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Triadic closure, the formation of a connection between two nodes in a network sharing a common
neighbor, is considered a fundamental mechanism determining the clustered nature of many real-
world topologies. In this work we define a static triadic closure (STC) model for clustered networks,
whereby starting from an arbitrary fixed backbone network, each triad is closed independently
with a given probability. Assuming a locally treelike backbone we derive exact expressions for the
expected number of various small, loopy motifs (triangles, 4-loops, diamonds and 4-cliques) as a
function of moments of the backbone degree distribution. In this way we determine how transitivity
and its suitably defined generalizations for higher-order motifs depend on the heterogeneity of the
original network, revealing the existence of transitions due to the interplay between topologically
inequivalent triads in the network. Furthermore, under reasonable assumptions for the moments
of the backbone network, we establish approximate relationships between motif densities, which we
test in a large dataset of real-world networks. We find a good agreement, indicating that STC is a
realistic mechanism for the generation of clustered networks, while remaining simple enough to be
amenable to analytical treatment.

I. INTRODUCTION

A network representation is a powerful tool for study-
ing a huge variety of complex systems. Random net-
work models, such as the Erdős-Rényi model [1, 2], the
more general configuration model [3–5] and its various
extensions [6] have enjoyed considerable popularity due
to their amenability to mathematical analysis. These
random networks have a locally treelike structure in the
infinite size limit, which facilitates the study of branch-
ing processes (e.g., percolation, epidemic spreading) and
interacting systems (e.g., the Ising model) on top of these
substrates [7].

An important feature of many real-world networks is a
non-vanishing density of short loops, in particular trian-
gles [8], which is at significant odds with the locally tree-
like structure assumption. The propensity of node triads
to form triangles is often quantified by the local clustering
coefficient or the global transitivity [6]. While the pres-
ence of clustering in networks has significant effects on
processes such as percolation and epidemics [9–11], both
the mean local clustering coefficient and the transitivity
tend to zero in the infinite size limit of locally treelike ran-
dom networks. To account for non-vanishing clustering,
i.e., a non-vanishing density of triangles in the infinite
size limit, Strauss [12] proposed an exponential random
graph model with soft constraints on the number of edges
and the number of triangles in the network. One may in-
troduce further constraints to achieve specific network
structures [13–16]. Although such models are easily gen-
eralizable and rather flexible, their use is impeded by the
highly non-trivial phase diagrams that can emerge [17],
making it difficult to fit real network structures and to
study dynamical models.

The latter problem is circumvented in a model pro-
posed by Newman [18] where each node belongs to a pre-
scribed number of partial cliques (fully connected sub-
graphs where edges are removed with a certain prob-
ability) whose sizes are randomly distributed. Since
the building blocks—the partial cliques—only overlap at
nodes and not at edges, this model allows for analytical
treatment using generating functions to study percola-
tion and related processes. The same approach is used
in Refs. [19, 20] where each node is prescribed an edge-
degree and a triangle-degree, and nodes are randomly
joined together in pairs to form edges (as in the origi-
nal configuration model) and randomly joined together
in groups of three to form triangles. Using only trian-
gles and no higher-order cliques allows for better con-
trol over the degree distribution to fit real network data.
In an elegant approach Gleeson [21] is able to fit an ar-
bitrary degree distribution and clustering spectrum CK

(the mean clustering coefficient of nodes of degree K) by
prescribing an appropriate joint degree and clique size
distribution. The modelling approach of randomly con-
necting cliques or partial cliques may be generalized to
randomly connecting arbitrary subgraphs [22]. As long
as these subgraphs only overlap at nodes, standard gener-
ating function techniques can be used to solve for various
network properties such as percolation.

Most real network structures cannot be accurately
described by the above random graph models due to
the complex overlapping patterns of clustered subgraphs.
A very simple and reasonably realistic mechanism—
particularly in social networks—that is able to produce
high clustering and complex community structure is tri-
adic closure [23]. The idea is that as a network evolves
many new links are created between nodes that share a
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common neighbour, i.e., by closing triads. Triadic clo-
sure is widely considered to be an essential mechanism
of structure formation in social networks [24–34]. Most
existing models of network formation involving triadic
closure are dynamic in nature, that is, the triadic closure
mechanism is generally part of a growth or rewiring pro-
cess. This often makes it difficult to obtain an analytical
description and to identify what network features may be
directly attributed to triadic closure.
Here we consider a minimal static model of triadic clo-

sure, whereby given an existing (backbone) network, a
fraction f of existing triads is, on average, closed. In
the case of a configuration model backbone this model
can be seen as a special case of a more general model re-
cently considered in Ref. [35]. There, triadic closure was
applied after creating a network with community struc-
ture and degree correlations, using a generalized configu-
ration model. For f = 1 static triadic closure implies that
all nodes at distance 2 in the backbone become nearest
neighbors in the new network. Hence a process involv-
ing nearest neighbors on the new clustered network is
equivalent to the same process with an extended range
of interaction in the original backbone network [36].
The simplicity of this model allows for a detailed ana-

lytical description, which is lacking in most of the stud-
ies involving triadic closure. By means of the generating
function formalism we derive exact results in the case
where the original backbone is locally treelike. In partic-
ular, network transitivity and densities of other higher-
order motifs (such as diamonds or loops of length 4) are
expressed in terms of moments of the backbone degree
distribution. In this way we uncover the existence of
sharp transitions in clustering properties of the model as
a function of the heterogeneity of the backbone. The ori-
gin of these transitions is traced to the competition be-
tween topologically distinct types of subgraphs created
by the closure process. A comparison between the model
predictions and a large database of networks confirms
the plausibility of static triadic closure as a generative
mechanism for many real-world structures.

II. MODEL DESCRIPTION

Given a graph G = (V , E) with N = |V| nodes and
E = |E| edges, a triad centered on node j is a se-
quence of three consecutive nodes (i, j, k) = (k, j, i), i.e.
an unoriented path of length two made by the edges
(i, j), (j, k) ∈ E . A triangle {i, j, k} is a closed undirected
path of length three. Note that for each triangle there are
three distinct closed triads. We define the static triadic
closure (STC) mechanism as a random process in which
each triad becomes a triangle with probability f through
the addition of an edge joining its end nodes. Using this
STC mechanism, it is possible to build a graph in the
following way. We start from a network G0 = (V , E0) and
we write down all the triads in it. For each triad (i, j, k),
we update the edge set E0 by adding to it the edge (i, k)

with probability f . When the triadic closure has been
attempted on all the triads in G0, the process ends. The
result is a new edge list Ef with Ef = |Ef | edges, from
which we can define a new network Gf = (V , Ef ) with a
rich variety of short loops and highly complex structure
(see FIG. 1). This algorithm defines an ensemble of ran-
dom networks, which we will refer to, with a slight abuse
of notation, as Gf .
This algorithm may describe quite different specific

mechanisms for triadic closure. One could imagine for
instance a triadic closure process in which a node is in-
clined to be connected with one of its second neighbors
with probability ψ, but the triangle is only closed if both
nodes agree. This would correspond to a probability of
triadic closure f = ψ2. Alternatively, the triad (i, j, k)
may be closed if at least one among i and k likes the other,
the resulting triadic closure probability is f = 1−(1−ψ)2.
In both cases, the STC process described as above works
with the prescription of using the appropriate probability
in place of f .
It is worth remarking that our definition of static tri-

adic closure is fully general: it is possible to generate,
using this STC mechanism, random clustered networks
starting from any given backbone. In the following sec-
tions however, we study the ensemble of graphs Gf , gener-
ated by static triadic closure starting from a random, un-
correlated locally treelike backbone G0, generated using
the Uncorrelated Configuration Model [37, 38] with a pre-
scribed degree distribution pk. We develop the theoreti-
cal framework to characterize these STC random graphs,
using generating functions to describe the properties of
Gf (see Appendix A1 for general definitions). Exploiting
the local treelikeness of the network G0, it is possible to
compute average quantities in Gf in terms of averages
with respect to pk. Note that in our model there are two
distinct and independent sources of randomness: the first
is the random nature of the backbone G0, and the second
is the random nature of the STC process.
We will denote with lower-case letters quantities which

refer to the backbone G0, and with capital letters quanti-
ties related to the graph Gf . In particular k, r, g0(z), g1(z)
and K,R,G0(z), G1(z) denote the degree, excess degree
and the corresponding probability generating functions,
in the networks G0 and Gf , respectively.

III. THE GENERATING FUNCTION OF THE

DEGREE DISTRIBUTION

We begin the study of the network ensemble Gf by in-
vestigating the behavior of its degree distribution PK(f).
For the sake of brevity, we will omit the explicit depen-
dence on f of PK(f) by writing PK . Even if we are not
able to compute PK explicitly, it is possible to determine
its generating function G0(z) by expressing it in terms of
the generating functions of the degree and of the excess
degree distributions in the network G0, g0(z) and g1(z),
respectively. The result we obtain relies on the fact that
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FIG. 1. Pictorial representation of the STC algorithm. The
edges of the backbone network G0, a tree with N = 12 nodes
and E0 = 11 edges, are represented with solid red lines; the
dashed black lines represent the edges created by the STC
procedure. The result is a network Gf with N = 12 nodes
and Ef = 21 edges, a variety of short loops and a much
more complex structure: many new triads, such as (j, i, l)
and (m, i, l), and many triangles, such as {i, k, l}, are created,
as well as other higher-order motifs, for instance 4-loops –
unoriented closed paths of length 4, e.g. {i, j, k, l} – and 4-
cliques (e.g., the one formed by the nodes shaded in green).

the generating function of a sum of independent random
variables is the product of their generating functions.

Consider first the case f = 1. K is the random variable
representing the degree of a node in G1. Assume that this
node has degree k in G0, and label with i = 1, . . . , k its

first neighbors. We can writeK = k+
∑k

i=1 ri, where ri is
the excess degree of first neighbor i. Since the network G0

is uncorrelated, the generating function of the variableK,
conditioned on having degree k in G0, is given by [zg1(z)]

k.
Averaging then over the degree distribution pk we get
G0(z) = g0(zg1(z)). This standard argument can be gen-

eralized to arbitrary f by considering K = k +
∑k

i=1 ni,
where ni are random variables, ranging from 0 to ri, rep-
resenting the number of new connections made with sec-
ond neighbors in the i-th branch. The variables ni are
independent random variables distributed according to
binomial distributions B(i)(n; ri, f) =

(

ri
n

)

fn(1 − f)ri−n.
We can now repeat the argument used for f = 1 by simply
conditioning not only on k, but also on r1, . . . , rk. Hence,

for fixed k, r1, . . . , rk, we get z
k
∏k

i=1[(1−f+fz)
ri], where

(1 − f + fz)ri is the generating function of the binomial
distribution B(i)(ni, ri; f). Averaging over the excess de-
gree distributions qr1 , . . . , qrk and over pk we finally get
for the generating function of the degree distribution PK

in Gf

G0(z) = g0
(

zg1(1 − f + fz)
)

. (1)

The degree distribution PK may be computed, at

least in principle, from Eq. (1) by differentiation, since
G0(z) =

∑

PKz
K , see Appendix A2. Unfortunately, this

cannot be done explicitly in a closed form for a generic
pk

1. However, in general it is possible to obtain asymp-
totic estimates of PK for large K. For instance, if G0

has a power-law (PL) degree distribution pk ∼ k−γ , the

resulting Gf is a PL network with PK ∼ K−γ′

, with
γ′ = γ − 1, that is the exponent is decreased by one (see
Appendix A2 a for details).

From the generating function in Eq. (1) we can com-
pute every moment 〈Kn〉. In particular, the average de-
gree in Gf is given by

〈K〉 = G′
0(1) = 〈k〉+ f〈k(k − 1)〉, (2)

which simply states that, on average, each node is con-
nected to a fraction f of its second neighbors, reflecting
the basic mechanism of static triadic closure. It is impor-
tant to notice that if G0 is a truly sparse graph, that is if
〈k〉 = O(1), see [39], the STC procedure creates a truly
sparse graph Gf only if 〈k2〉 = O(1). In some cases, such
as PL with γ < 3, 〈k2〉 = O(Nα) for some 0 < α < 1,
and hence 〈K〉 = O(Nα). Models defined on such net-
works with a slowly diverging mean degree may exhibit
a qualitatively different critical behavior from the truly
sparse case, see for instance [36].
It is useful to define the factorial moments µn by

µn = 〈k(k − 1) . . . (k − n+ 1)〉 = g
(n)
0 (1) (3)

(see Appendix A3 for more details).

IV. CLUSTERING

Armed with the generating function for the final degree
distribution, we may study the various properties of the
new network. Since it is the principal motivation for the
model, we begin by studying clustering properties, the
presence of triangles in the network.
We first focus on the global clustering coefficient of the

network Gf , also called transitivity, which is the ratio
between three times the total number of triangles to the
number of triads in the network. We then discuss the
behavior of the mean local clustering coefficient which is
the ratio between the number of triangles connected to
and the number of triads centered on a particular node,
averaged over all nodes.

A. Transitivity

The global clustering coefficient is defined as [38]

T =
3N△

N∧

, (4)

1 It is possible to obtain an exact expression for PK if the backbone
is a random regular network.
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where N△ and N∧ denote the average total number of
triangles and triads, respectively2.

1. General results

Exploiting the local treelikeness of the underlying back-
bone network, it is possible to exactly compute the tran-
sitivity of the network Gf .
The average number of triads in Gf can be evaluated

easily. Take a node of degree K in Gf . To form a triad,
we can pick one among K of its neighbors, and then one
among K − 1 remaining other neighbors: hence such a
node is the center of K(K − 1)/2 different triads. Aver-
aging over the degree distribution PK we get

N∧ = N

〈(

K

2

)〉

=
N

2
G′′

0 (1)

=
N

2

[

g′′0 (1)(1 + fg′1(1))
2 + 2fg′′0 (1) + f2g′′′0 (1)

]

=
N

2

[

µ2(1 + fµ2/µ1)
2 + 2fµ2 + f2µ3

]

, (5)

where we express the average over PK in terms of the
derivatives of the generating function G0(z) and we use
Eq. (1).
To compute the average total number of triangles we

can proceed in the following way. Consider a node i of
degree k in G0, and consider its neighborhood. We eval-
uate the average number of triangles that are created in
its neighborhood, and then average over the degree distri-
bution pk. With the help of FIG. 2, it is easy to see that
triangles in the neighborhood of node i can be of only
two types: either they are made by joining two neigh-
bors of node i via the triadic closure process, with prob-
ability f (type A); or they are made by joining together
three neighbors of node i, with probability f3 (type B).
Since both these types are defined with reference to the
node i, one may verify that the triangles will only be
counted once. The average number of triangles of type A
is fk(k − 1)/2, while the average number of triangles of
type B is f3k(k− 1)(k− 2)/3!, hence summing these two
contributions together and averaging over pk we obtain

N△ =
Nf

6

[

3µ2 + f2µ3

]

. (6)

Substituting into Eq. (4) we get

T =
f(3µ2 + f2µ3)

µ2(1 + fµ2/µ1)2 + 2fµ2 + f2µ3
. (7)

For Erdős-Rényi (ER) backbones, since µn = cn, Eq. (7)
reduces to

T =
3f + f3c

1 + 2f(1 + c) + f2c(1 + c)
. (8)

2 The factor 3 takes into account the fact that in each triangle
there are three distinct triads.

FIG. 2. A visualization of the triangle counting. Consider
node i of degree k = 4, coloured in red, and its neighbors. The
edges in G0 are represented with solid red lines, while the black
dotted lines are the edges that may be created by the STC
mechanism and hence may appear in Gf . We can distinguish
between triangles of type A – shaded in green in (a) – made
of two already existing edges and one new edge, and triangles
of type B – shaded blue in (b) – made of three new edges.
The total number of potential A-triangles is

(

4

2

)

= 6, i.e. the
number of edges in the 4-clique composed of i’s neighbors, and
each one of them is created with probability f . Over many
STC realizations, there are 6f of them on average. The total
number of potential B-triangles is

(

4

3

)

= 4, i.e., the number of
triangles in the 4-clique composed of i’s neighbors. Each one
of them appears with probability f3, hence on average there
are 4f3 of them. The average number of triangles for a node
of degree k = 4 is then 6f + 4f3. Repeating this argument
for all nodes we obtain Eq. (6). Note that in this way each
triangle is counted exactly once.

In FIG. 3 we compare Eq. (8) with numerical simulations
of Gf networks created from an ER backbone, for differ-
ent values of the original mean degree c and of the closing
probability f . It is worth noting the non-monotonic be-
havior of T (f) for large, fixed c: for c > c∗ = 5.7531...,
T (f) admits a maximum and a minimum in the interval
[0, 1]. This implies that from the same backbone with
c > c∗, we can create two graphs Gf1 and Gf2 having the
same transitivity and f1 6= f2.

2. The case of power-law backbones

The case of Gf generated from power-law (PL) degree
distributed backbones G0 with pk ∼ k−γ is of particu-
lar interest. We assume that k ∈ [kmin, kc(N)], and that
the maximum degree grows as a power of N whose value
depends on the exponent γ: kc(N) ∼ Nω(γ) → ∞ as
N → ∞ [37], with 0 < ω ≤ 1/2 for 2 < γ ≤ 3 and
ω = 1/(γ − 1) for γ > 3. Some moments of a power-law
distribution diverge in the infinite-size limit, depending
on the value of γ (see Appendix B). This implies that,
for some values of γ, N△ and N∧ may grow faster than
linearly in N 3. A careful analysis of Eq. (7) can be

3 Of course, 3N△ ≤ N∧ always.
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FIG. 3. Transitivity T (filled symbols) and mean local clus-
tering coefficient C (empty symbols) as a function of f in
networks Gf generated from ER backbones with mean degree
c = 2 (circles), c = 8 (squares) and size N = 106, averaged
over 10 realizations of the STC procedure. The continuous
lines correspond to the exact expression for the transitivity
in Eq. (8) and they are in perfect agreement with simulation
results. Dashed lines are not an analytic solution but simply
a guide to the eye.

carried out, using the fact that, when the factorial mo-
ments diverge, they are dominated by the leading term,
hence µn ∼ 〈kn〉, so that they can be used to stand in
for the moments of the degree distribution. Expressions
for them are given in Appendix B. For γ > 4 none of the
terms appearing in Eq. (7) diverge in the limit of infinite
network size, and the transitivity is a nonlinear function
of f and γ which can be computed using the expressions
for µn in Eqs.(B7)-(B10). More interesting is the case
γ ≤ 4, in which some of the terms in Eq. (7) diverge. We
get, in the limit kc → ∞,

T ≃











0 for 2 < γ < 5/2,
f

1+c(kmin)
for γ = 5/2,

f for 5/2 < γ ≤ 4,

(9)

where c(kmin) is a constant, depending only on kmin,
given by the ratio of the diverging moments µ3

2/(µ3µ
2
1)

evaluated at γ = 5/2. Within the continuous degree ap-
proximation (see Appendix B) c(kmin) = 3kmin. Eq. (9)
reveals a discontinuity in T at γ = 5/2, as observed
in FIG. 4(a). This discontinuous behavior occurs be-
cause, while the number of triangles is asymptotically
〈k3〉, the number of triads is asymptotically proportional
to 〈k2〉3 + a〈k3〉, where a is a constant. At γ = 5/2 the
dominant term in the number of triads changes, causing
the abrupt transition observed in T .
To understand this dual behavior of the number of

triads, we identify five classes of topologically different
triads in Gf . Denoting with i0 the center node of the
triad (i1, i0, i2), with the help of FIG. 5 we can classify

FIG. 4. Analytical expressions for (a) transitivity, Eq. (7),
and (b) 4-transitivity, Eq. (22) for n = 4, in STC networks
with a PL backbone, as a function of γ, for two different values
of the STC probability f . These curves are obtained evaluat-
ing Eqs. (7), (22) within a continuous degree approximation,
with kmin = 3. Continuous lines correspond to the infinite-size
limit kc → ∞, dashed lines are for kc = 103, 105, 1010. Circles
in panel (a) correspond to the values for γ = 5/2 given in
Eq. (9).

triads as follows.

I. Triads in which both i1 and i2 were i0’s neighbors
in G0, such as (1, 0, 2) in FIG. 5. By construction,
a fraction f of these triads is closed on average.

II. Triads in which i1 and i2 were i0’s first and sec-
ond neighbors, respectively, but i1 and i2 were not
neighbors in G0, e.g. (2, 0, 3) in FIG. 5. These tri-
ads are always open in Gf .

III. Triads in which both i1 and i2 were i0’s second
neighbors in G0, but i1 and i2 did not have a com-
mon neighbor, such as (3, 0, 6) in FIG. 5. These
triads are always open in Gf .

IV. Triads in which i1 was i0’s neighbor and i2 was i1’s
neighbor in G0, e.g. (1, 0, 3) in FIG. 5. Note that
these triads are always closed.
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V. Triads in which both i1 and i2 were i0’s second
neighbors in G0, and i1 and i2 had a common neigh-
bor, such as (5, 0, 6) in FIG. 5. A fraction f of these
triads is closed on average.

We refer to triads in classes (I,II,III) as interbranch tri-

ads, since they all involve nodes within different branches
in G0. Conversely, triads in classes (IV,V) involve nodes
within the same branch in G0, therefore we call them
intrabranch triads. It is worth noting that terms corre-
sponding explicitly to these five cases appear in Eq. (5) af-
ter expanding the term (1+fµ2/µ1)

2. For 2 < γ ≤ 3, the
leading contributions are both of order O(f2) and come
from triads in classes III and V. Indeed, triads from class
III contribute to the denominator of T with the term

N
(III)
∧

N
=
µ2

2
(fµ2/µ1)

2 ∼ 〈k2〉3 ∼ k3(3−γ)
c ,

where the first µ2 is the average number of ways of choos-
ing two distinct branches emanating from a random node
i, and the factor (µ2/µ1)

2 is the average number of i’s
second neighbors in each of such branches. Triads from
class V contribute to the denominator of T with

N
(V)
∧

N
= f2µ3

2
=
f2

2
µ1(µ3/µ1) ∼ 〈k3〉 ∼ k4−γ

c ,

where the factor µ1 is the average number of branches
emanating from a random node i, and µ3/µ1 is the av-
erage number of pairs of i’s second neighbors along each
branch. Note that while triads in class V are closed with
probability f – indeed they also appear in the numerator
of Eq. (7) – triads in class III are always open. Hence if

N
(III)
∧ ≪ N

(V)
∧ , that is for γ > 5/2, the dominant term

N
(V)
∧ appears both in the numerator and the denomi-

nator of Eq. (7), yielding T = f . For γ < 5/2 instead,

the dominant contribution comes from open triads N
(III)
∧ ,

and this gives T = 0. Then the abrupt change in T oc-

curs when N
(III)
∧ scales as N

(V)
∧ , that is at γ = 5/2. For

3 < γ ≤ 4, N
(III)
∧ is finite and the dominant contribution

coming from N
(V)
∧ appears both at the numerator and

at the denominator of Eq. (7), yielding T = f . In other
words, while for 5/2 < γ ≤ 4 the STC mechanism cre-
ates (almost) only closed intrabranch triads, for γ < 5/2
it produces infinitely many more open interbranch triads
than closed triads.
In finite systems, one observes a slow convergence to

the asymptotic results as the system size increases, as
illustrated in FIG. 4.

B. Local clustering coefficient

The local clustering coefficient Ci = n△
i /n

∧
i is the ra-

tio between the number of triangles connected to and
the number of triads centered on node i. The mean lo-
cal clustering C = 1/N

∑

iCi is another global measure

FIG. 5. The five classes of topologically different triads. On
the left, a pictorial visualization of an STC process, solid red
lines represent the edges in G0 and dashed black lines repre-
sent the edges created by the STC procedure. On the right,
five topologically different intrabranch and interbranch triads
centered on node 0.

of the network structure. While in general T and C do
not coincide, they both tend to zero with the system size
in locally treelike random network models [40, 41]. We
measure numerically C in STC networks obtained from
ER backbones, and we compare it with transitivity in
FIG. 3. Despite some quantitative difference, the two
quantities exhibit the same qualitative behavior in this
case. A different scenario occurs in STC networks ob-
tained from PL backbones. We measure numerically C
for various values of γ and report the results in FIG. 6.
It turns out that the mean clustering coefficient does not
exhibit the transitions occurring for transitivity in the
large-N limit. Instead C changes smoothly with γ and
also displays much smaller finite size effects. We can get
some physical intuition of this qualitative difference be-
tween C and T by expressing T as a weighted average of
the local clustering coefficient Ci[38]

T =
3× 1

3

∑

i n
△
i

∑

i n
∧
i

=

∑

i n
∧
i Ci

∑

i n
∧
i

. (10)

For PL backbones with γ < 4 both the numerator and the
denominator in Eq. (10) diverge, as we already observed
in Eq. (9). For γ < 5/2, however, the divergence of the
numerator is tamed by the factor Ci, and the result is a
vanishing transitivity.

V. HIGHER-ORDER MOTIFS

The complex structure of Gf is not limited to a large
number of triangles. Higher-order motifs, such as over-
lapping triangles, loops and cliques, are also naturally
created by the STC mechanism. In this Section, by ex-
ploiting the treelike structure of G0 we derive exact ex-
pressions for the number of some higher-order motifs in
Gf .
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FIG. 6. Transitivity T and mean local clustering coeffi-
cient C as a function of γ for PL backbones, for different
values of kc, with f = 1 and kmin = 3. Values of kc:
100, 300, 1000, 3000, 10000, 30000, 100000. Darker colors cor-
respond to bigger values of kc. The solid red lines are the
exact transitivity values, obtained by numerically evaluating
Eq. (7). Markers correspond to simulation results. In order to
correctly sample a PL degree distribution, for a given kc, the
number of nodes in the sample must fulfil N > kγ−1

c . This cri-
terion makes simulations involving high kc and γ values com-
putationally infeasible. For γ → ∞ the PL backbone network
converges to a random regular network of degree kmin. In this
limit, since all degrees are the same, both T and C are eas-
ily evaluated when f = 1: limγ→∞ T = limγ→∞ C = 1/kmin.
This limit is already clearly observed for γ ≈ 5.

A. Diamonds and 4-loops

A ubiquitous feature of real social networks is not only
their high clustering, but that triangles tend to overlap,
significantly altering the dynamics in various types of pro-
cesses occurring on these networks. The frequency of tri-
angle overlaps both in the STC model and in real-world
networks may be measured in various ways. Here we fo-
cus on diamonds (two triangles that share a link, that
we call the “center” of the motif) and 4-loops (loops of
length 4).

1. Average number of diamonds

The easiest way to compute the expected number of
diamonds in Gf , denoted by N , is to write

N = N
(old)

+N
(new)

,

where N
(old)

and N
(new)

are the number of diamonds
centered on old links, i.e. links that are in E0, and on new
links, i.e. links that are in Ef \ E0, respectively. Consider
an old edge (as (1, 2) in FIG. 7) with end nodes i and j.
Denoting by ni→∂j the number of new links created on
average by the STC mechanism between node i and j′s

neighbors, we can distinguish three topologically different
diamonds centered on the old link (i, j) (see FIG. 7(a)):

I. the ones in which we take two among j’s neighbors
which have become also i’s neighbors. There are
ni→∂j(ni→∂j − 1)/2 of them;

II. the ones in which we take two among i’s neighbors
which have become also j’s neighbors. There are
nj→∂i(nj→∂i − 1)/2 of them;

III. the ones in which we consider one neighbor of node i
and one neighbor of node j. There are ni→∂jnj→∂i

of them.

Summing these contributions and averaging over pk we
get

N
(old)

=
N〈k〉

4
〈ηij(ηij − 1)〉 (11)

where ηij = ni→∂j+nj→∂i. Using the fact that ni→∂j and
nj→∂i are i.i.d. random variables whose probability gen-
erating function is given by g1(1−f+fz) (see Sec. III), it
follows that the generating function of the probability dis-
tribution of the variables ηij is H(z) = [g1(1 − f + fz)]

2
.

Hence we have

N
(old)

=
N〈k〉

4
H ′′(1) =

Nf2

2

[

µ3 + µ2
2/µ1

]

. (12)

Now consider a node of degree k in G0, and a new edge
(a, b) created among its neighbors. A diamond centered
on this edge can be formed only because of the creation
of new links among the other (k − 2) neighbors of the
node, since nodes a and b are second neighbors in the
original network. There are on average fk(k − 1)/2 new
links such as (a, b). This link can be the center either
of a diamond with 2 old links and 2 new links on the
perimeter, or can be the center of a diamond with 4 new
links on the perimeter (see FIG. 7(b)). First we consider
the diamonds with two old links on the perimeter. Fixed
the link (a, b), there are k− 2 ways of choosing the third
node, and hence we have f3k(k − 1)(k − 2)/2 distinct
motifs. In the other case, we can pick the two other
nodes to complete the diamond by choosing among the
remaining (k − 2)(k − 3) nodes, and we can do this in
(k− 2)(k− 3)/2 distinct ways. The total number of such
motifs is f5k(k − 1)(k − 2)(k − 3)/4. Averaging over pk
we get

N
(new)

= N
[

f3µ3

2
+ f5µ4

4

]

. (13)

Summing up we finally have

N =
Nf2

4

[

2µ2
2/µ1 + 2(1 + f)µ3 + f3µ4

]

. (14)
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2. Average number of 4-loops

To compute the average number of 4-loops, a simple ob-
servation is crucial: any 4−loop must contain either zero
or two old links, by construction. The average number of

4-loops with two old edges, denoted by N
(2)

, is the same
as the number of diamonds centered on old links given
in Eq. (12), see FIG. 7. The number of 4-loops with zero

old links, denoted N
(0)

, is instead simply given by (see
FIG. 7(c))

N
(0)

=
Nf4µ4

8
, (15)

since we have k(k − 1)(k − 2)(k − 3) ways of picking 4
nodes among the neighbors of a random node of original
degree k, and in a loop the order in which we choose the
nodes matters: we have 4 possible ways of starting the
loop, and 2 possible choices of orientation, which gives
the factor 1/8. Putting these two contributions together
we get

N =
Nf2

8

[

4µ3 + 4µ2
2/µ1 + f2µ4

]

. (16)

3. 4-loops made of overlapping triangles

It is useful to define the quantity4

R =
N

2N
, (17)

which provides a measure of how likely 4-loops are to be
made of overlapping triangles (diamonds) in Gf . In an
arbitrary network, any diamond corresponds to exactly
one 4-loop. Also, any 4-loop corresponds to at most two
diamonds. Therefore, for any network R ∈ [0, 1]. From
Eqs. (14),(16) we get

R =

[

2µ2
2/µ1 + 2(1 + f)µ3 + f3µ4

]

[4µ3 + 4µ2
2/µ1 + f2µ4]

. (18)

From this expression, it follows that for PL networks
R → f as kc → ∞ for 2 < γ ≤ 5, since the most
divergent term µ4 is the same in the numerator and the
denominator, while for γ > 5, the ratio R is, in the same
limit, a nontrivial function of f always different from 0
and 1. In this case (in fact, for any backbone where the
first four moments of the degree distribution are finite)
we have limf→0R = 1/2. This means that for small but
finite f , each 4-loop corresponds to exactly one diamond.

4 Only for f > 0, since for f = 0 both the numerator and the
denominator are zero.

FIG. 7. A pictorial visualization of diamond and 4-loop count-
ing. Solid lines correspond to links in G0, dashed lines are the
links created by the STC mechanism. (a) diamonds centered
on the old link (1, 2) (thicker line in blue) for a specific re-
alization of the STC process. On the right, we identify the
three types of topologically different motifs. Here there are
3 · 2/2 = 3 motifs of type (I), 2/2 = 1 motif of type (II) and
3 · 2 = 6 motifs of type (III). Summing these three terms
and averaging gives Eq. (11). Note that these motifs always
correspond to 4-loops, and no other 4-loops with 2 old links
on the perimeter are possible, since G0 is locally treelike. (b)
diamonds centered on new links for a particular realization
of the STC process. We consider the neighborhood of node
0 of degree k0 = 5. Arrows indicate two topologically differ-
ent diamonds centered on the new links (2, 5) (thicker line
in blue). (c) Counting the 4-loops with no old links on the
perimeter. Here we consider the neighborhood of node 0 with
degree k0 = 5, and the 4-loop created among nodes 1, 2, 3, 4
(shaded in blue). There are 4 distinct ways of choosing the
starting node, and a factor 1/2 arises by the simmetry un-
der inversion. Hence taking into account these simmetries we
have 4 · 3 · 2/(4 · 2) = 3 distinct 4-loops (dashed green lines):
{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 3, 4, 2}. Considering that each 4-
loops has a probability f4 of being created, averaging over
the whole network we get Eq. (15).

B. Cliques, stars and generalized transitivity

In this section, we present a generalization of the tran-
sitivity to higher-order motifs. It is defined by

Tn =
nNKn

NSn−1

, (19)

where NKn and NSn−1 denote the number of n-cliques –
complete subgraphs with n nodes, Kn – and the number
of (n− 1)-stars – subgraphs made by one node and n− 1
leaves, Sn−1 – in Gf , respectively. The multiplicative
factor n takes into account the fact that for each complete
subgraph Kn there are n distinct stars Sn−1. Note that
for n = 2 Eq. (19) trivially reduces to T2 = 1, while for
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n = 3 we recover the standard transitivity T3 = T as in
Eq. (4). It is straightforward to derive expressions for
NKn and NSn−1 for arbitrary n, following the same line
of argument which led us to Eqs. (5),(6). We get

NSn−1 = N

〈(

K

n− 1

)〉

=
N

(n− 1)!
G

(n−1)
0 (1), (20)

where G
(n−1)
0 (1) can be computed using Eq. (C3), and (it

is sufficient to generalize FIG. 2 for arbitrary n-cliques)

NKn = N

[

f
(n−1)(n−2)

2

〈(

k

n− 1

)〉

+ f
n(n−1)

2

〈(

k

n

)〉]

=
Nf (n−1)(n−2)/2

n!

[

nµn−1 + fn−1µn

]

. (21)

Substituting into Eq. (19) we get

Tn =
f (n−1)(n−2)/2(nµn−1 + fn−1µn)

Mn−1
, (22)

where we setMn = 〈K(K−1) . . . (K−n+1)〉. The study
of Tn for PL backbones reveals an interesting feature. It
is possible to show that, for kc ≫ kmin (see Appendix C)

Mn−1 ∼











k
n−γ+(n−1)(3−γ)
c for 2 < γ < γ∗(n),

kn+1−γ
c for γ∗(n) < γ < n+ 1,

1 for n+ 1 < γ,

(23)
where

γ∗(n) = 3−
1

n− 1
. (24)

Hence for γ > n+1 none of the terms in Tn diverges. For
γ ≤ n+ 1, since NKn ∼ Nkn+1−γ

c , we get

Tn ≃











0 for 2 < γ < γ∗(n),
f(n−1)(n−2)/2

1+cn(kmin)
for γ = γ∗(n),

f (n−1)(n−2)/2 for γ∗(n) < γ ≤ n+ 1,

(25)

where cn(kmin) is a constant depending only on n and
kmin. Eq. (25) shows that the generalized transitivity Tn
exhibits a discontinuity at γ∗(n), in perfect analogy with

the behavior of T discussed in Sec. IVA2. FIG. 4(b) illus-
trates the discontinuous transition of Tn with n = 4. The
competition between two kinds of topologically distinct
(n − 1)-stars – those created between one node and its
second neighbors in a given branch and those created be-
tween one node and the second neighbors reached along
n−1 different branches, with the former dominating over
the latter for γ > γ∗(n) – is responsible for the observed

discontinuous behavior of Tn.

VI. MOTIFS IN REAL-WORLD NETWORKS

It is important to compare this model’s predictions
with corresponding quantities measured in real networks.

The structure of the assumed original backbone network
of a given real-world network cannot be easily inferred.
Instead we can derive some approximate relations (given
some reasonable assumptions) between measurable quan-
tities, which are expected to hold for any network gener-
ated via the static triadic closure process starting from a
locally treelike backbone.
Our first assumption involves only the moments of the

“final” network observed degree distribution: 〈Km〉 ≫
〈Km−1〉 for m ≥ 2. This condition holds in the large
size limit for PL networks with exponent γ′ < 3, which
is where most observed values in real networks tend to
fall. Our second assumption involves the moments of the
backbone with those of the observed network: 〈Km〉 ≈
fm〈km+1〉. This relation holds exactly in the large size
limit when the backbone network is PL with γ > 3 (see
Appendix C). This would correspond to γ′ > 2 in the final
observed network (see Sec. III), which, again, is where
most real-world networks tend to be.
These assumptions are exact in the large size limit

when the backbone network is PL with γ ∈ [3, 4], which
corresponds to the range γ′ ∈ [2, 3] in the final observed
network. While real networks have a very complicated
structure, are finite, and are certainly not exactly power-
law degree-distributed, we believe that our assumptions
may still be expected to be reasonable in many networks
with heavy-tailed degree distribution. Note that we do
not make any assumptions about the particular shape of
the backbone degree distribution, i.e., we do not fit any
parameters, such as the degree distribution exponent γ.
Under the above assumptions, using the results of Sec-

tions IV and V we can write the following simple approx-
imate expressions for the densities of the various motifs
considered in Sec. V,

n ≡
N

N
≈
T 〈K3〉

8
, (26)

n ≡
N

N
≈
T 2〈K3〉

4
, (27)

n ≡
NK4

N
≈
T 3〈K3〉

24
, (28)

that is, the densities of motifs involving four nodes de-
pend only on the transitivity and the third moment of
the degree distribution. Using Eq. (28) we can write
the following simple approximate expression for the 4-
transitivity,

T4 =
4NK4

NS3

≈ T 3. (29)

Note that the approximate forms in Eqs. (26), (27), (28)
and (29) were derived using some simple assumptions re-
lated with the moments of the degree distributions and
did not require any fitting of parameters. Thus they con-
stitute universal relations. We tested these relations in a
dataset of 95 real-world networks of various nature (see
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Ref. [42] 5 for details on the dataset). The results are
shown in FIG. 8. Despite the extremely simple form of
the approximate expressions, they appear to be in reason-
able agreement with empirical results for most networks.

FIG. 8. The CBM and STC [Eqs. (26-29)] approximations to
the (a) density of 4-loops, (b) density of diamonds, (c) density
of 4-cliques, and (d) 4-transitivity, as a function of the actual
observed values in a varied dataset of 95 real-world networks.
In each panel one marker corresponds to one network.

To further assess the validity of the approximate relations
derived from the STC model, a comparison with other
models of clustered networks is worthwhile. As men-
tioned in Sec. I, most existing mathematically tractable
models of clustered networks involve a random linking
of triangles, complete or partial cliques, or other higher-
order motifs. Unfortunately most of these models are
not easily fitted to real networks, therefore the range of
applicability of relations derived within them is not eas-
ily established. One clique-based model where this can
actually be done in a particularly elegant manner is due
to Gleeson [21]. In this model each node belongs to ex-
actly one clique and any number of external links. Im-
portantly, the joint degree and clique size distribution in
this model can be exactly fitted to a given network degree
distribution and clustering spectrum CK . For this reason
we chose this model, as a representative of clique-based
models, to compare our results to, and we will refer to
it as clique-based model (CBM). In the CBM the quanti-
ties n , n , n and T4 are easily calculated as functions
of the moments of the clique-size distribution, which we
fitted to the clustering spectra of the 95 real networks
considered. The resulting values are presented in FIG. 8.
While both the CBM and STC models produce reason-
able approximations 6, there are interesting differences
to be considered.

5 Some of the largest networks in the original database could not
be considered as they exceeded our computational resources.

6 It is important to remark that the relations derived from the STC

The differences are due to the fact that the CBM and
STC models realize, in a sense, two opposite extreme ap-
proaches to producing clustered networks. In the CBM,
triangles only exist within complete cliques, and this
leads to an overestimation of denser motifs, e.g., 4-cliques
and an underestimation of sparser motifs such as 4-loops.
On the other hand, in the STC model triangles are pro-
duced in a more homogeneous, diffuse manner, resulting
in the opposite trend: an underestimation of 4-cliques
and an overestimation of 4-loops7.
A quantity that sharply highlights the difference be-

tween the two models is the normalized ratio R of the
number of diamonds to 4-loops [see Eq. (17)]. This quan-

tity always has the trivial value R
(CBM)

= 1 in clique-
based network models (made of complete cliques), since
one 4-loop corresponds to exactly two diamond motifs in
this case. This property of clique-based models, demon-
strating the extreme concentration of triangles, is clearly
at odds with structures observed in real-world network
data. In the STC model, using the assumptions outlined
at the beginning of this section, this ratio is simply given

by the transitivity, R
(STC)

≈ T . FIG. 9 shows that, for
the 95 real-world networks considered, the STC model
provides reasonable approximations for R in some cases,
although in general underestimates the true values.

FIG. 9. The STC approximation (≈ T ) to the ratio R [see
Eq. (17)], as a function of the actual observed value in a varied
dataset of 95 real-world networks. One marker corresponds
to one network.

These results suggest that more realistic versions of
the STC model may be achieved by adopting a non-
homogeneous triadic closure mechanism, where the prob-
ability of closing a triad depends on local structural prop-
erties. An obvious candidate for such local properties to
consider would be node degrees: in general one may pre-

model are universal and did not require any parameter fitting,
while the values for the CBM were obtained by fitting the entire
degree distribution and clustering spectrum of a real network.

7 Another comparison of real world clustering statistics with Glee-
son’s model and a different kind of random model, using rewiring
and also matching the clustering spectrum, was made in Ref.
[43].
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scribe an arbitrary function f(k1, k2, k3) for the proba-
bility of closing a triad of degrees k1, k2, k3. This would
allow for substantial control over the extent to which tri-
angles overlap to form loopy motifs, and would allow for
the modelling of various forms of the clustering spectrum
CK .

VII. DISCUSSION AND CONCLUSIONS

In this paper we studied in detail a static model of
random clustered networks based on the mechanism of
triadic closure. In particular, we start from a “backbone”
network of arbitrary degree distribution and, with a given
probability f , we close each of the existing triads. In the
case where the backbone is an uncorrelated locally tree-
like network, due to its simplicity this model allows for
exact analytical results regarding clustering properties of
the network.
We found an exact expression for transitivity and we

showed anomalous behavior of this quantity in large
power-law degree-distributed networks; transitivity is
equal to 0 in the infinite size limit for degree distribu-
tion exponent γ < 5/2 and transitivity is equal to f for
5/2 < γ ≤ 4.
This sharp transition is reminiscent of another tran-

sition occurring for this value of γ. Indeed, the largest
eigenvalue of the adjacency matrix (spectral radius) of
power-law networks is 〈k2〉/〈k〉 ∼ k3−γ

c for γ < 5/2, while

it is k
1/2
c for γ > 5/2 [44, 45]. In that case, the transition

is related to the localization of the principal eigenvector
of the adjacency matrix, either on the K-core of maxi-
mum index or on the largest hub and its nearest neigh-
bors [46]. The identification of the role of interbranch
and intrabranch triads in the behavior of transitivity pro-
vides a complementary and clarifying view. In networks
with γ < 5/2 a large max K-core is present. In such
structures the neighbors of nodes with large degree have
many neighbors in their turn. This is reflected by the
dominance of interbranch processes in the STC model.
For γ > 5/2 instead, the spectral radius is determined by
the largest hub and its direct neighbors, which tend to
have a small number of neighbors. Correspondingly the
transitivity is dominated by the formation of connections
among the hub’s neighbors (intrabranch processes).
To quantify the density of higher order cliques we de-

fined a generalized transitivity Tn as the number of n-
cliques in the network relative to their maximum possible
number (in perfect analogy to standard transitivity). We
found an exact expression for the general Tn and showed
that this quantity undergoes a discontinuous transition—
analogous to the standard case—at γ∗(n) = 3− 1/(n− 1).

Using generating functions and simple combinatorial
considerations we found exact expressions for the densi-
ties of various small loopy motifs, as functions of the first
few moments of the backbone degree distribution. Im-
portantly, all motifs in the STC model are produced by
triangles (closed triads) overlapping in various ways, i.e.,

all emerging small-scale structures are purely induced
by the random triadic closure mechanism. This circum-
stance makes the STC model a useful tool to evaluate the
plausibility of the triadic closure mechanism in real-world
networks. With some reasonable assumptions about the
moments of the degree distribution, we derived some uni-
versal relations between the densities of small loopy mo-
tifs. Specifically, we were able to express the density of
various motifs involving four nodes as a function of transi-
tivity and of the third moment of the degree distribution.
We showed that these remarkably simple, universal rela-
tions, hold up reasonably well in real-world networks.
Many interesting research avenues, opened by this

work, deserve further investigation. First, while this pa-
per focuses on global quantities, it would be important to
understand in detail also the behavior of local quantities,
such as the degree distribution PK , the local clustering
coefficient Ci, and degree-degree correlations. Second,
the generalization of the approach used in [36] for perco-
lation on the STC model with f = 1 can provide insight
into the behavior of percolation and other processes on
networks with strong clustering and many short loops.
Finally, the STC procedure can be generalized to build
hypergraphs, by considering not only the edges created
by the STC mechanism but also the triangles, as well as
higher-order motifs, as hyperedges. The motif counting
analysis developed in this work can be straightforwardly
generalized in this case, providing a nontrivial, yet ex-
actly solvable, model for triadic interaction.

Appendix A: Probability generating functions

1. General definitions

Given a discrete probability distribution fk, the asso-
ciated generating function is defined as

g(z) = 〈zk〉 =
∑

k

fkz
k, (A1)

where the sum is intended over the whole range of k val-
ues for which fk is defined. In case of a continuous vari-
able with probability density f(k), we define

g(z) =

∫

dkf(k)zk. (A2)

For our purposes, we consider the degree distribution
pk = Nk/N , where Nk is the number of nodes with de-
gree k, with k ∈ [kmin, kc(N)], where kc(N) diverges in
the infinite-size limit. We denote by g0(z) the degree
distribution generating function. Another useful distri-
bution to consider is qr, where the random variable r is
the so-called excess degree, i.e., the degree of a node at
which we arrive following a randomly chosen edge exclud-
ing the edge we arrived from. We can express qr in terms
of pk. Indeed, we can compute the probability of reach-
ing a node of excess degree r, and hence degree r + 1,
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following a randomly chosen edge. This is simply given
by

qr =
(r + 1)Nr+1

∑

r(r + 1)Nr+1
=

(r + 1)pr+1

〈k〉
. (A3)

This expression allows us to express the generating func-
tion g1(z) =

∑

r qrz
r in terms of g0 by

g1(z) =
g′0(z)

g′0(1)
. (A4)

2. Analytic and asymptotic methods

Given a generating function g0(z) it is possible to ob-
tain the coefficients pk, i.e. the probability distribution
pk, by differentiation [6]

pk =
1

k!

dk

dzk
g0(z)

∣

∣

z=0
=

1

2πi

∮

C

dz
g0(z)

zk+1
, (A5)

where C is an arbitrary path around the origin in the com-
plex z plane. It is quite rare that this procedure can be
carried out explicitly for any k. Nevertheless, complex
analysis developed many tools to estimate the asymp-
totics of the coefficients pk for large k. For instance, if
g0(z) is analytic, then g1(z) is also analytic and the com-
position of analytic functions is analytic too. Hence we
know for sure that PK cannot exhibit a power-law tail
[47]. If instead the generating function g0(z) exhibits a
singular behavior for z → 1−, it is possible to know the
asymptotic behavior of the coefficients of the series expan-
sion around z = 0, that is the asymptotics of pk for large
k. In particular, we recall the following result (Theorem
1 and its corollaries in [48]): if f(z) =

∑

n fnz
n is analyt-

ical in the unitary circle in the complex plane excluding
z0 = 1, and as z → 1 in this domain, f(z) ∼ c(1 − z)α

for α real, then for noninteger α we have

fn ∼
c

Γ(−α)
n−α−1, n→ ∞. (A6)

Hence for a singular g0(z) it is sufficient to expand
around 1, using ǫ = 1 − z as a small parameter, to get
the asymptotic form of pk.

a. The degree distribution of Gf with PL backbone

Using Eq. (A6) and the expansions for the generating
functions of a PL degree distribution

g0(1− ε) ≃ 1− 〈k〉ε+
1

2
〈k〉Bε2 + C(γ − 1)εγ−1,

g1(1− ε) ≃ 1−Bε+
1

2
Dε2 + C(γ − 2)εγ−2,

where B, D and C are constants depending on γ and
kmin

8, from Eq. (1) we get

G0(1− ǫ) ≃ 1− [〈k〉+ f〈k〉B]ǫ+ 〈k〉C(γ − 2)(fǫ)γ−2.
(A7)

From Eq. (A6) we get for K → ∞

PK ∼
〈k〉C(γ − 2)fγ−2

Γ(2− γ)
K−(γ−1),

from which we conclude that the STC procedure on PL
backbones with exponent γ produces (asymptotically)
PL networks with exponent γ′ = γ − 1.

3. Computing averages using generating functions

Generating functions are useful tools because they con-
tain information about the whole probability distribution
in a very compact way [47]9. Indeed, taking the deriva-
tives of the generating functions we can evaluate averages.
It is easy to see that, defining the n-th factorial moment
[49] µn = 〈k(k − 1) . . . (k − n+ 1)〉

µn =

[(

d

dz

)n

g0(z)

]∣

∣

∣

∣

z=1

, (A8)

〈kn〉 =

[(

z
d

dz

)n

g0(z)

]∣

∣

∣

∣

z=1

, (A9)

where we used the fact that g0(z) = 〈zk〉 = 〈ek ln z〉 and
zd/dz = d/d(ln z).
It is possible to express 〈kn〉 as a linear combination

of µj for j ≤ n using the relation [50]

(

z
d

dz

)n

f(z) =

n
∑

j=1

{

n

j

}

zj
(

d

dz

)j

f(z), (A10)

where
{

n
j

}

denote the Stirling numbers of the second kind,

whose expression is given by [47, 50]

{

n

j

}

=

j
∑

i=1

(−1)j−iin

i!(j − i)!
.

Evaluating Eq. (A10) for f(z) = g0(z) at z = 1 we get

〈kn〉 =

n
∑

j=1

{

n

j

}

µj . (A11)

8 See Appendix G in [36] for their explicit values and, in particular,
their signs depending on the value of γ.

9 From [47],“A generating function is a clothesline on which we
hang up a sequence of numbers [probabilities] for display.”
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Remarkably, Eq. (A11) states for ER networks, for which
µj = cj , that

〈kn〉 =
n
∑

j=1

{

n

j

}

cj ,

that is 〈kn〉 is a power series in c whose coefficients are
the Stirling numbers of the second kind.
On the other hand, it is possible to express µn in terms

of 〈kn〉 for j ≤ n using the Stirling numbers of the first
kind

[

n
j

]

which are defined by the relation [51]

n−1
∏

j=0

(x− j) =

n
∑

j=1

(−1)n−j

[

n

j

]

xj . (A12)

Evaluating Eq. (A12) for x = k and averaging over pk we
get

µn =

n
∑

j=1

(−1)n−j

[

n

j

]

〈kj〉. (A13)

Appendix B: Moments of power-law distributions

Given a power law probability distribution pk ∼ k−γ

with k ∈ [kmin, kc], we have

pk =
k−γ

ζ(γ, kmin)− ζ(γ, kc)
≃

k−γ

ζ(γ, kmin)
, (B1)

where ζ(γ, x) =
∑

k≥x k
−γ is the Hurwitz zeta function

[52]. The moments of the distribution are given by

〈kn〉 =
ζ(γ − n, kmin)− ζ(γ − n, kc)

ζ(γ, kmin)− ζ(γ, kc)
. (B2)

To make computations less cumbersome, we can adopt
the continuous-degree approximation, in which the de-
gree is assumed to be a continuous variable. Note that
the larger the value of kmin, the better this approximation
works. We have

pk =
(γ − 1)kγ−1

min
[

1−
(

kmin

kc

)γ−1
]k−γ ≃ (γ − 1)kγ−1

min k
−γ , (B3)

〈k〉 =
γ − 1

γ − 2
kmin

[

1−

(

kmin

kc

)γ−2
]

≃
γ − 1

γ − 2
kmin, (B4)

for γ > 2 and kc ≫ kmin, which is the case we consider
in this paper. For higher order moments of the distribu-
tion, the result depends on the value of γ, since the n-th
moment may diverge. We have, for kc ≫ kmin

〈kn〉 =
(γ − 1)kγ−1

min

γ − n+ 1

[

k
n−(γ−1)
min − kn−(γ−1)

c

]

(B5)

≃
kc≫kmin

{

γ−1
γ−1−nk

n
min if n < γ − 1,

γ−1
n+1−γ k

γ−1
min k

n−(γ−1)
c if n > γ − 1.

(B6)

Note that µn ∼ 〈kn〉 is finite for n < γ − 1: in such a
case, it is useful to have an explicit expression for µn, at
least for n = 1, 2, 3, 4, those encountered in the main text.
Using Eq. (A13) and [51] we get

µ1 = 〈k〉, (B7)

µ2 = 〈k2〉 − 〈k〉, (B8)

µ3 = 〈k3〉 − 3〈k2〉+ 2〈k〉, (B9)

µ4 = 〈k4〉 − 6〈k3〉+ 11〈k2〉 − 6〈k〉. (B10)

For n > γ − 1 instead we have

µn ≃
γ − 1

n+ 1− γ
kγ−1
min k

n−(γ−1)
c . (B11)

Appendix C: High-order moments of PK

From Eq. (1) and Eqs. (A8)-(A9), we can compute, at
least in principle, every average with respect to PK in Gf ,
in terms of averages with respect to pk. It is possible to
obtain an explicit expression forMn = 〈K(K−1) . . . (K−

n+1)〉 = G
(n)
0 (1) for arbitrary n using the Faà di Bruno’s

formula for the n-th derivative of a composite function
[53]. Denoting with Dn = (d/dz)n, we have

Dn [f(u(z))] = n!

n
∑

m=1

f (m)(u(z))

m!

∑

i1+···+im=n

m
∏

j=1

u(ij)(z)

ij!
.

(C1)
Writing G0(z) = g0(ψ(z)), where ψ(z) = zg1(1− f + fz),
it is easy to prove by induction that

ψ(n)(z) = nfn−1g
(n−1)
1

(

1−f+fz
)

+fnzg
(n)
1

(

1−f+fz
)

.
(C2)

From Eq. (C1) with f = g0 and u = ψ evaluated at z = 1
we finally get, using Eqs. (A4)(A8),(C2)

Mn = n!

n
∑

m=1

µm

m!

∑

s1+···+sm=n

m
∏

j=1

[sjf
sj−1µsj + f sjµsj+1]

µ1sj !
.

(C3)
Eq. (C3) allows us to compute the expected number of
n − 1-stars and the generalized transitivity Tn for ar-
bitrary n > 1 (see Sec. VB), but the computation be-
comes soon cumbersome. Nevertheless, with Eq. (C3)
we can prove Eq.(23). In the case of PL backbones with
2 < γ < 3, we have µj ∼ kj+1−γ

c for j > 1, while µ1 ∼ 1,

and ψ(j)(1) ∼ f jkj+2−γ
c for j ≥ 1. From Eq. (C3) we

obtain

Mn ≃ afnkn+2−γ
c +

n
∑

m=2

bmf
mkm+1−γ+m(3−γ)

c , (C4)

where a, bm are constants. The exponent α = m + 1 −
γ+m(3−γ) is a monotonically increasing function in m,
hence its maximum value is reached for mα = n. Thus
we have

Mn ≃ afnkn+2−γ
c + bnf

nkn+1−γ+n(3−γ)
c . (C5)
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The second term on the r.h.s. dominates for 2 < γ <
3 − 1/n, while the first term dominates for γ > 3 − 1/n.
For γ > n + 2, none of the terms appearing in Eq. (C3)

diverges, hence G
(n)
0 (1) ∼ 1. Finally, for 3 − 1/n < γ <

n+ 2 the leading term is always given by kn+2−γ
c : some

of the terms in the sum on the r.h.s. of are Eq. (C4)
ψsj ∼ 1, hence the exponent will be lower than α, and

since α < n + 2 − γ we can conclude that the leading
order is given by the first term. With the substitution
n→ n− 1 this yields Eq. (23).

Notice that for 3 < γ < 4, since Mn ∼ 〈Kn〉 and
〈kn+1〉 ∼ kn+1−γ

c , Eq. (C5) implies that, for kc ≫ kmin,
〈Kn〉 ∼ fn〈kn〉, as stated in Sec. VI.
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