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Abstract

Quantum Recurrent Neural Networks are receiving an increased attention thanks to their enhanced
generalization capabilities in time series analysis. However, their performances were bottlenecked by
long training times and unscalable architectures. In this paper, we propose a novel Quantum
Recurrent Neural Network model based on Quantum Gated Recurrent Units. It uses a learnable
Variational Quantum Layer to process temporal data, interspersed with two classical layers to properly
match the dimensionality of the input and output vectors. Such an architecture has fewer quantum
parameters than existing Quantum Long Short-Term Memory models. Both the quantum networks
were evaluated on periodic and real-world time series datasets, together with the classical
counterparts. The quantum models exhibited superior performances compared to the classical ones
in all the test cases. The Quantum Gated Recurrent Units outperformed the Quantum Long Short-
Term Memory network despite having a simpler internal configuration. Moreover, the Quantum
Gated Recurrent Units network demonstrated to be about 25% faster during the training and
inference procedure over the Quantum Long Short-Term Memory. This improvement in speed
comes with one less quantum circuit to be executed, suggesting that our model may offer a more
efficient alternative for implementing Quantum Recurrent Neural Networks on both simulated and
real quantum hardware.

1. Introduction

In the past few years, Machine Learning (ML) and Deep Learning (DL) have imposed as primary tools to
automate non-trivial tasks, achieving tremendous performances in tasks such as computer vision [ 1], natural
language processing [2], sentiment analysis [3] and anomaly detection [4]. In this regard, effective time series
prediction has rapidly emerged as a fundamental problem to be addressed and a variety of Neural Networks
(NN) architectures have been proposed to this extent. Recurrent Neural Networks (RNN) are commonly
employed for time series processing due to their chain-like structure and ability to model temporal
dependencies in a given data sequence. Among them, Long Short-Term Memory (LSTM) [5] networks became a
de facto standard, demonstrating remarkable performances in learning long-term dependencies without
suffering from the vanishing gradient problem.

The major issue with LSTM networks is that they are computationally heavy due to their complex gate-based
architecture [6]. For this reason, Gated Recurrent Unit (GRU) networks [7] were proposed as a variant of LSTM
with comparable performances but simpler architecture and faster convergence [8]. GRU cells differ from LSTM
because they lack the cell state ¢, and are composed only of a reset gate rand an update gate z, as shown in figure 1.
The reduced computational complexity of GRUs, which have one less gate than LSTMs, contributes to their
faster performance. However, it is important to note that while this architectural difference can lead to more
efficient computation, the maintenance of satisfactory results depends on various factors, including the specific
application and data characteristics. Therefore, the faster computation enabled by the GRU’s simpler structure
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Figure 1. Internal structure of a classical GRU cell. Here, h, represents the hidden state at the current time step ¢, and h,_; represents
the hidden state from the previous time step t — 1. The candidate hidden state is represented by f,, while x, is the input vector at time z.
The symbol o denotes the sigmoid activation function, which is applied to the concatenated input vector [4,_1, x,]; the symbol tanh
represents the hyperbolic tangent activation function; the x’ mark indicates element-wise multiplication (i.e. Hadamard product); the
‘4’ symbol denotes element-wise addition; the ‘1-’ symbol represents the operation of subtracting the input vector from one,
effectively inverting the values within the unit range.

does not inherently guarantee satisfactory results in all scenarios, but it has been empirically shown to perform
well and even outperform LSTM in many cases [9, 10].

In recent times, Quantum Neural Networks (QNNs) have emerged as a rising trend in DL [11-13], with the
expectation of superior performances against classical neural networks thanks to the leverage of quantum
superposition and entanglement. QNN s are able to efficiently deal with large-scale heterogeneous data and
perform effective high-dimensional processing with a reduced number of qubits, leading to faster computation
and lower error rates [14, 15]. The technology behind QNNs goes from superconducting qubits [16] to photonic
systems [17] and trapped-ion devices [ 18]. Since fault-tolerant quantum computers are still years away,
researchers made significant advancement in the design of quantum algorithms meant to be executed on Noisy
Intermediate-Scale Quantum (NISQ) devices.

Inspired by [19], in this work we propose a novel quantum variant of a GRU, which we denote as Quantum
GRU (QGRU); to the best of our knowledge, it is the first implementation of a GRU in a variational quantum
environment. The QGRU has 25% fewer quantum parameters with respect to the Quantum LSTM (QLSTM)
and is about 25% faster both in the training and inference phase. In view of the current challenges associated
with running quantum circuits on both simulators and real quantum devices, a less complex network
architecture is more practical and feasible for the capabilities of contemporary quantum hardware. Moreover,
we also perform a fair comparison between the proposed quantum networks and their classical counterparts, i.e.
an LSTM and a GRU with the same magnitude of parameters. The forecasting ability of the networks is evaluated
on three different datasets: a simple periodic function, a sunspots time series and the actual generation of wind
energy in Italy for the month of June 2022. This is the first time that feasible quantum recurrent variational
models are assessed on realistic problems. In fact, the second and third dataset represent real-world challenging
tasks due to stochastic fluctuations typical of sunspots and wind energy data. Both the quantum models have
superior performances compared to the classical ones in all the test cases, and the QGRU outperforms the
QLSTM despite having a simpler architecture.

The original contributions of our work can be summarized as follows:

+ Our paper introduces, for the first time, a novel QGRU model composed of parameterized quantum circuits.
The QGRU is distinct from existing models such as QLSTM, representing a novel approach to quantum RNN;

+ We perform a comprehensive complexity analysis, demonstrating that the QGRU requires 25% fewer
quantum parameters compared to the previously proposed QLSTM. This reduction in parameters is a
significant advancement in quantum circuit design, contributing to the efficiency of quantum models;

+ To the best of our knowledge, our work is the first to benchmark both QGRU and QLSTM on real-world
challenging problems such as sunspots cycle and wind power generation forecasting. This application of
quantum models to practical scenarios extends the scope of QNNs research.

+ Inall tested scenarios, our QGRU consistently outperforms QLSTM and their classical counterparts. This
empirical evidence underscores the efficacy of our proposed model in solving real-world problems,
demonstrating its practical utility.
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+ We empirically show that the QGRU network is approximately 25% faster in both the training and inference
stages compared to QLSTM. This efficiency gain is crucial for making quantum algorithms more accessible
and less demanding on current quantum devices and simulators.

This paper is organized as follows. Section II gives a detailed overview of the state-of-the-art for QNNs. In
section III we introduce some basic concepts on Quantum Variational Learning. In section IV the architecture of
the QGRU is described. Section V contains the experimental results of our work. Finally, the conclusions and
future prospects are reported in section V1.

2. Related works

The quest for low-depth Quantum Machine Learning (QML) algorithms workable for small-scale quantum
systems led to the adoption of Variational Quantum Circuits (VQCs), which currently represent the most
effective way to harness quantum advantage offered by quantum computers [20, 21]. VQCs are based on a
hybrid quantum-—classical procedure: the quantum circuit is made up of parametrized quantum gates which can
be optimized in an iterative framework with the help of a classical co-processor. VQCs allow to efficiently design
low-depth QNNs that can be implemented on the available NISQ devices; the learnable parameters can
effectively absorb noise during the iterative optimization process without incorporating any information
coming from the noisy component. A layered architecture is used to encode input data into the circuit and
process quantum states in a high-dimensional Hilbert space [22]. Such VQCs are succeeding in many common
DL tasks [23, 24] as well as real-world applications [25]. For instance, authors in [26] propose a circuit-centric
quantum classifier architecture which is ready to be implemented on NISQ devices. It predicts class labels of
quantum encoded data via measurements of a chosen observable and demonstrates good resilience to noise.
Researchers in [27] introduce a multi-layer Quantum Deep Neural Network (QDNN) with three variational
layers to solve an image classification task. They found out that the QDNN have higher expressive power than
classical Deep Neural Networks (DNN). An hybrid quantum—classical Convolutional Neural Network is
presented in [28] as image classifier. It is employed in a remote sensing context, achieving better performance
over the classical counterpart.

Nevertheless, despite being a frequently studied problem in DL [4, 29-31], time series forecasting has not
been thoroughly investigated in the quantum realm. Although several quantum approaches were considered for
time series prediction [12, 32—34], few works concerning quantum RNN have already demonstrated a concrete
quantum advantage with respect to classical RNN in the literature. Researchers in [35] propose a Quantum
Weighted Gated Recurrent Unit Neural Network (QWGRUNN) which shows improved performance in terms
of prediction error compared to classical alternatives. Original GRU weights and activity values are substituted
by weight-qubits and activity-qubits respectively, but this leads to increased computational complexity, making
such an architecture unfeasible for current NISQ devices. Similarly [36], use a quantum weighted neuron to
build a Mogrifier-Quantum Weighted Memory Enhancement LSTM (Mogrifier-QWMELSTM) to successfully
forecast integrated energy distribution system time series. A Continuous-Variable Quantum RNN (CV-QRNN)
network based on the continuous-variable quantum computing paradigm is introduced in [37], leading to faster
convergence and better performance compared to the classical counterpart. However, it makes use of specialized
quantum-photonic hardware, which may pose challenges in terms of experimental implementation and
resource overheads with current technologies. [38] proposes a Parametrized Quantum LSTM (PQ-LSTM)
model, i.e. aneural network which has an initial classical LSTM layer followed by a parametrized quantum layer.
The PQ-LSTM is used to predict stress levels of knowledge workers, but the goodness of the model cannot be
properly evaluated because no comparisons were made with the classical counterpart. Authors in [39] realize a
Duplication-free Quantum LSTM (DQLSTM) neural network for natural language processing problems.
However, the DQLSTM model encodes classical data into the quantum circuit through an amplitude encoding
method, which is highly inefficient and unfeasible for large datasets. Both [40] and [19] propose an angle
encoded QLSTM, where the underlying idea is to replace the learnable parameters W, and b, of the classical
LSTM with variational layers composed of parametrized quantum gates. In the latter approach, VQCs layers are
interposed between two classical Fully Connected (FC) layers to properly match the dimensionality of the input
and output vectors, respectively. Based on the model proposed in [19], several simple applications in natural
language processing [41, 42] and material synthesis [43] are present in the literature.
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Figure 2. High-level scheme of a VQC with measurements in Pauli-Z basis.
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Figure 3. The chosen quantum feature map. Each feature value x;, i = 1...n, is the argument of a parametrized R, rotation gate.

3. Basic concepts on variational quantum circuits

VQCs represent the most promising approach to implement QML algorithms and QNNs on NISQ devices. A
VQC consists of a data encoding stage, a properly designed ansatz applied to the quantum state and a
measurement operation at the end of the circuit, as illustrated in figure 2.

To encode classical data ¥ € R” into an n qubit quantum circuit, a quantum feature map ¢: R" — H?'is
applied, where H?"isa 2" dimensional Hilbert space. It corresponds to applying a unitary matrix U (¥) to the
initial state | 0)*":

Up(@)0)°" = |9(%)) = [1)). @

A suitable data encoding strategy is crucial for the attainment of a quantum advantage. An efficient
representation of classical input data through quantum states is a necessary prerequisite to benefit from
quantum technologies [44], and the selection of the unitary Uy (¥) has a considerable impact on the performance
of the underlying VQC. Although various data encoding techniques have been proposed in the literature
[22,45], angle encoding is the most popular and efficient method to encode continuous variables into quantum
states [15, 27, 44]. It employs parametrized rotation quantum gates to encode each input feature into a qubit:
angle encoding allows to represent # input features by means of n qubits. The value of the rotation parameters
directly corresponds to the value of the input features. In this paper, the chosen encoding consists of a layer of R,
parametrized gates, as shown in figure 3.

After data encoding, an ansatz Uy, (@) of a-parametrized unitaries is applied to the state |¢)). Such unitaries
are made of tunable single-qubit rotation gates, which are randomly initialized, and fixed entangling gates.
Rotations are used to adequately control the quantum state space, while entanglement allows to create deeply
correlated quantum vectors among all the qubits. During the computation, parameters optimization is
performed by means of a classical co-processor in an iterative framework. Rotations and entanglement layers
may be applied repeatedly to realize more expressive models [15]. The list of proposed ansatzes in literature is
large and widely studied [15, 46]. The hardware-efficient ansatz [47], consisting of alternating layers of
parametrized single-qubit gates and entangling two-qubits gates, has imposed as a promising solution thanks to
the good trade-off between circuit expressivity and trainability [27, 28]. Hardware-efficient ansatzes have
structured architectures, easy to be efficiently implemented on NISQ devices. For this reason, the ansatz selected
in this work is made up of alternating layers of parametrized R, gates followed by CNOT gates with circular
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Figure 4. The design of the chosen ansatz with depth 2.

entanglement, as illustrated in figure 4. Circular entanglement connects every qubit with its neighbor in a
sequential fashion; the last qubit is considered as a neighbor to the first qubit. To increase the generalization
ability of the VQC, we chose to fix the ansatz depth to 2; a depth greater than 2 was not taken into consideration
to prevent overfitting.

A measurement operation is performed at the end of the circuit to extract the outcome of the quantum
circuit. Qubits are measured in a desired basis to obtain the following prediction:

f@& 0) = (6| Uw (0 OUw (D) |6(X)), )

which corresponds to estimating the expectation value (O) of an observable O. Due to the probabilistic nature of
quantum mechanics, several shots of the circuits are necessary to get the expected value of the designated
observable. The expected value (O) can be intended as the weighted sum of the eigenvalues, where the weights
represent the probabilities that the measured state vector is in the associated eigenstate. For this work,
measurements are carried out in the Pauli-Z basis, which has +1 and —1 as eigenvalues. Consequently, the
output of the VQC for a given qubit state will be restricted to the [—1, 1] range.

The outcome f (X, 5) of the VQC is then evaluated into a cost function C(f (¥, 5)) and the parameters 0 are
properly optlmlzed using a classical processor. Such quantum and classical steps are run iteratively in cycle to
find better 6 parameters at every step. To update 6 and train the QNNs, gradient-based techniques can be used;
gradients in a parametrized quantum circuit are calculated via the parameter-shift rule:

WS (x, 0) = %[f(x, 0 + §> — fx, 0 — g)] 3)

where f (X, 0) is the output of the quantum circuit and 6 is the parameter to be optimized.

4. Quantum GRU

Here we propose QGRU, a novel recurrent QNN architecture which extends the GRU model by introducing
VQCs layers into each cell. For the sake of completeness, the equations governing the behavior of a GRU cell are
hereafter reported:

= oWlhi—1, x]] + by), 4)

zi = o (W [he—1, x¢] + b2), (5)

hy = tanh(W,[1r; X hy_y, x:] + by), (6)
hy=( —2z) % hy +2 % h_1. (7)

Once again, symbol ‘X’ denotes element-wise (Hadamard) multiplication.

5
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Figure 6. Circuital schema of the proposed VQC.

4.1. Architecture of a QGRU cell

The rationale is to substitute the original GRU’s weight matrices with VQCs and FC layers to leverage quantum
properties and improve the computation. In total,a QGRU cell contains 3 different VQCs layers, one per each
nonlinear GRU function, as depicted in figure 5. The VQCs allow to effectively project input data into a high-
dimensional feature space and apply unitary transformations to an exponential state space, thus enhancing
information processing inside the cell. Every VQC layer is interspersed with two classical FC layers, namely FC;,,
and FC,,,,, whose role is to match the input and output dimensionality of the quantum layer respectively. In
order to reduce the number of classical parameters and lighten the computation, the weights of the FC;, and
FCoy layers are the same for every cell gate. The design of a VQClayer is reported in figure 6. It is composed of a
layer of R, gates for data encoding, an ansatz of parametrized R, gates with circular CNOT entanglement and
final measurement operations applied to all the qubits. The equations describing the behavior of a QGRU cell are
hereafter listed:

= U(Fcout(vQCreset(FCin([ht—1) xt]))))) (8)
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2t = U(Fcout(VQCupdate(FCin([ht—1: x:D)))s )]
Et = tanh(FCyo(VQCou(FCin([1r; X hi—1, x:1)))), (10)
hy =1 —z) X Et +ze X ey, (11)

where the VQC,( - ) function represents the processing inside the quantum circuit. The output of all the
variational layers is an n-dimensional vector corresponding to Pauli-Z expectation values of each qubit, where n
is the number of qubits in the quantum circuit. This way, it is possible to apply nonlinear functions such as o( - )
and tanh(-) to the output of the quantum circuit, introducing nonlinearity at the end of the quantum
computation. The selection of nonlinear functions, specifically the sigmoid o( - ) and hyperbolic tangent tanh(-)
functions, is based on their well-established roles in the architecture of GRU cells. The sigmoid function o( - ) is
chosen for its ability to map input values to a range between 0 and 1. This property makes it particularly useful
for gating mechanisms within the GRU, such as the update and reset gates, where it effectively controls the extent
to which information is updated or forgotten. The output of the sigmoid function can be interpreted as a
probability or a level of activation, which is crucial for regulating the flow of information through the network.
The hyperbolic tangent function tanh(-) is selected for its capability to map input values to a range between -1
and 1. This characteristic makes it ideal for creating a balanced output that includes both positive and negative
values, which is beneficial for learning complex patterns in the data and providing a range that supports gradient
propagation and stable learning dynamics. Regarding the sensitivity of the procedure to these design choices, it is
important to note that the performance of GRU cells can indeed be influenced by the choice of activation
functions. While o( - ) and tanh(-) are commonly used due to their effectiveness in practice, alternative activation
functions can be explored. However, deviations from these standard functions may require additional tuning of
other hyperparameters and careful consideration of the overall network architecture to maintain stability and
performance.

4.2. Information processing insidea QGRU cell

The information flow inside each QGRU cell is hereafter explained. First, x,and h,_; input data are concatenated
into the input vector [h,_1, x,]. The latter is then fed into the reset block and the update block, where VQC ¢
and VQCypdate are used to delete and manipulate information respectively. The resulting r, multiplies the past
hidden state h,_;; the vector [r; X h,_y, x,] is processed by the classical and the VQC,,, layers to calculate the
candidate hidden state /,. Finally, the new hidden state h, is obtained as a result of the output block
computation, involving z;, the candidate hidden state h, and the pasthidden state h,_ ;.

Such QGRU architecture based on VQCs and classical FC layers provides great flexibility in the construction
of the network. The VQCs layers can be employed to better approximate the complex dynamics of the
underlying time series data without worrying about their dimensionality, which is handled by the FC layers. The
parameters of the model are properly updated via the backpropagation algorithm. The parameter-shift rule is
used to compute the gradient of the quantum circuits, which is then backpropagated through the network.

4.3. Complexity analysis

Finally, itis worth to conduct a complexity analysis of both the QLSTM and the QGRU models; the equations
governing the behavior of the QLSTM can be found in [40]. Let d},;q be the hidden dimension, # the number of
qubits composing each quantum circuit, d;,, the number of input features and let / be the number of ansatz layers
of each VQC. The number of parameters composing a single VQC layer is n I. The FC;, classical layer receives

d onc features in input, where d_,, is the dimension of the concatenated vectors [h,_, x;] and [r; X h;_1,x,], 1.e.
dcone = Ahia + din, and outputs a vector with # dimensions. Similarly, the FC,, layer receives in input n features
and outputs a vector with d,;q features. Therefore, the number of parameters in the FC;, and FC,, layers are
Ndconc + nand ndyiq + dpiq respectively. The QLSTM is composed of 3 gates and 1 cell buffer, so it has 4 VQCs, 1
FC;,and 1 FC,, trainable layers. Then, the total number of parameters composing a QLSTM cell is

4nl 4+ (dcone + 1) + (ndpiq + dnia), which is equal to n(4l + 2dy;q + diy, + 1) + dhig; the number of quantum
parameters is 4nl. Similarly, a QGRU cell has 3 VQCs, 1 FC;;, and 1 FC,,; trainable layers. The number of
parameters in a QGRU cell is n(3] + 2dy;q + din + 1) + dhiq, where only 3nl are quantum parameters.
Consequently, itis evident that QGRU uses 25% quantum parameters less than QLSTM, leading to faster
computation. This is particularly suitable for the current state of quantum technology, since both quantum
simulators and real devices struggle in executing quantum circuits efficiently.

5. Experimental validation

We performed three different experiments to assess the goodness of the QGRU model. The first experiment,
which we called Experiment I, consisted in learning a simple periodic function, which is a common benchmark
for recurrent networks. The second experiment, namely Experiment I, tested the performance of the model on

7
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Table 1. Network structures and related

hyperparameters.

Model dhia qubits 1
QGRU 3 4 2
QLSTM 3 4

GRU 3 — —
LSTM 3 — —

the monthly average number of sunspots from January 1749 to July 2018. Predicting sunspots is a widely studied
yet not trivial problem in physics due to their fluctuations and recurrent neural models are usually employed to
obtain satisfactory results, so a performance evaluation of QGRU in this context was appropriate. Finally, in
Experiment III we tackled a challenging real-world problem related to wind power production time series
forecasting. The network was trained to predict actual wind output power generated in Italy in the month of
June 2022. The prediction of wind energy data is considered an ambitious task because the underlying time series
may exhibit a very unstable behavior, depending on seasonality as well as on weather conditions.

These datasets were selected due to their established use as benchmarks for evaluating recurrent networks
and their intrinsic characteristics, which pose varying degrees of complexity in time series prediction. The
periodic function dataset, used in Experiment [, is a standard benchmark to assess the ability of models to learn
and predict periodic patterns effectively. This choice is not inherently tied to the capabilities of the basic model
but rather serves to evaluate the fundamental competency of the model in capturing and predicting regular
periodicity. In Experiment II, the sunspot dataset is known for its challenging nature due to the stochastic
fluctuations and inherent periodicity of sunspot activity. This dataset is frequently employed in literature to test
the robustness of recurrent models against complex real-world time series with quasi-periodic characteristics.
For Experiment III, the wind power generation dataset represents a real-world application with highly unstable
behavior influenced by weather conditions and seasonality. The choice of this dataset aims at testing the model’s
ability to handle highly volatile and non-periodic data, further demonstrating its generalization capabilities
beyond periodic or quasi-periodic data.

5.1. Experimental setup

In all the experiments, the forecasting problem was modeled as follows. Given the scalar time series of interest S
and a window size k, all the observations from the current sample t up to the sample t — k + 1 are fed into the
model. The latter is trained to forecast the next sample ¢ + 1, thus resulting in the forecasted scalar S[t 4 1]. The
window size was chosen to be k = 5 for all the test cases.

We compared our QGRU with a QLSTM and with their classical counterparts, thatisa GRU and an LSTM.
We also compared all the models with a Naive predictor, which is a straightforward forecasting method where
the prediction for any given time step is simply the value observed in the previous time step. Formally, for a time
series S, the Naive predictor is defined such that for each value S[¢] at step ¢, the prediction for the next step t + 1
can be expressed as:

S[t + 11 = S[z]. (12)

This straightforward approach serves as a baseline reference for evaluating the performance of more
sophisticated models and allows us to assess whether the proposed quantum-inspired architectures outperform
asimple heuristic approach. The Naive predictor’s simplicity, minimal assumptions, and established use in
literature [48—50] make it an appropriate and effective baseline for evaluating the performance of more advanced
models. Since it operates under the reasonable assumption that future values are similar to the most recent
observed value, it provides a basic performance standard that any advanced model should exceed. The list of
hyperparameters of the networks, which is the same for all the experiments, is reported in table 1, where dy,;q is
the hidden dimension of the recurrent cell, 'qubits' indicates the number of qubits and / the number of layers
inside each VQC. The hyperparameters of the network were selected after a rigorous grid search procedure,
bearing in mind that as the number of qubits and quantum layers increased, the computation became
exponentially expensive. We noticed that different hyperparameters led to similar outcomes and did not affect
significantly the results of the experiments. To make a fair comparison, the magnitude of parameters in each
quantum model was chosen in such a way that it was comparable with the number of parameters inside the
respective classical models. The total number of parameters for each recurrent model is presented in table 2.

Moreover, all the networks had a final FC layer to compile the output of the recurrent layer to a suitable
output dimension, i.e. a scalar output.

In each experiment, the corresponding dataset was divided into 80% train and 20% test. Moreover, before
the training phase, the raw time series was scaled in the range [—1, 1] to best suit the output of the VQCs; the

8
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Table 2. Number of classical and quantum

parameters.

Model Classical Quantum Total
QGRU 35 24 59
QLSTM 35 32 67
GRU 54 — 54
LSTM 72 — 72

Table 3. Training hyperparameters.

Experiment Epochs Initial learning rate learning rate
learning rate drop period drop factor

I 130 0.01 95 0.7

I 120 0.01 100 0.7

111 180 0.01 160 0.8

Table 4. Average MSE and MAE with standard deviation for
experiment i test set.

Model MSE MAE
QGRU 0.00144 + 0.00086 0.03269 £ 0.01152
QLSTM 0.00214 =+ 0.00056 0.04215 + 0.00573
GRU 0.00268 + 0.00173 0.04396 + 0.01497
LSTM 0.00233 £ 0.00138 0.04135 £ 0.01313
Naive 0.00487 0.06245

scaler was fitted using the training set only. To guarantee a good and fast convergence, the models were trained
using the RMSprop algorithm and an extensive grid search procedure was carried out for the tuning of training
hyperparameters, which are listed in table 3 for each experiment.

We have empirically tested various hyperparameters and optimizers to determine the most effective training
method for our models. Our experiments revealed that RMSprop slightly outperformed ADAM in terms of
convergence speed and overall model performance. These findings are in alignment with recent literature on
QNN [40, 51-53], which suggests that RMSprop can be more effective than other optimizers in navigating
certain QNN loss landscapes.

All the networks were implemented in Python 3.8 with PyTorch. The quantum layers were realized in
PennyLane, a framework which enables local quantum circuits simulations and integration with classical NN.
Since we used a Python-based simulator to run our quantum circuits, we adopted PennyLane’s adjoint
differentiation method [54] to speed up the computation, which guarantees a fast and memory efficient way to
differentiate quantum circuits. A machine equipped with an AMD Ryzen 7™ 5800X 8-Core CPU at 3.80 GHz
and with 64 GB of RAM was used for the experiments.

The Mean Squared Error (MSE) and Mean Absolute Error (MAE) were selected as error metrics to evaluate
the performances of the models, as they are standard error metrics in supervised learning. MSE was also selected
asloss function to train the networks because it is more sensitive to larger errors. In order to prove the robustness
of our approach against random parameters initializations, we performed 10 runs of the algorithms for every
test case.

5.2. Experiment I: periodic function

As first experiment, we investigated QGRU’s ability in learning a simple periodic function, that is the sine
function y = sin(x). Despite it represents a basic learning task, it is commonly used as a reference benchmark
for recurrent neural networks [40, 55]. As shown in table 4, the results of Experiment I highlight that the QGRU
model totally outperformed the other networks as for the error rate, both in terms of MSE and MAE. In
particular, the MSE for the QGRU is 38% less than the one obtained by the LSTM, 46% less than the one
obtained by the GRU and 33% less than the MSE obtained by the QLSTM. At the same time, the QLSTM
performed better than the two classical models: its MSE error is 8% and 20% less than the one achieved by LSTM
and GRU, respectively. In addition, QGRU and QLSTM’s errors are more stable than GRU and LSTM’s, as
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Figure 7. Comparison between the QGRU (blue) and the ground truth (orange) for Experiment I test case. The absolute error between
the prediction and the ground truth (magenta) is also reported to clearly highlight the differences between the two curves.
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Figure 8. Comparison between the QGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
and test ground truth (green) for Experiment I test case. The black dashed line represents the 80%—20% Training-Test data split. The
absolute error between the prediction and the ground truth (magenta) is also reported to clearly highlight the differences between the
two curves.

indicated by the lower standard deviation of such errors. All the neural models outperformed the Naive
predictor, which has an almost doubled MSE and MAE compared to them.

The good behavior of the QGRU is illustrated in figures 7 and 8, where it is evident that the predicted curves
strictly follow the original underlying functions. We can observe larger errors near the turning points of the
sinusoidal function, precisely just before and after the turning points. This behavior is primarily due to the
model’s limited complexity, as it consists of only one layer. This single-layer architecture restricts the model’s
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Table 5. Average MSE and MAE with standard
deviation for experiment II test set.

Model MSE MAE
QGRU 540.47 + 6.76 17.18 = 0.17
QLSTM 545.94 + 23.63 17.20 + 0.33
GRU 556.07 + 29.57 17.63 + 0.84
LSTM 545.62 + 11.82 17.31 & 0.41
Naive 636.01 18.20

ability to capture the sharp changes in the function’s direction at the peaks and troughs effectively.
Consequently, the model struggles to approximate the steep gradients and rapid transitions accurately, resulting
in slightly higher errors in these regions.

5.3. Experiment II: sunspots cycle

In this second experiment, we studied the capability of the proposed QGRU in approximating a real-world
sequence, i.e. the monthly mean total sunspot number from January 1749 to July 2018. Sunspots are temporary
phenomena manifesting on the Sun’s photosphere as areas darker than their surroundings. Data was gathered
together by the solar physics research department of the Royal Observatory of Belgium. Due to the intrinsic
fluctuations typical of this phenomenon, it is considered a hard prediction task even for recurrent neural
models. Nevertheless, QGRU still obtained satisfactory results, showcasing a reduction in MSE by 5.15, 15.6 and
5.47 points compared to the LSTM, GRU and QLSTM models respectively, as reported in table 5. The QLSTM
network achieved comparable results with respect to the classical counterpart in terms of MSE, while achieving a
0.11 points lower MAE. Both quantum models greatly surpassed GRU’s performance in MSE and MAE metrics.
The robustness of the proposed QGRU model was substantiated through an examination of standard deviation
values. Specifically, the standard deviation was twice as high in the conventional LSTM architecture and even
four times greater in QLSTM and GRU networks when contrasted with the values observed in the QGRU model.
In general, the underlying intuition is that quantum models were able to project input data into a high-
dimensional quantum feature space, thus finding new hidden patterns among temporal observations; the
resilience against stochastic fluctuations made QGRU and QLSTM able to conduct a more effective and noise-
resistant data processing.

Despite the aforementioned difficulty in predicting stochastic temporal sequences, all the neural models
greatly outperformed the Naive predictor and found an underlying pattern in sunspots data. Also in this setting,
QGRU’s prediction still demonstrated to be very accurate compared to the ground truth time series, as shown in
figure 9 and figure 10.

5.4. Experiment III: wind power generation
Finally, Experiment III assessed the performance of the proposed quantum model in another real-world
scenario: the task was to forecast the wind power generation, measured in GWh, occurred in Italy in the month
of June 2022. Data were sampled hourly, thus the dataset was composed of 24 daily observations per 30 days,
resulting in 720 total samples. Due to wind’s highly unstable behavior, caused by weather conditions as well as by
seasonality, wind power prediction is considered to be an exceptionally hard task. Again, the rationale here was
to exploit the quantum model’s ability to approximate highly complex and volatile sequences thanks to its high-
dimensional quantum state space. The performances of all the models are reported in table 6. Except for the
LSTM, all the neural models greatly outperformed the Naive approach, showcasing their capacity to capture
intricate patterns and dependencies within the time series data. Despite being a simple network, QGRU had
remarkable performances: the MSE error with respect to LSTM, GRU and QLSTM decreased by 40%, 28% and
4% respectively. Similarly, the MSE for the QLSTM was 37% lower than the one for the LSTM and 25% lower
than the error obtained by using the GRU. Alike the previous experiments, also in this case the standard
deviation revealed the robustness of the proposed approach, being less than half the standard deviation of the
classical counterparts.

A visual comparison between QGRU’s predictions and the observed sequence is illustrated in figure 11 and
in figure 12. The quantum model accurately predicted the underlying time series: the predicted sequence
overlaps almost perfectly with the true one, and also the fluctuating and spiking behavior was modeled correctly.

5.5. Training and inference times
Ultimately, another significant result that we want to stress in this paper is related to QGRU’s runtime
performances, which were expected to be about 25% better than the QLSTM ones, since the quantum layers act
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Figure 9. Comparison between the QGRU (blue) and the ground truth (orange) for Experiment II test case.
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Figure 10. Comparison between the QGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
and test ground truth (green) for Experiment II test case. The black dashed line represents the 80%—20% Training-Test data split.

asbottlenecks in the computation. In order to compare them, we calculated the average training and inference
times of the two models for each experiment, as reported in table 7. The training times were computed by
averaging on the entire training process over all the 10 runs, while the inference times correspond to the
individual sample (i.e. time series) processed by the algorithm. It is worth to highlight that the reported runtime
performances pertain to executions carried out on the Python simulator and not on a real device. Although the
training and inference times would be drastically lower if computed on an actual quantum system, a faster
quantum recurrent neural network architecture would be beneficial both in simulation and realistic settings.
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Figure 12. Comparison between the QGRU training predictions (red), training ground truth (blue), QGRU test predictions (orange)
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Another major aspect to point out is that QML models have not been optimized for GPU usage yet, hence the
computational times of the quantum models refer to the CPU only.

The results presented in table 7 underline QGRU’s remarkable runtime performances, which are about 25%
faster than QLSTM’s. They are in line with the expected theoretical results and confirm the efficiency of the
proposed approach. For the sake of completeness, the average training and inference times of GRU and LSTM
models were reported in table 7 as well. While it might seem informative to compare these times directly, it is
important to note that simulations of quantum models on classical hardware are inherently slower than their
classical counterparts. Comparing their average training and inference times could thus be misleading, as it does
notaccurately reflect the true performance potential of quantum models.
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Table 6. Average MSE and MAE with standard deviation for

experiment ITI test set.

Model MSE MAE
QGRU 0.02891 + 0.00291 0.13009 + 0.00838
QLSTM 0.03011 £ 0.00477 0.13290 £ 0.01186
GRU 0.04004 + 0.00683 0.15402 + 0.01444
LSTM 0.04815 £ 0.01072 0.16910 £ 0.01668
Naive 0.04358 0.16340

Table 7. Average training and inference times (s) of QGRU and
QLSTM models for each experiment.

Experiment Model Training Inference
I QGRU 3.503 x 10° 3.710 x 1072
QLSTM 4.668 x 10’ 4.920 x 1072
GRU 5.225 x 107! 4.800 x 107°
LSTM 7.255 x 107" 6.943 x 107°
11 QGRU 2.017 x 10* 2.900 x 1072
QLSTM 2.887 x 10* 3.820 x 1072
GRU 1.592 x 10° 1.675 x 107°
LSTM 2.842 x 10° 3.778 x 107°
111 QGRU 4.959 x 10° 3.740 x 1072
QLSTM 6.581 x 10° 4.930 x 1072
GRU 7.474 x 107" 3.018 x 107°
LSTM 1.072 x 10° 4117 x 10°¢

6. Conclusions

In this paper, we proposed a novel QGRU architecture which is simpler, faster and more performant than the
existing QLSTM network. To assess the goodness of the QGRU and QLSTM models, they were tested on a
simple periodic function as well as on real-world challenging problems related to time series forecasting. To the
best of our knowledge, it was the first time that quantum recurrent models were tested on real-world challenging
problems such as sunspots and wind power generation forecasting. We provided an extensive fair comparison
between the quantum models and the classical counterparts, highlighting the goodness of the QGRU over all the
other models, as well as the goodness of the QLSTM over the two classical models. QGRU has also demonstrated
to be faster than QLSTM, as evidenced by training and inference times comparisons among all the three
experiments conducted on the simulator. The core idea at the basis of this paper is that quantum recurrent
neural models may attain lower generalization errors over the classical ones due to the projection of input data
into quantum high-dimensional states, which allows to capture hidden patterns among data and be more
resilient to underlying data noise. As highlighted in previous works [56, 57], quantum entanglement facilitates
inseparable associations among input timestep states, creating a comprehensive quantum probabilistic
description of the sequence of states over time. This description is represented by a quantum pure state vector,
which, when entangled, encodes the non-classical correlations between timesteps states, thereby enhancing the
model’s ability to capture intricate dependencies within the data.

As future works, the quantum networks could be run on a real quantum hardware to validate both the
goodness of the results and the computational times on actual quantum machines. More complex data encoding
strategy may be considered and an analysis on different kinds of ansatzes could be pursued as well. Finally, it
would be worth to investigate the performances of quantum recurrent neural models on multivariate time
series, considering their inherent ability in finding hidden correlations among features.
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