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Abstract 17 

Anthropogenic pressures have increasingly disrupted integrity of ecosystems worldwide, 18 

jeopardizing their capacity to provide essential contributions to human well-being. Recently, the role 19 

of natural ecosystems in reducing disease emergence risk has gained prominence in decision-making 20 

processes, as scientific evidence indicates that human-driven pressure, such as habitat destruction and 21 

deforestation, can trigger the emergence of zoonotic infectious diseases. However, the intricate 22 

relationship between biodiversity and emerging infectious diseases (EIDs) remains only partially 23 

understood. Here, we updated the most comprehensive zoonotic EID event database with the latest 24 

reported events to analyse the relationship between EIDs of wildlife origin (zoonoses) and various 25 

facets of ecological integrity. We found EID risk was strongly predicted by structural integrity metrics 26 

such as human footprint and ecoregion intactness, in addition to environmental variables such as 27 

tropical rainforest density and mammal species richness. EID events were more likely to occur in 28 

areas with intermediate levels of compositional and structural integrity, underscoring the risk posed 29 
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by human encroachment into pristine, undisturbed lands. Our study highlights the need to identify 30 

novel indicators and targets that can effectively address EID risk alongside other pressing global 31 

challenges in sustainable development, ultimately informing strategies for preserving both human 32 

and environmental health.  33 

 34 
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1. Introduction 35 

Emerging infectious diseases (EIDs) of zoonotic origin pose a major threat to public health and socio-36 

economic stability [1, 2]. Most EIDs in recent decades derive from pathogens originating in wildlife 37 

[3], but the link between biodiversity and EID risk remains only partially explored. As zoonotic 38 

spillover cannot occur in the absence of reservoir hosts that maintain the pathogen, wildlife can be 39 

considered the necessary but not sufficient condition for the occurrence of zoonotic spillover  [4]. 40 

Global-scale analyses [3, 5] identified mammal species richness as a key predictor of zoonotic EIDs. 41 

The relationship between mammal species richness and EID risk generally shows idiosyncratic 42 

trends, where both low and high values of species richness correspond to high risk [5]. Such trends 43 

suggest that the biodiversity-risk relationship is linked to context-dependent dynamics of pathogen, 44 

host, and human interaction [6], and is likely influenced by anthropogenic drivers that alter these 45 

dynamics. A recent study [7] showed that the proportion of zoonotic hosts in wildlife communities 46 

increases in human-dominated systems, compared to undisturbed areas. Both richness and abundance 47 

of host species in sites under substantial human use (such as agricultural and urban ecosystems) were 48 

higher compared to those found in assemblages sited in undisturbed habitats. This finding highlights 49 

the role of anthropogenic disturbance in increasing EID risk. Moreover, it emphasises that efforts to 50 

anticipate EID risk need to take into consideration ecosystem-level metrics that capture the effects of 51 

human activities and related environmental changes on biodiversity. In this perspective, EID risk is 52 

expected to respond positively to high levels of human pressures that cause habitat degradation, 53 

fragmentation, and biodiversity loss, thereby altering host communities’ composition and abundance 54 

in a way that facilitates pathogen circulation and their consequent transmission to human hosts  [7,8]. 55 

However, the risk of EIDs can be expected to decrease beyond a certain level of habitat modification, 56 

because highly modified areas support fewer species of wildlife, leading to a reduced diversity of 57 

available pathogens.  58 

Habitat degradation caused by land-use changes has a direct influence on human exposure to wildlife 59 

pathogens, increasing contact rates at the human-wildlife interface and leading to higher risk of 60 

zoonotic spillover [9,10]. Also, habitat degradation causes substantial changes in species 61 

assemblages, which may alter disease dynamics within wildlife communities. In multi -host disease 62 

systems, higher species diversity may reduce the transmission of a pathogen through a variety of 63 

mechanisms collectively referred to as dilution effects [11]. As different species have different levels 64 

of host competence for a given pathogen [12] (i.e., the ability to harbour the pathogen and transmit it 65 

to new hosts or vectors), the dilution effect hypothesis assumes that in more diverse wildlife 66 

communities, the presence of less competent hosts reduces contact rates between highly competent 67 
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hosts (known as the “encounter reduction” mechanism), limiting the opportunities for pathogens to 68 

spread. Another dilution mechanism is “host regulation”, which occurs when predators or competitors 69 

of competent hosts are abundant. Alterations that decrease species diversity may therefore increase 70 

pathogen transmission in wildlife communities, resulting in a higher risk of zoonotic spillover once 71 

dilution effects are suppressed. On the other hand, decline in biodiversity itself doesn’t necessarily 72 

result in increasing disease risk. Indeed, high levels of biodiversity loss reduce disease risk if 73 

competent host species disappear from highly modified environments [11]. 74 

Following the same logic, high levels of environmental and biodiversity integrity are supposed to 75 

reduce EID risk [13,14]. While anthropogenic pressures alter species diversity and abundance, intact 76 

lands support natural ecological and evolutionary processes operating with minimal human 77 

disturbance. Intact forests provide essential functions on climate mitigation, conservation of 78 

biodiversity and, importantly in this context, human health [14]. When compared to degraded ones, 79 

intact forests host a higher richness of forest-dependent species, a higher functional and intraspecific 80 

genetic diversity, as well as a higher connectivity important for gene flow and genetic adaptation. All 81 

these features are supposed to give intact forests the potential to reduce infectious disease risk. 82 

However empirical evidence of how various components of ecological integrity contribute to 83 

reducing EID risk remain unknown. 84 

 85 

The recently approved Kunming-Montreal Global Biodiversity Framework [15] formalises the 86 

importance of conserving ecological integrity, in Target 1: “… bring the loss of areas of high 87 

biodiversity importance, including ecosystems of high ecological integrity, close to zero by 2030…”. 88 

The Framework also recognises the value of nature in reducing disease risk, in Target 11 “Restore, 89 

maintain and enhance nature’s contributions to people, including ecosystem functions and services, 90 

such as […] reduction of disease risk…”. We argue that these two target elements have the potential 91 

to generate important synergies in the implementation of the Framework [16] and its relationship with 92 

the broader 2030 Sustainable Development Agenda [17], but the relationship between ecological 93 

integrity and disease risk reduction needs to be tested empirically. A comprehensive large-scale test 94 

of these effects has not been performed yet, as large-scale modelling exercises have mostly focused 95 

on species richness and ignored ecological integrity and other aspects of biodiversity [3, 5]. In this 96 

work, we explore how global zoonotic EID risk responds to ecological integrity, analysing the 97 

relationship between zoonotic EID events of wildlife origin and several biodiversity metrics that 98 

reflect anthropogenic alteration. 99 

 100 

 101 
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2. Methods  102 

2.1. Mapping zoonotic EID events  103 

We followed the zoonotic EID event definition given by Jones et al. [3], considering an EID event as 104 

“the first temporal emergence of a pathogen in a human population which was related to the increase 105 

in distribution, increase in incidence or increase in virulence or other factor which led to that 106 

pathogen being classed as an emerging disease”. The zoonotic EID event database used in our work 107 

is an updated version of the database used in Jones et al. [3] and modified by Allen et al. [5], where 108 

events range in time from 1940 to 2008 (n=224). Based on the Emerging Infectious Disease 109 

Repository database [18], we filtered and updated 7 out of 33 reported events until 2013 (n=231) 110 

(Table S1) following the same criteria used by Allen et al. [5], so as to include zoonotic diseases of 111 

wildlife origin reported in the peer-reviewed literature, keeping only the first emergence of a new 112 

disease-causing agent. Single case reports and events lacking in evidence for their geographic and 113 

temporal origin were excluded from the analysis. For each new event we created a spatial polygon 114 

corresponding to the most precise municipal region where the event occurred. Since there are multiple 115 

temporal layers among covariates, such as land use and population variables, events were selected 116 

keeping only those which occurred since 1970 (n=154) in order to temporally match them with 117 

predictors. 118 

 119 

2.2. Predictors of zoonotic EID risk 120 

Following Allen et al. [5], we first collected spatial data layers for 19 environmental and 121 

anthropogenic drivers already tested for their contribution to zoonotic EID risk prediction. Then, we 122 

collected six biodiversity metrics representing different aspects of ecological integrity, to test our 123 

hypothesis about the role of integrity in mitigating EID risk. These data were downscaled to the lowest 124 

common spatial resolution of 1° (WGS84, approximately 110 km at the equator). Full list of predictor 125 

layers and details of sources, original resolutions and rescaling are shown in Table 1.  126 

 127 

 128 

 129 

 130 

 131 
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Table 1. List of predictors included in the models. 132 

Variable Type Source data set Processing Temporal 

resolution  

and extent 

Human population Human 

activity 

GPCGv1 [25] Rescaled Decadal 

(1970-2000) 

Population change Human 

activity 

GPCGv1 [25] 

(calculated) 

Calculated from 

rescaled layers 

Inter-decadal 

(1970-2000) 

Cropland Human 

activity 

LUH2 [29] Rescaled Decadal 

(1970-2000) 

Cropland change Human 

activity 

LUH2 [29] 

(calculated) 

Calculated from 

rescaled layers 

Inter-decadal 

(1970-2000) 

Pasture Human 

activity 

LUH2 [29] Rescaled Decadal 

(1970-2000) 

Pasture change Human 

activity 

LUH2 [29] 

(calculated) 

Calculated from 

rescaled layers 

Inter-decadal 

(1970-2000) 

Urban land Human 

activity 

EarthEnv [20] Rescaled N/A 

Managed/cultivated 

vegetation 

Human 

activity 

EarthEnv [20] Rescaled N/A 

Global environmental 

stratification 

Environment GEnS [19] Rescaled N/A 

Evergreen/deciduous 

needleleaf trees 

Environment EarthEnv [20] Rescaled N/A 

Evergreen broadleaf trees Environment EarthEnv [20] Rescaled N/A 

Deciduous broadleaf trees Environment EarthEnv [20] Rescaled N/A 

Mixed/other trees Environment EarthEnv [20] Rescaled N/A 

Shrubs Environment EarthEnv [20] Rescaled N/A 

Herbaceous vegetation Environment EarthEnv [20] Rescaled N/A 

Regularly flooded 

vegetation 

Environment EarthEnv [20] Rescaled N/A 

Mammal species richness Animal/Host IUCN [32] (See supplementary 

methods) 

Static 

(2022) 

Livestock mammal 

headcount 

Animal/Host GLW [30] Rescaled Static 

(2016) 

Poultry Animal/Host GLW [30] Rescaled Static 

(2016) 

Biodiversity habitat index Biodiversity Harwood et al. 

2022 

Reprojected and 

rescaled 

Decadal 

(2000-2020) 

Biodiversity intactness 

index 

Biodiversity Newbold et al. 

2016 

Reprojected and 

rescaled 

Static 

(2016) 

Contextual intactness Biodiversity Mokany et al. 

2020 

Reprojected and 

rescaled 

Static 

(2013) 

Ecoregion intactness Biodiversity Beyer et al. 2020 Reprojected and 

rescaled 

Decadal 

(1993-2009) 

Human footprint Biodiversity Venter et al. 2016 Reprojected and 

rescaled 

Decadal 

(1993-2009) 

Wilderness Biodiversity Allan et al. 2017 (See supplementary 

methods) 

Decadal 

(1993-2009) 

 133 

 134 
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2.2.1. Environmental and anthropogenic variables 135 

We represented environmental conditions using eight climatic and land cover features, respectively 136 

from the Global Environmental Stratification dataset [19] and the EarthEnv database [20]. Such 137 

environmental variables are known to greatly influence the distribution of terrestrial mammals and 138 

the pathogens they host  [21–23].  139 

We then included data on human population density, population change, and land-use changes to 140 

control for the human-driven pressure that increases exposure to EIDs. Population density has a strong 141 

correlation with the distribution of emerging infectious diseases, affecting disease transmission 142 

dynamics and increasing outbreak detection probability in densely populated areas [3,5,23]. 143 

Population change serves as an indicator of changing demands on ecosystems, leading to 144 

environmental disruptions and disease emergence [13]. These variables were derived from the Global 145 

Population Count Grid Time Series Estimates, v1 database [25]. Land-use changes, such as 146 

agriculture and deforestation, impact terrestrial species richness and abundance, altering host and 147 

vector communities, and facilitating human-wildlife contact [13,26–28]. Land-use data were obtained 148 

from the Land Use Harmonization 2 database (LUH2) [29]. Domestic animal density was also 149 

included due to the role of livestock as intermediate or amplifying hosts in disease outbreaks in 150 

humans [23, 29]. Data on livestock density were retrieved from the Gridded Livestock of the World 151 

dataset [30]. 152 

2.2.2. Biodiversity and Ecological Integrity variables 153 

We included mammal species richness, a well-known correlate of EID risk [5], as a proxy of pathogen 154 

species richness. Here, for simplicity, we assumed that the pool of pathogens with zoonotic potential 155 

increases with an increased number of mammal species richness [31], although we acknowledge the 156 

question on whether zoonotic pathogen richness is homogeneously distributed across mammalian 157 

taxonomy is still debated. Terrestrial mammals’ distribution data were obtained from the IUCN Red 158 

List [32] which includes spatial maps for 5624 terrestrial mammal species’ known range. We filtered 159 

data excluding ranges where species were declared extinct prior to 1970 and we then assessed 160 

mammal species richness index on a global scale by overlaying each species’ spatial polygon which 161 

overlaps with each 1-degree resolution grid cell and counting the number of species present in each 162 

grid cell.   163 

To explore the relationship between ecological integrity and EID risk, we selected six biodiversity 164 

metrics, each capturing unique dimensions of ecological integrity. As defined by the Convention on 165 

Biological Diversity, ecological integrity is ‘an ecosystem's capacity to maintain its composition, 166 
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structure, and functioning within a natural range of variability over time’. Structure refers to the three-167 

dimensional component of ecosystems, encompassing the biotic and abiotic elements that shape the 168 

heterogeneous matrix which supports the composition and functioning of the ecosystem; composition 169 

pertains to the diversity and range of organisms existing within the ecosystem; function relates to the 170 

ecological processes and ecosystem services provided by the ecosystem [33]. Changes in the structure 171 

of ecosystems due to human activities can have significant consequences for EID risk. Alterations of 172 

ecosystem structure can affect the spatial distribution of host species, vectors, and potential 173 

intermediate hosts involved in the transmission of diseases. Anthropogenic pressures, such as 174 

deforestation and habitat conversion, can lead to changes in ecosystem structure, resulting in 175 

increased contact between humans, livestock, and pathogens. This can facilitate the transmission of 176 

EIDs [9] by increasing pathogen sharing from wildlife to humans and creating novel opportunities 177 

for pathogen evolution and adaptation to new hosts [33,34]. Changes in ecosystems’ composition due 178 

to human activities, such as deforestation, habitat destruction, and land-use change, can cause shifts 179 

in pathogens’ ecology by altering zoonotic host communities’ composition through loss, turnover and 180 

homogenization of biodiversity [7,8]. Biodiversity loss may increase disease transmission and 181 

incidence when the lost species are less competent hosts, by intensifying encounter rates between 182 

pathogens and competent hosts [26,36]. More diverse host communities instead may inhibit the 183 

spread of pathogens according to the dilution effect hypothesis [37].  184 

We chose four ecosystem-level metrics to account for the overall impact of anthropogenic pressures 185 

on ecosystem’s structure. 186 

(i) The human footprint index (HFP) [38] is an indicator of cumulative human pressures on natural 187 

ecosystems. HFP is a global index with a resolution of 1 km2 based on eight key layers of human 188 

pressures such as infrastructures, land cover and human access to natural areas, which are a suite of 189 

anthropogenic stressors that are known to impact ecological systems. 190 

(ii) Wilderness areas [39,40] defined as “ecologically intact areas free of industrial scale activities 191 

and other human pressures which result in significant biophysical disturbance” [41]. Hosting original 192 

species assemblages in the absence of large-scale anthropogenic disturbances, fully functional 193 

ecosystems may mitigate pathogen spillover risk [14]. We derived the wilderness global index using 194 

wilderness areas maps from Allan et al. [40], representing ‘pressure free’ lands with a contiguous area 195 

>10,000 km2. It’s important to notice that this definition of wilderness does not preclude human 196 

presence (e.g., indigenous populations), rather industrial-scale activities. The proportion covered by 197 

wilderness areas for each 1-degree cell was binarized using a threshold of 25% (i.e., cells with >25% 198 

wilderness coverage were considered to include wilderness). 199 
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(iii) Ecoregion intactness [42] quantifies the extent to which natural ecosystems within an ecoregion 200 

remain undisturbed and retain their original ecological characteristics. It is a measure of human 201 

alteration of terrestrial ecosystems which captures habitat loss, quality and fragmentation effects 202 

arising from anthropogenic disturbance at ecoregional scale. 203 

(iv) Contextual Intactness [43] is obtained by combining local habitat condition with estimates of 204 

spatial turnover in species composition, via generalized dissimilarity modelling [44,45] with a 205 

resolution of 30 arcsec. The metric identifies valuable local habitat conditions, in the context of other 206 

locations where similar species assemblages are found. It measures the proportion of all  locations 207 

expected to have once supported a similar assemblage of species to the focal grid cell, but which have 208 

suffered higher impact from human activities than the focal cell. Contextual intactness values range 209 

between 0 and 1, where higher values mean the focal cell has a higher level of intactness within the 210 

context of biologically similar cells. 211 

We also accounted for intactness in biological communities, as determined by levels of anthropogenic 212 

alterations on species richness and abundance. We chose two metrics: 213 

(i) The biodiversity habitat index [46] is a global index with a resolution of 30 arcsec designed to 214 

quantify the level of species diversity expected to be retained within a given geographic area, 215 

compared to its original (pristine) condition. This estimate is based on factors such as the unit's size, 216 

and the connectivity and integrity of natural ecosystems across it. 217 

(ii) The biodiversity intactness index [47] expresses the average abundance of the native terrestrial 218 

species, relative to their abundance in an undisturbed location. It is a global spatial raster with a 219 

resolution of 30 arcsec which integrates a measure of abundance-based compositional similarity with 220 

pressure variables of land use, land use intensity, human population density, and proximity to the 221 

nearest road.  222 

 223 

2.3. Predicting zoonotic EID risk 224 

We explored the relationship between EID risk and biodiversity variables with a Random Forest 225 

classifier algorithm [48] in the R package ‘ranger’ [49]. We run 6 distinct models, one for each metric 226 

of ecological integrity. Every model included the same set of 19 environmental and anthropic 227 

predictors used in the original Allen et al. [5] paper, including mammal species richness, plus a new 228 

variable referring to ecological integrity (i.e., human footprint, biodiversity habitat index, biodiversity 229 

intactness index, ecoregion intactness, contextual intactness, wilderness). We decided not to run a full 230 
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model with all integrity metrics together in order to avoid effects of collinearity between these 231 

predictors in our analysis (Table S2). We selected Random Forest models over the Boosted Regression 232 

Trees models used by Allen et al. [5] after conducting a preliminary random 10-fold cross-validation, 233 

wherein Random Forest models exhibited a higher predictive performance, as measured by the true 234 

skill statistics metric (TSS) [50] (Table S3).  235 

The fitted models were used to generate relative influence box plots and partial dependence plots with 236 

empirical 90% confidence intervals. The importance for each variable was measured as the mean 237 

decrease accuracy (MDA) which measures the decrement of the accuracy of model predictions caused 238 

by the variable’s permutation, averaged across all trees. The MDA scores for each model were then 239 

normalized by their largest value, so that the most influential variable in every model took a value of 240 

1 and every other variable was rescaled accordingly, in order to compare variables’ importance among 241 

models. 242 

We also evaluated how EID risk responds to the interaction between each integrity metric and levels 243 

of forest cover, a well-known predictor of EID risk, by implementing bivariate partial dependence 244 

plots. We used the R package ‘pdp’ [51] to create both partial dependence plots and bivariate partial 245 

dependence plots. 246 

2.4. Dealing with uncertainty in EID events 247 

To account for spatial and sampling uncertainty in EID events, we used a bootstrap resampling 248 

regime: each model was fitted on 100 bootstrap samples consisting of 154 zoonotic EID “events”, 249 

and the resultant predictions from the multiple models were then combined to create a single score  250 

and to generate empirical confidence intervals. For each event, we selected a presence point, which 251 

is one of the grid cells intersecting the spatial polygon where that event is known to have occurred (a 252 

municipality, a region, a country). Each presence point was associated to a background point, that is 253 

a grid cell chosen within all other cells which don’t intersect that polygon. Both presence and 254 

background points were sampled randomly, but the probability of selecting them was weighted based 255 

on event coverage and reporting effort. Event coverage is the proportion of a grid cell that overlaps 256 

the polygon within the event has occurred. We assigned higher weights to grid cells with larger 257 

overlap (i.e., a higher probability of being selected as presences). Reporting effort is the extent to 258 

which disease events are reported to become part of the scientific literature, which is a proxy for the 259 

power of disease detection and reporting (for details see Allen et al. [5]). Cells with a high value of 260 

reporting effort have a higher probability to be chosen both as presence and background points.  261 

 262 
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2.5. Model fitting and validation 263 

For each model, we selected the optimal number of variables randomly sampled as candidates for 264 

each split (mtry) and node size using a 5-fold cross validation. We defined a grid of hyperparameters 265 

values (n=200) and repeated the cross-validation process for each combination. We then calculated 266 

the average performance of the model across all folds for each hyperparameter set and chose the 267 

combination with the highest average performance, quantified by the true skill statistic metric. 268 

To estimate models’ predictive performance, we ran two validations: a classical random cross-269 

validation, and a stricter spatial block cross-validation. In the random cross-validation data were 270 

randomly partitioned into 10 folds, data from 9 folds were used to fit the model whereas data from 271 

the remaining fold were used to test predictive ability. We fitted the models iteratively on all folds but 272 

one and validated on the left-out fold. In the spatial block cross validation, we created 6 different 273 

spatial blocks, one for each continent. We then fitted the models iteratively on all blocks but one and 274 

validated on the left-out block. This latter strategy allowed us to separate training and testing sets by 275 

using spatial blocks [52] which take into account the spatial autocorrelation of ecological data. 276 

Models’ predictive performance was estimated with the true skill statistic.  277 

 278 

3. Results 279 

3.1. Model accuracy 280 

For each integrity model, the ability to recognise both presence and background points was always 281 

better than random with specificity and sensitivity both higher than 0.5 (Table S4). The random 10-282 

fold cross-validation showed a high predictive power across all models per sample combinations 283 

(averaged TSS=0.46, range:0.33–0.60), whereas the spatial cross validation showed a lower 284 

performance (averaged TSS=0.27, range: 0.12–0.52) when extrapolating into novel geographical 285 

areas [52].  286 

 287 

3.2. Variables importance in the Random Forest models 288 

Evergreen broadleaf trees variable was the strongest predictor of EID events across all models 289 

(median MDA = 0.76, range: 0.74 - 0.80; Figure 1), followed by global environmental stratification 290 

(median MDA = 0.60, range: 0.54 - 0.61), and evergreen/deciduous needleleaf trees (median MDA = 291 

0.54, range: 0.45 - 0.57). Additionally, several variables related to human activity showed a high level 292 

of relative importance, including human population (median MDA = 0.44, range: 0.41 - 0.48), 293 
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cropland coverage (median MDA = 0.37, range: 0.34 - 0.38), and cropland change (median MDA = 294 

0.35, range: 0.34 - 0.37). Notably, while the TSS scores were similar across all models, and also 295 

similar to a baseline model without any integrity metric, there was high variation in the relative 296 

predictive importance of integrity metrics. Specifically, human footprint showed the largest relative 297 

importance (median MDA = 0.55) among the biodiversity and ecological integrity metrics, 298 

immediately followed by mammal species richness (median MDA = 0.53, range: 0.49 - 0.57). 299 

Ecoregion intactness (median MDA = 0.44) and biodiversity habitat index (median MDA = 0.38) also 300 

showed a good predictive power, while wilderness had the lowest normalized MDA (median MDA = 301 

0).  302 

 303 

Figure 1. Variable’s importance plots for each separate model run with the same set of environmental 304 

and anthropogenic predictors plus a single integrity metric (in green): (a) human footprint; (b) 305 

ecoregion intactness; (c) biodiversity habitat index; (d) biodiversity intactness index; (e) contextual 306 
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intactness; (f) wilderness. The importance of each variable is quantified as the MDA of models’ 307 

predictions caused by variable permutation. Accuracy measures the proportion of observations  308 

correctly classified out of the total observations in the dataset. Variables’ MDA scores within each 309 

model were normalized, so that the most influential variable took a value of 1, and the others were 310 

rescaled accordingly. Here, the boxplots show the minimum, first quartile, median, third quartile and 311 

maximum MDA scores across 100 replicate models. 312 

 313 

We employed partial dependence plots to display the relationship between EID risk and explanatory 314 

variables (Figure 2; Figure S1). The partial dependence plot for human footprint showed the highest 315 

probability of EID events for values which correspond to rural areas subject to intermediate 316 

modification (HFP ~ 5), while the risk is low both for values indicating highly modified areas and for 317 

values corresponding to intact and near-intact lands (HFP <3). EID risk correlated with ecoregion 318 

intactness and biodiversity habitat index in a similar way, with the highest risk for intermediate values 319 

of integrity. For the remaining integrity metrics, the predicted probability showed little variation, 320 

indicating a weak influence on EID risk.  321 
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 322 

Figure 2. Partial dependence plots showing the effect of integrity metrics on EID risk. Each plot 323 

represents how the risk (on the y-axis) changes given different values of each variable (on the x-axis): 324 

(a) human footprint; (b) ecoregion intactness; (c) biodiversity habitat index; (d) biodiversity 325 

intactness index; (e) contextual intactness;(f) wilderness. Black lines show the median and coloured 326 

areas show the 90% confidence intervals, computed using a bootstrap resampling regime 327 

incorporating uncertainty in EID event locations. Below the plots, we report the density distribution 328 

of each biodiversity metric upon which the model was built. 329 

 330 

We implemented bivariate partial dependence plots to display how the interaction between integrity 331 

metrics and forest cover affects EID risk (Figure 3). For all integrity metrics, the highest risk of EID 332 

was observed at intermediate values of forest cover and integrity values, namely: human footprint 333 

values of approximately 5, ecoregion intactness around 0.6, and biodiversity habitat index around 0.9. 334 

While the predicted probability for wilderness areas exhibited minimal variation between wilderness 335 
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(indicated as 1) and non-wilderness areas (indicated as 0), it is noteworthy that EID risk consistently 336 

remained lower in wilderness areas. 337 

 338 

Figure 3. Bivariate partial dependence plots showing the effect on EID risk of the interaction between 339 

tropical rainforest cover and integrity metrics: (a) human footprint; (b) ecoregion intactness; (c) 340 

biodiversity habitat index; (d) biodiversity intactness index; (e) contextual intactness; (f) wilderness. 341 

EID probability has been rescaled by its minimum and maximum to allow comparison across integrity 342 

metrics. 343 

 344 

4. Discussion  345 

We developed spatial models to examine how the risk of zoonotic EID changes in response to 346 

different metrics of ecological integrity. Our approach allowed us to evaluate the predictive power of 347 

these metrics in assessing disease risk and to investigate the intensity and direction of their 348 

relationship with EID event probability. This research explores various ecosystem-level metrics, 349 

extending beyond the traditional focus on mammal species richness alone. We showed that certain 350 

aspects of ecological integrity are important for predicting EID risk, both individually and in 351 

interaction with levels of forest cover. 352 

Models consistently performed well in recognizing presence and background points, with high 353 

specificity and sensitivity, especially in random 10-fold cross-validation, but showed lower 354 
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performance in spatial cross-validation. The differences in model accuracy resulting from the two 355 

validation methods are in line with those expected [52] because random cross validation often suffers 356 

for the dependence structure of the ecological data, since when validation data are randomly selected 357 

from the entire spatial domain, training and validation data from nearby locations will be dependent, 358 

and this spatial autocorrelation results in an overoptimistic assessment of models’ performance. 359 

Environmental variables were the features that better characterized EID risk, with evergreen broadleaf 360 

trees as the strongest predictor of the distribution of EID events, followed by global environmental 361 

stratification and mammal species richness. This pattern was already identified in the original Allen 362 

et al. model [5], and we confirmed it here with models which include integrity metrics and more 363 

recent disease events. Given the high biodiversity levels of tropical forests [53], it is possible that 364 

these variables represent a similar process. This trend is consistent with existing theories which 365 

suggest that greater host biodiversity expands the pool of available pathogens, thus increasing the 366 

probability for novel zoonotic pathogens to emerge [13]. 367 

Among integrity metrics, human footprint and ecoregion intactness – respectively representing 368 

human pressure and its effects on ecosystems’ structure – were especially important in shaping EID 369 

risk. The biodiversity habitat index, which measures the effects of anthropogenic disturbances on 370 

ecosystems’ biological composition, also played an important role in predicting risk. EID risk was 371 

high for values of ecological integrity that indicate moderate levels of anthropogenic alteration. These 372 

patterns remain consistent regardless of the extent of forest cover, suggesting that human activities 373 

altering ecologically intact and nearly intact areas pose a more significant risk of zoonotic disease 374 

emergence compared to intensification of activities within areas that have already undergone human 375 

modification [13].  376 

The human footprint index was the most important metric in predicting zoonotic EID risk. A low risk 377 

of EID was associated both to very high values (>30), and low values of HFP (< 3) which correspond 378 

to heavily impacted areas and intact or near-intact lands, respectively [38]. A HFP threshold of 3 has 379 

already proved to be an important predictor of transitions in extinction risk for terrestrial mammals 380 

[54,55] suggesting that the same drivers of extinction risk, such as habitat loss, degradation, and 381 

fragmentation, are also associated with increased zoonotic risk. In fact, the probability of EID events 382 

is lower in wilderness areas compared to non-wilderness areas, and this pattern occurs for each level 383 

of forest cover. At the same time, highly modified areas are less susceptible to EID risk from wildlife, 384 

as very few species are able to live in these areas, leading to a much lower diversity of pathogens. 385 

The highest risk was associated with HFP values around 5. Values of HFP between 3 and 5 indicate 386 

moderately modified rural areas subject to intermediate levels of human pressures and land 387 
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conversion. HFP greater than 3 corresponds to a level of human pressure comparable to that found in 388 

pasture lands, while an HFP of 7 or greater is considered equivalent to intensive agriculture [38]. The 389 

relationship between human footprint and EID risk emerging from this analysis is consistent with 390 

previous findings about the role of human presence and anthropogenic land-use changes in increasing 391 

EID risk. Importantly, human footprint was identified as a key predictor of epidemic cases of major 392 

vector-borne diseases such as dengue, chikungunya, and Zika, due to human-driven ecological 393 

changes that affect vector species distribution and disease incidence [56]. Rural areas are associated 394 

with agricultural expansion and intensification that promote EID risk in close proximity with natural 395 

highly-diverse habitats [28,57]. Anthropogenic pressures have been shown to alter ecological systems 396 

and continue to expand into new areas, with land conversion mostly occurring in tropical rainforests 397 

[58]. Changes in land-use increase contact rates between humans and wildlife, disrupting natural 398 

disease dynamics [26,28]. These changes often alter species diversity and abundance within 399 

ecological communities, affecting pathogens’ transmission rates and exposing novel hosts to infection 400 

[13,27]. Moreover, the expansion and intensification of livestock production bring domestic animals 401 

in close proximity to wildlife habitats, creating a pathway for transmission of zoonotic pathogens 402 

from wildlife species to farming communities. High livestock population density, coupled with poor 403 

genetic diversity and health conditions, can increase the probability of zoonotic spillover to humans 404 

by facilitating pathogen shedding and transmission within livestock, leading to an "amplification 405 

effect" [24]. Land conversion is also associated with predictable changes in the local diversity and 406 

taxonomic composition of known wildlife hosts of zoonotic pathogens, probably mediated by 407 

covariance between traits that influence both host status and tolerance to humans [7]. This could be 408 

explained by some life-history features such as small body size, short lifespans, and fast reproduction 409 

[59]. These features enable some wildlife species to cope with human disturbance, but at the same 410 

time make them more prone to acquire and transmit pathogens due to low energetic investment in 411 

adaptive immunity [60,61]. Furthermore, when compared to natural habitats, assemblages in areas 412 

under land-use change have more widespread species on average, especially in tropical latitudes [8]. 413 

In fact, land-use changes can increase the abundance of selected species that have habitat and dietary 414 

niches which overlap with humans enabling direct and indirect contact with similarly adapted 415 

sympatric species, domesticated species, and humans [62]. Johnson et al. [35] suggest that spillover 416 

risk is higher from animal species adapted to human-dominated landscapes that have increased in 417 

abundance and expanded their range following land-use change. Additionally, their research found 418 

that less common wildlife species, categorized with increasingly threatened status by the IUCN Red 419 

List, host significantly fewer viruses shared with humans, when compared to widespread and 420 

abundant wild mammalian species. These trends of biological homogenization occurring in 421 
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ecosystems under anthropogenic transformation may amplify disease risk in human-modified lands 422 

when widespread, generalist, and synanthropic species are also more competent hosts for pathogens 423 

[7].  424 

Along with human footprint, other integrity metrics resulted to be important in predicting EID risk: 425 

ecoregion intactness, which accounts for the extent of habitat degradation, fragmentation and the loss 426 

of habitat quality caused by human pressures, and biodiversity habitat index, which quantifies the 427 

degree of biodiversity intactness in terms of persistence of species diversity. Once again, values 428 

representing intermediate levels of human pressures – ~0.67 for ecoregion intactness and ~0.9 for 429 

biodiversity habitat index, according to the original sources [42,46] – are associated with an increase 430 

in risk. A consequence of the processes of land conversion is the transformation of contiguous natural 431 

habitats into smaller, discrete remnant patches embedded in a matrix of human-modified land. The 432 

resulting changes in edge density may have cascading ecological effects that influence resource 433 

availability, population carrying capacities, species persistence, and the community composition, as 434 

well as increase interspecies contact rates influencing how pathogens are transmitted within and 435 

between species. As demonstrated by Faust et al. [57], intermediate levels of habitat loss correspond 436 

to the maximum edge density, while at high levels of habitat conversion edge density declines, 437 

reducing spillover risk. Intermediate values of the biodiversity habitat index indicate an environment 438 

where moderate habitat changes can lead to altered population dynamics among wildlife species, 439 

creating ecological conditions that can facilitate pathogen transmission among species. The loss of 440 

diversity and changes in species composition can increase the risk of emerging infectious diseases, 441 

especially when it involves animal species that can play a key role in pathogen transmission [63]. 442 

Biodiversity loss due to habitat loss, fragmentation and degradation is size-selective, especially in 443 

tropical forests, and the species most likely to disappear are large-bodied species [64], while smaller-444 

bodied species tend to increase in abundance [63]. Smaller-bodied species, such as rodent, are more 445 

likely to be competent hosts for many pathogens [60] and several disease systems, such as Lyme 446 

disease [36], showed a correlation between large wildlife loss, fluctuations in the abundance of 447 

susceptible hosts and increased disease risk [65]. The positive but weak correlation between 448 

wilderness and EID risk could derive from an oversimplification of habitat conditions, as both near-449 

intact and impact areas are classified as “non wilderness” in this case. Contextual intactness also 450 

revealed a weak influence on zoonotic risk. This could be associated with the complexity of that 451 

metric, which accounts for both habitat condition and patterns of compositional dissimilarity [43]. In 452 

fact, locations in very different environmental conditions might exhibit similar contextual intactness 453 

values, if both are found at the edge of more modified areas, while determining different EID risk 454 

levels.  455 
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This study acknowledges significant limitations. Firstly, data on disease emergence events are 456 

constrained because the primary source, the Emerging Infectious Disease Repository (EIDR) 457 

database [18], was last updated in 2013, omitting events since then. Additionally, many spillover 458 

events, particularly those associated with mild or non-specific symptoms and no human-to-human 459 

transmission, often go undetected or unreported, and the specificity of geographic information for 460 

these events varies widely, ranging from precise coordinates to broader regions. Furthermore, we 461 

acknowledge the presence of representation bias in our analysis, as reports of emerging diseases are 462 

mostly from developed countries [3], while surveillance and spillover detection are lacking in rural 463 

and low-income regions. To address this bias, we incorporated a reporting effort index derived from 464 

Allen et al. [5] which accounts for the varying likelihood of disease events being reported in the 465 

scientific literature. The response variable includes all zoonotic EID events originating from wildlife 466 

reported since 1970, regardless of pathogen type or transmission route (Figure S2). This introduces a 467 

potential limitation as the effects associated with biodiversity metrics may indirectly reflect variations 468 

in pathogen biology and ecology, assuming that not all diseases respond to biodiversity in the same 469 

way [56]. In fact, the degree to which biodiversity affects disease risk may depend on several factors 470 

related to pathogens: host-specialist diseases that are directly transmitted, without free-living stages, 471 

intermediate hosts or vectors are less likely to respond to changes in biodiversity, compared to vector-472 

borne and multi-host pathogens with complex life cycles or free-living infectious stages. Additionally, 473 

the influence of biodiversity on disease risk is contingent on various pathogen-related factors, such 474 

as transmission type, with density-dependent pathogens responding differently from frequency-475 

dependent ones [57,66]. Pathogens may have multiple transmission routes, and their primary pathway 476 

can vary depending on geographic region and host population, increasing uncertainty in large-scale 477 

global analyses [67]. It is also possible that at larger spatial scales, models might be unable to capture 478 

the mechanisms underlying the relationship between biodiversity metrics and EID risk. Johnson et al. 479 

[68] suggested that this relationship varies with scale, being most pronounced locally where species 480 

interactions influence it, and weaker at larger scales where climate and abiotic factors take over as 481 

dominant drivers. The spatial mismatch between the data of zoonotic spillover events and the 482 

explanatory variables also presents a challenge. For instance, the biodiversity intactness index and 483 

the contextual intactness variables have a fine resolution reflecting the spatial compositional turnover 484 

at the local ecological scale of 1 km. However, when aggregated to a coarse one-degree resolution, 485 

these variables might lose valuable information, potentially reducing their importance within risk 486 

models. Hence, interpreting these results in absolute terms requires caution, as the predictive power 487 

and effect of these variables may vary when assessed on a different, finer scale.  488 

 489 
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5. Conclusion 490 

We showed how metrics that represent different dimensions of ecological integrity affect EID risk, 491 

providing evidence that goes beyond simple biodiversity metrics (such as species richness) typically 492 

used before. By considering these factors, the study offers a broader picture of how anthropogenic 493 

pressures influence ecosystem structure and composition, subsequently affecting zoonotic risk. Our 494 

findings reveal that the highest EID risk occurs at the initial stages of ecosystem degradation, as 495 

demonstrated by human footprint, ecoregion integrity, and biodiversity habitat index. This suggests 496 

that altering areas with high structural and compositional integrity may result in an immediate 497 

increase in EID risk. Another important finding emerging from this study is the complex relationship 498 

between tropical forest cover and disease risk. We found the assumption that high levels of forest 499 

density directly result in high risk is an oversimplification. Our results clearly illustrate this 500 

complexity, showing that risk levels increase when, under conditions of consistent forest density, 501 

intermediate levels of compositional or structural integrity are present. This study underscores the 502 

need to expand our perspective on biodiversity metrics beyond species richness alone. While species 503 

diversity is important, it is not the only factor influencing EID risk. Among the integrity variables we 504 

examined, the human footprint emerged as a highly predictive factor indicating the importance of the 505 

cumulative environmental impact of anthropogenic pressures on zoonotic risk predictions [56].  506 

Empirical findings from our study underscore the importance of preserving ecosystems with high 507 

ecological integrity. These areas not only play a crucial role in conserving biodiversity but also 508 

contribute to the reduction of zoonotic disease risk, aligning with the targets outlined in the Kunming-509 

Montreal Global Biodiversity Framework [14]. The relationship found between human footprint and 510 

EID risk supports the Framework's objectives and emphasizes the need for integrated efforts to 511 

safeguard both ecosystem integrity and public health in the face of global environmental changes. 512 

Future research should continue to explore the complex connections between biodiversity 513 

conservation, ecological integrity, and disease risk, providing a robust empirical foundation for the 514 

effective implementation of the Framework's goals [17]. 515 
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