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Abstract
QuantumRecurrentNeuralNetworks are receiving an increased attention thanks to their enhanced
generalization capabilities in time series analysis. However, their performances were bottlenecked by
long training times and unscalable architectures. In this paper, we propose a novel Quantum
RecurrentNeuralNetworkmodel based onQuantumGatedRecurrentUnits. It uses a learnable
VariationalQuantumLayer to process temporal data, interspersedwith two classical layers to properly
match the dimensionality of the input and output vectors. Such an architecture has fewer quantum
parameters than existingQuantumLong Short-TermMemorymodels. Both the quantumnetworks
were evaluated on periodic and real-world time series datasets, together with the classical
counterparts. The quantummodels exhibited superior performances compared to the classical ones
in all the test cases. TheQuantumGatedRecurrentUnits outperformed theQuantumLong Short-
TermMemory network despite having a simpler internal configuration.Moreover, theQuantum
GatedRecurrentUnits network demonstrated to be about 25% faster during the training and
inference procedure over theQuantumLong Short-TermMemory. This improvement in speed
comeswith one less quantum circuit to be executed, suggesting that ourmodelmay offer amore
efficient alternative for implementingQuantumRecurrentNeuralNetworks on both simulated and
real quantumhardware.

1. Introduction

In the past few years,Machine Learning (ML) andDeep Learning (DL) have imposed as primary tools to
automate non-trivial tasks, achieving tremendous performances in tasks such as computer vision [1], natural
language processing [2], sentiment analysis [3] and anomaly detection [4]. In this regard, effective time series
prediction has rapidly emerged as a fundamental problem to be addressed and a variety ofNeural Networks
(NN) architectures have been proposed to this extent. RecurrentNeural Networks (RNN) are commonly
employed for time series processing due to their chain-like structure and ability tomodel temporal
dependencies in a given data sequence. Among them, Long Short-TermMemory (LSTM) [5]networks became a
de facto standard, demonstrating remarkable performances in learning long-termdependencies without
suffering from the vanishing gradient problem.

Themajor issuewith LSTMnetworks is that they are computationally heavy due to their complex gate-based
architecture [6]. For this reason,Gated RecurrentUnit (GRU)networks [7]were proposed as a variant of LSTM
with comparable performances but simpler architecture and faster convergence [8]. GRU cells differ fromLSTM
because they lack the cell state ct and are composed only of a reset gate r and an update gate z, as shown infigure 1.
The reduced computational complexity of GRUs, which have one less gate than LSTMs, contributes to their
faster performance. However, it is important to note that while this architectural difference can lead tomore
efficient computation, themaintenance of satisfactory results depends on various factors, including the specific
application and data characteristics. Therefore, the faster computation enabled by theGRU’s simpler structure
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does not inherently guarantee satisfactory results in all scenarios, but it has been empirically shown to perform
well and even outperformLSTM inmany cases [9, 10].

In recent times, QuantumNeural Networks (QNNs) have emerged as a rising trend inDL [11–13], with the
expectation of superior performances against classical neural networks thanks to the leverage of quantum
superposition and entanglement. QNNs are able to efficiently deal with large-scale heterogeneous data and
perform effective high-dimensional processingwith a reduced number of qubits, leading to faster computation
and lower error rates [14, 15]. The technology behindQNNs goes from superconducting qubits [16] to photonic
systems [17] and trapped-ion devices [18]. Since fault-tolerant quantum computers are still years away,
researchersmade significant advancement in the design of quantumalgorithmsmeant to be executed onNoisy
Intermediate-ScaleQuantum (NISQ) devices.

Inspired by [19], in this workwe propose a novel quantum variant of aGRU,whichwe denote asQuantum
GRU (QGRU); to the best of our knowledge, it is thefirst implementation of aGRU in a variational quantum
environment. TheQGRUhas 25% fewer quantumparameters with respect to theQuantumLSTM (QLSTM)
and is about 25% faster both in the training and inference phase. In view of the current challenges associated
with running quantum circuits on both simulators and real quantumdevices, a less complex network
architecture ismore practical and feasible for the capabilities of contemporary quantumhardware.Moreover,
we also perform a fair comparison between the proposed quantumnetworks and their classical counterparts, i.e.
an LSTMand aGRUwith the samemagnitude of parameters. The forecasting ability of the networks is evaluated
on three different datasets: a simple periodic function, a sunspots time series and the actual generation of wind
energy in Italy for themonth of June 2022. This is the first time that feasible quantum recurrent variational
models are assessed on realistic problems. In fact, the second and third dataset represent real-world challenging
tasks due to stochastic fluctuations typical of sunspots andwind energy data. Both the quantummodels have
superior performances compared to the classical ones in all the test cases, and theQGRUoutperforms the
QLSTMdespite having a simpler architecture.

The original contributions of ourwork can be summarized as follows:

• Our paper introduces, for thefirst time, a novel QGRUmodel composed of parameterized quantum circuits.
TheQGRU is distinct from existingmodels such asQLSTM, representing a novel approach to quantumRNN;

• Weperform a comprehensive complexity analysis, demonstrating that theQGRU requires 25% fewer
quantumparameters compared to the previously proposedQLSTM. This reduction in parameters is a
significant advancement in quantum circuit design, contributing to the efficiency of quantummodels;

• To the best of our knowledge, our work is thefirst to benchmark bothQGRUandQLSTMon real-world
challenging problems such as sunspots cycle andwind power generation forecasting. This application of
quantummodels to practical scenarios extends the scope ofQNNs research.

• In all tested scenarios, ourQGRUconsistently outperformsQLSTMand their classical counterparts. This
empirical evidence underscores the efficacy of our proposedmodel in solving real-world problems,
demonstrating its practical utility.

Figure 1. Internal structure of a classical GRU cell. Here, ht represents the hidden state at the current time step t, and ht−1 represents
the hidden state from the previous time step t − 1. The candidate hidden state is represented by ht

˜ , while xt is the input vector at time t.
The symbolσ denotes the sigmoid activation function, which is applied to the concatenated input vector [ht−1, xt]; the symbol tanh
represents the hyperbolic tangent activation function; the ‘x’mark indicates element-wisemultiplication (i.e. Hadamard product); the
‘+’ symbol denotes element-wise addition; the ‘1-’ symbol represents the operation of subtracting the input vector fromone,
effectively inverting the values within the unit range.
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• Weempirically show that theQGRUnetwork is approximately 25% faster in both the training and inference
stages compared toQLSTM. This efficiency gain is crucial formaking quantumalgorithmsmore accessible
and less demanding on current quantumdevices and simulators.

This paper is organized as follows. Section II gives a detailed overview of the state-of-the-art forQNNs. In
section III we introduce some basic concepts onQuantumVariational Learning. In section IV the architecture of
theQGRU is described. SectionV contains the experimental results of our work. Finally, the conclusions and
future prospects are reported in sectionVI.

2. Relatedworks

The quest for low-depthQuantumMachine Learning (QML) algorithmsworkable for small-scale quantum
systems led to the adoption of VariationalQuantumCircuits (VQCs), which currently represent themost
effective way to harness quantum advantage offered by quantum computers [20, 21]. VQCs are based on a
hybrid quantum–classical procedure: the quantum circuit ismade up of parametrized quantum gates which can
be optimized in an iterative frameworkwith the help of a classical co-processor. VQCs allow to efficiently design
low-depthQNNs that can be implemented on the availableNISQdevices; the learnable parameters can
effectively absorb noise during the iterative optimization process without incorporating any information
coming from the noisy component. A layered architecture is used to encode input data into the circuit and
process quantum states in a high-dimensionalHilbert space [22]. SuchVQCs are succeeding inmany common
DL tasks [23, 24] aswell as real-world applications [25]. For instance, authors in [26] propose a circuit-centric
quantum classifier architecture which is ready to be implemented onNISQdevices. It predicts class labels of
quantum encoded data viameasurements of a chosen observable and demonstrates good resilience to noise.
Researchers in [27] introduce amulti-layerQuantumDeepNeural Network (QDNN)with three variational
layers to solve an image classification task. They found out that theQDNNhave higher expressive power than
classical DeepNeural Networks (DNN). An hybrid quantum–classical Convolutional Neural Network is
presented in [28] as image classifier. It is employed in a remote sensing context, achieving better performance
over the classical counterpart.

Nevertheless, despite being a frequently studied problem inDL [4, 29–31], time series forecasting has not
been thoroughly investigated in the quantum realm. Although several quantum approaches were considered for
time series prediction [12, 32–34], fewworks concerning quantumRNNhave already demonstrated a concrete
quantumadvantage with respect to classical RNN in the literature. Researchers in [35] propose aQuantum
WeightedGated Recurrent UnitNeural Network (QWGRUNN)which shows improved performance in terms
of prediction error compared to classical alternatives. Original GRUweights and activity values are substituted
byweight-qubits and activity-qubits respectively, but this leads to increased computational complexity,making
such an architecture unfeasible for currentNISQdevices. Similarly [36], use a quantumweighted neuron to
build aMogrifier-QuantumWeightedMemory Enhancement LSTM (Mogrifier-QWMELSTM) to successfully
forecast integrated energy distribution system time series. AContinuous-VariableQuantumRNN (CV-QRNN)
network based on the continuous-variable quantum computing paradigm is introduced in [37], leading to faster
convergence and better performance compared to the classical counterpart. However, itmakes use of specialized
quantum-photonic hardware, whichmay pose challenges in terms of experimental implementation and
resource overheadswith current technologies. [38] proposes a ParametrizedQuantumLSTM (PQ-LSTM)
model, i.e. a neural networkwhich has an initial classical LSTM layer followed by a parametrized quantum layer.
The PQ-LSTM is used to predict stress levels of knowledgeworkers, but the goodness of themodel cannot be
properly evaluated because no comparisons weremadewith the classical counterpart. Authors in [39] realize a
Duplication-freeQuantumLSTM (DQLSTM)neural network for natural language processing problems.
However, theDQLSTMmodel encodes classical data into the quantum circuit through an amplitude encoding
method, which is highly inefficient and unfeasible for large datasets. Both [40] and [19] propose an angle
encodedQLSTM,where the underlying idea is to replace the learnable parametersW* and b* of the classical
LSTMwith variational layers composed of parametrized quantum gates. In the latter approach, VQCs layers are
interposed between two classical Fully Connected (FC) layers to properlymatch the dimensionality of the input
and output vectors, respectively. Based on themodel proposed in [19], several simple applications in natural
language processing [41, 42] andmaterial synthesis [43] are present in the literature.
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3. Basic concepts on variational quantumcircuits

VQCs represent themost promising approach to implementQML algorithms andQNNs onNISQdevices. A
VQCconsists of a data encoding stage, a properly designed ansatz applied to the quantum state and a
measurement operation at the end of the circuit, as illustrated infigure 2.

To encode classical data

x RnÎ into an n qubit quantum circuit, a quantum featuremap H: Rn 2nf  is

applied, where H 2n
is a 2n dimensionalHilbert space. It corresponds to applying a unitarymatrix


U x( )f to the

initial state 0 n∣ ñÄ :
 

U x x0 . 1n( )∣ ∣ ( ) ∣ ( )f yñ = ñ = ñf
Ä

A suitable data encoding strategy is crucial for the attainment of a quantum advantage. An efficient
representation of classical input data through quantum states is a necessary prerequisite to benefit from
quantum technologies [44], and the selection of the unitary


U x( )f has a considerable impact on the performance

of the underlyingVQC.Although various data encoding techniques have been proposed in the literature
[22, 45], angle encoding is themost popular and efficientmethod to encode continuous variables into quantum
states [15, 27, 44]. It employs parametrized rotation quantumgates to encode each input feature into a qubit:
angle encoding allows to represent n input features bymeans of n qubits. The value of the rotation parameters
directly corresponds to the value of the input features. In this paper, the chosen encoding consists of a layer ofRx

parametrized gates, as shown infigure 3.

After data encoding, an ansatz


UW ( )q of

q-parametrized unitaries is applied to the state ∣yñ. Such unitaries

aremade of tunable single-qubit rotation gates, which are randomly initialized, and fixed entangling gates.
Rotations are used to adequately control the quantum state space, while entanglement allows to create deeply
correlated quantumvectors among all the qubits. During the computation, parameters optimization is
performed bymeans of a classical co-processor in an iterative framework. Rotations and entanglement layers
may be applied repeatedly to realizemore expressivemodels [15]. The list of proposed ansatzes in literature is
large andwidely studied [15, 46]. The hardware-efficient ansatz [47], consisting of alternating layers of
parametrized single-qubit gates and entangling two-qubits gates, has imposed as a promising solution thanks to
the good trade-off between circuit expressivity and trainability [27, 28]. Hardware-efficient ansatzes have
structured architectures, easy to be efficiently implemented onNISQdevices. For this reason, the ansatz selected
in this work ismade up of alternating layers of parametrizedRx gates followed byCNOTgates with circular

Figure 2.High-level scheme of a VQCwithmeasurements in Pauli-Z basis.

Figure 3.The chosen quantum featuremap. Each feature value xi, i = 1...n, is the argument of a parametrizedRx rotation gate.

4

J. Phys. Commun. 8 (2024) 085004 ACeschini et al



entanglement, as illustrated infigure 4. Circular entanglement connects every qubit with its neighbor in a
sequential fashion; the last qubit is considered as a neighbor to the first qubit. To increase the generalization
ability of theVQC,we chose tofix the ansatz depth to 2; a depth greater than 2was not taken into consideration
to prevent overfitting.

Ameasurement operation is performed at the end of the circuit to extract the outcome of the quantum
circuit. Qubits aremeasured in a desired basis to obtain the following prediction:

     
f x x U OU x, , 2W W( ) ( )∣ ( ) ˆ ( )∣ ( ) ( )†q f q q f= á ñ

which corresponds to estimating the expectation value Ôá ñof an observable Ô. Due to the probabilistic nature of
quantummechanics, several shots of the circuits are necessary to get the expected value of the designated
observable. The expected value Ôá ñcan be intended as theweighted sumof the eigenvalues, where theweights
represent the probabilities that themeasured state vector is in the associated eigenstate. For this work,
measurements are carried out in the Pauli-Z basis, which has+1 and−1 as eigenvalues. Consequently, the
output of theVQC for a given qubit state will be restricted to the [−1, 1] range.

The outcome
 

f x ,( )q of theVQC is then evaluated into a cost function
 

C f x ,( ( ))q and the parameters

q are

properly optimized using a classical processor. Such quantum and classical steps are run iteratively in cycle to

find better

q parameters at every step. To update


q and train theQNNs, gradient-based techniques can be used;

gradients in a parametrized quantum circuit are calculated via the parameter-shift rule:

⎡
⎣

⎤
⎦

f x f x f x,
1

2
,

2
,

2
, 3( ) ( ) ( ) ( )q q

p
q

p
 = + - -q

where


f x ,( )q is the output of the quantum circuit and θ is the parameter to be optimized.

4.QuantumGRU

Herewe proposeQGRU, a novel recurrentQNNarchitecture which extends theGRUmodel by introducing
VQCs layers into each cell. For the sake of completeness, the equations governing the behavior of aGRU cell are
hereafter reported:

r W h x b, , 4t r t t r1( [ ] ) ( )s= +-

z W h x b, , 5t z t t z1( [ ] ) ( )s= +-

h W r h x btanh , , 6t o t t t n1
˜ ( [ ] ) ( )= ´ +-

h z h z h1 . 7t t t t t 1( ) ˜ ( )= - ´ + ´ -

Once again, symbol ‘×’ denotes element-wise (Hadamard)multiplication.

Figure 4.The design of the chosen ansatz with depth 2.
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4.1. Architecture of aQGRUcell
The rationale is to substitute the original GRUʼs weightmatrices withVQCs and FC layers to leverage quantum
properties and improve the computation. In total, aQGRU cell contains 3 different VQCs layers, one per each
nonlinearGRU function, as depicted infigure 5. TheVQCs allow to effectively project input data into a high-
dimensional feature space and apply unitary transformations to an exponential state space, thus enhancing
information processing inside the cell. Every VQC layer is interspersedwith two classical FC layers, namely FCin

and FCout, whose role is tomatch the input and output dimensionality of the quantum layer respectively. In
order to reduce the number of classical parameters and lighten the computation, theweights of the FCin and
FCout layers are the same for every cell gate. The design of aVQC layer is reported infigure 6. It is composed of a
layer ofRx gates for data encoding, an ansatz of parametrizedRx gates with circular CNOT entanglement and
finalmeasurement operations applied to all the qubits. The equations describing the behavior of aQGRUcell are
hereafter listed:

r h xFC VQC FC , , 8t t tout reset in 1( ( ( ([ ])))) ( )s= -

Figure 5. Internal scheme of aQGRUcell.

Figure 6.Circuital schema of the proposedVQC.
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z h xFC VQC FC , , 9t t tout update in 1( ( ( ([ ])))) ( )s= -

h r h xtanh FC VQC FC , , 10t t t tout out in 1
˜ ( ( ( ([ ])))) ( )= ´ -

h z h z h1 , 11t t t t t 1( ) ˜ ( )= - ´ + ´ -

where theVQC*( · ) function represents the processing inside the quantum circuit. The output of all the
variational layers is an n-dimensional vector corresponding to Pauli-Z expectation values of each qubit, where n
is the number of qubits in the quantum circuit. This way, it is possible to apply nonlinear functions such asσ( · )
and tanh(·) to the output of the quantum circuit, introducing nonlinearity at the end of the quantum
computation. The selection of nonlinear functions, specifically the sigmoidσ( · ) and hyperbolic tangent tanh(·)
functions, is based on their well-established roles in the architecture ofGRU cells. The sigmoid functionσ( · ) is
chosen for its ability tomap input values to a range between 0 and 1. This propertymakes it particularly useful
for gatingmechanismswithin theGRU, such as the update and reset gates, where it effectively controls the extent
towhich information is updated or forgotten. The output of the sigmoid function can be interpreted as a
probability or a level of activation, which is crucial for regulating the flowof information through the network.
The hyperbolic tangent function tanh(·) is selected for its capability tomap input values to a range between -1
and 1. This characteristicmakes it ideal for creating a balanced output that includes both positive and negative
values, which is beneficial for learning complex patterns in the data and providing a range that supports gradient
propagation and stable learning dynamics. Regarding the sensitivity of the procedure to these design choices, it is
important to note that the performance ofGRU cells can indeed be influenced by the choice of activation
functions.Whileσ( · ) and tanh(·) are commonly used due to their effectiveness in practice, alternative activation
functions can be explored.However, deviations from these standard functionsmay require additional tuning of
other hyperparameters and careful consideration of the overall network architecture tomaintain stability and
performance.

4.2. Information processing inside aQGRUcell
The information flow inside eachQGRUcell is hereafter explained. First, xt and ht−1 input data are concatenated
into the input vector [ht−1, xt]. The latter is then fed into the reset block and the update block, where VQCreset

andVQCupdate are used to delete andmanipulate information respectively. The resulting rtmultiplies the past
hidden state ht−1; the vector [rt× ht−1, xt] is processed by the classical and theVQCout layers to calculate the
candidate hidden state ht

˜ . Finally, the new hidden state ht is obtained as a result of the output block
computation, involving zt, the candidate hidden state ht

˜ and the past hidden state ht−1.
SuchQGRUarchitecture based onVQCs and classical FC layers provides great flexibility in the construction

of the network. TheVQCs layers can be employed to better approximate the complex dynamics of the
underlying time series data without worrying about their dimensionality, which is handled by the FC layers. The
parameters of themodel are properly updated via the backpropagation algorithm. The parameter-shift rule is
used to compute the gradient of the quantum circuits, which is then backpropagated through the network.

4.3. Complexity analysis
Finally, it is worth to conduct a complexity analysis of both theQLSTMand theQGRUmodels; the equations
governing the behavior of theQLSTMcan be found in [40]. Let dhid be the hidden dimension, n the number of
qubits composing each quantum circuit, din the number of input features and let l be the number of ansatz layers
of eachVQC. The number of parameters composing a single VQC layer is n l. The FCin classical layer receives
dconc features in input, where dconc is the dimension of the concatenated vectors [ht−1, xt] and [rt× ht−1, xt], i.e.
dconc= dhid+ din, and outputs a vector with n dimensions. Similarly, the FCout layer receives in input n features
and outputs a vector with dhid features. Therefore, the number of parameters in the FCin and FCout layers are
ndconc+ n and ndhid+ dhid respectively. TheQLSTM is composed of 3 gates and 1 cell buffer, so it has 4VQCs, 1
FCin and 1 FCout trainable layers. Then, the total number of parameters composing aQLSTMcell is
4nl+ (ndconc+ n)+ (ndhid+ dhid), which is equal to n(4l+ 2dhid+ din+ 1)+ dhid; the number of quantum
parameters is 4nl. Similarly, aQGRUcell has 3VQCs, 1 FCin and 1 FCout trainable layers. The number of
parameters in aQGRUcell is n(3l+ 2dhid+ din+ 1)+ dhid, where only 3nl are quantumparameters.
Consequently, it is evident thatQGRUuses 25%quantumparameters less thanQLSTM, leading to faster
computation. This is particularly suitable for the current state of quantum technology, since both quantum
simulators and real devices struggle in executing quantum circuits efficiently.

5. Experimental validation

Weperformed three different experiments to assess the goodness of theQGRUmodel. Thefirst experiment,
whichwe called Experiment I, consisted in learning a simple periodic function, which is a commonbenchmark
for recurrent networks. The second experiment, namely Experiment II, tested the performance of themodel on

7

J. Phys. Commun. 8 (2024) 085004 ACeschini et al



themonthly average number of sunspots from January 1749 to July 2018. Predicting sunspots is a widely studied
yet not trivial problem in physics due to their fluctuations and recurrent neuralmodels are usually employed to
obtain satisfactory results, so a performance evaluation ofQGRU in this context was appropriate. Finally, in
Experiment III we tackled a challenging real-world problem related towind power production time series
forecasting. The networkwas trained to predict actual wind output power generated in Italy in themonth of
June 2022. The prediction of wind energy data is considered an ambitious task because the underlying time series
may exhibit a very unstable behavior, depending on seasonality aswell as onweather conditions.

These datasets were selected due to their established use as benchmarks for evaluating recurrent networks
and their intrinsic characteristics, which pose varying degrees of complexity in time series prediction. The
periodic function dataset, used in Experiment I, is a standard benchmark to assess the ability ofmodels to learn
and predict periodic patterns effectively. This choice is not inherently tied to the capabilities of the basicmodel
but rather serves to evaluate the fundamental competency of themodel in capturing and predicting regular
periodicity. In Experiment II, the sunspot dataset is known for its challenging nature due to the stochastic
fluctuations and inherent periodicity of sunspot activity. This dataset is frequently employed in literature to test
the robustness of recurrentmodels against complex real-world time series with quasi-periodic characteristics.
For Experiment III, thewind power generation dataset represents a real-world applicationwith highly unstable
behavior influenced byweather conditions and seasonality. The choice of this dataset aims at testing themodel’s
ability to handle highly volatile and non-periodic data, further demonstrating its generalization capabilities
beyond periodic or quasi-periodic data.

5.1. Experimental setup
In all the experiments, the forecasting problemwasmodeled as follows. Given the scalar time series of interest S
and awindow size k, all the observations from the current sample tup to the sample t− k+ 1 are fed into the
model. The latter is trained to forecast the next sample t+ 1, thus resulting in the forecasted scalar S t 1˜[ ]+ . The
window size was chosen to be k= 5 for all the test cases.

We compared ourQGRUwith aQLSTMandwith their classical counterparts, that is aGRU and an LSTM.
We also compared all themodels with aNaive predictor, which is a straightforward forecastingmethodwhere
the prediction for any given time step is simply the value observed in the previous time step. Formally, for a time
series S, theNaive predictor is defined such that for each value S[t] at step t, the prediction for the next step t+ 1
can be expressed as:

S t S t1 . 12˜[ ] [ ] ( )+ =

This straightforward approach serves as a baseline reference for evaluating the performance ofmore
sophisticatedmodels and allows us to assess whether the proposed quantum-inspired architectures outperform
a simple heuristic approach. TheNaive predictor’s simplicity,minimal assumptions, and established use in
literature [48–50]make it an appropriate and effective baseline for evaluating the performance ofmore advanced
models. Since it operates under the reasonable assumption that future values are similar to themost recent
observed value, it provides a basic performance standard that any advancedmodel should exceed. The list of
hyperparameters of the networks, which is the same for all the experiments, is reported in table 1, where dhid is
the hidden dimension of the recurrent cell, 'qubits' indicates the number of qubits and l the number of layers
inside eachVQC. The hyperparameters of the networkwere selected after a rigorous grid search procedure,
bearing inmind that as the number of qubits and quantum layers increased, the computation became
exponentially expensive.We noticed that different hyperparameters led to similar outcomes and did not affect
significantly the results of the experiments. Tomake a fair comparison, themagnitude of parameters in each
quantummodel was chosen in such away that it was comparable with the number of parameters inside the
respective classicalmodels. The total number of parameters for each recurrentmodel is presented in table 2.

Moreover, all the networks had afinal FC layer to compile the output of the recurrent layer to a suitable
output dimension, i.e. a scalar output.

In each experiment, the corresponding dataset was divided into 80% train and 20% test.Moreover, before
the training phase, the raw time series was scaled in the range [−1, 1] to best suit the output of theVQCs; the

Table 1.Network structures and related
hyperparameters.

Model dhid qubits l

QGRU 3 4 2

QLSTM 3 4 2

GRU 3 — —

LSTM 3 — —
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scaler wasfitted using the training set only. To guarantee a good and fast convergence, themodels were trained
using the RMSprop algorithm and an extensive grid search procedure was carried out for the tuning of training
hyperparameters, which are listed in table 3 for each experiment.

We have empirically tested various hyperparameters and optimizers to determine themost effective training
method for ourmodels. Our experiments revealed that RMSprop slightly outperformedADAM in terms of
convergence speed and overallmodel performance. These findings are in alignment with recent literature on
QNNs [40, 51–53], which suggests that RMSprop can bemore effective than other optimizers in navigating
certainQNN loss landscapes.

All the networkswere implemented in Python 3.8with PyTorch. The quantum layers were realized in
PennyLane, a frameworkwhich enables local quantum circuits simulations and integrationwith classicalNN.
Sincewe used a Python-based simulator to run our quantum circuits, we adopted PennyLane’s adjoint
differentiationmethod [54] to speed up the computation, which guarantees a fast andmemory efficient way to
differentiate quantum circuits. Amachine equippedwith anAMDRyzen 7TM 5800X 8-Core CPU at 3.80 GHz
andwith 64 GB of RAMwas used for the experiments.

TheMean Squared Error (MSE) andMeanAbsolute Error (MAE)were selected as errormetrics to evaluate
the performances of themodels, as they are standard errormetrics in supervised learning.MSEwas also selected
as loss function to train the networks because it ismore sensitive to larger errors. In order to prove the robustness
of our approach against randomparameters initializations, we performed 10 runs of the algorithms for every
test case.

5.2. Experiment I: periodic function
Asfirst experiment, we investigatedQGRUʼs ability in learning a simple periodic function, that is the sine
function y xsin( )= . Despite it represents a basic learning task, it is commonly used as a reference benchmark
for recurrent neural networks [40, 55]. As shown in table 4, the results of Experiment I highlight that theQGRU
model totally outperformed the other networks as for the error rate, both in terms ofMSE andMAE. In
particular, theMSE for theQGRU is 38% less than the one obtained by the LSTM, 46% less than the one
obtained by theGRUand 33% less than theMSE obtained by theQLSTM.At the same time, theQLSTM
performed better than the two classicalmodels: itsMSE error is 8%and 20% less than the one achieved by LSTM
andGRU, respectively. In addition, QGRUandQLSTMʼs errors aremore stable thanGRUand LSTMʼs, as

Table 2.Number of classical and quantum
parameters.

Model Classical Quantum Total

QGRU 35 24 59

QLSTM 35 32 67

GRU 54 — 54

LSTM 72 — 72

Table 3.Training hyperparameters.

Experiment Epochs Initial learning rate learning rate

learning rate drop period drop factor

I 130 0.01 95 0.7

II 120 0.01 100 0.7

III 180 0.01 160 0.8

Table 4.AverageMSE andMAEwith standard deviation for
experiment i test set.

Model MSE MAE

QGRU 0.00144 ± 0.00086 0.03269 ± 0.01152

QLSTM 0.00214 ± 0.00056 0.04215 ± 0.00573

GRU 0.00268 ± 0.00173 0.04396 ± 0.01497

LSTM 0.00233 ± 0.00138 0.04135 ± 0.01313

Naive 0.00487 0.06245
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indicated by the lower standard deviation of such errors. All the neuralmodels outperformed theNaive
predictor, which has an almost doubledMSE andMAE compared to them.

The good behavior of theQGRU is illustrated infigures 7 and 8, where it is evident that the predicted curves
strictly follow the original underlying functions.We can observe larger errors near the turning points of the
sinusoidal function, precisely just before and after the turning points. This behavior is primarily due to the
model’s limited complexity, as it consists of only one layer. This single-layer architecture restricts themodel’s

Figure 7.Comparison between theQGRU (blue) and the ground truth (orange) for Experiment I test case. The absolute error between
the prediction and the ground truth (magenta) is also reported to clearly highlight the differences between the two curves.

Figure 8.Comparison between theQGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
and test ground truth (green) for Experiment I test case. The black dashed line represents the 80%–20%Training-Test data split. The
absolute error between the prediction and the ground truth (magenta) is also reported to clearly highlight the differences between the
two curves.
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ability to capture the sharp changes in the function’s direction at the peaks and troughs effectively.
Consequently, themodel struggles to approximate the steep gradients and rapid transitions accurately, resulting
in slightly higher errors in these regions.

5.3. Experiment II: sunspots cycle
In this second experiment, we studied the capability of the proposedQGRU in approximating a real-world
sequence, i.e. themonthlymean total sunspot number from January 1749 to July 2018. Sunspots are temporary
phenomenamanifesting on the Sun’s photosphere as areas darker than their surroundings. Datawas gathered
together by the solar physics research department of the RoyalObservatory of Belgium.Due to the intrinsic
fluctuations typical of this phenomenon, it is considered a hard prediction task even for recurrent neural
models. Nevertheless, QGRU still obtained satisfactory results, showcasing a reduction inMSE by 5.15, 15.6 and
5.47 points compared to the LSTM,GRUandQLSTMmodels respectively, as reported in table 5. TheQLSTM
network achieved comparable results with respect to the classical counterpart in terms ofMSE, while achieving a
0.11 points lowerMAE. Both quantummodels greatly surpassedGRUʼs performance inMSE andMAEmetrics.
The robustness of the proposedQGRUmodel was substantiated through an examination of standard deviation
values. Specifically, the standard deviationwas twice as high in the conventional LSTMarchitecture and even
four times greater inQLSTMandGRUnetworkswhen contrastedwith the values observed in theQGRUmodel.
In general, the underlying intuition is that quantummodels were able to project input data into a high-
dimensional quantum feature space, thusfinding newhidden patterns among temporal observations; the
resilience against stochastic fluctuationsmadeQGRUandQLSTMable to conduct amore effective and noise-
resistant data processing.

Despite the aforementioned difficulty in predicting stochastic temporal sequences, all the neuralmodels
greatly outperformed theNaive predictor and found an underlying pattern in sunspots data. Also in this setting,
QGRUʼs prediction still demonstrated to be very accurate compared to the ground truth time series, as shown in
figure 9 andfigure 10.

5.4. Experiment III: wind power generation
Finally, Experiment III assessed the performance of the proposed quantummodel in another real-world
scenario: the taskwas to forecast thewind power generation,measured inGWh, occurred in Italy in themonth
of June 2022.Data were sampled hourly, thus the dataset was composed of 24 daily observations per 30 days,
resulting in 720 total samples. Due towind’s highly unstable behavior, caused byweather conditions aswell as by
seasonality, wind power prediction is considered to be an exceptionally hard task. Again, the rationale herewas
to exploit the quantummodel’s ability to approximate highly complex and volatile sequences thanks to its high-
dimensional quantum state space. The performances of all themodels are reported in table 6. Except for the
LSTM, all the neuralmodels greatly outperformed theNaive approach, showcasing their capacity to capture
intricate patterns and dependencies within the time series data. Despite being a simple network, QGRUhad
remarkable performances: theMSE errorwith respect to LSTM,GRUandQLSTMdecreased by 40%, 28%and
4% respectively. Similarly, theMSE for theQLSTMwas 37% lower than the one for the LSTMand 25% lower
than the error obtained by using theGRU.Alike the previous experiments, also in this case the standard
deviation revealed the robustness of the proposed approach, being less than half the standard deviation of the
classical counterparts.

A visual comparison betweenQGRUʼs predictions and the observed sequence is illustrated infigure 11 and
infigure 12. The quantummodel accurately predicted the underlying time series: the predicted sequence
overlaps almost perfectly with the true one, and also thefluctuating and spiking behaviorwasmodeled correctly.

5.5. Training and inference times
Ultimately, another significant result that wewant to stress in this paper is related toQGRUʼs runtime
performances, whichwere expected to be about 25%better than theQLSTMones, since the quantum layers act

Table 5.AverageMSE andMAEwith standard
deviation for experiment II test set.

Model MSE MAE

QGRU 540.47 ± 6.76 17.18 ± 0.17

QLSTM 545.94 ± 23.63 17.20 ± 0.33

GRU 556.07 ± 29.57 17.63 ± 0.84

LSTM 545.62 ± 11.82 17.31 ± 0.41

Naive 636.01 18.20
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as bottlenecks in the computation. In order to compare them,we calculated the average training and inference
times of the twomodels for each experiment, as reported in table 7. The training timeswere computed by
averaging on the entire training process over all the 10 runs, while the inference times correspond to the
individual sample (i.e. time series) processed by the algorithm. It is worth to highlight that the reported runtime
performances pertain to executions carried out on the Python simulator and not on a real device. Although the
training and inference timeswould be drastically lower if computed on an actual quantum system, a faster
quantum recurrent neural network architecture would be beneficial both in simulation and realistic settings.

Figure 9.Comparison between theQGRU (blue) and the ground truth (orange) for Experiment II test case.

Figure 10.Comparison between theQGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
and test ground truth (green) for Experiment II test case. The black dashed line represents the 80%–20%Training-Test data split.
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Anothermajor aspect to point out is thatQMLmodels have not been optimized forGPUusage yet, hence the
computational times of the quantummodels refer to theCPUonly.

The results presented in table 7 underlineQGRUʼs remarkable runtime performances, which are about 25%
faster thanQLSTMʼs. They are in linewith the expected theoretical results and confirm the efficiency of the
proposed approach. For the sake of completeness, the average training and inference times ofGRU and LSTM
models were reported in table 7 aswell.While itmight seem informative to compare these times directly, it is
important to note that simulations of quantummodels on classical hardware are inherently slower than their
classical counterparts. Comparing their average training and inference times could thus bemisleading, as it does
not accurately reflect the true performance potential of quantummodels.

Figure 11.Comparison between theQGRU (blue) and the ground truth (orange) for Experiment III test case.

Figure 12.Comparison between theQGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
and test ground truth (green) for Experiment III test case. The black dashed line represents the 80%–20%Training-Test data split.
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6. Conclusions

In this paper, we proposed a novel QGRUarchitecture which is simpler, faster andmore performant than the
existingQLSTMnetwork. To assess the goodness of theQGRUandQLSTMmodels, theywere tested on a
simple periodic function aswell as on real-world challenging problems related to time series forecasting. To the
best of our knowledge, it was the first time that quantum recurrentmodels were tested on real-world challenging
problems such as sunspots andwind power generation forecasting.We provided an extensive fair comparison
between the quantummodels and the classical counterparts, highlighting the goodness of theQGRUover all the
othermodels, as well as the goodness of theQLSTMover the two classicalmodels. QGRUhas also demonstrated
to be faster thanQLSTM, as evidenced by training and inference times comparisons among all the three
experiments conducted on the simulator. The core idea at the basis of this paper is that quantum recurrent
neuralmodelsmay attain lower generalization errors over the classical ones due to the projection of input data
into quantumhigh-dimensional states, which allows to capture hidden patterns among data and bemore
resilient to underlying data noise. As highlighted in previous works [56, 57], quantum entanglement facilitates
inseparable associations among input timestep states, creating a comprehensive quantumprobabilistic
description of the sequence of states over time. This description is represented by a quantumpure state vector,
which, when entangled, encodes the non-classical correlations between timesteps states, thereby enhancing the
model’s ability to capture intricate dependencies within the data.

As future works, the quantumnetworks could be run on a real quantumhardware to validate both the
goodness of the results and the computational times on actual quantummachines.More complex data encoding
strategymay be considered and an analysis on different kinds of ansatzes could be pursued aswell. Finally, it
would beworth to investigate the performances of quantum recurrent neuralmodels onmultivariate time
series, considering their inherent ability in finding hidden correlations among features.
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