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Josephson current via an isolated Majorana zero mode
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We study the equilibrium dc Josephson current in a junction between an s-wave and a topological superconduc-
tor. Cooper pairs from the s-wave superconducting lead can transfer to the topological side either via an unpaired
Majorana zero mode localized near the junction or via the above-gap continuum states. We find that the Majorana
contribution to the supercurrent can be switched on when time-reversal symmetry in the conventional lead is
broken, e.g., by an externally applied magnetic field inducing a Zeeman splitting. Moreover, if the magnetic field
has a component in the direction of the effective spin-orbit field, there will be a Majorana-induced anomalous
supercurrent at zero phase difference. These behaviors may serve as a signature characteristic of Majorana zero
modes and are accessible to devices with only superconducting contacts.
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I. INTRODUCTION

Majorana zero modes (MZMs) are neutral midgap exci-
tations localized at the defects or wire ends of a topological
superconductor [1–12]. Due to their robustness against lo-
cal perturbations and their non-Abelian statistics, MZMs are
potential building blocks for topological quantum computa-
tion [13,14]. One of the promising candidates for realizing
topological superconductivity in solid-state physics is het-
erostructures consisting of a one-dimensional Rashba spin-
orbit-coupled semiconductor nanowire and a proximitizing
conventional s-wave superconductor [15–18]. The application
of a large enough Zeeman field parallel to the nanowire can
drive the hybrid system into the topological superconducting
phase, with MZMs forming at the wire ends.

So far, most evidence for MZMs comes from tunneling
spectroscopy in normal-metal-superconductor junctions, in
which a MZM gives rise to a zero-bias conductance peak
[19–29]. In addition, several proposals have been put forward
to probe topological superconductivity with superconduct-
ing contacts. One advantage of a superconducting lead is
that quasiparticle poisoning can be mitigated at temperatures
smaller than the gap �0, which is beneficial for qubit pro-
posals [30]. In a voltage-biased junction between trivial and
topological superconductors, the MZM will manifest itself as
a conductance peak of height (4 − π )2e2/h at eV = ±�0 in
the tunneling limit [31–34]. Several works have considered
the equilibrium dc Josephson current between trivial and topo-
logical superconductors (see Fig. 1) and have established that
the Majorana contribution to the supercurrent is negligible
[35–38]. Corrections arise due to the above-gap quasiparticle
contributions if the nanowire length is short or if a quantum
dot is present between the two leads [38–41].
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Existing studies have focused on the case in which
time-reversal symmetry (TRS) is present in the trivial super-
conductor. In practice, however, a magnetic field has to be
applied globally to a device, and thus, TRS inside the trivial
lead is inevitably broken. In this work, we explore in detail
the consequences of TRS breaking in the trivial lead for the
Josephson current. We show that a finite Zeeman splitting in-
side the trivial superconductor generates a Majorana-induced
supercurrent. Additionally, if the magnetic field has a com-
ponent in the direction of the effective spin-orbit field, the
MZM induces an anomalous supercurrent, flowing at zero
phase difference between the leads. Thus, under appropriate
conditions the dc Josephson current in a trivial-topological
superconductor junction can provide observable evidence for
MZMs.

II. MODEL AND METHOD

The Hamiltonian for the one-dimensional nanowire
Josephson junction represented in Fig. 1 is

H = HL + HR + Htunnel, (1)

where HL (HR) is the Hamiltonian for the left (right) nanowire
lead [16,17]:

Hj =
∫

dx c†
jσ (x) [h j]σσ ′ c jσ ′ (x) + �0[c j↓(x)c j↑(x) + H.c.],

h j = − h̄2

2m∗ ∂2
x − μ j − iα j∂xσy + �EZ, j · �σ . (2)

Here j = L, R, c†
jσ (x) creates an electron of spin σ in lead

j at position x, σx,y,z are the Pauli matrices acting on the
spin space, m∗ is the effective mass, μ j is the chemical
potential, α j is the strength of Rashba spin-orbit coupling
with the corresponding spin-orbit field pointing along the σy

direction, �0 is the proximity-induced superconducting gap,
and �EZ, j = 1

2 gμB �Bj is the Zeeman field due to the applied
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FIG. 1. Side-view schematic of a Josephson junction between
trivial and topological superconductors. A semiconducting nanowire
(orange) is in proximity to two conventional s-wave superconduc-
tors (blue) separated by the tunnel junction. An unpaired Majorana
zero mode (green dot) can appear near the junction when the right
hybrid nanowire becomes topological. The chemical potential of the
superconductor can be tuned by the back gate (gray line), while the
junction transparency can controlled by the tunnel gate (gray dot).
The inset indicates the coordinate axes and direction of magnetic
field.

magnetic field. We have defined parameters separately for the
left and right leads, which will allow us to consider different
physical scenarios in what follows. We will always assume
that the chemical potential in the left lead is set to a high value
μL � �0, such that the left lead is in the topologically trivial
regime. For numerical results, the continuum Hamiltonian in
Eq. (2) needs to be discretized into a tight-binding model
[42,43]. When doing so, we always take the size L of the left
and right leads to be large enough that finite-size effects (e.g.,
Majorana overlap) play no essential role.

The tunnel Hamiltonian is given by

Htunnel = −teiϕ/2
∑
σ=↑↓

c†
Rσ (xR)cLσ (xL ) + H.c. (3)

and describes spin-conserving single-electron tunneling oc-
curring at a point contact connecting the left lead (ending
at x = xL) to the right lead (beginning at x = xR). Here ϕ is
the phase difference between the leads, and t is the tunneling
strength, which is associated with the normal conductance by
GN = 4πe2t2νLνR/h̄, with νL,R being the normal density of
states at the Fermi surface of the left and right leads.

In the tunneling limit t � �0, which can always be
reached by tuning the tunnel gate, second-order perturbation
theory yields the zero-temperature current-phase relation of
the junction [44,45],

I (ϕ) = Ic sin(ϕ + ϕ0). (4)

The critical current Ic = 4et2|A|/h̄ and the phase shift ϕ0 =
arg(A) are determined by the amplitude A of Cooper pair
transfer from left to right. The latter is a sum over all possible
intermediate states with a quasiparticle in each lead,

A =
∑
nm

ησ=↑↓

u∗
Lnη(xL ) vLnσ (xL ) uRmσ (xR) v∗

Rmη(xR)

ELn + ERm
. (5)

Here Ejn � 0 is the energy of the nth Bogoliubov quasi-
particle excitation in lead j, with the Nambu wave function
[u jn↑(x), u jn↓(x), v jn↑(x), v jn↓(x)]ᵀ. When the right lead is in
the topological phase, we can separate the amplitude into two
parts, A = AM + Acont, depending on whether the intermedi-
ate state involves an isolated MZM (ERm = 0) or an excited
quasiparticle state in the continuum (ERm > 0). At zero field,
Eq. (5) yields the classical Ambegaokar-Baratoff relation
Ic0 = (π/2e)GN�0 [44]. When ϕ0 	= 0 or π , an anomalous
supercurrent Ian = Ic sin(ϕ0) flows at ϕ = 0.

III. MAJORANA-INDUCED SUPERCURRENT

We now focus on a physical scenario that illustrates the
joint role of the MZM and TRS breaking in the left lead
in generating a supercurrent. Namely, we consider the case
in which the parameters of HR are fixed in the topolog-
ical regime; that is, the strength of spin-orbit coupling is
finite αR > 0, and the Zeeman field is larger than the crit-

ical value, | �EZ,R| >

√
�2

0 + μ2
R. Under these conditions and

provided the wire is long enough, there will be an un-
paired MZM with a particle-hole-symmetric wave function
[ξ↑(x), ξ↓(x), ξ ∗

↑ (x), ξ ∗
↓ (x)]ᵀ exponentially localized at x =

xR. At the same time, we assume that the left lead is subject
to a Zeeman field pointing in an arbitrary direction, possibly
different from that of �EZ,R, parametrized by angles θ and φ

(Fig. 1) so that �EZ,L = EZ,L (sin θ cos φ, sin θ sin φ, cos θ ). We
further assume that the left lead has no spin-orbit coupling,
αL = 0, and that EZ,L < �0 to guarantee a finite energy gap.
Under these conditions, the amplitude of Cooper pair transfer
via the MZM is [45]

AM = νL f
(EZ,L

�0

)
[(ξ 2

↓eiφ − ξ 2
↑e−iφ ) sin θ + 2ξ↑ξ↓ cos θ ],

(6)

with f (x) = arcsin(x)
2
√

1−x2 [46]. Equation (6) is the central result of
our work and deserves several comments.

First, if EZ,L = 0, AM = 0, and the Majorana-induced su-
percurrent is blockaded [35]. Although Eq. (6) assumes no
spin-orbit coupling in the trivial SC lead, the blockade of the
Majorana-induced supercurrent is more general, and it relies
on the presence of TRS in the left lead. In particular, it holds
in the presence of spin-orbit coupling as well as nonmagnetic
disorder, as we derive in Appendix C [45]. A finite EZ,L,
however, breaks TRS in the left lead, and according to Eq. (6),
a supercurrent can flow via the MZM. The magnitude of AM

increases linearly for a small Zeeman field, AM ∝ EZ,L/�0

for EZ,L � �0.
Second, the magnitude of the supercurrent also depends

crucially on the direction of �EZ,L, a fact which can be under-
stood as follows. On the one hand, because Cooper pairs in
the left lead have zero angular momentum, they are composed
of two electrons with opposite spin polarizations along the
direction dictated by �EZ,L. The two paired electrons must
both tunnel through the MZM in order for AM to be finite.
However, the MZM has its own spin polarization—i.e., the
orientation along the Bloch sphere associated with the spinor
[ξ↑(xR), ξ↓(xR)]ᵀ—and therefore acts as a spin filter. Thus, if
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�EZ,L is parallel (or antiparallel) to the spin polarization of the
Majorana wave function, the supercurrent will vanish.

Third, the amplitude AM is, in general, complex, which
means that the MZM can contribute to an anomalous super-
current. Note that the Majorana wave function components ξσ

are real if the Zeeman field in the right lead has no component
along the spin-orbit field direction y [47]. In this case, the
phase ϕM

0 = arg(AM ) of the amplitude is controlled only by
the direction of �EZ,L.

We can illustrate the previous points with simple limits of
Eq. (6). Consider, for instance, the case in which �EZ,L lies in
the xz plane, i.e., �EZ,L · �σ = EZ (cos θ σz + sin θσx ) [φ = 0 in
Eq. (6)], while �EZ,R points along the wire. Then,

AM = νL f
(EZ,L

�0

)
[(ξ 2

↓ − ξ 2
↑ ) sin θ + 2ξ↑ξ↓ cos θ ], (7)

with real wave functions ξσ . We see that AM vanishes if
θ = π/2 and the MZM is polarized along the x axis (ξ 2

↑ =
ξ 2
↓) and likewise if θ = 0 and the MZM is spin polarized

along the z axis (ξ↑ξ↓ = 0). Furthermore, AM is real, and
thus, the MZM does not induce any anomalous supercurrent.
The fundamental reason for the absence of phase shift (ϕ0 =
0) is that the one-dimensional semiconductor-superconductor
nanowire has an additional chiral symmetry (the reality of
the Bogoliubov–de Gennes Hamiltonian) when the applied
Zeeman field is perpendicular to the Rashba spin-orbit field
[47,48]. By contrast, once the Zeeman field has some com-
ponent along the spin-orbit field σy, the chiral symmetry is
broken, and the phase shift becomes finite, as indicated by
Eq. (6) with φ 	= 0. In particular, when the Zeeman field inside
the trivial lead is parallel to the y axis (θ = π/2, φ = π/2),
i.e., �EZ,L · �σ = EZ,Lσy, we have

AM = iνL f
(EZ,L

�0

)
(ξ 2

↓ + ξ 2
↑ ) ⇒ ϕM

0 = π/2. (8)

Equations (6), (7), and (8) show that a Zeeman field inside
the trivial lead can generate a Majorana-induced supercurrent
in a trivial-topological superconductor junction and further-
more that it can lead to anomalous supercurrent. Although
we have assumed zero spin-orbit coupling inside the trivial
lead to derive a closed form of Eq. (6), such an assumption is
not essential, and all the qualitative behavior of AM will carry
over for finite αL, as we will show in the following. Note that
even though the Majorana-induced supercurrent may be zero,
in general, the junction will have a finite supercurrent due to
the contribution from the above-gap continuum states in the
topological superconductor. We now resort to numerical sim-
ulations in order to compute the total critical current; we will
also use this opportunity to relax the simplifying assumptions
of the analytical calculation.

IV. NUMERICAL SIMULATIONS

To get I (ϕ) numerically, we first calculate the eigenen-
ergies and eigenfunctions for the discretized models of the
leads in Eq. (2) using the KWANT package [49] and then plug
them into Eqs. (4) and (5). The parameters are chosen to
be m∗ = 0.015me, αL = αR = 0.5 eVÅ (Eso = 1

2 m∗α2/h̄2 ≈
0.25 meV), �0 = 0.4 meV, μL = 5 meV, and L = 3.5 μm. In

FIG. 2. Critical Josephson current in a junction between a time-
reversal-invariant trivial superconductor and a Majorana nanowire
lead, with an external Zeeman field EZ,Rσx applied only inside
the Majorana nanowire. (a) Ic as a function of EZ,R and μR, with
white dots representing the phase boundary (E 2

Z,R = μ2
R + �2

0) of
the Majorana nanowire. (b) Linecuts of Ic at fixed values of μR.
Here the supercurrent is due to above-gap continuum states, without
any Majorana contribution. When Zeeman field is larger than the
critical value (EZ,R �

√
μ2

R + �2
0), Ic plunges with the field strength,

indicating the topological quantum phase transition of the Majorana
nanowire.

the figures, we adopt the value of critical current at EZ,L =
EZ,R = 0 and μR = 5meV as a unit of supercurrent I0.

Figure 2 shows the supercurrent in a junction between
a time-reversal-invariant trivial superconducting lead and a
Majorana nanowire lead. A Zeeman field along the wire
axis is applied only inside the Majorana nanowire lead (i.e.,
EZ,Rσx and EZ,L = 0). All the supercurrent originates from
the above-gap contribution to Eq. (5), while the Majorana-
induced supercurrent is blockaded due to the TRS in the trivial
lead. Figure 2(a) shows the critical current Ic as a function
of Zeeman field EZ,R and the chemical potential μR of the
right lead. In general, the supercurrent is larger when the
Majorana nanowire has positive μR and is in the topologically

trivial phase EZ,R <

√
μ2

R + �2
0. Figure 2(b) shows linecuts

of critical current as a function of Zeeman field at fixed values
of chemical potential μR = 0,±1 meV. The critical current
decreases monotonically with the field strength (except for
negative μR, where the electron density is increased by in-
creasing the Zeeman splitting), and in particular, Ic plunges
abruptly near the critical Zeeman field, indicating the topo-
logical quantum phase transition of the Majorana nanowire.
These results reproduce previous findings of Ref. [38].

In Fig. 3, we show the calculated supercurrent in a junction
between a trivial superconductor and a Majorana nanowire
lead, with a Zeeman field along the wire axis being applied
globally (EZσx in both leads). In contrast to Fig. 2, now
the supercurrent in the topological regime (EZ > EZc) is also
large, as shown in Fig. 3(a), because the Majorana-induced
supercurrent is finite when TRS in the trivial lead is broken.
Figure 3(b) shows several linecuts of Ic as a function of EZ

at fixed values of μR (solid lines). Instead of monotonically
decreasing, the critical current now increases with the field
when the Majorana nanowire enters the topologically non-
trivial phase. As shown by the dashed lines in Fig. 3(b), the
dominant contribution to Ic deep into the topological phase
comes from the MZM, which is consistent with Eq. (7).
The oscillations of Ic at large EZ are due to the onset of a
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FIG. 3. Critical current in a junction between a trivial supercon-
ductor and a Majorana nanowire lead, with an external Zeeman field
applied equally in both leads EZσx . (a) Ic as a function of EZ and μR,
with white dots representing the phase boundary (E 2

Z = μ2
R + �2

0) of
the Majorana nanowire. (b) Linecuts of Ic at fixed values of μR. Solid
lines are the total critical current from both MZM and continuum
states, while dashed lines are critical current due to only MZM.

finite overlap between two MZMs at the opposite ends of the
nanowire.

Finally, we consider a Josephson junction for which the
Zeeman field is applied globally and has a nonzero compo-
nent along the spin-orbit field [50,51]. Namely, the Zeeman
field takes the form �EZ · �σ = Ex

Zσx + Ey
Zσy in both leads, with

the σy component being fixed at Ey
Z = 0.2 meV < �0. Here

the Ey
Zσy term breaks the chiral symmetry of the junction

leads and thereby can induce anomalous supercurrent. Fig-
ure 4 shows the corresponding anomalous supercurrent Ian =
Ic sin(ϕ0) and phase shift ϕ0 in the junction. As shown in
Figs. 4(a) and 4(c), Ian and ϕ0 are noticeably large inside the
topologically nontrivial regime [(Ex

Z )2 + (Ey
Z )2 > μ2

R + �2
0]

due to the Majorana contribution. Figures 4(b) and 4(d) show
linecuts of Ian and ϕ0 at fixed μR. For zero and negative μR

(red and green curves), Ian and ϕ0 become finite only when
the Majorana nanowire enters the topological phase because
the continuum state induced supercurrent is negligible. In
contrast, for positive μR (blue curves), Ian and ϕ0 do not vanish
in the topologically trivial regime owing to finite contributions
from the continuum states. However, a kink in Ian or an abrupt
increase of ϕ0 shows up near the critical Zeeman field, signal-
ing the topological quantum phase transition.

V. DISCUSSION

We have studied the Josephson current in a nanowire junc-
tion between trivial and topological superconductors. We find
that a finite Zeeman field in the trivial lead can switch on
the Majorana-induced supercurrent and enhance the critical
supercurrent. Furthermore, if the Zeeman field has a compo-
nent along the spin-orbit field, a MZM can be signaled by
the anomalous supercurrent or phase shift. Therefore, a mea-
surement of the dc Josephson current in a trivial-topological
superconductor junction as a function of magnetic field and
chemical potential could provide compelling evidence for
MZMs. In this respect, our findings parallel those previously
obtained for junctions of two topological superconductors
[52–60]. However, the current proposal simplifies consider-
ably the tuning process of the device by requiring only one
superconductor lead to be in the topological phase. In par-
ticular, our proposal provides a way for tuning up Majorana

FIG. 4. Anomalous supercurrent Ian and phase shift ϕ0 for the
Josephson junction with a Zeeman field applied globally in the form
of �EZ · �σ = Ex

Zσx + Ey
Zσy. The component along the spin-orbit field

is fixed at Ey
Z = 0.2 meV. (a) and (c) Ian and ϕ0 as a function of

μR and Ex
Z . Their values in the topological regime are much larger

than in the trivial regime due to the Majorana contribution. Here
white dots represent the phase boundary (Ex

Z )2 + (Ey
Z )2 = μ2

R + �2
0.

(b) and (d) Linecuts of Ian and ϕ0 for fixed values of μR. Note that Ian

and ϕ0 increase abruptly near the topological transition.

superconducting qubit devices [30] without the need to add
additional probes to their proposed design.

Finally, a few limitations in our work need to be mentioned.
For example, although the Majorana signatures proposed in
this work are robust against weak nonmagnetic disorders, it
may be hard to distinguish Majoranas from smooth-potential-
induced low-energy Andreev bound states or quasi-Majoranas
within this proposal [61–67] because the supercurrent is in-
duced only by local tunneling processes. Also, the orbital
effect of magnetic field and multisubband effects are not
discussed, which requires a model study for two- or three-
dimensional systems [68–71]. Finally, the point contact model
for the tunneling junction may be too simple to describe the
coupling between the two segments of the wire. We thus
expect that this work will motivate more investigations on
similar Josephson junction devices at a more realistic level.

The data set and code for generating the figures in this work
can be found in Ref. [72].
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APPENDIX A: DERIVATION OF THE GENERAL FORMULA FOR SUPERCURRENT

We derive the formula for the supercurrent through the Josephson junction in the tunneling limit, as shown in Eqs. (4)
and (5). The electron operators in the tunneling Hamiltonian Htunn can be expanded in terms of Bogoliubov quasiparticle
operators in the corresponding superconducting lead as

c jσ (x) =
∑

n

u jnσ (x) jn + v∗
jnσ (x)†

jn, (A1)

where j = L/R, 
†
jn creates a Bogoliubov quasiparticle with excitation energy Ejn in lead j, and

[ujn↑(x), u jn↓(x), v jn↑(x), v jn↓(x)]ᵀ is the corresponding Nambu wave function. Using the perturbation theory, the
phase-dependent part of the ground-state energy is

Egs(ϕ) = −〈�0|HtunnelH
−1
0 Htunnel|�0〉

= −t2eiϕ
∑

σ,η=↑↓
〈�0|[c†

Rσ (xR)cLσ (xL )]H−1
0 [c†

Rσ (xR)cLσ (xL )]|�0〉 + H.c.

= −t2eiϕ
∑

σ,η=↑↓

∑
n,m

〈�0|[vRmη(xR)RmuLnη(xL )Ln]H−1
0 [u∗

Rmσ (xR)†
Rmv∗

Lnσ (xL )†
Ln]|�0〉 + H.c.

= t2eiϕ
∑

σ,η=↑↓

∑
n,m

uLnη(xL )v∗
Lnσ (xL )vRmη(xR)u∗

Rmσ (xR)

ELn + ERm
+ H.c. (A2)

If we further define the Cooper pair transfer amplitude A as

A =
∑

η,σ=↑↓

∑
n,m

uLnη(xL )v∗
Lnσ (xL )vRmη(xR)u∗

Rmσ (xR)

ELn + ERm
, (A3)

the ground-state energy becomes

Egs(ϕ) = t2(eiϕA + e−iϕA∗) = 2t2|A| cos(ϕ + ϕ0), (A4)

where ϕ0 = arg(A). Therefore, the current-phase relation is

I (ϕ) = −2e

h̄

∂Egs(ϕ)

∂ϕ
= 4et2

h̄
|A| sin(ϕ + ϕ0) = Ic sin(ϕ + ϕ0), (A5)

where Ic = 4et2|A|/h̄.

APPENDIX B: TRANSFER AMPLITUDE FOR FINITE ZEEMAN FIELD INSIDE THE TRIVIAL LEAD

The Hamiltonian for the Josephson junction we consider is

HL =
∑
σ=↑↓

∫
dxc†

Lσ

(−∂2
x

2m∗ − μL + �EZ,L · �σ
)

σσ ′
cLσ ′ + �0

∫
dx(cL↓cL↑ + c†

L↑c†
L↓)

=
∑

σ,σ ′=+/−

∫
dxc†

Lσ

(−∂2
x

2m∗ − μL + EZ,Lσ̃z

)
σσ ′

cLσ ′ + �0

∫
dx(cL−cL+ + c†

L+c†
L−),

Htunn = −teiϕ/2
∑

σ=+/−
c†

Rσ (xR)cLσ (xL ) + H.c. (B1)

Here we rotate the spin basis from | ↑〉, | ↓〉 to |+〉, |−〉, where |+〉, |−〉 are the eigenstates of �EZ,L · �σ . Thus, the Zeeman term
becomes diagonal in the rotated basis, i.e., �EZ,L · �σ → EZ,Lσ̃z. On the other hand, the electron operators can be expanded as

cL+(xL ) =
∑

k

(ũnn,+ − ṽn
†
n̄,−),

cL−(xL ) =
∑

k

(ũnn̄,− + ṽn
†
n,+), cRσ (xR) = ξσ (xR)γ , (B2)
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where 
†
n,+ and 

†
n̄,− create the Bogoliubov quasiparticles of excitation energy En± =

√
ε2

n + �2
0 ± EZ,L, with εn = ξn − μL.

ũn, ṽn are BCS coherence factors with ũ2
n = 1

2 + εn

2
√

ε2
n+�2

0

= 1 − ṽ2
n . Substituting them into Eq. (4), we get

AM = ξ+(xR)ξ−(xR)
∑

n

ũnṽn

⎛
⎝ 1√

ε2
n + �2

0 − EZ,L

− 1√
ε2

n + �2
0 + EZ,L

⎞
⎠

= ξ+(xR)ξ−(xR)νL

∫
dεn

�0EZ,L√
ε2

n + �2
0

(
ε2

n + �2
0 − E2

Z,L

)

= νLξ+(xR)ξ−(xR)
arcsin(EZ,L/�0)√

�2
0 − E2

Z,L

(B3)

for EZ,L < �0. Finally, we rotate the spin basis back to | ↑〉, | ↓〉 along the spin-z direction by the following unitary transforma-
tion (

ξ+
ξ−

)
=

(
cos(θ/2)e−iφ sin(θ/2)
− sin(θ/2) cos(θ/2)eiφ

)(
ξ↑
ξ↓

)
, (B4)

such that the transfer amplitude becomes

AM = νL
arcsin(EZ,L/�0)

2
√

�2
0 − E2

Z,L

[(ξ 2
↓eiφ − ξ 2

↑e−iφ ) sin θ + 2ξ↑ξ↓ cos θ ]. (B5)

APPENDIX C: MAJORANA SUPERCURRENT BLOCKADE

The Hamiltonian of a time-reversal-invariant superconductor with s-wave pairing symmetry can always be written in the
following form:

H = H0 + Hsc =
∑

n

{εn(a†
nan + a†

n̄an̄) + �0(an̄an + a†
na†

n̄)}, (C1)

where an is the annihilation operator for a normal eigenstate of eigenenergy εn and eigenfunction ψn(x). an̄ is the annihilation
operator for its time-reversed state which has an eigenenergy εn̄ = εn and eigenfunction ψn̄(x). The relation between the original
real-space electron operator c(x) and the eigenstate operator an is

cσ (x) =
∑

n

[ψnσ (x)an + ψn̄σ (x)an̄]. (C2)

On the other hand, since the Hamiltonian in Eq. (C1) is in the BCS form, we can expand the normal operators an in terms of the
Bogoliubov quasiparticle operators as

an = ũnn − ṽn
†
n̄,

an̄ = ũnn̄ + ṽn
†
n, (C3)

where †
n and 

†
n̄ create Bogoliubov quasiparticles with excitation energy En̄ = En =

√
ε2

n + �2
0 and ũn, ṽn are BCS coherence

factors with ũ2
n = 1/2 + εn/2En = 1 − ṽ2

n . Substituting Eq. (C3) into Eq. (C2), we get

cσ (x) =
∑

n

{ũn[ψnσ (x)n + ψn̄σ (x)n̄] + ṽn[ψn̄σ (x)†
n − ψnσ (x)†

n̄]}. (C4)

After plugging Eq. (C4) into Eq. (5), we have

AM =
∑

η,σ=↑↓
ξη(xR)ξσ (xR)

∑
n

ũnṽn

[ψnη(xL )ψn̄σ (xL )

En
− ψn̄η(xL )ψnσ (xL )

En̄

]

=
∑

η,σ=↑↓
ξη(xR)ξσ (xR)

∑
n

ũnṽn

En
[ψnη(xL )ψn̄σ (xL ) − ψnσ (xL )ψn̄η(xL )]

=
∑

η,σ=↑↓
AM

ησ . (C5)
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For η = σ ,

AM
σσ ∝ [ψnσ (xL )ψn̄σ (xL ) − ψnσ (xL )ψn̄σ (xL )] = 0. (C6)

For η 	= σ ,

AM
↓↑ + AM

↑↓ ∝ [ψn↓(xL )ψn̄↑(xL ) − ψn↑(xL )ψn̄↓(xL )] + [ψn↑(xL )ψn̄↓(xL ) − ψn↓(xL )ψn̄↑(xL )] = 0. (C7)

Therefore, Majorana-induced supercurrent is completely blockaded when the trivial superconducting lead is time reversal
invariant.
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