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Abstract: Let Ω be a bounded domain in R2 with smooth boundary ∂Ω, and let ωh be the
set of points in Ω whose distance from the boundary is smaller than h. We prove that the
eigenvalues of the biharmonic operator on ωh with Neumann boundary conditions converge to
the eigenvalues of a limiting problem in the form of system of differential equations on ∂Ω.
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1 Introduction and statement of the main result

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. For h > 0, we define the domain
ωh as

ωh := {x ∈ Ω : dist (x, ∂Ω) < h} . (1.1)

We consider the Neumann eigenvalue problem for the biharmonic operator in ωh, namely
∆2uh = µ(h)uh , in ωh,

∂2ννuh = 0 , on ∂ωh,

div∂ωh
(D2uh · ν)∂ωh

+ ∂ν∆uh = 0 , on ∂ωh,

(1.2)

in the unknowns uh ∈ C4(ωh)∩C3(ωh) (the eigenfunction) and µ(h) ∈ R (the eigenvalue). Here
ν denotes the outer unit normal to ωh, D

2uh denotes the Hessian of uh, div∂ωh
denotes the

tangential divergence on ∂Ω, and (D2uh ·ν)∂ωh
denotes the projection of D2uh ·ν on the tangent

space T∂ωh.
In this paper we are interested in the asymptotic behaviour of the solutions of problem (1.2)

as h → 0+. When h is close to zero, we refer to ωh as to a thin domain, which eventually
collapses to the planar curve representing ∂Ω as h→ 0+, see Figure 1.
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The analysis of eigenvalue problems for differential operators on thin domains has attracted
noticeable interest in recent years, see e.g., [4, 5, 6, 11, 13, 15, 16, 23, 27, 35, 36, 42, 44, 46]
and references therein. A somehow complementary point of view is adopted in the asymptotic
analysis of domains with small holes or perforations, see e.g., [1, 19, 22, 39, 45]. Since the
literature on this topic is quite vast, our list is far from being exhaustive. In the case of
linear partial differential operators of second order subject to homogeneous Neumann boundary
conditions, it is well-known that it is often possible to reduce the dimension of the problem
by ignoring the thin directions, see e.g., [28]. The rigorous mathematical justification of the
corresponding asymptotic analysis ansatz is usually very delicate and relies on a set of techniques
which depends on the particular problem. For the asymptotic analysis of the Neumann Laplacian
on fixed disjoint domains joined by thin cylindrical tubes, or dumbbell domains, we refer to
[2, 31, 32]. The same operator has been studied on a thin neighbourhood of a graph in [37], and
on thin domains with oscillating boundaries in [6].

As for higher order operators, in [3, §4] the analysis of the biharmonic operator with Poisson
coefficient σ and Neumann boundary conditions on a thin rectangle (0, 1) × (0, h) ⊂ R2 has
shown that the techniques used for the Laplacian can still be employed in order to reduce the
dimension and find the correct limiting problem as h → 0+. However, differently from the
Neumann Laplacian, in which case the limiting operator is −d2/dx2 on (0, 1), the eigenvalues
of the Neumann biharmonic operator converge to the eigenvalues of the fourth order operator
(1− σ2)d4/dx4. In fact, when σ ̸= 0 the derivatives along the thin directions give a non-trivial
contribution in the limit. This result casts a shadow on whether the ‘natural’ asymptotic analysis
ansatz, namely the negligible contribution of the thin directions to the limiting problem, is valid
for the biharmonic operator on a thin domain.

Inspired by the previous discussion, in this article we take a further step in the analysis of
the operator ∆2 with Neumann boundary conditions on general smooth bounded thin domains
of R2. Note that, differently from the case of the rectangle (0, 1) × (0, h), the thin domain ωh

defined by (1.1) collapses to a closed curve.
We recall that, in applications, the biharmonic operator ∆2 is used to model the transverse

vibrations of a plate of negligible thickness whose position at rest is described by the shape of
the domain, according to the Kirchhoff-Love model for elasticity. The possibility of the plate
to assume non-trivial displacement at the boundary is then modelled by Neumann boundary
conditions, also called boundary conditions for the free plate. We refer to [12, 18, 26, 41, 43] for
more details on the physical justification of the problem and for historical information. See also
[53, §10]. In our analysis, the plate is thin in a second direction (the direction normal to the
boundary), which eventually vanishes. Hence, in the limit, we are left with a one-dimensional
vibrating curved object, which is usually referred as to a beam or a rod. Linear elasticity theory
for vibrating straight rods is quite well established, see e.g., [8, 9, 53]. For curved rods, we
refer to [30, 33, 48] for the derivation of a corresponding mathematical model. In particular, the
analysis therein is carried out in the framework of linear elasticity for a three dimensional tube of
small width around a curve. The model is obtained by sending the width to zero. The resulting
limiting problem can be written in the form of a system which depends on the curvature of the
underlying curve. In our case, we start from the Kirchhoff model for a plate (therefore a first
dimensional reduction has already been performed), and then we push the remaining dimension
to zero. Our results should be then compared with those of [30, 33, 48]. We also mention
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[24] where the authors consider a biharmonic eigenvalue problem on a thin multi-structure with
vanishing thickness and Dirichlet boundary conditions.

Problem (1.2) will be understood in a weak sense. Namely, we consider the following problem∫
ωh

D2uh : D2ϕdx = µ(h)

∫
ωh

uh ϕdx , ∀ϕ ∈ H2(ωh), (1.3)

in the unknowns uh ∈ H2(ωh) and µ(h) ∈ R. Here D2u : D2v denotes the standard product of
Hessians D2u : D2v :=

∑2
i,j=1 ∂

2
xixj

u ∂2xixj
v. Since Ω has smooth boundary, there exists h̄ > 0

such that for all h ∈ (0, h̄) the domain ωh is smooth as well. Thus, for this choice of h, problem
(1.3) is well-posed and admits an increasing sequence of non-negative eigenvalues diverging to
+∞ of the form

0 = µ1(h) = µ2(h) = µ3(h) < µ4(h) ≤ · · · ≤ µj(h) ≤ · · · ↗ +∞.

The corresponding eigenfunctions can be chosen to define a Hilbert basis of L2(ωh). For fixed
h ∈ (0, h̄), due to the smoothness assumptions on Ω, any solution to (1.3) is actually a classical
solution, i.e., it solves (1.2), see [25, §2.5]. The eigenvalue µ(h) = 0 has multiplicity 3 and the
corresponding eigenspace is spanned by {1, x1, x2}. In other words, the eigenspace coincides
with the set of polynomials of degree at most one.

For the reader’s convenience, we recall the analogous problem for the Neumann Laplacian:{
−∆uh = m(h)uh , in ωh,

∂νuh = 0 , on ∂ωh.
(1.4)

In this case we have

0 = m1(h) < m2(h) ≤ · · · ≤ mj(h) ≤ · · · ↗ +∞.

It is well-known that
lim

h→0+
mj(h) = λj

where λj are the eigenvalues of −∆∂Ωu = λu on ∂Ω and −∆∂Ω is the Laplacian (or Laplace-
Beltrami operator) on ∂Ω. We refer to [49] for a detailed analysis of this problem in any space
dimension n ≥ 2. In the case n = 2, the limiting problem in the arc-length parametrization of
∂Ω is just −u′′(s) = λu(s), s ∈ (0, |∂Ω|) with u(0) = u(|∂Ω|), u′(0) = u′(|∂Ω|). Here s is the
arc-length parameter and |∂Ω| is the length of ∂Ω.

In the present article, we shall focus only on the case n = 2. The case n ≥ 3 can be
treated essentially in the same way. However, we point out the appearance of technicalities,
quite involved computations and very long formulae. We believe that the case n = 2 already
shows the main features and highlights the peculiar behaviour of the biharmonic operator under
the considered singular perturbation. We shall postpone the technical details and computations
for higher dimensions in a future note.

The present paper had its origin in two pivotal observations that underline the stark dif-
ference between the biharmonic operator and the Laplace operator with Neumann boundary
conditions on two-dimensional thin domains. First, the result of [49] cannot hold in the case
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of the biharmonic operator. In fact, it is well-known that the eigenvalues of the biharmonic
operator ∆2

∂Ω on ∂Ω are exactly the squares of the Laplacian eigenvalues λj on ∂Ω whenever
∂Ω is sufficiently smooth, see e.g., [18, §5.8]. In particular, the first eigenvalue of ∆2

∂Ω is λ21 = 0,
while the second is λ22 > 0. On the other hand, when n = 2, limh→0+ µj(h) = 0 for j = 1, 2, 3,
hence the eigenvalues of the biharmonic operator on ∂Ω are not the limits of the eigenvalues of
the biharmonic operator on ωh as h→ 0+.

A second motivation comes from explicit computations in the unit disk Ω = B(0, 1) ⊂ R2.
In this situation, we observe that the limiting eigenvalues of problem (1.2) are of the form
2ℓ2(ℓ2−1)2

1+2ℓ2
for ℓ ∈ N. The eigenvalue corresponding to ℓ = 0 is simple, and the associated

eigenfunction constant. The eigenvalues corresponding to ℓ ≥ 1 have multiplicity two, with
associated eigenfunctions lying in the linear span of cos(ℓs), sin(ℓs), s ∈ (0, 2π). In particular,
zero is an eigenvalue of multiplicity three, as one expects. See Subsection 4.2 for more details.

It is quite surprising that the index ℓ appears also at the denominator in the expression of
the limiting eigenvalues. This suggests that the limiting problem is in the form of a system of
differential equations rather than a single eigenvalue equation. This is exactly what we prove.

Theorem 1.5. Let µj(h), j ∈ N\{0}, be the eigenvalues of problem (1.2). Then limh→0+ µj(h) =
ηj for all j ∈ N \ {0}, where ηj is the j-th eigenvalue of the following problem

u′′′′ − 2(κ2u′)′ − (κw)′′ − 2(κw′)′ = ηu, in (0, |∂Ω|),
−2w′′ + κ2w − κu′′ − 2(κu′)′ = 0, in (0, |∂Ω|),
u(k)(0) = u(k)(|∂Ω|), k = 0, 1, 2, 3

w(k)(0) = w(k)(|∂Ω|), k = 0, 1.

(1.6)

in the unknowns u(s), w(s) and η (the eigenvalue). Here s is the arc-length parameter describing
∂Ω and κ(s) denotes the curvature of the boundary at the point s ∈ (0, |∂Ω|).

Remark 1.7. In the case of the unit circle we have that a solution (u,w) corresponding to an

eigenvalue 2ℓ2(ℓ2−1)2

1+2ℓ2
is given by u(s) = A cos(ℓs)+B sin(ℓs), w(s) = − 3ℓ2

1+2ℓ2
u(s), with A,B ∈ R.

Remark 1.8. Define ∆κ =
(
− d2

dx2 +
κ2

2

)
. Note that (1.6) can be rewritten as a single equation

by setting w = ∆−1
κ (κu′′/2 + (κu′)′), thus yielding

u′′′′ − 2(κ2u′)′ −
(
κ∆−1

κ

(
κu′′

2
+ (κu′)′

))′′
− 2

(
κ

(
∆−1

κ

(
κu′′

2
+ (κu′)′

))′)′

= ηu.

This equation is evidently different from both the free beam equation with lateral tension τ ,
namely u′′′′ − τu′′ = ηu, and the buckled beam equation, namely u′′′′ = ηu′′. It seems to us that
(1.6) behaves more like a non-local free beam with lateral tension and with variable coefficients
depending on the curvature κ. Note that the operator ∆κ is strictly positive because κ is not
identically zero. Indeed, it is not difficult to prove that the following Poincaré inequality holds:
∥u′∥2L2((0,|∂Ω|)) +

1
2∥κu∥

2
L2((0,|∂Ω|)) ≥ c∥u∥2L2((0,|∂Ω|)) for all u ∈ dom(∆κ) with c > 0 independent

of u. If instead κ ≡ 0, constant functions are in the kernel of ∆κ; in fact, the case κ ≡ 0 is
substantially different, see Remark 1.11.
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Remark 1.9. Theorem 1.5 shows that the thin limit of the Neumann biharmonic operator is a
system of equations, therefore transforming a scalar operator acting on functions of two variables
into a vector operator acting on functions of one variable. In elasticity theory, transformations
of this kind are not infrequent: for example, it is well-known that the limit as t → 0+ of the
Reissner-Mindlin model for plates of non-negligible thickness t > 0 in R3 (which is in the form
of a system acting on functions of three variables) is the Kirchhoff-Love model, which involves a
single equation acting on functions of two variables. However, to the best of our knowledge the
result in Theorem 1.5 is the first example of a thin limit process transforming a scalar operator
into a system, in a sense going in the opposite direction compared to the Reissner-Mindlin to
Kirchhoff-Love singular limit.

Remark 1.10. One can check that (u0(s), w0(s)) = (1, 0) and (ui(s), wi(s)) = (xi(s),−νi(s)),
i = 1, 2, span the set of solutions of (1.6) corresponding to η = 0. Here xi(s) denotes the
restriction of the coordinate function xi to ∂Ω, expressed in the arc-length variable s, while νi(s)
denotes the i-th component of the outer unit normal ν(s) at the point of ∂Ω described by s.
This is expected from our convergence result, since the spectral projection on the zero eigenspace
converge pointwise and span{1, x1, x2} is the eigenspace associated to µ(h) = 0 in (1.3) for all
h ∈ (0, h̄).

Remark 1.11. The case where Ω is a polygon in R2 cannot be deduced from Theorem 1.5 for two
main reasons. First, a polygon does not have the regularity required by the tubular neighbourhood
theorem (Theorem 2.1), which we heavily exploit in the proof. Second, a polygon with straight
edges has curvature κ = 0 a.e. in ∂Ω. In the proof of Theorem 1.5, it is needed κ ̸= 0 on a
set of positive measure instead. Moreover, from the considerations above on the multiplicity of
the zero eigenvalue of problems (1.2) and (1.6), we realise that the limiting problem in the case
of a polygon cannot coincide with (1.6) with κ = 0 which is exactly the closed problem for the
biharmonic operator on ∂Ω. We believe that the case of the polygon is more involved and should
be treated as in [37], that is, by using asymptotic analysis for elliptic differential operators on
fattened graphs. We plan to analyse this problem in a future note.

Remark 1.12. In our analysis we started from the biharmonic operator with zero Poisson ratio
σ. In two dimensions, the Poisson ratio σ is allowed to take values in (−1, 1). A choice of
σ ∈ (−1, 1) will result in a change of the quadratic form in the weak formulation (1.3). Namely,
at the left-hand side of (1.3) we would have∫

ωh

(1− σ)D2uh : D2ϕ+ σ∆uh∆ϕdx.

In principle, it is possible to consider this more general setting. However, even assuming that
the case σ = 0 has been settled, the passage to the limit in the general case is not straightforward,
as one can already see in [3]. Therefore, for the purposes of the present paper, we shall focus
only on the emblematic case σ = 0, and postpone the technical analysis of σ ∈ (−1, 1) to a future
note.

The proof of Theorem 1.5 relies on the pointwise convergence of the resolvent operators as-
sociated with problem (1.3) to the resolvent operator associated with problem (1.6). Therefore,
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not only we obtain pointwise convergence of the eigenvalues, but also convergence of the projec-
tions on the eigenspaces in the sense of Stummel-Vainikko (see [3, §4]). This type of convergence
is called discrete convergence in the work by Stummel [50] and PQ-convergence in the works by
Vainikko [51, 52], see [10] for comparison and equivalence results.

The present paper is organised as follows. In Section 2 we recall a few preliminary results on
Sobolev spaces, on curvilinear coordinate systems in tubular neighbourhoods, and on standard
spectral theory for problems (1.3) and (1.6). Moreover, we recall the relevant results on conver-
gence of compact operators and their spectral convergence. Section 3 is dedicated to the proof
of our main Theorem 1.5. Section 4 contains a few final remarks. In particular, it contains a
brief discussion on the case of tubes of variable size and some explicit computations in the unit
circle.

2 Preliminaries and notation

2.1 Function spaces

Let Ω be an open set in R2. By H1(Ω) we denote the Sobolev space of functions u ∈ L2(Ω) with
all weak derivatives of order one in L2(Ω). The space H1(Ω) is endowed with the scalar product

⟨u, v⟩H1(Ω) :=

∫
Ω
∇u · ∇v + uv dx , ∀u, v ∈ H1(Ω)

which induces the norm ∥u∥H1(Ω) :=
(∫

Ω |∇u|2 + u2 dx
) 1

2 .
By H2(Ω) we denote the Sobolev space of functions u ∈ L2(Ω) with all weak derivatives of order
one and two in L2(Ω). The space H2(Ω) is endowed with the scalar product

⟨u, v⟩H2(Ω) :=

∫
Ω
D2u : D2v +∇u · ∇v + uv dx , ∀u, v ∈ H2(Ω).

which induces the norm ∥u∥H2(Ω) :=
(∫

Ω |D2u|2 + |∇u|2 + u2 dx
) 1

2 . The spaces Hk(Ω), k ≥ 2,
are naturally defined in a similar way.

When the domain is sufficiently smooth the space H2(Ω) can be endowed with the scalar
product

⟨u, v⟩H2(Ω) :=

∫
Ω
D2u : D2v + uv dx , ∀u, v ∈ H2(Ω).

which induces the equivalent norm ∥u∥H2(Ω) :=
(∫

Ω |D2u|2 + u2 dx
) 1

2 . This is the case of Lips-
chitz domains.

The spaces Hk(Σ) are defined in a similar way when Σ is a Riemannian surface, with or
without boundary (or, in general, a Riemannian manifold, see e.g., [29]).

Finally, by Hk
p ((0, |∂Ω|)) we denote the closure in Hk((0, |∂Ω|)) of the space C∞

p ((0, |∂Ω|)),
which consists of those functions in C∞((0, |∂Ω|)) with u(k)(0) = u(k)(|∂Ω|) for all k ∈ N.
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2.2 Tubular neighbourhoods of smooth boundaries and local coordinate sys-
tems

We start this subsection by recalling the following well-known result from [21]

Theorem 2.1. Let k ≥ 2 and let Ω be a bounded domain in R2 of class Ck. Then there exists
h > 0 such that every point in ωh has a unique nearest point on ∂Ω. Moreover, the function
dist(·, ∂Ω) is of class Ck in ωh.

Throughout the rest of the paper we shall denote by h̄ the maximal possible tubular radius
of Ω, namely

h̄ := sup {h > 0 : every point in ωh has a unique nearest point on ∂Ω} . (2.2)

From Theorem 2.1 it follows that if Ω is smooth, then h̄ > 0. Let y ∈ ∂Ω and let κ(y) denote

Ω

ωh

Figure 1: A domain Ω ⊂ R2, and ωh, a tubular neighbourhood of the boundary of size h.

the curvature of ∂Ω at y with respect to the outward unit normal. In particular, if x ∈ ωh and
y ∈ ∂Ω is the nearest point to x on ∂Ω, then

1− dist(x, ∂Ω)κ(y) > 0, (2.3)

see e.g., [40, Lemma 2.2].
Let x0 ∈ ∂Ω be fixed and let s ∈ (0, |∂Ω|) be the arc-length parameter with base point x0,

which will correspond to s = 0 and s = |∂Ω|. With abuse of notation, we shall often write s to
denote the point on ∂Ω at arc-length distance s from x0. In fact, we will often identify ∂Ω with
the segment (0, |∂Ω|) where the endpoints have been identified.

By ν(s) we denote the outward unit normal to ∂Ω at s.
We introduce the map Φh defined by

Σ := ∂Ω× (0, 1) ∋ (s, t) 7→ Φh(s, t) := s− htν(s) ∈ ωh.

The map Φh is a diffeomorphism of the cylinder Σ to ωh, see e.g., [7, §2.4], see also Theorem 2.1.
In view of the identification of ∂Ω with (0, |∂Ω|), Φh can be thought also as a diffeomorphism
of (0, |∂Ω|) × (0, 1) to ωh. In particular, t = h−1dist(s − htν(s), ∂Ω). The coordinates (s, t)
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s-htν(s)
ωh

s
s

t

|∂Ω|

1

(s,0)

(s,t)

are sometimes called curvilinear coordinates or Fermi coordinates, which for a smooth domain
are always locally defined near the boundary. In the case of ωh, they form a global coordinate
system. For an integrable function f on ωh, we have∫

ωh

f(x)dx =

∫
Σ
(f ◦ Φh)(s, t)h(1− htκ(s))dtds. (2.4)

Next, for smooth functions f, g on ωh we write ∇f ·∇g, ∆f , and D2f : D2g in coordinates (s, t).
Standard computations yield

(∇f · ∇g) ◦ Φh =
∂s(f ◦ Φh) · ∂s(g ◦ Φh)

(1− htκ(s))2
+
∂t(f ◦ Φh)∂t(g ◦ Φh)

h2
, (2.5)

and

(∆f) ◦ Φh =
1

1− htκ(s)
∂s

(
1

1− htκ(s)
∂s(f ◦ Φh)

)
− (1− htκ(s))

h2
∂t

(
1

1− htκ(s)

)
∂t(f ◦ Φh) +

∂2tt(f ◦ Φh)

h2
. (2.6)

We refer e.g., to [20, §2] for more details.
In order to express D2f : D2g in coordinates (s, t), we shall need the following identity,

which is a consequence of the so-called Bochner formula, holding for smooth functions f, g:

D2f : D2g =
1

2
(∆(∇f · ∇g)−∇∆f · ∇g −∇f · ∇∆g) . (2.7)

Thanks to (2.5), (2.6) and (2.7) we obtain the following expression

(D2f : D2g) ◦ Φh

=
∂2ss(f ◦ Φh)∂

2
ss(g ◦ Φh)

(1− htκ(s))4
+

2∂2st(f ◦ Φh)∂
2
st(g ◦ Φh)

h2(1− htκ(s))2
+

1

h4
∂2tt(f ◦ Φh)∂

2
tt(g ◦ Φh)

+
htκ′(s)

(1− htκ(s))5
(∂s(f ◦ Φh)∂

2
ss(g ◦ Φh) + ∂2ss(f ◦ Φh)∂s(g ◦ Φh))

− κ(s)

h(1− htκ(s))3
(∂2ss(f ◦ Φh)∂t(g ◦ Φh) + ∂t(f ◦ Φh)∂

2
ss(g ◦ Φh))

+
2κ(s)

h(1− htκ(s))3
(∂s(f ◦ Φh)∂

2
st(g ◦ Φh) + ∂2st(f ◦ Φh)∂s(g ◦ Φh))
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− tκ(s)κ′(s)

(1− htκ(s))4
(∂s(f ◦ Φh)∂t(g ◦ Φh) + ∂t(f ◦ Φh)∂s(g ◦ Φh))

+
(2κ(s)2(1− htκ(s))2 + h2t2κ′(s)2)

(1− htκ(s))6
∂s(f ◦ Φh)∂s(g ◦ Φh)

+
κ(s)2

h2(1− tκ(s))2
∂t(f ◦ Φh)∂t(g ◦ Φh). (2.8)

We omit the details of the computations which are standard but quite long. Now, if f, g ∈
H2(ωh), then f ◦ Φh, g ◦ Φh ∈ H2(Σ), being Φh smooth. By a standard density argument,
identity (2.8) holds for f, g ∈ H2(ωh).

Given a function f ∈ H2(ωh) we will use sometimes the notation f̃ := f ◦ Φh ∈ H2(Σ) to
denote the pullback of f via Φh.

2.3 Eigenvalue problems

We shall recall in this subsection a few fundamental facts involving the spectral analysis of
problems (1.3) and (1.6).

On problem (1.3).
Let h ∈ (0, h̄). We shall consider a shifted version of problem (1.3), namely

Qh(uh, ϕ) = ζ(h)⟨uh, ϕ⟩L2(ωh), (2.9)

in the unknowns uh ∈ H2(ωh) and ζ(h) ∈ R, where

Qh(u, ϕ) :=

∫
ωh

D2u : D2ϕ+Muϕdx , ∀u, ϕ ∈ H2(ωh), (2.10)

⟨·, ·⟩L2(ωh) is the standard scalar product of L2(ωh), and M > 0 is a constant to be chosen. Note
that ζ(h) is an eigenvalue of (2.9) if and only if µ(h) = ζ(h)−M is an eigenvalue of (1.3), the
corresponding eigenfunctions being the same.

Let Ah be the unique positive self-adjoint operator associated to problem (2.9) via the equal-

ity (A
1/2
h u,A

1/2
h ϕ) = Qh(u, ϕ) for all u, ϕ ∈ dom(A

1/2
h ) = dom(Qh) = H2(ωh). The existence of

the operator Ah is ensured by the second representation theorem, see [34, Thm. VI.2.23].
The operator Ah, h ∈ (0, h̄), is positive, self-adjoint, with compact resolvent. Therefore Ah

admits an increasing sequence of positive eigenvalues

0 < ζ1(h) ≤ ζ2(h) ≤ · · · ≤ ζj(h) ≤ · · · ↗ +∞.

On problem (1.6)
We proceed now with the formal definition and main properties of the operator Ã0 acting in

L2(0, |∂Ω|), associated with problem (1.6). It will turn out that Ã0 is related to the limit (in a
suitable sense, see Subsection 2.4) of the operators Ah as h→ 0+.

Instead of considering directly Ã0, it is convenient to consider, as in the case of the operators
Ah, h > 0, a shifted version of Ã0, namely A0 = Ã0 +M , where M is the same constant of

9



(2.10).
Let us introduce the ordinary differential operators

Sκ :=
d

ds

(
κ
d

ds

)
, Tκ :=

d2

ds2
(κ·) ∆κ :=

(
− d2

ds2
+
κ2

2

)
with dom(Sκ) = dom(Tκ) = dom(∆κ) = H2

p ((0, |∂Ω|)). Then A0 is the pseudodifferential
operator, with dom(A0) = H4

p ((0, |∂Ω|)), associated with the eigenvalue problem

d4u

ds4
− 2

d

ds

(
κ2

du

ds

)
− 1

2
Tκ∆

−1
κ T ∗

κu− 2Sκ∆
−1
κ Sκu− Tκ∆

−1
κ Sκu− Sκ∆

−1
κ T ∗

κu+Mu

= ξu, (2.11)

in the unknowns u (the eigenfunction) and ξ (the eigenvalue). Note that (2.11) is just an
equivalent formulation of (1.6). Namely, ξ is an eigenvalue of (1.6) if and only if η = ξ −M is
an eigenvalue of (2.11).

It will be convenient to introduce the operators

Γu := −1

2
Tκ∆

−1
κ T ∗

κu− 2Sκ∆
−1
κ Sκu− Tκ∆

−1
κ Sκu− Sκ∆

−1
κ T ∗

κu+Mu,

with dom(Γ) = {u ∈ L2((0, |∂Ω|)) : Γu ∈ L2((0, |∂Ω|)), u(0) = u(|∂Ω|), u′(0) = u′(|∂Ω|)} ⊂
H2

p ((0, |∂Ω|)), and

Lu :=
d4u

ds4
− 2

d

ds

(
κ2

du

ds

)
with dom(L) = H4

p ((0, |∂Ω|)). Note that with these definitions

A0 := L+ Γ, dom(A0) = dom(L) = H4
p ((0, |∂Ω|)). (2.12)

We have the following lemma.

Lemma 2.13. The operator A0 defined in (2.12) is self-adjoint with compact resolvent, and
A0 > 0 provided the constant M in the definition of the operator Γ is large enough. Therefore,
A0 admits an increasing sequence of positive eigenvalues 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξj ≤ · · · ↗ +∞.

Proof. First note that Γ is relatively compact with respect to L, or equivalently, Γ(L− λ)−1 is
a compact operator in L2(0, |∂Ω|) for some (and then all) λ ∈ ϱ(L). Indeed, Γ is a pseudodif-
ferential operator of order 2, and (L − λ)−1(L2(0, |∂Ω|) = dom(L) = H4

p ((0, |∂Ω|)); therefore,
Γ(L− λ)−1 maps L2(0, |∂Ω|) in H2(0, |∂Ω|). The latter compactly embeds in L2(0, |∂Ω|) due to
the Rellich-Kondrachov Theorem.
The L-compactness of Γ implies that Γ is relatively bounded with respect to L with L-bound 0;
that is, there exists constant a, b > 0 such that (see [34, §IV.1.1])

∥Γu∥L2((0,|∂Ω|)) ≤ a∥u∥L2((0,|∂Ω|)) + b∥Lu∥L2((0,|∂Ω|)), u ∈ dom(L) (2.14)

and the L-bound
b0 := inf{b ∈ R≥0 : (2.14) holds}

10



can be chosen equal to zero. Since the non-negative self-adjoint operator L has compact resol-
vent, it follows from the stability theorem for relatively bounded perturbations (see [34, Thm.
IV.3.17]) that A0 has compact resolvent. Moreover, from [34, Thm. V.4.11] and the fact that Γ
is L-bounded with relative bound < 1, the operator A0 is semibounded from below with lower

bound γ0 ≥ −max

(
a(ε)
1−ε ; a(ε)

)
, where a(ε) is a choice for the constant a appearing in the in-

equality (2.14), when b = ε.
We now set, once and for all, M := |γ0| + 1. With this choice, A0 > 0. The last claim of the
Lemma is an immediate consequence of the self-adjointness of A0 and of the compactness of
A−1

0 .

Remark 2.15. Problem (2.11) (or, equivalently, problem (1.6)) is understood in the weak sense
as follows:∫ |∂Ω|

0
u′′ϕ′′1 + 2κ2u′ϕ′1 + (κw)′ϕ′1 + 2κw′ϕ′1 + 2w′ϕ′2 + u′(κϕ2)

′ + 2κu′ϕ′2 + k2wϕ2ds

= η

∫ |∂Ω|

0
uϕ1ds , ∀ϕ1 ∈ H2

p ((0, |∂Ω|)), ϕ2 ∈ H1
p ((0, |∂Ω|)). (2.16)

However, being the coefficients of the higher order terms constant, and the other coefficients
smooth, any solution to (2.16) turns out to be a classical solution.

2.4 Spectral convergence

In this subsection we recall a few definitions of convergence of operators and their resolvents
as well as related results of spectral convergence. In fact, in the next section we will prove
the convergence of the eigenvalues of Ah to those of A0 by means of the generalised compact
convergence in the sense of Stummel-Vainikko [50, 51, 52].

We note that the domains ωh vary with h, thus also the Hilbert spaces for Ah vary as well.
In order to have a common functional setting to compare the operators Ah we need to introduce
the notion of E-convergence of the resolvent operators.

Let Hh, h ∈ [0, h̄), be a family of Hilbert spaces. We assume the existence of a family of
linear operators Eh ∈ L(H0,Hh) such that, for all u0 ∈ H0

∥Ehu0∥Hh
→ ∥u0∥H0 , as h→ 0+. (2.17)

Definition 2.18. Let Hh and Eh be as above.

(i) Let uh ∈ Hh. We say that uh E-converges to u0 if ∥uh − Ehu0∥Hh
→ 0 as h → 0+. We

write uh
E−→ u0.

(ii) Let Bh ∈ L(Hh). We say that Bh EE-converges to B0 if Bhuh
E−→ B0u0 whenever un

E−→ u0.

We write Bh
EE−→ B0.

(iii) Let Bh ∈ L(Hh). We say that Bh compactly converges to B0, and we write Bh
C−→ B0, if

the following two conditions are satisfied

11



(a) Bh
EE−→ B0 as h→ 0+;

(b) for any family uh ∈ Hh such that ∥uh∥Hh
= 1 for all h ∈ (0, h̄), there exists a subse-

quence {Bhk
uhk

}k∈N with hk → 0+ as k → +∞, and u0 ∈ H0 such that Bhk
uhk

E−→ u0
as k → +∞.

Compact convergence of compact operators implies spectral convergence, as stated in the
following theorem.

Theorem 2.19. Let Ah, h ∈ [0, h̄) be a family of positive, self-adjoint differential operators on
Hh with domain D(Ah) ⊂ Hh. Assume moreover that

(i) The resolvent operator Bh := A−1
h is compact for all h ∈ [0, h̄);

(ii) Bh
C−→ B0 as h→ 0+.

Then, if λ0 is an eigenvalue of A0, there exists a sequence of eigenvalues λh of Ah such that
λh → λ0 as h → 0+. Conversely, if λh is an eigenvalue of Ah for all h ∈ (0, h̄), and λh → λ0,
then λ0 is an eigenvalue of A0.

We refer to [2, Thm. 4.10] and [3, Thm. 4.2] for the proof of Theorem 2.19. We also
refer to [10, Prop. 2.6] where a spectral convergence theorem is proved for sequences of closed
operators with compact resolvent. Note that an alternative approach to the spectral convergence
of operators defined on variable Hilbert spaces has been proposed in the book [47]. It would be
interesting to implement this approach in order to recover Theorem 1.5.

Remark 2.20. For the purposes of the present article we have presented a simplified version
of Theorem 2.19. Namely, we have only stated the pointwise convergence of the eigenvalues
provided the resolvent operators compactly converge. Actually, if the assumptions of Theorem
2.19 are satisfied we have a stronger spectral convergence: the projection on the generalised
eigenspace E-converges pointwise. For the interested reader we refer to [2, §4] and to [3, §4].

3 Proof of the main result

The proof of Theorem 1.5 will follow from a suitable application of Theorem 2.19. Through all
this section, Ah, A0 will be the positive, self-adjoint operators associated with problems (2.9)
and (2.11), respectively, namely the operators introduced in Subsection 2.3. We denote the
resolvent operators of Ah and A0 by

B0 = A−1
0 , Bh = A−1

h , h ∈ (0, h̄) (3.1)

For every h ∈ (0, h̄) we define Hh = L2(ωh;h
−1dx), H0 = L2((0, |∂Ω|)), where L2(ωh;h

−1dx)
is the space L2(ωh) endowed with the norm ∥ · ∥L2(ωh;h−1dx) = h−1/2∥ · ∥L2(ωh).

Let Eh : H0 → Hh be the extension operator defined by (Ehu ◦ Φh)(s, t) = u(s) for a.a.
s ∈ ∂Ω, t ∈ (0, 1). Note that

lim
h→0+

∥Ehu∥Hh
= ∥u∥H0 ,

12



so the family of extension operators {Eh}h∈(0,h̄) satisfies (2.17). In particular, {Eh}h∈(0,h̄) is an
admissible connecting system for the family of Hilbert spaces {Hh}h∈[0,h̄).

Theorem 1.5 is a corollary of the following theorem and of Theorem 2.19.

Theorem 3.2. Let Bh, h ∈ [0, h̄) be defined by (3.1). Then Bh compactly converges to B0 as
h→ 0+.

Proof. Since we are only interested in the limit as h→ 0+ we may restrict to h ∈ [0,min{1, h̄/2}].
By definition of compact convergence we have to prove the following two claims:

(i) for every sequence {fh}h∈(0,h̄), fh ∈ Hh, E-convergent to f ∈ H0, we have

∥Bhfh − EhB0f∥Hh
→ 0

as h→ 0+;

(ii) for every sequence {fh}h∈(0,h̄), fh ∈ Hh, ∥fh∥Hh
= 1, h ∈ (0, h̄), there exists a subsequence

{Bhk
fhk

}k∈N with hk → 0+ as k → +∞, and a function u0 ∈ H0 such that

∥Bhk
fhk

− Ehk
u0∥Hhk

→ 0

as k → +∞.

Consider the Poisson problem with datum fh ∈ L2(ωh) associated with the operator Ah, namely∫
ωh

(
D2uh : D2φ+M uh φ

)
dx =

∫
ωh

fh φdx , ∀φ ∈ H2(ωh),

which is rewritten in the coordinate system (s, t) (see (2.4)) as∫
Σ

(
D2uh : D2φ+M uh φ

)
◦ Φh(s, t)(1− htκ(s))dtds

=

∫
Σ
(fh φ) ◦ Φh(s, t)(1− htκ(s))dtds, (3.3)

for all φ ∈ H2(Σ). Let us assume from the beginning that fh is as in the definition of compact
convergence, that is, fh is uniformly bounded in the sequence of Hilbert spaces {Hh}h∈(0,h̄). This
means exactly that {f̃h}h∈(0,h̄) is uniformly bounded in L2(Σ), so that, up to a subsequence,

we may assume that f̃h ⇀ f̃ ∈ L2(Σ). In particular, if fh ∈ Hh E-converges to f ∈ H0, then
f̃ := f ◦ Φh ∈ L2(Σ) is the pullback of f via Φh.

13



From (2.8) we deduce that

(D2uh : D2φ) ◦ Φh (3.4)

=
∂2ss(uh ◦ Φh)∂

2
ss(φ ◦ Φh)

(1− htκ(s))4
+

2∂2st(uh ◦ Φh)∂
2
st(φ ◦ Φh)

h2(1− htκ(s))2
+

1

h4
∂2tt(uh ◦ Φh)∂

2
tt(φ ◦ Φh) (3.5)

+
htκ′(s)

(1− htκ(s))5
(∂s(uh ◦ Φh)∂

2
ss(φ ◦ Φh) + ∂2ss(uh ◦ Φh)∂s(φ ◦ Φh)) (3.6)

− κ(s)

h(1− htκ(s))3
(∂2ss(uh ◦ Φh)∂t(φ ◦ Φh) + ∂t(uh ◦ Φh)∂

2
ss(φ ◦ Φh)) (3.7)

+
2κ(s)

h(1− htκ(s))3
(∂s(uh ◦ Φh)∂

2
st(φ ◦ Φh) + ∂2st(uh ◦ Φh)∂s(φ ◦ Φh)) (3.8)

− tκ(s)κ′(s)

(1− htκ(s))4
(∂s(uh ◦ Φh)∂t(φ ◦ Φh) + ∂t(uh ◦ Φh)∂s(φ ◦ Φh)) (3.9)

+
(2κ(s)2(1− htκ(s))2 + h2t2κ′(s)2)

(1− htκ(s))6
∂s(uh ◦ Φh)∂s(φ ◦ Φh) (3.10)

+
κ(s)2

h2(1− htκ(s))2
∂t(uh ◦ Φh)∂t(φ ◦ Φh). (3.11)

Step 1 (coercivity estimate): let ũh = uh ◦Φh. We will prove that there exists a constant
C > 0 such that for all h ∈ (0, h̄/2)(

∥∂2ttũh∥2L2(Σ)

h4
+

∥∂2stũh∥2L2(Σ)

h2
+

∥κ∂tũh∥2L2(Σ)

h2

)
+
(
∥∂2ssũh∥2L2(Σ) + ∥κ∂sũh∥2L2(Σ)

)
+ ∥ũh∥2L2(Σ) ≤ C∥f̃h∥2L2(Σ) (3.12)

To shorten the notation, let us set ϱ(s, t) := 1 − htκ(s). Note that since h ≤ h̄/2, we that
0 < c1 ≤ ϱ(s, t) ≤ c2 for all (s, t) ∈ Σ, with c1, c2 independent on h. Choose φ = uh in (3.3).
Note that the first three summands of (3.4), namely the three terms in (3.5), equal respectively∥∥∥∂ssũh

ϱ3/2

∥∥∥2
L2(Σ)

, 2
∥∥∥∂stũh

hϱ1/2

∥∥∥2
L2(Σ)

, and
∥∥∥ϱ1/2 ∂ttũh

h2

∥∥∥2
L2(Σ)

. The last two terms of (3.4), namely (3.10)

and (3.11), equal

(
2
∥∥∥κ∂sũh

ϱ3/2

∥∥∥2
L2(Σ)

+
∥∥∥htκ′∂sũh

ϱ5/2

∥∥∥2
L2(Σ)

)
and

∥∥∥κ∂tũh

hϱ1/2

∥∥∥2
L2(Σ)

, respectively. As for

(3.6), observe that for any δ > 0, and any ε > 0 sufficiently small, we have∫
Σ

2htκ′(s)

(1− htκ(s))5
∂sũh∂

2
ssũh(1− htκ(s))dtds ≥ −C

∫
Σ
|∂sũh∂2ssũh|dtds

≥ −Cδ
2
∥∂2ssũh∥2L2(Σ) −

C

2δ

∫ 1

0
∥∂sũh∥2L2((0,|∂Ω|))dt

≥ −Cδ
2
∥∂2ssũh∥2L2(Σ) −

Cε

2δ

∫ 1

0
∥∂2ssũh∥2L2((0,|∂Ω|))dt−

Cc

2δε

∫ 1

0
∥ũh∥2L2((0,|∂Ω|))dt

≥ −C(δ
2 + ε)

2δ
∥∂2ssũh∥2L2(Σ) −

CC ′c

2δε

∫
Σ
ũ2h(1− htκ(s))dtds

(3.13)
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where C = max(s,t)∈Σ,h∈[0,h̄/2]
ht|κ′(s)|

(1−htκ(s))4
, C ′ = 1

min(s,t)∈Σ,h∈[0,h̄/2](1−htκ(s)) . Here, to pass from

the first to the second line we have used the Cauchy-Schwarz inequality, and to pass from
the second to the third line we have used the classical interpolation inequality ∥v′∥L2((a,b)) ≤
ε∥v′′∥L2((a,b)) +

c
ε∥v∥L2((a,b)), valid for all v ∈ H2((a, b)) and ε > 0 sufficiently small, with c > 0

depending only on a, b (see e.g., [14, §4.2, Theorem 2 and Corollary 7]).
Similarly, we estimate (3.8) and (3.9) (possibly re-defining the constants C,C ′):∫
Σ

4κ(s)

h(1− htκ(s))3
∂sũh∂

2
stũh(1− htκ(s))dtds

≥ −Cε
2δ

∥∂2ssũh∥2L2(Σ) −
CC ′c

2δε

∫
Σ
ũ2h(1− htκ(s))dtds− Cδ

2

∥∂2stũh∥2L2(Σ)

h2
(3.14)

and∫
Σ

2tκ(s)κ′(s)

(1− htκ(s))4
∂sũh∂tũh(1− htκ(s))dtds

≥ −Cε
2δ

∥∂2ssũh∥2L2(Σ) −
CC ′c

2δε

∫
Σ
ũ2h(1− htκ(s))dtds− Cδ

2

∥κ∂tũh∥2L2(Σ)

h2
(3.15)

where δ, ε > 0 can be chosen arbitrarily small (and independent on h), and C,C ′, c are positive
constants not depending on h. Finally, we estimate (3.7), which is the most delicate term:∫

Σ

2κ(s)

h(1− htκ(s))3
∂2ss(ũh)∂t(ũh)(1− htκ(s))dtds

≥ −2

∣∣∣∣∫
Σ

κ(s)

(1− htκ(s))2
∂sũh

∂2stũh
h

+ ∂s

(
κ(s)

(1− htκ(s))2

)
∂sũh

∂tũh
h

dsdt

∣∣∣∣
≥ −Cε

2δ
∥∂2ssũh∥2L2(Σ) −

CC ′c

2δε

∫
Σ
(ũh)

2(1− htκ(s))dtds− Cδ

2

∥∂2stũh∥2L2(Σ)

h2

− Cε

2δ′
∥∂2ssũh∥2L2(Σ) −

CC ′c

2δ′ε′

∫
Σ
(ũh)

2(1− htκ(s))dtds− Cδ′

2

∥∂tũh∥2L2(Σ)

h2

(3.16)

We have used integration by parts and an elementary inequality to pass from the first to the
second line of (3.16), and interpolation inequalities as done for (3.13), (3.14), and (3.15) to pass
from the second line to the last two lines of (3.16). The scope of this procedure is to have
arbitrarily small coefficients in front of any term involving derivatives, at the price of having a
large coefficient in front of the term which does not involve derivatives. Eventually, we will be
able to control this term with the constant M which we are free to choose.

Again, C,C ′, c are positive constants independent on h, and ε, ε′, δ, δ′ are positive constants
which can be chosen arbitrarily. In order to conclude, and to establish (3.12), the last term in

the last line of (3.16) needs to be bounded from below by
∥κ∂tũh∥2L2(Σ)

h2 . This is not trivial since
κ is allowed to vanish on a subset of ∂Ω of positive measure and therefore the two norms are
not equivalent. Nevertheless, κ is bounded from below by a strictly positive constant on some
open subset of ∂Ω. Indeed, the Gauss-Bonnet Theorem implies that

∫
∂Ω κ(s)ds = 2π, therefore
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there exists a > 0 and an open subset Ja of ∂Ω such that |κ(s)| ≥ a for all s ∈ Ja.

Claim: there exists Ca > 0 such that

∥∂tũh∥2L2(Σ)

h2
≤ 4C2

a

∥∂2ttũh∥2L2(Σ)

h2
+ 4C2

a

∥∂2stũh∥2L2(Σ)

h2
+

2

a2

∥κ∂tũh∥2L2(Σ)

h2
. (3.17)

Proof of the Claim. Let us set Σa := Ja × (0, 1) ⊂ Σ. Then there exists a constant Ca > 0 such

that
∥∥∥g − 1

|Σa|
∫
Σa
g
∥∥∥
L2(Σ)

≤ Ca∥∇g∥L2(Σ), for all g ∈ H1(Σ). This is a general version of the

Poincaré-Wirtinger inequality. Thus,

∥g∥L2(Σ) =

∥∥∥∥g − 1

|Σa|

∫
Σa

g +
1

|Σa|

∫
Σa

g

∥∥∥∥
L2(Σ)

≤ Ca∥∇g∥L2(Σ) + ∥g∥L2(Σa). (3.18)

Inserting g = ∂tũh
h in (3.18) we deduce that

1

a

∥∥∥∥κ(s)∂tũhh

∥∥∥∥
L2(Σ)

≥
∥∥∥∥∂tũhh

∥∥∥∥
L2(Σa)

≥
∥∥∥∥∂tũhh

∥∥∥∥
L2(Σ)

− Ca

∥∥∥∥∇(∂tũh)

h

∥∥∥∥
L2(Σ)

,

hence (3.17) holds.

Using (3.17) on the right-hand side of (3.16) gives the desired inequality. Note that, choosing
suitable ε, ε′δ, δ′ > 0 in (3.13), (3.14), (3.15), (3.16), and possibly replacing M by a larger (but
fixed) constant, we deduce that there exist constants c0 > 0, c1 > 1 independent of h such that∫

Σ

(
|D2ũh|2 +Mũ2h

)
ϱ dtds ≥ c0

(
∥∂2ttũh∥2L2(Σ)

h4
+

∥∂2stũh∥2L2(Σ)

h2
+

∥κ∂tũh∥2L2(Σ)

h2

)
+ c0

(
∥∂2ssũh∥2L2(Σ) + ∥κ∂sũh∥2L2(Σ)

)
+ c1∥ũh∥2L2(Σ) (3.19)

for all h ∈ [0, h̄/2], and since the left-hand side is uniformly bounded in h, by (3.3), (3.19) and
a standard Cauchy-type estimate, we finally deduce that (3.12) holds.

Step 2 (passage to the limit): we prove now that there exists u ∈ H2(Σ), w ∈ H1(Σ),
such that ũh → u in L2(Σ), ∂tũh

h → w in L2(Σ). Moreover, u,w are both constant in the variable
t, and (u,w) solves

u′′′′ − 2(κ2u′)′ − (κw)′′ − 2(κw′)′ +Mu = Mf̃ , in (0, |∂Ω|),
−2w′′ + κ2w − κu′′ − 2(κu′)′ = 0, in (0, |∂Ω|),
u(k)(0) = u(k)(|∂Ω|), k = 0, 1, 2, 3,

w(k)(0) = w(k)(|∂Ω|), k = 0, 1.

, (3.20)

where M is the averaging operator defined as

Mf(s) =

∫ 1

0
f̃(s, t)dt, a.a. s ∈ (0, |∂Ω|).
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Step 1 implies that the sequences{
∂2ttũh
h2

}
h∈(0,h̄)

,

{
∂2stũh
h

}
h∈(0,h̄)

,

{
κ∂tũh
h

}
h∈(0,h̄)

,
{
∂2ssũh

}
h∈(0,h̄) , {κ∂sũh}h∈(0,h̄) (3.21)

are uniformly bounded in L2(Σ) for all h ∈ (0, h̄). In particular, {ũh}h∈(0,h̄) is a bounded

sequence in H2(Σ). By the compact embedding of H2(Σ) in L2(Σ) we deduce that there exists
a function u ∈ H2(Σ) such that, up to a subsequence, ũh ⇀ u in H2(Σ), strongly in H1(Σ).
Note also that there exists a function v ∈ L2(Σ) such that, up to a subsequence,

∂2ttũh
h2

⇀ v (3.22)

in L2(Σ) as h→ 0+.

Moreover, the sequence
{

∂tũh
h

}
h∈(0,h̄)

is uniformly bounded in L2(Σ). This follows from

(3.17) and (3.21). Then, up to a subsequence, there exists a function w ∈ H1(Σ) such that

∂tũh
h

⇀ w (3.23)

in H1(Σ) as h→ 0+, and, from the compact embedding of H1(Σ) in L2(Σ), ∂tũh
h → w in L2(Σ).

In particular, ∂tũh → 0 in L2(Σ), hence ∂tu = 0 a.e. in Σ, so u is constant in t.
We further deduce that the limiting function w is constant in t, due to the fact that ∂2ttũh/h→

0 in L2(Σ). We are now in position to pass to the limit in equation (3.3). This will be done in
three steps.

Step 2a: we first choose φ = h2ς for some ς ∈ H2(Σ). Then all the summands in (3.3), which
are listed in (3.4), vanish as h→ 0+, with the possible exception of

1

h4
∂2tt(uh ◦ Φh)∂

2
tt(h

2ς).

From (3.22) and from equation (3.3) we then deduce that∫
Σ
(D2uh : D2(h2ς)) ◦ Φh(s, t)(1− thκ(s)) dtds→

∫
Σ
v ∂2ttς dsdt = 0

as h→ 0+. Since ς is an arbitrary function in H2(Σ), we conclude that v = 0.

Step 2b: we now choose φ(s, t) = htθ(s), for (s, t) ∈ Σ, where θ ∈ H2
p ((0, |∂Ω|)). Using φ as

test function in (3.3) we deduce that∫
Σ

(
2∂2st(ũh)∂

2
stφ

h2(1− htκ(s))2
− κ(s)

h(1− htκ(s))3
∂2ss(ũh)∂tφ

+
2κ(s)

h(1− htκ(s))3
∂s(ũh)∂

2
stφ− κ(s)2

h2(1− htκ(s))2
∂t(ũh)∂tφ

)
(1− htκ(s)) dsdt = o(1)
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as h → 0+. Recalling (3.23) and the specific choice of φ we can now pass to the limit in the
previous equation to deduce that∫ |∂Ω|

0
2w′(s)θ′(s)− κ(s)u′′(s)θ(s) + 2κ(s)u′(s)θ′(s) + κ2w(s)θ(s) ds = 0 (3.24)

for all θ ∈ H2
p ((0, |∂Ω|)), and, by approximation, for all θ ∈ H1

p ((0, ∂Ω)).
Since the coefficient of the leading term in (3.24) is constant, u ∈ H2

p ((0, |∂Ω|)), and κ is
smooth, we deduce that w ∈ H2

p (Σ) and solves

− 2w′′ + κ2w − κu′′ − 2(κu′)′ = 0 on (0, |∂Ω|), (3.25)

where the equality is understood in the L2((0, |∂Ω|)) sense.
Step 2c: we finally choose φ(s, t) = ψ(s), for s ∈ (0, |∂Ω|), ψ ∈ H2

p ((0, |∂Ω|)). Using φ as test
function in (3.3) we deduce that∫

Σ

(
∂2ssũh∂

2
ssφ

(1− htκ(s))4
+

htκ′(s)

(1− htκ(s))5
(∂sũh∂

2
ssφ+ ∂2ssũh∂sφ)

− κ(s)

h(1− htκ(s))3
(∂tũh∂

2
ssφ) +

2κ(s)

h(1− htκ(s))3
(∂2stũh∂sφ)−

tκ(s)κ′(s)

(1− htκ(s))4
(∂tũh∂sφ)

+
(2κ(s)2(1− htκ(s))2 + h2t2κ′(s)2)

(1− htκ(s))6
∂sũh∂sφ+Mũhφ

)
(1− thκ(s)) dsdt

=

∫
Σ
f̃hφ(1− thκ(s)) dsdt

and taking the limit as h→ 0+ we deduce that∫
Σ
∂2ssu∂

2
ssψ − κ(s)w∂2ssψ + 2κ(s)(∂sw∂sψ) + 2κ(s)2∂su∂sψ +Muψ dsdt =

∫
Σ
f̃ψ dsdt (3.26)

Note that all the functions appearing in (3.26) are constant in t, with the possible exception of
f̃ . As in Step 2, we deduce that u ∈ H4

p (Σ) and solves

u′′′′ − 2(κ2u′)′ − (κw)′′ − 2(κw′)′ +Mu = Mf̃ on (0, |∂Ω|). (3.27)

A standard bootstrap argument allows to conclude that u,w are smooth. Altogether, we have
found that the solution ũh of (3.3) converges as h → 0+ to the solution u of the system (3.20).
We can rewrite (3.20) as a single equation by noting that the operator ∆κ has a bounded inverse,
so the second equation in (3.20) yields

w = ∆−1
κ

(κ
2
u′′ + (κu′)′

)
,

and upon substitution in the first equation in (3.20) we recover (2.11).
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Step 3 (proof of the compact convergence). From Steps 1-2 we see that if fh E-
converges to f ∈ H0 then

∥Bhfh − EhB0f∥Hh
= ∥ũh − Ehu∥L2(Σ) → 0 , as h→ 0+,

and similarly, if {fh}h∈(0,h̄) is uniformly bounded in the sequence of Hilbert spaces Hh, with

f̃h ⇀ f̃ in L2(Σ), then from the considerations above, ũh ⇀ u in H2(Σ) and ũh → u strongly in
L2(Σ) so

∥Bhfh − EhB0f∥Hh
= ∥ũh − Ehu∥L2(Σ) → 0 , as h→ 0+,

concluding the proof.

Remark 3.28. Since we know that µ1(h) = M , we deduce a posteriori that the operator Ã0 =
A0 −M is non-negative in L2((0, |∂Ω|)).

4 Final remarks

4.1 Tubular neighbourhoods with variable size

It is possible to consider, instead of ωh, a tubular neighbourhood of ∂Ω of variable size, namely

ωh,g := {x ∈ ωh : 0 < dist(x, ∂Ω) < hg(s(x))}, (4.1)

for all h ∈ (0, h̄), where s(x) is the nearest point to x on ∂Ω, and g : ∂Ω → R is a smooth
function such that 0 < g(s) < 1 for all s ∈ ∂Ω. The computations can be carried out exactly
as in the previous section. In particular, it follows that the limiting problem of (1.2) with ωh

replaced by ωh,g reads
(gu′′)′′ − (κgw)′′ − 2(κgw′)′ − 2(k2u′)′ = ηgu, in (0, |∂Ω|)
−2(gw′)′ + κ2gw − κgu′′ − 2(κgu′)′ = 0, in (0, |∂Ω|),
u(k)(0) = u(k)(|∂Ω|), k = 0, 1, 2, 3,

w(k)(0) = w(k)(|∂Ω|), k = 0, 1,

(4.2)

in the unknowns u(s), w(s) and η (the eigenvalue). We refer e.g., to [3, §4] for more details in
the case of a thin set of the form {(x, y) ∈ R2 : 0 < x < 1, 0 < y < hg(x)}.

4.2 The unit circle

Let us consider the case when Ω is the unit disk in R2. Then, for h ∈ (0, 1), ωh = {x ∈ R2 :
1− h < |x| < 1} is an annulus of width h. As customary, we look for solutions to problem (1.2)
of the form

uℓh(r, θ) = vh(r)(Aℓ cos(ℓθ) +Bℓ sin(ℓθ)) (4.3)
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Here we are using polar coordinates (r, θ) in R2. Plugging (4.3) in (1.2) we obtain that the
radial part vh satisfies the following ODE

v′′′′h +
2v′′′h
r − (1+2ℓ2)v′′h

r2
+

(1+2ℓ2)v′h
r3

+ ℓ2(ℓ2−4)vh
r4

= µ(h)vh , r ∈ (1− h, 1),

v′′h(1− h) = v′′h(1) = 0 ,

v′′′h (1) + v′′h(1)− (1 + 2ℓ2)v′h(1) + 3ℓ2vh(1) = 0 ,

v′′′h (1− h) +
v′′h(1−h)
1−h − (1+2ℓ2)v′h(1−h)

(1−h)2
+ 3ℓ2vh(1−h)

(1−h)3
= 0.

(4.4)

For readers interested in more details on how to obtain (4.4) we refer e.g., to [17, §6].
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Figure 3: Each analytic curve µ = µ(h) describes the zero level set of detBℓ(h, µ), for ℓ = 0, ..., 7.

The horizontal dotted lines correspond to 2ℓ2(ℓ2−1)2

1+2ℓ2
, ℓ = 0, ..., 7. The plot suggests that µj(h)

are locally monotone near h = 0, see also [38] for a related monotonicity result.

It is customary to verify that any solution of the differential equation in (4.4) is of the form

vℓh(r) = aℓJℓ(µ(h)
1/4r) + bℓIℓ(µ(h)

1/4r) + cℓYℓ(µ(h)
1/4r) + dℓKℓ(µ(h)

1/4r), (4.5)

where Jℓ, Yℓ denote the Bessel function of first and second order of degree ℓ, respectively, and
Iℓ,Kℓ denote the modified Bessel function of first and second order of degree ℓ, respectively. We
refer e.g., to [17, Prop. 1] and to [38] for the justification of (4.5).

Imposing the four boundary conditions we obtain a homogeneous system of four equations
in four unknowns aℓ, bℓ, cℓ, dℓ, which admits a non-zero solution if and only if the determinant
of the associated matrix is zero. Namely, a number µ is an eigenvalue of (4.4) corresponding to
an index ℓ ∈ N and to h ∈ (0, 1) if and only if

detBℓ(h, µ) = 0,
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where

Bℓ(h, µ) := 

J ′′
ℓ (µ

1/4) I′′ℓ (µ
1/4) Y ′′

ℓ (µ1/4) K′′
ℓ (µ

1/4)

J ′′
ℓ (µ

1/4(1− h)) I′′ℓ (µ
1/4(1− h)) Y ′′

ℓ (µ1/4(1− h)) J ′′
ℓ (µ

1/4(1− h))

J ′′′
ℓ (µ1/4) I′′′ℓ (µ1/4) Y ′′′

ℓ (µ1/4) K′′′
ℓ (µ1/4)

−(1 + 2ℓ2)J ′
ℓ(µ

1/4) −(1 + 2ℓ2)I′ℓ(µ
1/4) −(1 + 2ℓ2)Y ′

ℓ (µ
1/4) −(1 + 2ℓ2)K′

ℓ(µ
1/4)

+3ℓ2Jℓ(µ
1/4) +3ℓ2Iℓ(µ

1/4) +3ℓ2Yℓ(µ
1/4) +3ℓ2Kℓ(µ

1/4)

J ′′′
ℓ (µ1/4(1− h)) I′′′ℓ (µ1/4(1− h)) Y ′′′

ℓ (µ1/4(1− h)) K′′′
ℓ (µ1/4(1− h))

− (1+2ℓ2)J′
ℓ(µ

1/4(1−h))

(1−h)2
− (1+2ℓ2)I′ℓ(µ

1/4(1−h))

(1−h)2
− (1+2ℓ2)Y ′

ℓ (µ
1/4(1−h))

(1−h)2
− (1+2ℓ2)K′

ℓ(µ
1/4(1−h))

(1−h)2

+
3ℓ2Jℓ(µ

1/4(1−h))

(1−h)3
+

3ℓ2Iℓ(µ
1/4(1−h))

(1−h)3
+

3ℓ2Yℓ(µ
1/4(1−h))

(1−h)3
+

3ℓ2Kℓ(µ
1/4(1−h))

(1−h)3


Expanding the determinant in Taylor series with respect to h near h = 0, and using recurrence
relations for Bessel functions and cross-products formulae, we obtain

detBℓ(h, µ) =
8µ
(
µ(1 + 2ℓ2)− 2ℓ2(ℓ2 − 1)2

)
π

h2 +O(h3) , h→ 0+.

This implies that the limiting eigenvalues are of the form 2ℓ2(ℓ2−1)2

1+2ℓ2
, see Fig.2. The computations,

which we omit, are very long and technical. The reader interested in the details may refer to [38]
where analogous computations were performed in the case of a singularly perturbed eigenvalue
problem for the Neumann Laplacian with density on a thin annulus.

On the other hand, choosing κ(s) ≡ 1 in (1.6), which corresponds to the case of the unit
circle, it is standard to prove that all solutions of (1.6) are given by u(s) = A cos(ℓθ)+B sin(ℓθ),

w(s) = − 3ℓ2

1+2ℓ2
u(s), and η = 2ℓ2(ℓ2−1)2

1+2ℓ2
, for ℓ ∈ N and arbitrary constants A,B ∈ R.

4.3 On the restriction of the biharmonic operator on functions depending
only on the tangential curvilinear coordinate

It is well-known that the equality ∆∂Ωu = ∆U|∂Ω holds for all functions u defined on ∂Ω, where

U is defined on ωh by (U ◦ Φh)(s, t) = u(s) for all (s, t) ∈ Σ = Φ−1
h (ωh). Here ∆∂Ω denotes

the second derivative with respect to the arc-length parameter s, since we are working in two
space dimensions. The same identification is possible in any dimension n ≥ 2. Namely, the
Laplace-Beltrami operator acting on a function u defined on a closed hypersurface ∂Ω in Rn

bounding a smooth domain is the restriction to ∂Ω of the Laplacian acting on the function U
defined in a tubular neighbourhood of ∂Ω by extending u constantly in the normal direction.

This identification is no longer true in the case of the biharmonic operator. In fact, by direct
inspection one sees that ∆2U|∂Ω turns out to have an explicit representation, which for n = 2
reads

∆2U|∂Ω = u′′′′(s) + 4κ2(s)u′′(s) + 5κ(s)κ′(s)u′(s), (4.6)

s ∈ (0, |∂Ω|). Note that the corresponding differential operator coincides neither with ∆2
∂Ω,

nor with the operator associated with problem (1.6). This discrepancy is due to the different
behaviour of the Laplace operator and the biharmonic operator on thin domains, as we have seen
in the proof of Theorem 3.2; ∆2 change drastically in the limit if we neglect the contributions
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coming from normal derivatives, differently to what happens in the case of the Laplacian. This
fact can also be deduced by the following remark: functions defined in ωh which depend only on
the tangential curvilinear coordinate s do not satisfy in general the second boundary condition
in (1.2). In fact, if f : Σ → R depends only on s, the second boundary condition for f ◦ Φ−1

h in
(1.2) reads, in coordinates (s, t),

−
(

κ(s)

(1− htκ(s))2
f ′(s)

)′

|t=0,1

= 0, (4.7)

while the first boundary condition is trivially satisfied. Note that if Ω is strictly convex, then
(4.7) implies that f ′ = 0, hence f is constant. On the other hand, in the case of the Neumann
Laplacian on ωh, the boundary condition is trivially satisfied by any f depending only on s.
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