�)), it follows that

∣∣(−�)
t
2 u(x)

∣∣ ≤
∫

�

|u(y)|
δs(y)

dy

|x − y|N+(t−s)
, for a.e. x ∈ BR(0) \ �, (2.8)

and ∣∣(−�)
t
2 u(x)

∣∣ ≤ 4N+t

(1 + |x |)N+t

∫
�

|u(y)|dy, for a.e. x ∈ R
N \ BR(0). (2.9)

Lemma 2.3 Let ω ⊂ R
N , N ≥ 2, be an open bounded domain and let 0 < α < N and

1 ≤ p < � < ∞ be such that
1

�
= 1

p
− α

N
. Moreover, for g ∈ L p(ω), let

Jλ(g)(x) :=
∫

ω

g(y)

|x − y|N−α
dy .

It follows that there exists C = C(N , α, p, σ > 0, �, ω) > 0 such that

1 We use, here and in the sequel, the convention 1/a+ = +∞ if a ≤ 0.
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a) Jα is well defined (in the sense that the integral converges absolutely for a.e. x ∈ ω).
b) [Jα(g)]M�(ω) ≤ C ‖g‖L1(ω). In particular, ‖Jα(g)‖Lσ (ω) ≤ C ‖g‖L1(ω) for all 1 ≤ σ <

�.
c) If 1 < p < N

α
, then ‖Jα(g)‖L�(ω) ≤ C ‖g‖L p(ω).

d) If p = N
α
, then ‖Jα(g)‖Lσ (ω) ≤ C ‖g‖L p(ω) for all 1 ≤ σ < +∞.

e) If p > N
α
, then ‖Jα(g)‖L∞(ω) ≤ C ‖g‖L p(ω).

Proof Parts a), b), c) and d) follow from [26, Theorem I, Section 1.2, Chapter V, page 119].
Part e) is contained in [12, Lemma 7.12] (see also [17, Theorem 2.2]). ��

We conclude this section proving a compactness result for the fractional Poisson equa-
tion (1.3) that will be key in the proof of our main existence results. Here, we denote by
Gs : R

2N∗ → R the Green function associated to (−�)s in � with homogeneous Dirichlet
boundary conditions. Note that R

2N∗ := {(x, y) ∈ R
2N : x �= y}.

Proposition 2.4 Let 0 < t < min{1, s(1+ N−1)} and 1 < p < N/(N (1+ t − s) − s). The
solution map

Gs : L1(�) → Lt,p
0 (�), h �→ Gs[h] :=

∫
�

Gs(x, y)h(y) dy,

is well-defined, continuous and compact.

Proof First of all, note thatwithout loss of generalitywecan assume that s ≤ t < min{1, s(1+
N−1)}. Indeed, once we have the result in this case, we can infer the result for t ∈ (0, s)
interpolating as in the proof of [2, Proposition 3.10]. Let us also stress that, by Proposition
2.1, the solutionmapGs is well-defined and continuous for all 1 < p < N/(N (1+t−s)−s).
Hence, we just have to show that Gs is compact for the same range of p.

Let (hn)n ⊂ L1(�) be a sequence such that ‖hn‖L1(�) ≤ 1 for all n ∈ N and let
un = Gs(hn) for all n ∈ N. By [8, Proposition 2.6] we know that, up to a subsequence, (un)n
is strongly convergent in Lq(�) for all 1 ≤ q < N/(N − 2s). Moreover, combining this
strong convergence with Vitali’s convergence theorem, we deduce that, up to a subsequence,
(un/δs)n is strongly convergent in Lr (�) for all 1 ≤ r < N/(N − s). Having at hand the
(up to a subsequence) strong convergence of (un)n in Lq(�) for all 1 ≤ q < N/(N − 2s),
to end the proof, we just have to show that, up to a subsequence, ((−�)

t
2 un)n is strongly

convergent in L p(RN ) for all 1 < p < N/(N (1 + t − s) − s).
First, for 0 < α < 2, let us consider the integral operator

Tα : L1(�) → Lγ (�), g �→
∫
RN

g(y)1�(y)

|x − y|N−α
dy.

Note that, by [12, Lemma 7.12], Tα is well-defined and continuous for all 1 ≤ γ < N/(N −
α). Moreover, following step by step the proof of [24, Theorem 2.2], one can prove that Tα

is compact for all 1 ≤ γ < N/(N − α). We only sketch the proof. Let (gn)n ⊂ L1(�)

be a sequence such that ‖gn‖L1(�) ≤ 1 for all n ∈ N, vn := Tα(gn) for all n ∈ N and
1 ≤ γ < N/(N − α). If we prove the existence of a (not relabelled) subsequence (vn)n that
is Cauchy in Lγ (�), the compactness immediately follows. Let ηε be a standard mollifier
and let vε

n := vn
ηε for all ε > 0 and all n ∈ N. Following [24, Theorem 2.2], we obtain
that, for all 1 ≤ γ < N/(N − α), there exist constants C > 0 and σ > 0 (independent of ε

and n) such that

‖vε
n − vn‖Lγ (�) ≤ Cεσ . (2.10)
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On the other hand, using the standard properties of the mollifiers ηε , we get that, for any
ε > 0, the sequence (vε

n)n is bounded and equicontinuous in C(RN ). Thus, Arzelà-Ascoli
Theorem implies the existence of a subsequence uniformly convergent in �. Combining
(2.10) with the uniform convergence in�, a standard diagonal argument shows the existence
of a (not relabelled) Cauchy subsequence (vn)n in Lγ (�), as desired.

Having at hand the compactness of Tα and Lemma 2.2 we now prove that, up to a subse-
quence, ((−�)

t
2 un)n is strongly convergent in L p(RN ) for all 1 ≤ p < N/

(
N (1+t−s)−s

)
.

To that end, we fix R ≥ 1
3 + 4

3

(
diam(�)+dist(0,�)

)
as in Lemma 2.2 and split RN in three

regions: �, BR(0) \ � and R
N \ BR(0).

Combining (2.4) with the linearity of the problem (1.3), the compactness of Tα and Hölder
inequality, we get that, up to a subsequence, ((−�)

t
2 un)n is strongly convergent in L p(�)

for all 1 ≤ p < N/
(
N (1 + t − s) − s

)
.

Next, we deal with the strong convergence of ((−�)
t
2 un)n in L p(BR(0) \ �) for all

1 ≤ p < N/(N (1 + t − s) − s). Since |x − y| ≥ max{δ(y), δ(x)} for all y ∈ � and
x ∈ BR(0) \ �, by (2.8) we have that, for all ε > 0,

∣∣(−�)
t
2 un(x)

∣∣ ≤
∫

�

|un(y)|
|x − y|N+t

dy

≤ 1

δt−s+ε(x)

∫
�

|un(y)|
δs(y)

dy

|x − y|N−ε
for a.e. x ∈ R

N \ BR(0) .

Combining this inequality with Lemma 2.3, Hölder inequality and the (up to a subsequence)
strong convergence of (un/δs)n in Lr (�) for all 1 ≤ r < N/(N − s), we get the desired
convergence in L p(BR(0) \ �).

Finally, the (up to a subsequence) strong convergence of ((−�)
t
2 un)n in L p(RN \ BR(0))

for all 1 ≤ p < N/(N (1+ t − s) − s) follows from (2.9). Indeed, combining (2.9) with the
(up to a subsequence) strong convergence of (un)n in Lq(�) for all 1 ≤ q < N/(N − 2s),
we get the desired convergence in L p(RN \ BR(0)). ��
Corollary 2.5 Let 0 < t < min{1, s(1 + N−1)} and 1 < p < N/(N (1 + t − s) − s). The
solution map

Gs : L1(�) → Wt,p
0 (�), h �→ Gs[h] :=

∫
�

Gs(x, y)h(y) dy,

is well-defined, continuous and compact.

Proof Having at handProposition 2.4 the result follows arguing as in the proof of [3,Corollary
5.6] ��
Remark 2.6 • In the case where 1/2 < t < min{1, s(1 + N−1)}, Proposition 2.4 and

Corollary 2.5 can be proved arguing as in the proof of [2, Proposition 3.10].
• We believe Proposition 2.4 and Corollary 2.5 are of independent interest and will be

useful elsewhere.

3 Existence results

This section is devoted to prove existence results for (KPZ) with the different choices of
Dt present in the introduction. We will analyse in parallel Dt = (−�)

t
2 and Dt = ∇ t and
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separatelyDt = Dt . Let us emphasize that themain existence result stated in the introduction,
namely Theorem 1.3, immediately follows from the results of this section.

We first analyse the case Dt = (−�)
t
2 (the case Dt = ∇ t follows arguing on the exact

same way, as we will detail later on). More precisely, for q ∈ (1,+∞), we analyse the
existence of weak solution to{

(−�)su = μ(x)|(−�)
t
2 u|q + λ f (x), in �,

u = 0, in R
N \ �.

(KPZ1)

Let us impose 0 < t < min{1, s(1 + N−1)} and set

q(m, s, t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+ ∞, if t ≤ s and m ≥ N/s,

s/(N (t − s)), if t > s and m > N/s,

N/(N − ms), if t ≤ s and 1 ≤ m < N/s,

N/(N − sm + mN (t − s)), if t > s and 1 ≤ m ≤ N/s.

(3.1)

Having at hand q ∈ (1,+∞], our main result concerning (KPZ1) reads as follows:

Theorem 3.1 Assume that 0 < t < min{1, s(1 + N−1)}, f ∈ Lm(�) for some m ≥ 1 and
μ ∈ L∞(�). Then, for all 1 < q < q, there exists λ
 > 0 such that, for all 0 < λ ≤ λ
,
(KPZ1) has a weak solution u. Moreover:

• If m ≥ N/s, then u ∈ Ws,p(RN ) ∩ C0,s(RN ) for all 1 < p < +∞.
• If 1 ≤ m < N/s, then u ∈ Ws,p(RN ) for all 1 < p < mN/(N − ms).

Proof of Theorem 3.1 We use some ideas of [2, Sections 4 and 6] and consider separately the
cases m > N/s and 1 ≤ m ≤ N/s.

Case 1: m > N/s.
First of all, observe that, without loss of generality, we can assume that N/s < m <

1/(q(t − s)+). Then, let us fix r = r(m, s, t, q) > 0 such that 1 < qm < r < 1
(t−s)+ and

define

λ
 := q − 1

q‖ f ‖Lm (�)

(
q(C̃ k̃)q‖μ‖L∞(�)|�| r−qm

mr

)− 1
q−1

, (3.2)

with C̃ > 0 as in Proposition 2.1 and k̃ as in (2.1). Since q > 1, we know (cf. [2, Lemma
4.1]) there exists a unique � ∈ (0,∞) such that

C̃
(
‖μ‖L∞(�)|�| r−qm

mr k̃q� + λ
‖ f ‖Lm (�)

)
= �

1
q . (3.3)

Having at hand λ
 and �, we define

Eη :=
{
v ∈ Lγ,1+η

0 (�) : ‖v‖Lγ,r
0 (�) ≤ �

1
q

}
, (3.4)

with

γ := max{t, s}, and 0 < η < min

{
q − 1,

s − N (γ − s)

N (1 + (γ − s)) − s

}
, (3.5)

and point out that Eη is a closed and convex subset of Lγ,1+η
0 (�). Moreover Eη is also

bounded in Lγ,1+η
0 (�). Indeed, for any R > 0, we have that∥∥(−�)
γ
2 u

∥∥
L1+η(RN )

≤ ∥∥(−�)
γ
2 u

∥∥
L1+η(BR(0)) + ∥∥(−�)

γ
2 u

∥∥
L1+η(RN \BR(0)) . (3.6)
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Then, observe that, since r > 1 + η,

∥∥(−�)
γ
2 u

∥∥
L1+η(BR(0)) ≤ CR

∥∥(−�)
γ
2 u

∥∥
Lr (BR(0)) ≤ CR

∥∥(−�)
γ
2 u

∥∥
Lr (RN )

≤ CR �
1
q .

(3.7)

On the other hand, choosing R ≥ 1
3 + 4

3

(
diam(�) + dist(0,�)

)
, we have that |x − y| ≥

1
4

(
1 + |x |) for all y ∈ � and all x ∈ R

N \ BR(0) and thus, we get that

∥∥(−�)
γ
2 u

∥∥1+η

L1+η(RN \BR(0)) ≤
∫
RN \BR(0)

∣∣∣∣
∫

�

|u(y)|
|x − y|N+γ

dy

∣∣∣∣
1+η

dx

≤ C‖u‖1+η

L1+η(�)

∫
RN \BR(0)

dx

(1 + |x |)(N+γ )(1+η)
≤ C ‖u‖1+η

L1+η(�)
≤ C̃ �

1+η
q .

(3.8)

Note that the last inequality follows from the fractional Sobolev inequality (see for instance
[23, Theorem 1.8]) and the definition of Eη. Gathering (3.6)–(3.8) the boundedness of Eη in

Lγ,1+η
0 (�) follows.
To prove the existence of a weak solution to (KPZ1) belonging to Eη, we use Schauder’s

fixed point Theorem. Let us consider

T1 : Eη → Lγ,1+η
0 (�), ϕ �→ u, (3.9)

where u is the unique weak solution to

{
(−�)su = μ(x)|(−�)

t
2 ϕ|q + λ f (x) , in �,

u = 0, in R
N \ �,

(3.10)

and observe that, if we prove that T1 has a fixed point in Eη, the existence part immediately
follows. Note that, by Proposition 2.4, the operator T1 is well defined. Hence, to end the proof
in this case, we just have to prove that T1 is continuous and compact and that T1(Eη) ⊂ Eη.

We start proving that T1(Eη) ⊂ Eη. Let ϕ ∈ Eη and u = T1(ϕ). Using Proposition 2.1,

it is immediate to see that u ∈ Lγ,1+η
0 (�) and that

‖u‖Lγ,r
0 (�) ≤ C̃

(
λ
‖ f ‖Lm (�) + ‖μ‖L∞(�)‖|(−�)

t
2 ϕ|q‖Lm (�)

)

≤ C̃

(
λ
‖ f ‖Lm (�) + ‖μ‖L∞(�)|�| r−qm

rm ‖(−�)
t
2 ϕ‖qLr (�)

)

≤ C̃

(
λ
‖ f ‖Lm (�) + ‖μ‖L∞(�)|�| r−qm

rm ‖ϕ‖q
Lt,r
0 (�)

)

≤ C̃

(
λ
‖ f ‖Lm (�) + ‖μ‖L∞(�)|�| r−qm

rm k̃q‖ϕ‖q
Lγ,r
0 (�)

)
≤ �

1
q .

(3.11)

Hence, it follows that T1(Eη) ⊂ Eη.
Next, we prove that T1 is compact. Let (ϕn)n ⊂ Eη be such that ‖ϕn‖Lγ,1+η

0 (�)
≤ 1 for

all n ∈ N. Also, let hn := μ(x)|(−�)
t
2 ϕn |q + λ f (x) for all n ∈ N. Arguing as in (3.11),

it is immediate to check that (hn)n is bounded in L1(�) and thus, the compactness of T1
immediately follows from Proposition 2.4.

123



Deterministic KPZ-type equations… 1461

Finally, we prove that T1 is continuous. Let (ϕn)n ⊂ Eη be a sequence such that ϕn → ϕ

in Lγ,1+η
0 (�) and let un = T1(ϕn) for all n ∈ N and u = T1(ϕ). Note that⎧⎨

⎩
(−�)s(un − u) = μ(x)

(
|(−�)

t
2 ϕn |q − |(−�)

t
2 ϕ|q

)
, in �,

un − u = 0, in R
N \ �.

(3.12)

If we show that the L1–norm of the right hand side in the (3.12) goes to 0 as n → ∞, the
continuity of T1 immediately follows from Proposition 2.4. By direct computations (using
Hölder inequality and the Mean value Theorem), it follows that∥∥∥μ(x)

(
|(−�)

t
2 ϕn |q − |(−�)

t
2 ϕ|q

)∥∥∥
L1(�)

≤ C ‖(−�)
t
2 (ϕn − ϕ)‖Lq (�), (3.13)

for some C > 0 depending only on q , r , ‖μ‖L∞(�), |�| and �. On the other hand, using (2.1)
and Littlewood’s inequality (or interpolation in L p–spaces), we infer that

‖(−�)
t
2 (ϕn − ϕ)‖Lq (�) ≤ ‖ϕn − ϕ‖Lt,q

0 (�)

≤ k̃‖ϕn − ϕ‖Lγ,q
0 (�) = k̃‖(−�)

γ
2 (ϕn − ϕ)‖Lq (RN )

≤ k̃‖(−�)
γ
2 (ϕn − ϕ)‖θ

L1+η(RN )
‖(−�)

γ
2 (ϕn − ϕ)‖1−θ

Lr (RN )

= k̃‖ϕn − ϕ‖θ

Lγ,1+η
0 (�)

‖ϕn − ϕ‖1−θ

Lγ,r
0 (�)

≤ (2�
1
q )1−θ k̃‖ϕn − ϕ‖θ

Lγ,1+η
0 (�)

,

(3.14)

with 1
q = θ

1+η
+ 1−θ

r . Sinceϕn → ϕ in Lγ,1+η
0 (�), combining (3.13) and (3.14), we conclude

that

lim
n→∞

∥∥∥μ
(
|(−�)

t
2 ϕn |q − |(−�)

t
2 ϕ|q

)∥∥∥
L1(�)

= 0,

as desired. The proof of the existence in the case where m > N/s is thus finished. Once we
have the existence of a weak solution u ∈ Eη, the claimed regularity immediately follows
from the definition of Eη, our choice of r , Proposition 2.1 and [20, Proposition 1.4 (iii)].

Case 2: 1 ≤ m ≤ N/s.
First of all, let us fix r = r(m, s, t, q) > 0 such that 1 < qm < r < mN

(N−ms+mN (γ−s))+
and consider λ
 and � as in (3.2) and (3.3) respectively. Then, we define

Ẽη :=
{
v ∈ Lγ,1+η

0 (�) : ‖v‖
Lγ,1+η
0 (�)

≤ M and ‖v‖Lγ,r
0 (�) ≤ �

1
q

}
, (3.15)

with γ and η as in (3.5) and

M := C̃1

(
‖μ‖L∞(�)|�| r−q

r k̃q� + λ
‖ f ‖L1(�)

)
,

where C̃1 > 0 is the constant that appears in Proposition 2.1 for m = 1. It is immediate to
see that Ẽη is a bounded, closed and convex set of Lγ,1+η

0 (�). Moreover, arguing as in the
first case, one can prove that

T̃1 : Ẽη → Lγ,1+η
0 (�), ϕ �→ u, (3.16)

where u is the unique weak solution to (3.10), is well-defined, continuous, compact and
satisfies T̃1(Ẽη) ⊂ Ẽη. Hence, applying again Schauder’s fixed point Theorem, the existence
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follows also in this case. Having at hand the existence, the claimed regularity follows again
from Proposition 2.1. ��

Next, we analyse the existence of weak solution to (KPZ) in the case where Dt = ∇ t .
More precisely, we deal with the existence of weak solution to{

(−�)su = μ(x)|∇ t u|q + λ f (x), in �,

u = 0, in R
N \ �.

(KPZ2)

Our main result concerning (KPZ2) can be formulated as follows:

Theorem 3.2 Assume that 0 < t < min{1, s(1 + N−1)}, f ∈ Lm(�) for some m ≥ 1 and
μ ∈ L∞(�). Then, for all 1 < q < q, there exists λ
 > 0 such that, for all 0 < λ ≤ λ
,
(KPZ2) has a weak solution u. Moreover:

• If m ≥ N/s, then u ∈ Ws,p(RN ) ∩ C0,s(RN ) for all 1 < p < +∞.
• If 1 ≤ m < N/s, then u ∈ Ws,p(RN ) for all 1 < p < mN/(N − ms).

Remark 3.3 Let us emphasize that, having at hand [23, Theorem 1.7], the proof of Theorem
3.2 follows arguing exactly as in the proof of Theorem 3.1.

Finally, we analyse the existence of weak solution in the slightlymore involved casewhere
Dt = Dt . More precisely, we analyse the existence of weak solution to{

(−�)su = μ(x)(Dt u)q + λ f (x), in �,

u = 0, in R
N \ �.

(KPZ3)

Setting γ := max{t, s} and

m(s, t) := 2N

N + 2s − 2N (t − s)+

our main result concerning (KPZ3) reads as follows:

Theorem 3.4 Assume that 0 < t < min{1, s(1 + N−1)}, f ∈ Lm(�) for some m > m and
μ ∈ L∞(�). Then, for all 1 < q < q, there exists λ
 > 0 such that, for all 0 < λ ≤ λ
,
(KPZ3) has a weak solution u. Moreover:

• If m ≥ N/s, then u ∈ Ws,p(RN ) ∩ C0,s(RN ) for all 1 < p < +∞.
• If m < m < N/s, then u ∈ Ws,p(RN ) for all 1 < p < mN/(N − ms).

Proof We consider separately the cases m > N/s and m < m ≤ N/s.

Case 1: m > N/s.
First of all, observe that, without loss of generality, we can assume that N/s < m <

1/(q(t − s)+). Then, let us fix r = r(m, s, t, q) > 0 such that max{qm, 2} < r < 1
(t−s)+

and define

λ
 := q − 1

q‖ f ‖Lm (�)

(
q(C̃ k̃)q‖μ‖L∞(�)|�| r−qm

mr

)− 1
q−1

, (3.17)

with C̃ > 0 as in Proposition 2.1 and k̃ as in (2.1). Since q > 1, we know (cf. [2, Lemma
4.1]) there exists a unique � ∈ (0,∞) such that

C̃
(
‖μ‖L∞(�)|�| r−qm

mr k̃q� + λ
‖ f ‖Lm (�)

)
= �

1
q . (3.18)
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Having at hand λ
 and �, we define

Eη :=
{
v ∈ Lγ,1+η

0 (�) : |||v|||Lγ,r
0 (�) ≤ �

1
q

}
, (3.19)

with

γ = max{t, s} and 0 < η < min

{
q − 1,

s − N (γ − s)

N (1 + (γ − s)) − s

}
, (3.20)

and we point out that Eη is a closed, bounded and convex subset of Lγ,1+η
0 (�). To prove the

existence of a weak solution to (KPZ3) belonging to Eη, we use again Schauder’s fixed point
Theorem. Let us define

T2 : Eη → Lγ,1+η
0 (�), ϕ �→ u, (3.21)

where u the unique weak solution to{
(−�)su = μ(x)(Dtϕ)q + λ f (x) , in �,

u = 0, in R
N \ �.

(3.22)

Note that, by Proposition 2.4, the operator T2 is well defined. Hence, to conclude the proof
in this case, we just have to prove that T2 is continuous and compact and that T2(Eη) ⊂ Eη.
The compactness of T2 and the fact that T2(Eη) ⊂ Eη can be proved arguing exactly as in the
proof of Theorem 3.1. However, to prove that T2 is continuous we have to argue in a different
way. Let (ϕn)n ⊂ Eη be a sequence such that ϕn → ϕ in Lγ,1+η

0 (�) and let un = T2(ϕn) for
all n ∈ N and u = T2(ϕ). Note that⎧⎨

⎩
(−�)s(un − u) = μ(x)

(
(Dtϕn)

q − (Dtϕ)q
)
, in �,

un − u = 0, in R
N \ �.

(3.23)

If we show that the L1–norm of the right hand side in (3.23) goes to 0 as n → ∞, the
continuity of T2 immediately follows from Proposition 2.4. We actually prove something
more general from which the existence part of the result in the case m > N/s immediately
follows.

Claim For all 1 < α < r , it follows that

lim
n→∞

∫
�

∣∣(Dtϕn(x))
α − (Dtϕ(x))α

∣∣dx = 0. (3.24)

Proof of the claim. First of all, let 2 ≤ β < r be fixed but arbirary. Using the Mean value
Theorem and Hölder and triangular inequalities, one can easily get that∫

�

|(Dtϕn(x))
β − (Dtϕ(x))β

∣∣dx =
∫

�

∣∣((Dtϕn(x))
2) β

2 − (
(Dtϕ(x))2

) β
2
∣∣dx

≤ β

2

∫
�

∣∣(Dtϕn(x))
2 − (Dtϕ(x))2

∣∣((Dtϕn(x))
2 + (Dtϕ(x))2

) β−2
2 dx

≤ β

2

∫
�

(Dt (ϕn − ϕ)(x))(Dt (ϕn + ϕ)(x))
(
(Dtϕn(x))

2 + (Dtϕ(x))2
) β−2

2 dx

≤
√
2

2
β

∫
�

(Dt (ϕn − ϕ)(x))
(Dtϕn(x) + Dtϕ(x)

)β−1
dx

≤
√
2

2
β‖Dt (ϕn − ϕ)‖Lβ (�)‖Dtϕn + Dtϕ‖β−1

Lβ (�)
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≤ C
(‖Dtϕn‖β−1

Lβ (�)
+ ‖Dtϕ‖β−1

Lβ (�)

)‖Dt (ϕn − ϕ)‖Lβ (�)

≤ C
(|||ϕn |||β−1

Lt,β
0 (�)

+ |||ϕ|||β−1

Lt,β
0 (�)

)|||ϕn − ϕ|||
Lt,β
0 (�)

,

for some C > 0 depending only on β. Then, arguing exactly as in the proof of (3.14), we
conclude that

lim
n→∞

∫
�

∣∣(Dtϕn(x))
β − (Dtϕ(x))β

∣∣dx = 0.

Since β ∈ [2, r) was fixed but arbitrary, we have proved (3.24) for all 2 ≤ α < r .
It remains to deal with the case 1 < α < 2. To that end, note that (Dtϕn)n ⊂ L2(�) is a

bounded non-negative sequence such that ‖Dtϕn‖L2(�) → ‖Dtϕ‖L2(�) as n → ∞. Hence,
it follows that Dtϕn → Dtϕ in L2(�) as n → ∞. Also, observe that, for any α ∈ (1, 2),∫

�

∣∣(Dtϕn(x))
α − (Dtϕ(x))α

∣∣dx
≤ C ‖Dt (ϕn) − Dt (ϕ)‖Lα(�)

(‖Dtϕn‖α−1
Lα(�) + ‖Dtϕ‖α−1

Lα(�)

) ≤ C̃ ‖Dtϕn − Dtϕ‖L2(�),

with C > 0 depending only on α > 0 and C̃ > 0 depending only on α, r , |�| and �.
Combining this chain of inequalities with the fact that Dtϕn → Dtϕ in L2(�) as n → ∞
we conclude that

lim
n→∞

∫
�

∣∣(Dtϕn(x))
α − (Dtϕ(x))α

∣∣dx = 0.

Once the claim is proved, to conclude the proof in the case where m > N/s, it just remains
to prove the claimed regularity, that follows thanks to Proposition 2.1, [20, Proposition 1.4
(iii)] and the definition of Eη.

��
Case 2: m < m ≤ N/s.

First of all, let us fix r = r(m, s, t, q) > 0 such thatmax{2, qm} < r < mN
(N−ms+mN (γ−s))+

and consider λ
 and � as in (3.17) and (3.18) respectively. Then, let us define

Ẽη :=
{
v ∈ Lγ,1+η

0 (�) : |||v|||
Lγ,1+η
0 (�)

≤ M and |||v|||Lγ,r
0 (�) ≤ �

1
q

}
, (3.25)

with γ and η as in (3.20) and

M := C
(
‖μ‖L∞(�)|�| r−q

r k̃q� + λ
‖ f ‖L1(�)

)
,

with C > 0 depending only on �, N , s and t (cf. Proposition 2.1). It is easy to check that Ẽη

is a bounded, closed and convex set of Lγ,1+η
0 (�). Moreover, arguing as we did in the first

case, one can prove that

T̃2 : Ẽη → Lγ,1+η
0 (�), ϕ �→ u, (3.26)

where u is the unique weak solution to (3.22), is well-defined, continuous, compact and
satisfies T̃2(Ẽη) ⊂ Ẽη. Hence, applying again Schauder’s fixed point Theorem, the existence
follows also in this case. Having at hand the existence, the claimed regularity follows again
from Proposition 2.1. ��
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Remark 3.5 The presence of the upper bound q ∈ (1,+∞] in Theorems 3.1 and 3.4 is natural
in this kind of existence results. Even in the local case (1.1), one finds an upper bound on q
depending on the regularity of the data f and on the dimension N . In our proofs, the upper
bound q naturally appears when applying Proposition 2.1 and depends on the regularity of
the datum f , on the dimension N and on the order of the “nonlocal gradient”. The lower
bound m is again related to the use of Proposition 2.1 but also to the fact that we need r > 2
in the proof of Theorem 3.4.

4 Non–existence results

This section is devoted to prove non-existence results for (KPZ1) and (KPZ3). Let us start
analysing (KPZ1). As already mentioned in the introduction, the proof of the non-existence
result for (KPZ1) is completely different from its counterpart for (KPZ3). Here, we prove a
generalization of Theorem 1.4.

Theorem 4.1 Let 0 < t < min{1, 2s}, μ2 ≥ μ(x) ≥ μ1 > 0, f ∈ L1(�) with f � 0
and q >

2(s+1)
t+2 . Then, there exists λ

 > 0 such that, for all λ > λ

, (KPZ1) has no weak

solution in Ws,2
0 (�).

Proof Let u ∈ Ws,2
0 (�) be a weak solution to (KPZ1) and let φ ∈ Ws,2

0 (�) ∩ Cs(RN ) be
the unique (energy) solution to{

(−�)sφ = 1, in �,

φ = 0, in R
N \ �.

First of all, note that φ ∈ X
s(�), so that we can use φ as test function in (KPZ1) and get that∫

�

u dx =
∫

�

μ(x)|(−�)
t
2 u|qφ dx + λ

∫
�

f φ dx

≥ μ1

∫
�

|(−�)
t
2 u|qφ dx + λ

∫
�

f φ dx .
(4.1)

On the other hand, let ψ ∈ W
t
2 ,2
0 (�) ∩ C

t
2 (RN ) be the unique (energy) solution to the

problem {
(−�)

t
2 ψ = 1, in �,

ψ = 0, in R
N \ �.

(4.2)

Since Ws,2
0 (�) ⊂ W

t
2 ,2
0 (�) we can test (4.2) with u and integrate by parts, so that, using

(4.1), we obtain∫
�

ψ(−�)
t
2 u dx =

∫
�

u dx ≥ μ1

∫
�

|(−�)
t
2 u|qφ dx + λ

∫
�

f φ dx . (4.3)

Moreover, using Young’s inequality, we easily see that

∫
�

ψ(−�)
t
2 u dx ≤ μ1

∫
�

|(−�)
t
2 u|qφ dx + Cqμ

− 1
q−1

1

∫
�

ψ
q

q−1

φ
1

q−1

dx . (4.4)
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Thus, combining (4.3) and (4.4), we obtain that

λ

∫
�

f φ dx ≤ Cqμ
− 1

q−1
1

∫
�

ψ
q

q−1

φ
1

q−1

dx . (4.5)

Finally, note that (see e.g. [11, Eq. (1.15)]) there exists C0 > 0 (depending only on �, s, t
and N ) such that

C−1
0 δs(x) ≤ φ(x) ≤ C0δ

s(x) and C−1
0 δ

t
2 (x) ≤ ψ(x) ≤ C0δ

t
2 (x), in �. (4.6)

Hence, since q >
2(s+1)
t+2 , the right hand side in (4.5) is bounded, an thus necessarily

λ ≤
Cq

∫
�

ψ
q

q−1

φ
1

q−1

dx .

μ
1

q−1
1

∫
�

f φ dx
=: λ

. (4.7)

��
Remark 4.2 The regularity imposed on f can be slightly weakened. Indeed, to prove our
non–existence result, namely Theorem 4.1, we only need f ∈ L1(�, δs(x)dx). Moreover,
observe that in the proof we only used that u is a (weak) supersolution to (KPZ1). On the
negative side, observe that the bound appearing on the power q seems to be technical.

We also prove here a generalization of [2, Theorem 1.2] covering the cases where q �= 2
and/or t �= s.

Theorem 4.3 Let 0 < t < min{1, 2s}, μ2 ≥ μ(x) ≥ μ1 > 0, f ∈ L1(�) with f + �≡ 0 and
q > 1. Then, there exists λ

 > 0 such that, for all λ > λ

, (KPZ3) has no weak solution in
Ws,2

0 (�).

Proof Let u ∈ Ws,2
0 (�) be a weak solution to (KPZ3) and let φ ∈ C∞

c (�) be an arbitrary
non-negative function such that∫

�

f φ
q

q−1 dx > 0 and
∫

�

(D2s−tφ
) q
q−1 dx < +∞. (4.8)

Using φ
q

q−1 as test function in (KPZ3), we get∫
�

u(−�)s(φ
q

q−1 ) dx ≥ μ1

∫
�

(Dt u)qφ
q

q−1 dx + λ

∫
�

f φ
q

q−1 dx . (4.9)

On the other hand, using the Mean value Theorem and Hölder’s and Young’s inequalities,
we infer that∫

�

u(−�)s(φ
q

q−1 ) dx =
∫∫

R2N

(u(x) − u(y))(φ
q

q−1 (x) − φ
q

q−1 (y))

|x − y|N+2s dydx

≤ Cq

∫∫
R2N

|u(x) − u(y)||φ(x) − φ(y)|
|x − y|N+2s (φ

1
q−1 (x) + φ

1
q−1 (y)) dydx

= 2Cq

∫∫
R2N

|u(x) − u(y)||φ(x) − φ(y)|
|x − y|N+2s φ

1
q−1 (x) dydx ≤ 2Cq

∫
RN

(Dt u
) (D2s−tφ

)
φ

1
q−1 dx

= 2Cq

∫
�

(Dt u
) (D2s−tφ

)
φ

1
q−1 dx ≤ μ1

∫
�

(Dt u)qφ
q

q−1 dx + C̃q,μ1

∫
�

(D2s−tφ)
q

q−1 dx .
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Combining the above chain of inequalities with (4.9), we get that necessarily

λ

∫
�

f φ
q

q−1 dx ≤ C̃q,μ1

∫
�

(D2s−tφ)
q

q−1 dx .

Hence, defining

λ

 := inf

⎧⎪⎪⎨
⎪⎪⎩
C̃q,μ1

∫
�

(D2s−tφ)
q

q−1 dx∫
�

f φ
q

q−1 dx
: φ ∈ C∞

c (�) is non-negative and satisfies (4.8)

⎫⎪⎪⎬
⎪⎪⎭ ,

the result immediately follows. ��
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