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Patankar-type schemes are linearly implicit time integration methods designed to be
unconditionally positivity-preserving. However, there are only little results on their
stability or robustness. We suggest two approaches to analyze the performance and
robustness of these methods. In particular, we demonstrate problematic behaviors
of these methods that, even on very simple linear problems, can lead to undesired
oscillations and order reduction for vanishing initial condition. Finally, we demon-
strate in numerical simulations that our theoretical results for linear problems apply
analogously to nonlinear stiff problems.
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1. Introduction

Many differential equations in biology, chemistry, physics, and engineering are naturally equipped
with constraints such as the positivity of certain solution components (e.g., density, energy, pres-
sure) and conservation (e.g., total mass, momentum, energy). In particular, reaction equations are
often of this form. Typically, such reaction systems can also be stiff. We consider such ordinary
differential equations (ODEs)

D′(C) = 5 (D(C)), D(0) = D0 , (1)

that can be written as a production destruction system (PDS) [9]

58(D) =
∑
9∈�
(?8 9(D) − 38 9(D)), ∀8 ∈ � , (2)

where ?8 9 , 38 9 ≥ 0 are the production and destruction terms, respectively. Sometimes, these terms
are conveniently written as matrices ?(D) = (?8 9(D))8 , 9 and 3(D) = (38 9(D))8 , 9 .
Definition 1.1. AnODE (1) is called positive, if positive initial data D0 > 0 result in positive solutions
D(C) > 0,∀C. Here, inequalities for vectors are interpreted componentwise, i.e., D(C) > 0 means
∀8 ∈ � : D8(C) > 0. A production destruction system (2) is called conservative, if ∀8 , 9 ∈ � ,∀D : ?8 9(D) =
3 98(D).
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A slight generalization of the PDS (2) is given by the production destruction rest system (PDRS)

58(D) = A8(D) +
∑
9∈�
(?8 9(D) − 38 9(D)), ∀8 ∈ � , (3)

where ?8 9 , 38 9 are as before and additional rest terms A8 are introduced. These can of course violate
the conservative nature of a PDS but can still result in a positive solution if A8 ≥ 0. The rest term
can be interpreted as additional force/source term.
The existence, uniqueness and positivity of the solution of a PDS can be proven under the

following assumptions [13].

Theorem 1.2. The PDS with initial conditions D0 ≥ 0 has a unique solution D ∈ [C1(R+)]|� | and D8(C) > 0
if D0

8 > 0, if

1. for all 8 , 9 ∈ � 38 9 is locally Lipschitz continuous in R|� |,
2. 38 9(D) = 0 for all 8 , 9 ∈ � if D = 0,

3. 38 9(D) = 3̃8 9(D)D8 with 3̃8 9 ∈ C((R+)|� |) and 3̃8 9(D) > 0 if D > 0 and 3̃8 9(D) = 0 if D = 0.

In [9] the previous assumptions 2 and 3 are replaced by the condition 38 9(D) → 0 if D8 → 0. It can
be easily shown that this condition plus the Lipschitz continuity of the destruction terms lead to
similar structures. Let � be the maximum of the Lipschitz continuity constants of the destruction
terms and consider D = E except for the 8-th component for which E8 = 0 and, hence, 38 9(E) = 0 for
the new condition. We have that

0 ≤ 38 9(D) = |38 9(D) − 38 9(E)| ≤ � | |D − E | |2 = �D8 . (4)

Hence, we can define

3̃8 9(D) :=
38 9(D)
D8
≤ �. (5)

This condition is less restrictive and it does not guarantee the continuity of 3̃8 9 in D8 = 0.
For the rest of the paper, we will consider assumptions of Theorem 1.2. Also, all the physi-
cally/chemically/biologically relevant cases, of which we are aware, fall in this definition.
To ensure physically meaningful and robust numerical approximations, we would like to pre-

serve positivity and conservation discretely.

Definition 1.3. A numerical method computing D=+1 ≈ D(C=+1) given D= ≈ D(C=) is called conserva-
tive, if

∑
8 D

=+1
8 =

∑
8 D

=
8 . It is called unconditionally positive, if D= > 0 implies D=+1 > 0.

There are several ways to study positivity of numerical methods [12], e.g., based on the concept
of strong stability preserving (SSP) [15] or adaptive Runge–Kutta (RK) methods [36]. However,
general linear methods are restricted to conditional positivity if they are at least second order
accurate [6]. One way to circumvent such order restrictions is given by diagonally split RK
methods, which can be unconditionally positive [4, 18, 21]. However, they are less accurate than
the unconditionally positive implicit–Euler method for large step sizes in practice [6, 30].
Another approach to unconditionally positivity-preserving methods is based on the so-called

Patankar trick [38, Section 7.2-2]. First- and second-order accurate conservative methods based
thereon were introduced in [9]. Later, these were extended to families of second- and third-order
accurate modified Patankar–Runge–Kutta (MPRK) methods based on the Butcher coefficients [26,
28] and the Shu–Osher form [19, 20]. Related deferred correction (DeC) methods were proposed
recently [37]. Positive but not conservative methods using the Patankar trick have been proposed
and studied in [10], although the connection to Patankarmethods seems to be unknown up to now.
Other related numerical schemes are inflow-implicit/outflow-explicit methods [14, 34, 35]. Ideas
from Patankar-type methods have also been used in numerical methods based on limiters [29].
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The methods mentioned above are based on explicit RK methods. To guarantee positivity,
the schemes are modified to be linearly implicit, which seems to introduce some stabilization
mechanism. In fact, Patankar-type methods have been applied successfully to some stiff systems
[10, 25, 26, 28]. Recently, Patankar methods have been investigated using Lyapunov stability
theory [22–24]. We will point out the relation between their approach and our investigations.
Lately, BBKS and GeCo, two geometric integrators, have been introduce to simulate biochemistry
models preserving not only positivity and conservation, but also all linear invariants of a system
[2, 7, 8, 31].

1.1. Motivating example

Consider the normal linear system

D′(C) = 102
(−1 1

1 −1

)
D(C), D(0) = D0 =

(
0.1
0

)
, (6)

which can be written as a production destruction system with

?(D) =
(

0 102D2
102D1 0

)
, 3(D) =

(
0 102D1

102D2 0

)
. (7)

On (6), we can show different problematic behaviors. We solve (6) with several different methods.
In detail, we apply the second order method SI-RK2 of [10], the second- and third-order accurate
modified Patankar–Runge–Kutta schemes MPRK(2,2,) and MPRK(4,3,,�) from [26, 28] with
different parameter selections, the implicit Midpoint rule and fifth-order, three stage RadauIIA5
scheme [17] implemented in DifferentialEquations.jl [40] in Julia [5]. The solutions are shown
in Figure 1a. It can be recognized that even for this simple test case, most of the methods are
oscillating for the selected time step but with different amplitudes while RadauIIA5 results in
an oscillation–free approximation. We will see that there is a connection between positivity and
oscillation–free linear schemes.
Another problem rises if we use other Patankar schemes. These methods are constructed for
strictly positive PDS, therefore we have to substitute the zero initial condition with something very
small, e.g. D2(0) = 10−250. We observe in Figure 1b that some of the methods replicate the initial
condition for some time steps while others do not leave it at all in the considered time interval. On
the other side classical implicit Runge–Kutta method as well as other modified Patankar schemes
do not show this behavior and their first time step approaches quickly the steady state value. This
issue is linked with a loss of accuracy in the limit for an initial condition approaching zero.
In our investigation, we want to find the Patankar methods that have those undesirable behaviors
and avoid them.

Remark 1.4. A stability theory for Patankar type methods is still under development and only few
preliminary results have been presented. Recently, in [22–24] a promising ansatz to investigate
the behavior of conservative and positivity preserving methods has been proposed. In their work,
the main idea is to use the center manifold theory corresponding to fixed-point investigations.
First applied on 2 × 2 systems in [22], the theory has been extended to general = × = systems in
[23]. The main idea is the following: a generic linear system H′ = �H with � ∈ R=×= with initial
condition H0 > 0 possessing : > 0 linear invariants is considered. In such a case, zero is always
an eigenvalue of � which implies the existence of nontrivial steady state solutions, cf. [23]. The
steady state solutions are fixed-points for any reasonable time integration method. Due to the
nonlinear character of Patankar-type schemes (actually for all higher-order positivity preserving
schemes), a nonlinear iteration process is obtained. Here, additional techniques have to be used
to investigate the stability properties. The authors of [22–24] proved a theorem based on the
central manifold theorem which gives sufficient conditions for the stability of all such methods.
It is further demonstrated that MPRK22() is stable for all ΔC > 0, i.e., it will converge to such
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Figure 1.: Numerical solutions of the normal linear system (6) with real and non-positive eigenvalues ob-
tained using different Patankar-type schemes as well as two implicit Runge–Kutta methods (only
second component depicted) with initial condition D0 = (1, 10−250)) .

fixed-points at any rate.
As shown in [22], we suspect that most of modified Patankar schemes are stable in the fixed-point
sense. In our investigation, we do not deal with this type of stability, but, rather, we look for
some more restricted schemes that show monotone character for monotone problems and that do
not completely lose the high order accuracy. A stability analysis of all the considered methods
with respect to the method proposed in [23] is work in progress. Furthermore, the connection
between our observations and the obtained eigenvalues of the iterative process will be considered
and compared in the future.

1.2. Scope of the article

Motivated by our numerical examples abovewe are interested in concepts that detect the dominant
appearance of spurious oscillations and the loss of accuracy in the limit of an initial condition
going to zero. We have focused on different types of systems (stiff, dissipative ones, etc.) and
considered several quantities like the dissipation of some norms or Lyapunov functionals, cf. [41–
45]. However, the obtained results have not been sufficient for us to describe the properties of the
schemes in an adequate way. Thus, we will directly measure the amount of spurious oscillations
using a generic 2 × 2 linear system as a test problem, and focus as well as on the loss of accuracy
in the limit process. Our investigation leads to a deeper understanding of the basic properties of
Patankar-type methods.
The rest of the article is structured as follows. The numerical schemes studied in this article are

introduced in Section 2. In Section 3, we describe the linear problem on which the methods will be
studied. Thereafter, in Section 4, we show the connection between oscillations and positivity for
linear problems and linear schemes, then we study the oscillation–free property for RK schemes
and for a MPRK scheme. We continue with an analytical investigation on the loss of the order of
accuracy in the limit of vanishing initial condition in Section 5. In Section 6, a numerical study on
linear systems derives the results on bounds on time step for oscillation–free schemes for all other
Patankar schemes. In Section 7, we extend the numerical study to nonlinear and stiff problems.
Finally, we summarize and discuss our results in Section 8.
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2. Numerical schemes

Here, we introduce Patankar-typemethods proposed in the literature that wewill investigate later.
In addition, we propose a new MPRK method and give a heuristic on how to construct such
schemes in general.

2.1. Modified Patankar–Euler method

The explicit Eulermethod D=+1 = D=+ΔC 5 (D=) canbemodifiedby thePatankar trick [38, Section 7.2-
2] for a PDR system (3) to get the positive Patankar–Euler method

D=+1
8 = D=8 + ΔCA8

(
D=

) + ΔC∑
9

(
?8 9

(
D=

) − 38 9 (D= ) D=+1
8

D=8

)
. (8)

Indeed, given A, ?, 3 ≥ 0, the new numerical solution D=+1 is obtained by solving a linear system
with positive diagonal entries, vanishing off-diagonal entries, and a positive right-hand side.
Since the Patankar–Euler method (8) is not conservative, the modified Patankar–Euler method

D=+1
8 = D=8 + ΔCA8

(
D=

) + ΔC∑
9

©«
?8 9

(
D=

) D=+1
9

D=9
− 38 9

(
D=

) D=+1
8

D=8

ª®¬
(MPE)

has been introduced in [9] (with additional rest terms A here). The modification of the production
terms makes the method conservative if the rest terms A vanish. Nevertheless, the method is still
positive, because the arising linear systems has positive diagonal entries, negative off-diagonal
entries, and is strictly diagonally dominant. Hence, the system matrix is an " matrix and, since
the right-hand side is positive, the solution D=+1 is positive [3, Section 6.1]. We observe that, when
dealingwith the scalar linear test problemD′ = �Dwith� < 0, thePatankar–Eulermethodcoincides
with the implicit–Euler method. Similarly, MPE coincides with the implicit–Euler method if we
deal with positive and conservative linear PDS. Indeed, the destruction terms 38(D) = ∑

9 38 9(D)
must go to 0 if D8 → 0 [9]. Since the system is linear, 38 9(D=) = 3̃8 9D=8 with 3̃8 9 ∈ R+0 . Exploiting the
conservation properties, we have ? 98(D=) = 3̃8 9D=8 . Substituting these formulae in MPE leads to the
implicit–Euler method.

2.2. MPRK methods using Butcher coefficients

Aone-parameter family ofMPRK schemes based on the Butcher coefficients of a two stage, second-
order RK method was introduced in [26]. Given a parameter  ∈ [1/2,∞), the method is

H1 = D= ,

H2
8 = D

=
8 + ΔCA8

(
H1) + ΔC∑

9

©«
?8 9

(
H1) H2

9

H1
9

− 38 9
(
H1) H2

8

H1
8

ª®¬
,

D=+1
8 = D=8 + ΔC

(
2 − 1

2 A8
(
H1) + 1

2 A8
(
H2) )

+ ΔC
∑
9

((
2 − 1

2 ?8 9
(
H1) + 1

2 ?8 9
(
H2) ) D=+1

9

(H2
9 )1/(H1

9 )1−1/

−
(
2 − 1

2 38 9
(
H1) + 1

2 38 9
(
H2) ) D=+1

8

(H2
8 )1/(H1

8 )1−1/

)
.

(MPRK(2,2,))
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The scheme for the choice  = 1 is based on Heun’s method and has been proposed already in [9].
Heun’s method can be also written as a strong stability preserving Runge–Kutta method (SSPRK)
and we will denote it by SSPRK(2,2) [15].
A similar two-parameter family MPRK(4,3,,�) of four stage, third-order accurate schemes was

introduced and studied in [27, 28]. The family under consideration can be found in the A for
completeness.

2.3. MPRK methods using Shu–Osher coefficients

A two-parameter family of MPRK schemes based on the Shu–Osher coefficients of a two stage,
second-order RK method was introduced in [19]. Given parameters , �, the method is

H1 = D= ,

H2
8 = H

1
8 + �ΔCA8

(
H1) + �ΔC∑

9

©«
?8 9

(
H1) H2

9

H1
9

− 38 9
(
H1) H2

8

H1
8

ª®¬
,

D=+1
8 = (1 − )H1

8 + H2
8 + ΔC

(
(1 − 1

2� − �)A8
(
H1) + 1

2� A8
(
H2) )

+ ΔC
∑
9

((
(1 − 1

2� − �)?8 9
(
H1) + 1

2� ?8 9
(
H2) ) D=+1

9

(H2
9 )�(H1

9 )1−�

−
(
(1 − 1

2� − �)38 9
(
H1) + 1

2� 38 9
(
H2) ) D=+1

8

(H2
8 )�(H1

8 )1−�

)
,

(MPRKSO(2,2,,�))

where the parameters are restricted to  ∈ [0, 1], � ∈ (0,∞), � + 1
2� ≤ 1, and

� =
1 − � + �2

�(1 − �) , (9)

in order to be positive. In our simulations, we will exchange the weights of production and
destruction when the coefficients are negative. In the next section we will give an example of such
inversion. An extension to four stage, third-order accurate methods MPRKSO(4,3) was developed
in [20] and can be found in the A.

2.4. Modified Patankar deferred correction schemes

Arbitrarily high order conservative and positive modified Patankar deferred correction schemes
(mPDeC) were introduced in [37]. A time step [C= , C=+1] is divided into " sub-intervals, where
C=,0 = C= and C=," = C=+1. For every sub-interval, the Picard-Lindelöf theorem is mimicked. At
each sub-time step C=,< , an approximation H< is calculated. In the formulation of [1] an iterative
procedure of  correction steps improves the approximation by one order of accuracy at each
iteration. Themodified Patankar trick is introduced inside the basic scheme to guarantee positivity
and conservation of the intermediate approximations. Using the fact that initial states H0,(:)

8 = D=8
are identical for any correction :, the mPDeC correction steps can be rewritten for : = 1, . . . ,  ,
< = 1, . . . , " and ∀8 ∈ � as

H<,(:)8 − H0
8 −

"∑
A=0

�<A ΔCA8
(
HA,(:−1))−

"∑
;=0

�<; ΔC
∑
9=1

©«
?8 9(H ; ,(:−1))

H<,(:)
�(9 ,8 ,�<A )

H<,(:−1)
�(9 ,8 ,�<; )

− 38 9(H ; ,(:−1))
H<,(:)
�(8 , 9 ,�<; )

H<,(:−1)
�(8 , 9 ,�<; )

ª®®¬
= 0,

(mPDeC)
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where �<A are the correction weights and the �(9 , 8 , �<A ) takes value 9 if �<A > 0 and 8 otherwise, see
[37] for details. This allows to obtain always positive terms in the diagonal terms and nonpositive
in the offdiagonal terms of the systemmatrix. Finally, the new numerical solution is D=+1

8 = H",( )
8 .

The choice of the distribution and the number of sub-time steps" and the number of iterations
 determines the order of accuracy of the scheme. In the following, we will compare equispaced
and Gauss–Lobatto points. To reach order 3, we use" = 3−1 sub-intervals and  = 3 corrections.
We will denote the ?th-order mPDeC method as mPDeC?. Note that mPDeC1 is equivalent to
MPE and mPDeC2 is equivalent to MPRK(2,2,1).

2.5. A new MPRK method

We propose the following new three stage, second-order MPRK method based on SSPRK(3,3):

H1
8 = D

=
8 ,

H2
8 = D

=
8 + ΔCA8

(
H1) + ΔC∑

9

©«
?8 9

(
H1) H2

9

H1
9

− 38 9
(
H1) H2

8

H1
8

ª®¬
,

H3
8 = D

=
8

+ ΔC A8
(
H1) + A8 (H2)

4 + ΔC
∑
9

©«
?8 9

(
H1) + ?8 9 (H2)

4

H3
9

H2
9

− 38 9
(
H1) + 38 9 (H2)

4
H3
8

H2
8

ª®¬
,

D=+1
8 = D=8 + ΔC

A8
(
H1) + A8 (H2) + 4A8

(
H3)

6

+ ΔC
∑
9

(
?8 9

(
H1) + ?8 9 (H2) + 4?8 9

(
H3)

6

D=+1
9

H2
9

− 38 9
(
H1) + 38 9 (H2) + 438 9

(
H3)

6
D=+1
8

H2
8

)
.

(MPRK(3,2))

For explicitly time-dependent problems, the abscissae are the ones of SSPRK(3,3) [15], i.e., 2 =
(0, 1, 0.5). As will be seen later, this scheme has some desirable robustness. MPRK(3,2) is second-
order accurate. We will not provide a formal proof of the accuracy of the scheme. Nevertheless
we summarize the reasons of the accuracy of each stage. The second stage
H2
8 = D8(C=+1) + O(ΔC2) is an approximation of order one and we can observe that the ratios
H2
8

H1
8
= 1 + O(ΔC) do not further decrease the accuracy since they are multiplied by ΔC. The third

stage is as well a first order approximation H3
8 = D8(C=+ΔC/2)+O(ΔC2). Indeed, even if themidpoint

rule is a second order quadrature formula, the ratios H3
8

H2
8
= D8(C=+ΔC/2)+O(ΔC2)

D8(C=+ΔC)+O(ΔC2) = 1+ O(ΔC). In the final

stage, the Simpson rule is applied, where we get only second order accuracy since H2 and H3 carry
a first order error with them. Hence,

D=+1
8 = D8(C=+1) + O(ΔC3),

and this gives us ratios D=+1
8

H2
8
= D8(C=+1)+O(ΔC3)

D8(C=+1)+O(ΔC2) = 1 + O(ΔC2) which are multiplied by ΔC. At the end,
the scheme is second-order accurate.

Remark 2.1. The construction of higher-order MPRK schemes can be done in a similar way. The
basic idea is to create a method with increasing stage order, similar to the construction of mPDeC.
Starting from a high order RK scheme, by applying the modified Patankar trick in the substeps
in combination with quadrature rules should lead to high order modified Patankar RK schemes.

7



Essential in the construction is the fact that more stages have to be applied compared to classical
RK schemes. This is in accordance with the result of [27] on the existence of third-order, three
stages MPRK schemes. There is work in progress to describe a general recipe to construct MPRK
schemes of arbitrary order and to study the properties of these schemes.

2.6. Semi-implicit methods

The semi-implicit methods of [10] are also based on the Shu–Osher representation of SSPRK
methods, which can be decomposed into convex combinations of the previous step value and
explicit Euler steps. Instead of introducing Patankar weights multiplying all destruction terms
for a step/stage update, a Patankar weight is introduced for the destruction terms of each Euler
stage which is used to compute the new value. Since this procedure limits the order of accuracy
of the resulting scheme to first order, an additional function evaluation is used to correct the final
solution and get second order of accuracy.
The two methods proposed in [10] are

H1 = D= ,

H2
8 =

D=8 + ΔCA8(H1) + ΔC∑9 ?8 9(H1)
1 + ΔC∑9 38 9(H1)/H1

8

,

H3
8 =

1
2D

=
8 +

1
2
H2
8 + ΔCA8(H2) + ΔC∑9 ?8 9(H2)

1 + ΔC∑9 38 9(H2)/H2
8

,

D=+1
8 =

H3
8 + ΔC2

(
A8(H3) +∑

9 ?8 9(H3)) ∑9 38 9(H3)/H3
8

1 + (
ΔC

∑
9 38 9(H3)/H3

8

)2 ,

(SI-RK2)

which uses three stages and is based on SSPRK(2,2), and

H1 = D= ,

H2
8 =

D=8 + ΔCA8(H1) + ΔC∑9 ?8 9(H1)
1 + ΔC∑9 38 9(H1)/H1

8

,

H3
8 =

3
4D

=
8 +

1
4
H2
8 + ΔCA8(H2) + ΔC∑9 ?8 9(H2)

1 + ΔC∑9 38 9(H2)/H2
8

,

H4
8 =

1
3D

=
8 +

2
3
H3
8 + ΔCA8(H3) + ΔC∑9 ?8 9(H3)

1 + ΔC∑9 38 9(H3)/H3
8

,

D=+1
8 =

H4
8 + ΔC2

(
A8(H4) +∑

9 ?8 9(H4)) ∑9 38 9(H4)/H4
8

1 + (
ΔC

∑
9 38 9(H4)/H4

8

)2 ,

(SI-RK3)

which uses four stages and is based on SSPRK(3,3).
The relation to Patankar schemes becomes obvious by rewriting the computation of the stage H2

of (SI-RK2) as

H2
8 = D

=
8 + ΔCA8(H1) + ΔC

∑
9

(
?8 9(H1) − 38 9(H1) H

2
8

H1
8

)
, (10)

which is the Patankar–Euler method (8). As for the Patankar–Euler method, the semi-implicit
methods of [10] are not conservative, i.e., it is not guaranteed that

∑
8 D

=
8 =

∑
8 D

=+1
8 when the

system is conservative.
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2.7. Steady state preservation

Motivated by the investigations of [10], steady state preservation for (modified) Patankar methods
will be studied here. Except for the SI-RK2 and SI-RK3 methods [10], such investigations cannot
be found in the literature.

Definition 2.2. A method is steady state preserving if, given a time step ΔC and D= = D∗ with
A8(D∗) +∑

9 ?8 9(D∗) − 38 9(D∗) = 0, then D=+1 = D= = D∗.

Proposition 2.3. All (modified) Patankar methods described above are steady state preserving.

Proof. The solution to each stage and the new step value are unique. If the initial condition is a
steady state, this steady state is also a valid solution to all stage and step equations. Indeed, the
Patankar weights reduce to 1 and the simple rest-production-destruction forms remains and their
sum is 0 in the steady state. Hence, the steady state is preserved. �

This theorem is important, since some related modifications of explicit Runge–Kutta methods
such as IMEX methods are not necessarily steady state preserving [10]. For (stiff) systems with an
initial condition near a steady state, the ability to preserve this steady state exactly is desirable and
usually results in a better approximation of solutions nearby or decaying to steady state.
In our discussion, it will be useful to check not only the preservation of the steady state, but also

how this state is approached, for example, if in a monotone manner or not.

3. The simplest production destruction system

In order to study the issues observed in Figure 1, wewill consider the simplest production destruc-
tion system that one can build. For ODE solvers, it is always useful to study Dahlquist’s equation
as any linearized (and diagonalizable) system can be recast into several of these equations. Unfor-
tunately, Dahlquist’s equation is not a PDS. We propose to use a 2 × 2 linear system similar to (6)
as test problem. This is the simplest PDS that can be considered. More precisely, we consider the
general 2 × 2 production-destruction linear system as also done lately in similar form in [22](

D′1
D′2

)
=

(−0 1
0 −1

) (
D1
D2

)
. (11)

Rescaling the time, we can simplify this system to a one parameter system setting 0 + 1 = 1 and
0 ≤ � = 0 ≤ 1, i.e., (

D′1
D′2

)
=

(−� (1 − �)
� −(1 − �)

) (
D1
D2

)
. (12)

We can also rescale any initial condition D0 = (D0
1 , D

0
2)) to sum up to one (scaling by a factor 1

D0
1+D0

2
).

Thus, we consider the initial condition (
D0

1
D0

2

)
=

(
1 − �
�

)
(13)

with 0 < � < 1. The exact solution of the problem is(
D1(C)
D2(C)

)
=

((1 − �) + (� − �)4−C
� + (� − �)4−C

)
, (14)

and the steady state of the system is D∗ = (1 − �, �)) .
It is interesting to rewrite the system (12) in its diagonal form to highlight its connection with

Dahlquist’s equation. To do so, let us put it into a matrix formulation

D′ = "D =

(−� (1 − �)
� −(1 − �)

)
D, (15)
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we can obtain the diagonal form " = !−1Λ! of the system, i.e.,

Λ =

(−1 0
0 0

)
; ! =

(
� −(1 − �)
1 1

)
; !−1 =

(
1 1 − �
−1 �

)
. (16)

So for E = !D we can write an always positive (or always negative) exact solution for the first
component

E1 = �D1 − (1 − �)D2; E′1 = −E1; E1 = 4−CE0
1 . (17)

Indeed, this component is the solution of Dahlquist’s equation, while the second component
E2 = D1 + D2 fulfills E′2 = 0 and corresponds to the conservation property.

The positivity of E1 = �D1 − (1 − �)D2 in case �D0
1 − (1 − �)D0

2 > 0, i.e., D
0
1
D0

2
> 1−�

� , is equivalent to
say that

D1(C)
D2(C) >

1 − �
�
⇐⇒ D2(C) < � = D∗2 (18)

holds true for all times. This condition means that the solution does not overshoot the asymptotic
steady state. This property guarantees the monotonicity of the solution. In the next section, we
will see how violating this condition leads to oscillations around the asymptotic steady state.

4. Oscillation–free schemes for linear problems

Now, let us reconsider the system (12). In this section we try to find schemes that do not show
oscillatory behavior as the ones presented in Figure 1a. This reduces to finding schemes that for
every D= and every system defined through 0 < � < 1 have a monotone behavior and do not
overshoot/undershoot the steady state solution. In particular, we define two properties that the
schemes have to fulfill not to oscillate. We focus on the case � < � as the opposite one can be
obtained switching the two components of the system (12).

Property 4.1 (Not overshooting the steady state). Amethod is not overshooting the steady state of
(12) if D1

2 < � and D1
1 > (1 − �) given any initial state D0 = (1 − �, �) with � < �, while when � > �

the method is not overshooting the steady state if D1
2 > � and D1

1 < (1 − �).
Property 4.2 (Correct direction). A method is evolving in the correct direction for system (12) if
D1

2 > � and D1
1 < (1 − �) given any initial state D0 = (1 − �, �) with � < �, while when � > � the

method is evolving in the correct direction if D1
2 < � and D1

1 > (1 − �).
In the following we will focus mainly on Property 4.1. Indeed, a similar analysis can be conduct

to check when Property 4.2 is preserved and we put it in B. Moreover, we have observed that in
very few occasions the approximation moves in the wrong direction, i.e., if � < � we rarely have
that D1

2 < �. The interesting condition is D2 < �, or, equivalently D2
D1

< �
(1−�) . We have already

shown that this condition is equivalent to preserving the positivity of the first component of the
diagonalized system (17).

Proposition 4.3 (Oscillation-free and positive Runge-Kuttamethods). Consider the linear system (12)
with � < �. For a linear method such as RK methods, the positivity of E=1 = �D=1 − (1 − �)D=2 is equivalent
to not overshooting Property 4.1, i.e., � = D∗2 > D=2 ⇐⇒ (1 − �) = D∗1 < D0

1 . Similarly, in case � > �, the
negativity of E=1 is equivalent to the Property 4.1 condition, i.e., � = D∗2 < D=2 ⇐⇒ (1 − �) = D∗1 > D0

1 .

Proof. First of all, let us notice that in case � < �, we have that E0
1 = �D0

1 − (1 − �)D0
2 = �(1 − �) −

(1 − �)� > 0. Let us consider a RK scheme in Einstein’s notation, denoting the Bth RK stage with
H(B)8 and with �, 1, 2 the usual RK matrix and vectors [16]. The RK method for the system (12) can
be written as

H(B)8 = D=8 + ΔC"
9
8�

B
:H
(:)
9 (19)
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D=+1
8 = D=8 + ΔC1B"

9
8 H
(B)
9 , (20)

where " is the matrix in (15). Now, premultiplying by ! defined in (16) we obtain the same RK
method for the diagonalized system, i.e.,

F(B)ℓ := !8ℓ H
(B)
8 = !8ℓ

(
D=8 + ΔC"

9
8�

B
:H
(:)
9

)
= E=ℓ + ΔCΛ

9
ℓ�

B
:F
(:)
9 (21)

E=+1
ℓ := !8ℓD

=+1
8 = !8ℓ

(
D=8 + ΔC1B"

9
8 D
(B)
9

)
= E=ℓ + ΔC1BΛ

9
ℓF
(B)
9 . (22)

Hence, if for a certain ΔC we have that E1
1 > 0 for all � < �, then, D1

2 < � and would not overshoot
the asymptotic steady state. The other case is proved analogously. �

As an example, the implicit–Euler method is unconditionally positive and thus also uncondi-
tionally oscillations–free.
It is also clear how to check the positivity and, hence, Property 4.1 for all RK schemes.

Proposition 4.4. Consider the problem (12) and aRKmethod. For a givenΔC themethod fulfills Property 4.1
if

'(−ΔC) > 0, (23)
with '(I) := (1 + I1)(� − I�)−1

1) the stability function of the RK method.

Proof. From Proposition 4.3 we know that we can check the positivity of E1
1 for the equation

E′1 = −E1, with initial condition E0
1 > 0. We have then,

F =E0
11 − ΔC�F ⇐⇒ (� + ΔC�)F = E0

11⇐⇒ F = (� + ΔC�)−1
1E0

1 (24)
E1

1 =E
0
1 + ΔC1)F = E0

1 + ΔC1)(� + ΔC�)−1
1E0

1 = (1 + ΔC1)(� + ΔC�)−1
1)E0

1 (25)
='(−ΔC)E0

1 . (26)

Hence, having '(−ΔC) > 0 guarantees the positivity of the scheme for E1 and the condition D2 < �
on system (12). �

To check this condition is quite straightforward for most RK schemes. Indeed, ' is a ratio of two
polynomials and checking its positivity corresponds to finding roots of some polynomials.

Remark 4.5 (Positivity of RK schemes). One should notice that a positive RKmethod is not usually
defined such that '(−ΔC) > 0. Indeed, it is important in many contexts that also all the stages stay
positive. For this definition one should require that (� + ΔC�)−1 is a positive matrix. It has been
proven [6, 15] that among linear implicit schemes only first order schemes can be unconditionally
(for all ΔC > 0) positive, while all high order schemes cannot. Nevertheless, some schemes can
be unconditionally positive only in the final update. An example of such schemes is RadauIIA5,
which, being fifth order accurate cannot be positive for all stages [6], but it is in the final update,
see Table 1.

For explicit schemes it is known that explicit Euler is positive for ΔC < 1 and for all strong-
stability-preserving RK (SSPRK) schemes, which are convex combination of explicit Euler steps,
the positivity is obtained for ΔC < C, where C is their CFL condition [15]. For all these scheme the
CFL coefficient is well known in literature and we do not further discuss it. For implicit schemes
this conditions seems not to have been thoroughly studied to the authors’ knowledge. In Table 1
we summarize the restrictions for some of the implicit RK methods obtained with a Mathematica
notebook available in [46].
Similarly, we state a proposition for Property 4.2.

Proposition 4.6. Consider the problem (12) and aRKmethod. For a givenΔC themethod fulfills Property 4.2
if

1 − '(−ΔC) > 0⇐⇒ 1)(� + ΔC�)−1
1 > 0, (27)

with '(I) := (1 + I1)(� − I�)−1
1) the stability function of the RK method.
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Method Condition Method Condition
Radau IA3 ΔC < 3 Radau IA5 Always
Radau IIA3 ΔC < 3 Radau IIA5 Always
Lobatto IIIA2 ΔC < 2 Lobatto IIIA4 Always
Lobatto IIIB2 ΔC < 2 Lobatto IIIB4 Always
Lobatto IIIC2 Always Lobatto IIIC4 ΔC < 4

Gauss–Legendre 4 Always Gauss–Legendre 6 ΔC . 4.32
implicit–Euler Always Midpoint ΔC < 2
Trapezoid ΔC < 2 Qin-Zhang DIRK2 ΔC ≠ 4
TRBDF2 ΔC < 1 + √2 Kraaĳevanger-Spĳker DIRK2 Always

Table 1.: List of methods and condition on '(−ΔC) > 0

All the schemes presented in Table 1 enjoy Property 4.2 unconditionally. Moreover, every
A-stable scheme enjoy Property 4.2. Indeed, A-stability means that

|'(I)| < 1 for Re(I) < 0 =⇒ '(−ΔC) < 1 for ΔC > 0. (28)

Modified Patankar methods are not linear schemes. Hence, the equivalence in Proposition 4.3
does not hold. So, even if they are unconditionally positivity preserving, they are not uncondi-
tionally oscillation–free. It is not straightforward to derive an analysis for all of them. In next
section, we study the MPRK(2,2,) with  = 1, for which it is possible to derive a condition on the
time step to obtain the oscillation-free condition. For all other schemes we have to perform some
numerical studies, see Section 6.

4.1. Oscillatory-free restrictions of MPRK(2,2,1)

ThemethodMPRK(2,2,) with  = 1 is equivalent tomPDeC2. Since it is simple enough, a detailed
analysis for the simplified linear systems (12) is feasible.

Theorem 4.7 (Time restriction for mPDeC2 for 2 × 2 linear systems). Consider the system (12) with
the initial conditions (13). mPDeC2 enjoys Properties 4.1 and 4.2 for any initial condition 0 < � < 1 and
any system 0 ≤ � ≤ 1 under the time step restriction ΔC ≤ 2. For the general linear system (11) the time
restriction is ΔC ≤ 2

0+1 .

Proof. First of all, the cases � = 0 and � = 1 are trivially verified as the steady state solutions are
(1, 0)) and (0, 1)) , respectively. Since the scheme is positive, 0 < D=1 , D

=
2 < 1 holds for any possible

initial condition and time step, verifying the oscillation-free condition.
Secondly, the case � = � implies that the initial condition is the steady state. Since all modified

Patankar schemes are able to unconditionally preserve the steady state, the solution will be steady.
In the general case, we can write the solution at the first time step as ratio of polynomials that

are of degree three in ΔC, and degree two in � and �. Here, for brevity we write one of the two
component D1

2 =
#
� , where

# =2(1 − �)�2 + 2ΔC�(�(1 − �) + 2(1 − �)�)
+ ΔC2

(
(1 − �)�� + 3�(1 − �)� + 2(1 − �)�2

)
+ ΔC3

(
(1 − �)�2 + (1 − �)�2

)
> 0,

� =2(1 − �)� + ΔC(2(1 − �)� + 2�(1 − �) + 2(1 − �)�)
+ ΔC2((1 − �)(2� + �) + (1 − �)(� + 2�)) + ΔC3(�(1 − �) + (1 − �)�) > 0.

Properties 4.1 and 4.2 simplifies to � ≥ D1
2 ≥ � in the case � > � and to � ≤ D1

2 ≤ � if � < �. The
inequality regarding D1

2 and �, i.e., Property 4.2, is proven in B in Theorem B.2 for all MPRK(2,2,)
schemes with  ≤ 1. To prove Property 4.1 we analyze the sign of �� − # , where # and � are
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the numerator and the denominator of D1
2 respectively, clearly both positive. For � > � we want to

have �� −# < 0 not to overshoot the steady state, while for � < � we should have �� −# > 0 or,
in other words, ��−#�−� < 0. We have that

�� − #
� − � = −2�(1 − �) − ΔC2(�(1 − �) + �(1 − �)) − ΔC2�(1 − �) + ΔC3�(1 − �) < 0, (29)

which is a third degree polynomial inequality for ΔC and can be rewritten as

?�,�(ΔC) = ΔC3 − ΔC2 − 2
(
�
�
+ 1 − �

1 − �
)
ΔC − 2 �(1 − �)

�(1 − �) < 0. (30)

There are two options for real coefficients cubic polynomials. If the discriminant Δ ≥ 0 then the
roots are all real, while if Δ < 0 there are two complex conjugated roots and a real one [39]. Only
if Δ = 0 the roots are multiple. Let us consider first the case Δ ≥ 0. Denoting with H ≤ F ≤ I the
three real roots of ?�,�(G), we see that they have to satisfy




H + F + I = 1,
HI + FI + HF = −2

(
�
� + 1−�

1−�
)
< −2,

HFI = 2 �(1−�)
�(1−�) > 0.

(31)

Since HFI is positive and HI + FI + HF is negative, it is clear that only one root is positive, while
the other two are negative, w.l.o.g. H ≤ F < 0 < I. From the second equation of (31), we see that

I(F + H) < I(F + H) + FH = HI + FI + HF < −2, (32)

F + H < −2
I
. (33)

Using then the first equation of (31), we have that

0 = I + H + F − 1 < I − 2
I
− 1, 0 < I2 − I − 2, (34)

which has positive solutions only for I > 2. Hence, ΔC ≤ 2 in order to avoid oscillations for all
systems (12). The bound is sharp in the sense that it can be reached for the limit polynomial
lim�→0 lim�→0 ?�,�(G). We can observe that when � → 0, the first and third equations in (31) tell
us that F → 0−. Hence, from the second equation we can see that H → −2 1

(1−�)I . Finally, the third
zero will converge to

I →
1 +

√
1 + 8

1−�
2 .

For �→ 0, I goes to 2.
If Δ < 0 then there are one real root I and two complex conjugated roots H = 0 + 81, H̄ = 0 − 81

[39]. These roots must verify




20 + I = 1,
20I + 02 + 12 = −2

(
�
� + 1−�

1−�
)
< −2,

(02 + 12)I = 2 �(1−�)
�(1−�) > 0.

(35)

Since (02 + 12)I is positive, I is positive. From the second equation of (35), we see that

20I < 20I + 02 + 12 < −2, (36)

0 < −1
I
. (37)
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Using then the first equation of (35), we have that

0 = I + 20 − 1 < I − 2
I
− 1, 0 < I2 − I − 2, (38)

which has positive solutions only for I > 2. �

Remark 4.8. The discriminant of ?�,�

Δ =4�(1 − �)[�2(1 − �)3� + (1 − �)2(1 − �)�3 + 8�3(1 − �)3 + 8(1 − �)3�3

+ 6(1 − �)�2(1 − �)2� + 6(1 − �)2�(1 − �)�2 − 27(1 − �)2�2(1 − �)�] (39)

is positive in the square 0 < �, � < 1. This has been verified in MPRK_2_2_1_generalSystem.nb in
[46]. Hence, the case Δ < 0 never happens for 0 < �, � < 1.

Unfortunately, the computational complexity increases significantly for all other schemes con-
sidered in this article. Thus, we will perform numerical studies for all methods, using different
initial conditions (�), systems (�), and step sizes (ΔC) to find the largest possible time step without
oscillations in Section 6.

5. Loss of the order of accuracy for vanishing initial conditions

Another particular behavior we observe for some modified Patankar schemes is the loss of accu-
racy when one component of the initial condition tends to zero. In this case, available analytical
results on accuracy of the schemes do not hold as they require D0

8 ≥ � > 0 with fixed �. Nev-
ertheless, the condition D0

8 = � with � → 0 is of general interest in many applications, where
physical/chemical/biological constituents might be zero and choosing the initial condition � � 0
might ruin the accuracy of the solution. In particular when dealing with high order schemes and
expecting an error of O(ΔCA), we might need to require the initial error to be the same order or
less than the expected precision, i.e., � . ΔCA , in order not to let the initial error dominate the final
error.
In this section, we show for which Patankar and modified Patankar schemes there is an order

reduction for a very simple linear problem. Here, we understand the phenomenon of order
reduction similarly to what happens for stiff problems, where two parameters are coupled in a
limit process [17, Chapter IV.15]. For stiff problems, these parameters are the time step and a
stiffness parameter. In our case, these two parameters are the time step ΔC and the minimum of
the initial data �. We will see that the order of accuracy decreases in a certain regime � � ΔC.
Consider the order of accuracy of the first time step, defined as the largest A such that

| |D1 − D(C1)| | ≤  ΔCA+1 (40)

as ΔC → 0 while �
ΔC → 0, similar to the stiff case [16, 17]. In the first time step of the simulations,

this situation is very common and will result in a loss of the order of accuracy for the first time
step. As soon as D2 � �, the classical accuracy will be restored, but the final error will be anyway
influenced by this initial step or some initial steps.

Remark 5.1 (Order and error at the final time). We have seen that a method of order A has an error
of O(ΔCA+1) at the first time step. These errors accumulate till the final time ) for all time steps
which are O( )ΔC ). This results in an error at the final time of the order of O(ΔCA). In the situation of
order reduction at one or some of the time steps, it can happen that the error produced at the first
time step dominates the final error and ruins the accuracy also at the final time.

Some numerical experiments validate this study in Sections 6 and 7.
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5.1. Strong loss of order accuracy for vanishing initial conditions

Different modified Patankar schemes behave differently for vanishing initial condition, some are
not affected, some become second order accurate, some first order accurate. We tested different
modified Patankar schemes and the method Rodas4, as a benchmark, on (12) with � = 0.5 com-
paring � = 0.01, � = 10−16 and � = 10−250. In Figures 2 and 3 we plot the error decay for these test
with the error defined as

err := 1
#C

#C∑
==1
| |D4G(C=) − D= | |2. (41)

We see that some MPRK(2,2,) and MPRK(4,3,, �) fall into typical first order accuracy behaviors,
while other third and fourth order schemes behave like second order ones in this situation. More-
over, the order depends on the relation between � and ΔC.
The fall back to first and second order is due to an error in the first time steps when one initial
condition is close to 0. As soon as this component becomes large enough the error goes back to
the expected one. This leaves either a shift of some ΔC on the solution or a first time step with a
second order error. To grasp why we lose order of accuracy, we need to understand what happens
in the limit of our schemes for � → 0 for the first time step. We remark that, in the linear system
case, ?̃8 9 and 3̃8 9 defined in Theorem 1.2 as 3̃8 9(D) = 38 9(D)/D8 and ?̃8 9(D) = ?8 9(D)/D9 are positive and
constant. As an example, we can see the role of these production/destruction rates in the MPE

D1
8 = D

0
8 + ΔC

∑
9

©«
?̃8 9(D0)

�
�D0
9

D1
9

�
�D0
9

− 3̃8 9(D0)��D0
8

D1
8

�
�D0
8

ª®¬
, (42)

D1
8 =

D0
8 + ΔC

∑
9 ?̃8 9(D0)D1

9

1 + ΔC∑9 3̃8 9(D0) = D0
8 + ΔC

∑
9∈�

(
?̃8 9(D0)D1

9 − 3̃8 9(D0)D0
8

)
+ O(ΔC2). (43)

Hence, we see that the method that we obtain for vanishing initial condition �→ 0 is well defined
and, in this case, leads to a consistent and first order scheme.
This is not true for MPRK(2,2,) for all . The first stage of the scheme is a MPE step and it does

not introduce issues. The second stage depends on the coefficient . Let us define $ = 1
2 , the

second stage reads

D1
8 = D

0
8 + ΔC

∑
9


©«
(1 − $)?8 9(H1) + $?8 9(H2)
(H2
9 )1/(H1

9 )1−1/
ª®¬
D1
9 −

(
(1 − $)38 9(H1) + $38 9(H2)
(H2
8 )1/(H1

8 )1−1/

)
D1
8


. (44)

Here, we cannot simplify as before the linear terms of destructions and productions. If we focus
on the destruction term for the vanishing constituent, i.e., D0

8 = � = H1
8 → 0, and if we suppose that

the first step is such that H2
8 ≥ �2ΔC, this is true as we have seen in the MPE step, we have that

lim
H1
8→0

(1 − $)38 9(H1) + $38 9(H2)
(H2
8 )1/(H1

8 )1−1/ =




0, if 1 − 1/ < 0⇔  < 1,
$3̃8 9(H2), if 1 − 1/ = 0⇔  = 1,
∞, if 1 − 1/ > 0⇔  > 1,

(45)

where 3̃8 9 is defined in Theorem 1.2.
Hence, for  > 1, when collecting the term D1

8 on the left–hand side, we have that lim�→0 D1
8 = 0.

This is a zero-th order error step. Nevertheless, as one can see also in Figure 2 and Figure 1b, after
some steps the regime D2 � ΔC is abandoned and the classical accuracy is restored, leading to an
error of the order of O(ΔC) at a final time ).
For  < 1 we have that the contribution of the destruction terms to this equation tends to

0 as � → 0, while they where expected to give, for (12), a contribution of the order of ΔC (as
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(c) Order 2 schemes, � = 10−16
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Figure 2.: Error decay for the system (12) with � = 0.5, at time ) = 1 with second and third order methods
and different �.
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(b) Order 4 schemes, � = 10−16

Figure 3.: Error decay for the system (12) with � = 0.5, at time) = 1with fourth ordermethods and different
�.

321(H1) = (1 − �)H1
2 = O(ΔC)). This leads to an error of O(ΔC2) for the first time step, i.e., a first

order error. At the second step the regime D2 � ΔC is already left, hence, the formal second order
of accuracy is then restored. So, at a final time we have an error of O(ΔC2)+O(ΔC2) = O(ΔC2). Even
if in this case we do not observe an order reduction at a final time, the first time step shows order
reduction and this is very common also in other higher order methods and this type of reduction
would lead to a O(ΔC2) at the final time.
Finally, for  = 1 none of these behaviors happen, no order reduction is observed and an error

of O(ΔC3) is formally obtained at the first time step.
We can generalize the two problematic cases that we have just explained into two lemmas. These

configurations are common tomanyMP schemes. Hence, it will be easy then to recast each scheme
to one of these cases. For the mPDeC schemes a similar issue arises from the negative coefficients
and it will be discussed later.
In general, to obtain a certain order of accuracy, the RKmethods build stages of increasing order

of accuracy, so that the final step can perform a linear combination of functions of enough accurate
stages. If the expected order of accuracy is lost in any of these stages, we might have an order
reduction in that timestep update. This is why we need to study all the stages of the MP schemes
to check in which of those there is an order reduction and up to which order this happens. This
will lead to the understanding of the final order reduction of the method. In the following, we
study a general stage and how the order reduction can happen and, then, we check which MPRK
is affected in which stage by this behavior.
First of all, let us write a general step of an MPRK scheme for the second component of the ODE

(12) at a certain stage B, exploiting the conservation property, as

HB2 = D
0
2 + ΔC

∑
9<B

�B9
©«
?21(H 9)

HB1

�
9
1

− 321(H 9)
HB2

�
9
2

ª®¬
= D0

2 + ΔC
∑
9<B

�B9
©«
�
H 91

�
9
1

(1 − HB2) − (1 − �)
H 92

�
9
2

HB2
ª®¬
, (46)

with �B9 some nonnegative RK coefficients and �
9
8 the different denominator of the various MPRK

schemes. Now, the troubles comewhen there are some � 92 that are anO(�) orwhen 1/� 92 = O(�) and
they do notmatch the destruction terms. These cases correspond towhat observed inMPRK(2,2,)
for  > 1 and  < 1 respectively, while it is not the case of MPE where cancellation leads to a
consistent approximation. To be more general, let us consider � 92 = O(�) or 1/� 92 = O(�), where �
can be a power of � or a ratio between � and ΔC. As an example, you can refer to the MPRK(2,2,),
where at the last stage the denominator is �1

2 = �2
2 = (H2

2)1/(H1
2)1−1/ = O(ΔC1/�1−1/). This will be

17



the case in many situations. It will be useful to use the Big Theta Landau symbol 5 (G) = Θ(6(G))
to indicate that

0 < lim inf
G→0

| 5 (G)|
6(G) ≤ lim sup

G→0

| 5 (G)|
6(G) < ∞.

First, we study the case where � 92 = Θ(�)which corresponds to the MPRK(2,2,) for  > 1.
Lemma 5.2. Consider the problem (12) with 0 < � < 1 and initial condition (1 − �, �) with 0 < �.
Consider the update step at the first time step given by (46). Suppose there is an ℓ < B with �Bℓ > 0 such
that �ℓ2 = Θ(�), Hℓ2 = Θ(ΔC) and consider the limit for ΔC → 0, �

ΔC2 → 0 and �
ΔC → 0. Moreover, suppose

that for all stages 9: H 92
�
9
2
= O

(
Hℓ2
�ℓ2

)
. Then,

HB2 = Θ

(
�

ΔC

)
= D4G2 + Θ(ΔC),

where D4G2 is the exact solution after the first time step.

Proof. First of all, let us observe that �
ΔC =

�
ΔC2ΔC → 0 as both �

ΔC → 0 and ΔC → 0. From (46) we
can write the definition of HB2 as[

1 + ΔC
∑
9<B

�B9 �
H 91

�
9
1︸          ︷︷          ︸

Θ(ΔC)

+ΔC
∑
9<B

�B9 (1 − �)
H 92

�
9
2︸                  ︷︷                  ︸

Θ(ΔC2� )

]
HB2 = H0

2︸︷︷︸
=�

+ΔC
∑
9<B

�B9 �
H 91

�
9
1︸          ︷︷          ︸

Θ(ΔC)

. (47)

The scaling indicated by Landau symbols can be explained from hypotheses, using also H1 = O(1)
for all stages and consequently �1 = O(1); the initial value is H0

2 = � and all the coefficients are
constant. Then, the dominating term on the left-hand side is the Θ(ΔC2� ), the only one going to
infinity, and on the right side it is the Θ(ΔC) as �

ΔC → 0. So, we can write that

HB2 =

� + ΔC
∑
9<B

�B9 �
H 91

�
9
1

1 + ΔC
∑
9<B

�B9 �
H 91

�
9
1

+ ΔC
∑
9<B

�B9 (1 − �)
H 92

�
9
2

=

�
ΔC2 � +

�
ΔC

∑
9<B

�B9 �
H 91

�
9
1

�
ΔC2 +

�

ΔC

∑
9<B

�B9 �
H 91

�
9
1︸           ︷︷           ︸

Θ( �ΔC )

+ �

ΔC

∑
9<B

�B9 (1 − �)
H 92

�
9
2︸                  ︷︷                  ︸

Θ(1)

(48)

=

�
ΔC

∑
9<B

�B9 �
H 91

�
9
1

�
ΔC

∑
9<B

�B9 (1 − �)
H 92

�
9
2

+ Θ(1)
©«
��

ΔC2
− �

ΔC2
�

ΔC

∑
9<B

�B9 �
H 91

�
9
1

− �2

ΔC2
©«
∑
9<B

�B9 �
H 91

�
9
1

ª®¬
2ª®®¬
+ . . . (49)

=

∑
9<B

�B9 �
H 91

�
9
1∑

9<B

�B9 (1 − �)
H 92

�
9
2

+ O
(
�

ΔC
�
ΔC

)
+ O

(
�

ΔC
�

ΔC2

)
+ O

(
�

ΔC
�

ΔC

)
= Θ

(
�

ΔC

)
. (50)

To obtain the previous formula is convenient to multiply numerator and denominator of HB2 by �ℓ2
and then, after having simplified ΔC, at the numerator there is a Θ(1) and at the denominator the
term Hℓ2

�ℓ2
dominates the sum. �
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This lemma shows that in the stages where the hypotheses are verified we obtain a 0-th order
accurate update. Still, the value of H 92 = Θ

(
�
ΔC

)
and it is larger than � (for small ΔC). So, if this

operation is repeated and we consider the result after a time step as a new initial condition, the
new initial value �will keep increasing (and consequently �which is proportional to �), the regime
H2 � ΔC is abandoned after some time steps and the classical accuracy is restored for following
time steps. Usually, in these cases an error of O(ΔC) at a final step is observed, as a first order
method.
The second situation we encounter is the opposite, when the exponents of the schemes are such

that 1/� 92 is an O(�) or one of its powers, as for MPRK(2,2,) for  < 1.

Lemma 5.3. Consider the problem (12) with 0 < � < 1 and initial condition (1 − �, �) with 0 < �.
Consider the update step at the first time step given by (46). Suppose that exists ℓ < B with �Bℓ > 0 such that
1/�ℓ2 = Θ(�) and Hℓ2 = Θ(ΔC) and consider the limit for ΔC → 0, �

ΔC → 0 and �
ΔC → 0. Moreover, suppose

that for all 9 < B, H
9
2

�
9
2
= O(1). Then, HB2 is at most an approximation of order 1 of the exact solution and the

error is an O(ΔC2).
Proof. First we prove that HB2 = Θ(ΔC) and afterwards, we show that it cannot be a second order
approximation. From (47) it follows that[

1 + ΔC
∑
9<B

�B9 �
H 91

�
9
1︸          ︷︷          ︸

Θ(ΔC)

+ΔC
∑
9<B

�B9 (1 − �)
H 92

�
9
2︸                  ︷︷                  ︸

O(ΔC)

]
HB2 = H0

2︸︷︷︸
=�

+ΔC
∑
9<B

�B9 �
H 91

�
9
1︸          ︷︷          ︸

Θ(ΔC)

, (51)

so that the dominant term on the LHS is 1 and on the RHS is the Θ(ΔC). Hence, we obtain

HB2 = ΔC
∑
9<B

�B9 �
H 91

�
9
1

+ O(�) + O(ΔC2) = Θ(ΔC). (52)

Consider again the update equation (46) and supposed that it is of order of accuracy ? > 1 in the
nonvanishing initial condition regime. We see that

HB2 = D
0
2 + ΔC

∑
9<B

�B9 ?21(H 9)
HB1

�
9
1

− ΔC
∑
9<B

�B9 321(H 9)
HB2

�
9
2

(53)

= D0
2 + ΔC

∑
9<B

�B9 ?21(H 9) − ΔC
∑
9≠ℓ

�B9 321(H 9)
HB2

�
9
2

− ΔC�Bℓ 321(Hℓ )
HB2
�ℓ2
, (54)

Focusing on the last term we observe that

ΔC�Bℓ 321(Hℓ )
HB2
�ℓ2
= ΔC�Bℓ �H

ℓ
2
HB2
�ℓ2
= ΔC�Bℓ �

Hℓ2
�ℓ2︸︷︷︸

Θ(�ΔC)

HB2︸︷︷︸
Θ(ΔC)

= Θ(ΔC3�), (55)

while for the unweighted term of the original highly accurate RK method we have

ΔC�Bℓ 321(Hℓ ) = Θ(ΔC2), (56)

hence, the difference of the two is Θ(ΔC2). Hence, the destruction term contribution related to
stage ℓ is approximated with an error of Θ(ΔC2). So that the error for the stage B is affected mainly
by this error, i.e.,

HB2 = H
4G
2 + Θ(ΔC2). (57)

�
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Method Parameters First time step error Final time error
MPRK(2,2,)  = 1 Θ(ΔC3) Θ(ΔC2)
MPRK(2,2,)  > 1 Θ(ΔC) Θ(ΔC)
MPRK(2,2,) 1

2 ≤  < 1 Θ(ΔC2) Θ(ΔC2)
MPRK(4,3,, �) @ > 1 Θ(ΔC) Θ(ΔC)
MPRK(4,3,, �) ? > 1 and @ ≤ 1 Θ(ΔC2) Θ(ΔC2)
MPRK(4,3,, �) ? ≤ 1 and @ ≤ 1 and ?@ ≠ 1 Θ(ΔC3) Θ(ΔC3)
MPRK(4,3,, �) ? = @ = 1 Θ(ΔC4) Θ(ΔC3)

MPRKSO(2,2,,�) � < 1 Θ(ΔC) Θ(ΔC)
MPRKSO(2,2,,�) � = 1 Θ(ΔC3) Θ(ΔC2)
MPRKSO(2,2,,�) � > 1 Θ(ΔC2) Θ(ΔC2)
MPRKSO(4,3) Θ(ΔC2) Θ(ΔC2)
MPRK(3,2) Θ(ΔC3) Θ(ΔC2)
SI-RK2 Θ(ΔC3) Θ(ΔC2)
SI-RK3 Θ(ΔC3) Θ(ΔC2)
mPDeC Equispaced1, nonnegative �"9 Θ(ΔC2) Θ(ΔC2)
mPDeC Equispaced, negative �"9 Θ(ΔC) Θ(ΔC)
mPDeC Gauss-Lobatto any order Θ(ΔC2) Θ(ΔC2)

Table 2.: Accuracy of Patankar methods for vanishing initial conditions with parameters defined at the
definition of each scheme, see MPRK(2,2,), MPRK(4,3,, �), MPRKSO(2,2,,�) and mPDeC

This proof shows that when a scheme falls in the hypotheses of this lemma, we have a first step
with only accuracy order of 1, but, immediately after, the value of D2 is far away from zero and the
classical order of accuracy is restored. Then, at a final time the error will be a Θ(ΔC2). We remark

that the hypothesis H 92
�
9
2
= O(1) is not restrictive as it discriminates the first lemma case and second

lemma case. Indeed, when this hypothesis is not fulfilled, there exists an ℓ such that �ℓ2 = >(Hℓ2),
and by an opportune definition of � such that �2

ℓ = Θ(�) fulfills the hypotheses of Lemma 5.2.
Now we can use these results to show the accuracy of all the modified Patankar schemes with

positive Runge–Kutta coefficients.

Theorem 5.4 (Accuracy of Patankar schemes with nonnegative RK coefficients for vanishing initial
data). Consider the system of ODEs (12)with D0 = (1− �, �)with vanishing initial condition, i.e., �

ΔCA → 0
as ΔC → 0 with A large enough depending on the scheme so that hypotheses of previous lemmas are met.
Then, the modified Patankar schemes with positive coefficients have errors in the first time steps and at a final
time as shown in Table 2 (for mPDeC we refer to Theorem 5.5).

Proof. We analyze all the methods stage by stage.

• Let us start with MPRK(2,2,). The first stage is an MPE step, which coincides with an
implicit–Euler step for this problem and gives that H2

2 = D2(ΔC) + O(ΔC2) = Θ(ΔC) for all
parameters. In the last stage, we have that the critical factor is �2

2 = (H2
2)1/(H1

2)1−1/ =
Θ(ΔC1/(�)1−1/) at the denominator, while H2

2 = Θ(ΔC) being at the numerator.

– When  = 1, then �2
2 = Θ(ΔC) and this does not arise problems, hence the classical

accuracy is restored and we have an error of O(ΔC3) for the first time step.
– For  > 1 we have that 1 − 1/ > 0 and Lemma 5.2 applies with � = �1−1/ΔC1/ when

�

ΔC2
= �1−1/ΔC1/−2 → 0 and �

ΔC
→ 0

1mPDeC negative �"9 are present only for order higher than 8.
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as ΔC → 0. Hence, D1
2 = Θ

((
�
ΔC

)1−1/)
= D2(C1) + Θ(ΔC). It must be noticed that

� = >

((
�
ΔC

)1−1/)
, hence, each time step is moving away from the region D=2 � ΔC. After

a certain number of time steps the regime � � ΔC will be lost and classical accuracy will
be restored. The first errors of Θ(ΔC)will dominate the final error.

– For 1
2 ≤  < 1 we have that −1 ≤ 1 − 1/ < 0 and Lemma 5.3 applies with � =

Θ(ΔC1/�1/−1) when �
ΔC = �1/−1ΔC1/−1 → 0 as ΔC → 0. This means that for the first

time step it holds that D1
2 = D

4G
2 +Θ(ΔC2) = Θ(ΔC). So, from the second time step classical

error O(ΔC3) accumulates at each time step, leading to an error of O(ΔC2) at a final time.

• MPRK(4,3,, �) has a first stage ofMPE, so H2
2 = H

4G
2 (ΔC)+O(ΔC2) = Θ(ΔC). Again, according

to ? and @, exactly as for the MPRK(2,2,) we have three situations.




H3
2 = H2(�ΔC) + O(ΔC3) = Θ(ΔC), ? = 1,
H3

2 = H2(�ΔC) + O(ΔC2) = Θ(ΔC), ? < 1,

H3
2 = H2(�ΔC) + O(ΔC) = Θ

((
�
ΔC

)1−1/?)
, ? > 1,

(58)

and 


�2 = H2(ΔC) + O(ΔC3) = Θ(ΔC), @ = 1,
�2 = H2(ΔC) + O(ΔC2) = Θ(ΔC), @ < 1,

�2 = H2(ΔC) + O(ΔC) = Θ
((

�
ΔC

)1−1/?)
, @ > 1.

(59)

These are obtained with the previous lemmas exactly as in the case of MPRK(2,2,).

– Now, if @ > 1 and �2 = Θ

((
�
ΔC

)1−1/@)
and it verifies the hypotheses of Lemma 5.2,

i.e. �1−1/@ΔC1/@−2 → 0 and �
ΔC → 0 as ΔC → 0, then, for Lemma 5.2, we have that

D1
2 = Θ

(
�1−1/@
ΔC2−1/@

)
. This means that at the first time step we have an error of Θ(ΔC).

Again, we see that � = >
(
�1−1/@
ΔC2−1/@

)
and this means that only few time steps will verify

the hypotheses of Lemma 5.3. Afterwards, the original third order accuracy will be
restored, leading to an overall error of O(ΔC) at a final time.

– If @ < 1 then �2 = D2(ΔC)+O(ΔC2) for Lemma 5.3with � = ΔC1/@�1−1/@ when (ΔC�)1/@−1 →
0 and �

ΔC → 0 for ΔC → 0. Then, D2(C1)
�2

= 1 + Θ(ΔC2) which leads to an error of Θ(ΔC3) at
the first time step.

– If @ = 1 none of the lemmata apply and the weighting factor should be of the expected
third order accuracy.

– If ? > 1 then H3
2 = D2(�ΔC) + Θ(ΔC) for Lemma 5.3 when �1−1/?ΔC1/?−2 → 0 and �

ΔC → 0
as ΔC → 0, hence this brings in the production and destruction terms of the final update
an error of Θ(ΔC2).

– If ? < 1 then H3
2 = D2(�ΔC) + Θ(ΔC2) for Lemma 5.3 when �

ΔC → 0, which brings in the
final update an error of Θ(ΔC3).

– If ? = 1 this would not contribute to errors larger than the accuracy order of the scheme.
Putting all the information together we obtain the errors in Table 2, recalling that, except for
@ > 1, only the first time step falls in the hypotheses of the lemmas, so, it is the only time step
affected by these errors, while for @ > 1 some time steps will be effected. Anyway, the error
at the final solution is bounded by the third order accuracy of the scheme itself.
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Figure 4.: Order of accuracy of some schemes for vanishing initial conditions. Thewhite dashed lines bound
the positive RK coefficients area [19, 28].

• For MPRKSO(2,2,,�) the same arguments of MPRK(2,2,) apply with � in place of .

• For MPRKSO(4,3) we have that the first stage is again an MPE step and H1
2 = Θ(ΔC). Then,

1/*2 = Θ( �
ΔC2 ). For the equation of H3

2 Lemma 5.3 applies with � = �
ΔC2 when �

ΔC =
�
ΔC3 → 0

as ΔC → 0, hence H3
2 = D2((20 + 21)ΔC) + Θ(ΔC2). Then, �2 = Θ

(
ΔCB
�B−1

)
which makes the

equation for 0̃2 fall in the hypotheses of Lemma 5.3 with � = �B−1

ΔCB when �
ΔC =

�B−1

ΔCB+1 → 0 as
ΔC → 0. Hence, 0̃2 = D2((�1 + �2)ΔC) +Θ(ΔC2). Then, �2 = 0̃2 +Θ( �2

ΔC2 ) = D2(ΔC) +Θ(ΔC). This
means that D2(ΔC)

�2
= 1 + Θ(ΔC), which sums up to a first order error Θ(ΔC2) for the first step.

From the second step on, the third order accuracy is restored. Hence, at a final time an error
of a Θ(ΔC2) is observable.

• InMPRK(3,2) the first stage exploits the cancellation between the destruction and production
of the same constituents as for all the MPE steps. All the other stages never present H1

2 at the
denominator of the MP weights, hence, none of the cases of the previous lemmas is met. So
no order reduction phenomena appear.

• In SI-RK2 and SI-RK3 the cancellation 321(H)/H2 = (1 − �) is always exploited, so there is no
troubled term at the denominators. Hence, no order reduction is observed.

�

As an example we want to focus on MPRK(3,4,2,0.5) plotted in Figure 2. For this scheme ? = 3
and @ = 2. To verify the hypotheses of the lemmata, we need to have �1−1/2

ΔC2−1/2 → 0 as ΔC → 0,
which is equivalent to �

ΔC3 → 0 as ΔC → 0. Indeed, in the simulation in Figure 2, we see that for
ΔC . �1/3 ≈ 10−3.3 the error decays much faster than for ΔC & 10−3.
In Figure 4a the order observable at a final time for MPRK(4,3,, �) is summarized, while in

Figure 4b it is summarized for MPRKSO(2,2,,�). For the mPDeC the order reduction comes from
the negative DeC coefficients in the update formulae. In the following theorem we described the
order reduction for vanishing IC.

Theorem 5.5 (Loss of accuracy of mPDeC for vanishing initial data). Consider the linear problem (12)
with IC (1 − �, �)) . For vanishing IC, i.e., �

ΔC → 0 as ΔC → 0, the mPDeC is of order 2 if ∃�<A < 0 with
< ∈ [[1, " − 1]] = {1, . . . , " − 1}. If ∃�"A < 0 the method is of order 1.

To prove the theorem let us introduce an useful proposition.
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Proposition 5.6 (Carry over of the vanishing state). Consider the linear problem (12) with IC H0 =
(1 − �, �)) . If ∃�<A < 0 with < ≥ 1 and if H(:−1),<

2 = Θ(�) with �
ΔC → 0 as ΔC → 0, then H(:),<2 = Θ(�).

Proof. Let us define �<− the set of the negative coefficients among the �<A and �<+ the set of the
positive ones. We know that both sets are not empty, by hypothesis and by definition of �<A .

H<,(:)8 − H0
8 −

∑
;∈�<+

�<; ΔC
∑
9

©«
?8 9(H ; ,(:−1))

H<,(:)9

H<,(:−1)
9

− 38 9(H ; ,(:−1)) H
<,(:)
8

H<,(:−1)
8

ª®®¬
−

∑
;∈�<−

�<; ΔC
∑
9

©«
?8 9(H ; ,(:−1)) H

<,(:)
8

H<,(:−1)
8

− 38 9(H ; ,(:−1))
H<,(:)9

H<,(:−1)
9

ª®®¬
= 0,

(60)

H<,(:)2 − � −
∑
;∈�<+

�<; ΔC
©«
�H ; ,(:−1)

1
H<,(:)1

H<,(:−1)
1

− (1 − �)H ; ,(:−1)
2

H<,(:)2

H<,(:−1)
2

ª®¬
−

∑
;∈�<−

�<; ΔC
©«
�H ; ,(:−1)

1
H<,(:)2

H<,(:−1)
2

− (1 − �)H ; ,(:−1)
2

H<,(:)1

H<,(:−1)
1

ª®¬
= 0.

(61)

We remind that for the conservation property of the scheme H(:),A1 = 1 − H(:),A2 . So, if we collect all
the unknown terms in the left-hand side, we obtain


1 + ΔC
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�<;
©«
�
H ; ,(:−1)

1
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1
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ª®¬
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ª®¬
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1

ª®¬
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©«
(1 − �) H

; ,(:−1)
2

H<,(:−1)
1

ª®¬
.

(62)

Now, let us multiply the whole expression by the positive H<,(:−1)
2 = O(�) and recalling that

HA,(:−1)
1 = 1 + O(ΔC) + O(�). We obtain


O(�) + ΔC

∑
;∈�<+

�<; (1 − �)H ; ,(:−1)
2 − ΔC

∑
;∈�<−

�<; �H
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1
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(63)

Now, the term ΔC
∑
;∈�<− �

<
;

(
�H ; ,(:−1)

1

)
is the dominant in the left hand side, since H ; ,(:−1)

2 = O(ΔC).
Similarly the right hand side is dominated by the H1 terms. Hence, we obtain

H<,(:)2 =
H<,(:−1)

2
∑
;∈�<+ ΔC�

<
; �

H ; ,(:−1)
1

H<,(:−1)
1

+ O(�2) + O(�ΔC2)

−ΔC∑;∈�<− �
<
; �H

; ,(:−1)
1 + O(�) + O(ΔC2)

(64)

= H<,(:−1)
2

∑
;∈�<+ �

<
;
H ; ,(:−1)

1

H<,(:−1)
1

−∑
;∈�<− �

<
; H

; ,(:−1)
1

+ O(�2) + O(�ΔC2) = Θ(�), (65)

because all H ; ,(:−1)
1 are O(1). Hence, the proposition is proven. �
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The proof of the theorem follows directly from this proposition.

Proof. If ∃�<A < 0 with < ∈ [[1, " − 1]], we have at the initial step all H ; ,(0)2 = � for all ;. Hence,
by induction and using Proposition 5.6 we have that H<,( −1)

2 = O(�) = H2(�<ΔC) + O(ΔC). Hence,
computing the final update

H",( )
8 − H0

8 −
∑
;

�"; ΔC
∑
9

©«
?8 9(H ; ,( −1))

H",( )
9

H<,( −1)
9

− 38 9(H ; ,( −1)) H
",( )
8

H",( −1)
8

ª®®¬
= 0, (66)

the terms 38 9(H<,( −1)) = 38 9(H<,∗) + O(ΔC), hence an error of O(ΔC2) is obtained in H",( ). So, the
solution at the next time iteration will be no longer a O(�) and from the next time step high order
errors will be restored. Hence, the approximation Ĥ) at a certain time ) will be Ĥ) − H()) = O(ΔC2).
In case where ∃�"A < 0, then H",( ) = O(�) = H(ΔC) + O(ΔC), from Proposition 5.6. This condition
will be left after some time steps, having brought to the method an error of O(ΔC) at a final time
). �

All the results in the theorems are in agreement with the motivational simulations in Figures 2
and 3.
For an automatic detection of such order reduction in the first step of the scheme, one can use

symbolic tools and write, for specific problems and methods the Taylor expansion of the solution
at the first time step first in � and then in ΔC. As an example, we show here the Taylor expansion
for the error ℰ(�,ΔC) := D1

1(�,ΔC) − D4G1 (�,ΔC) for mPDeC3. Expanding first ΔC and then � in 0 we
obtain

ℰ(�,ΔC) =
(
− 1

13824�2 −
5

1152� +
1789
13824 −

1697�
6912 +

7�2

1536 + O(�
3)
)
ΔC4 + O(ΔC5),

which means third order of accuracy for non vanishing �, while, letting �→ 0 first, we obtain

ℰ(�,ΔC) =
(
−ΔC

2

6 + O(ΔC
3)
)
+

(
112ΔC + O(ΔC2)

)
� − 74880�2 + O(ΔC�2) + O(�3),

and, hence, we have an error ofO(ΔC2) for the first step and a global second order of accuracy. More
Taylor expansions can be found in the supplementary material [47] and the computations for these
tests can be found inMathematica notebooks in the accompanying reproducibility repository [46].

6. Numerical experiments for simplified linear systems

As described in Section 4, we consider the simplified 2 × 2 system (12) with initial condition
D0 = (1 − �, �)) . The goal of this study is to find the largest time step ΔC for all possible systems
parameterized by 0 ≤ � ≤ 1 and initial conditions 0 < � < 1, such that the properties 4.1 and 4.2
are satisfied. To detect when the properties are fulfilled, as RadauIIA5 is doing in Figure 1a, we
consider the oscillation measure

osc(D0
1 , D

1
1 , D
∗
1) :=




max
{
(D1

1 − D0
1)+ , (D∗1 − D1

1)+
}

if 1 − � = D0
1 > D∗1 = 1 − �,

max
{
(D0

1 − D1
1)+ , (D1

1 − D∗1)+
}

if 1 − � = D0
1 < D∗1 = 1 − �.

(67)

Here, (·)+ denotes the positive part of a real number. This oscillation measure vanishes for
monotone schemes and increases with the amplitude of oscillations. When the initial conditions
and the system taken in consideration are arbitrary, i.e., checking for all 0 < �, � < 1, we can use
this measure to find oscillation–free schemes. Hence, the measure (67) helps us in obtaining a very
simple criterion on oscillation-free solutions studying just one time step.
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(a) MPRK(2,2,): ΔC bound varying the system through �
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(b) MPRK(2,2,): ΔC bound for all systems and initial con-
dition varying .
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(c) ΔC bound for MPRK(4,3,, �) varying  and �. The
white dashed lines bound the positive RK coefficients
area [28].
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Figure 5.: Numerical search of the ΔC bound for having an oscillation-free first time step, in the sense of
(68), for problem (12) varying IC and system parameter �: MPRK(2,2,), MPRK(4,3,, �) and
MPRKSO(2,2,,�).

Since we are interested in non-oscillatory behavior, we need to check whether

osc(D0
1 , D

1
1 , D
∗
1) = 0 (68)

for every initial condition (IC) 0 < � < 1 and for every system defined through 0 ≤ � ≤ 1.
We exploit the symmetry of the system studying only the � < 0.5 case, as the other can be obtain

substituting �̃ = 1 − � and �̃ = 1 − �.
In the following tests,we comparedifferentmethods and familiespresentedabove: MPRK(2,2,),

MPRK(4,3,, �),MPRKSO(2,2,,�),MPRKSO(4,3),mPDeCboth for equispacedandGauss–Lobatto
sub-time steps, MPRK(3,2), SI-RK2, and SI-RK3.
We apply all methods to a variety of � ∈ [0, 0.5] and � ∈ [0, 0.5], which are uniformly distributed

in a logarithmic scale. For �, we also consider the symmetrized values for [0.5, 1]. We run
the simulations for all these schemes and initial conditions for one time step ΔC of varying size,
uniformly distributed in a logarithmic scale between 2−6 and 26. The maximum ΔC that gives no
oscillations in the sense of (68) will be denoted as our bound.
In Figure 5 and 6, we present the results for the all the modified Patankar methods and for the

semi-implicit Runge-Kutta methods. We highlight that the evaluation of condition (68) is done
with a tolerance of 5×machine epsilon. Some tests can be sensitive to this tolerance, in particular
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mPDeC
Equispaced
? ΔC bound
1 ∞
2 2.0
3 1.19
4 1.11
5 1.07
6 1.04
7 1.04
8 1.37
9 6.96
10 1.0
11 15.5
12 1.0
13 35.51
14 1.07
15 12.13
16 1.80

Gauss-Lobatto
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4 1.07
5 1.04
6 1.0
7 1.0
8 1.0
9 1.0
10 1.0
11 1.0
12 1.0
13 1.0
14 1.0
15 1.0
16 1.0

(a) ΔC bound for mPDeC of order ? with equispaced and
Gauss–Lobatto sub-time steps. In red the schemes
with first order accuracy for vanishing initial condi-
tions.

Method ΔC bound
MPRKSO(4,3) 1.31

SI-RK2 1.41
SI-RK3 1.27

MPRK(3,2) 16.56
(b) Nonparamteric Patankar schemes and their ΔC
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(c) ΔC bound varying  for the family MPRK(4,3,, �) on
the curve �(6−3) = 3−2 for all the systems through
� of the method.

Method ΔC bound
ImplicitMidpoint 2.0

Trapezoid 2.0
TRBDF2 2.4

RadauIIA3 3.0
RadauIIA5 ∞

(d) Other methods and their ΔC bounds.

Figure 6.: Numerical search of the ΔC bound for having an oscillation-free first time step, in the sense of (68),
for problem (12) varying IC and system parameter �.
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for (mPDeC) equispaced schemes with high odd order of accuracy, when the ΔC bound is large.
There the number of stages is large and the machine error can sum up to non-negligible errors.
The second investigation of this section aims at validating the loss of accuracy of the schemes

when they fall back to first order methods for � → 0. For this, we consider the system (12) with
� = 0.5, and � = 10−300 and we run the schemes for one large time step ΔC = 1. The exact solution
at time 1 is D1(1) ≈ 0.56. If the approximation is such that D1

1 > 0.999 we say that the scheme is
at most first order accurate. By numerical experiments, we can say that this definition is robust
with respect the system chosen and the tolerance on D1

1 . The interested reader can try different
parameters in the repository code [46].
For MPRK(2,2,), we see in Figures 5a and 5b that the bound on ΔC is 1 for  < 1, 2 for  = 1,

and is increasing with  > 1. We recall that the methods with  > 1 lose the order of accuracy in
the limit � → 0, preserving the initial condition as spurious steady state for few time steps. This
must be kept in mind when choosing the scheme one wants to use. Varying the system parameter
� influences the bound on the time step, as shown in Figure 5a.
For MPRK(4,3,, �), we observe areas where the ΔC bound reaches very low values (� 1) and

other areas where it is larger than one, independently on the positivity of the RK coefficients. It
must be noted that in the areas where the ΔC bound is large, we observe only first order accuracy
for problems with � → 0 as one can compare with figure 4a. It is noticeable that around the
curve �(6 − 3) = 3 − 2, which is a boundary for nonnegative coefficients [28], the ΔC bound is
particularly large. Hence, in Figure 6c we plot the values for that specific curve, and indeed they
are larger than other methods. On the other side, all the schemes given by these parameters show
are only first order accurate for vanishing initial conditions.
For MPRKSO(2,2,,�), we observe that a large area of the , � plane has ΔC bound around unity.

The bounds increase close to the line  = 0. For this family of methods, we also recall that as
�→ 0 we lose the order of accuracy for small  and large �. The precise area where this happens
is denoted in brown in figure 4b. In the area of negative RK coefficients we observe very low ΔC
bounds for the oscillation-free condition.
FormPDeC,we observe very different behaviors between equispaced andGauss–Lobatto points.

The two formulations coincide up to third order. The second ordermPDeC shows theΔC = 2 bound
that was derived analytically in Section 4. The methods based on Gauss–Lobatto nodes have a
time step restriction of unity for orders four and higher. Moreover, all the schemes reduce to order
2 when �→ 0. For equispaced nodes, we obtain larger ΔC bounds, in particular for schemes with
odd order of accuracy. In contrast to Gauss–Lobatto nodes, we observe also order reduction to first
order for high order schemes, more precisely for order 9 and order greater or equal to 11, when
there are some negative �"; .
TheMPRKSO(4,3) scheme has aΔC bound of 1.31, as shown in Figure 6b. Moreover, it does show

a reduction only to order 2 for the numerical tests with vanishing initial conditions. MPRK(3,2)
has maybe the best conditions of all the schemes, see Figure 6b. Its ΔC bound is around 16 and it
keeps its second order accuracy.
In Figures 6b, the semi-implicit schemes are presented. Both show similar behaviors with ΔC

slightly larger than unity. For these methods, there is no loss of accuracy.
In Figure 6d, we report the ΔC bound for some other standard time discretizations. Their

implementation is available in the DifferentialEquations.jl [40] package in Julia [5]. We observe
that some classical implicit schemes have a bound of around 2, while RadauIIA5 is unconditionally
monotone, as predicted in Table 1. Clearly all these methods do not suffer of order reduction for
vanishing initial conditions.
A similar analysis on the ΔC bounds for a scalar nonlinear problem is reproduced in the supple-

mentary material and available in [47].
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7. Validation on nonlinear problems

7.1. Robertson problem

The Robertson problem [32, Section II.10] with parameters :1 = 0.04, :2 = 3 · 107, and :3 = 104 is a
stiff system of three nonlinear ODEs. It can be written as a PDS [26] with non-zero components

?12(D)=321(D)= :3D2D3 , ?21(D)=312(D)= :1D1 , ?32(D)=323(D)= :2D2 , (69)

with initial conditions D(0) = (1, 0, 0)) . Reactions in this problem scale with different orders of
magnitudes. To reasonably capture the behavior of the solution, it is necessary to use exponentially
increasing time steps [26]. To apply generic modified Patankar schemes, we have to modify the
initial condition D0 slightly, replacing 0 by � > 0; here, we use � = 10−180.
For this problem, oscillations are not so clearly defined, because the steady state D∗ = (0, 0, 1))

cannot be exceeded since all the schemes are positive (and themodifiedPatankar also conservative).
Nevertheless, wemight encounter the loss of accuracyproblemas some constituents are not present
as initial conditions. In Figure 7, we observe that many methods do not catch the behavior of D2
and remain close to zero. In some cases, even D3 stays close to zero. All these phenomena are
in accordance with the results found for the linear problem. Indeed, among the computed tests
we see that MPRK(2,2,) for  > 1, MPRK(4,3,10,0.5), MPRKSO(2,2,0.001,10) and mPDeC11 with
equispaced sub-time steps had order reduction to 1 for � → 0 and in this problem, they cannot
properly describe the behavior of D2 (and D3). Both semi-implicit methods SI-RK2 and SI-RK3 go
to infinity as they do not conserve the total sum of the constituents. Hence, we are not showing
their simulations.

7.2. HIRES

We consider the “High Irradiance RESponse” problem (HIRES) [17]. The original problem HIRES
[32, Section II.1] can be rewritten as a nine-dimensional production–destruction system with

A1(D) = �, 312(D) = :1D1 , 321(D) = :2D2 ,

324(D) = :3D2 , 334(D) = :1D3 , 331(D) = :6D3 ,

343(D) = :2D4 , 346(D) = :4D4 , 356(D) = :1D5 ,

353(D) = :5D5 , 365(D) = :2D6 , 375(D) = :2
2 D7 ,

376(D) = :−
2 D7 , 379(D) = :∗

2 D7 , 367(D) = :+D6D8 ,

387(D) = :+D6D8 , 378(D) = :− + :∗ + :2
2 D7 ,

(70)

?8 9(D) = 3 98 ∀ 8 , 9 and parameters

:1 = 1.71, :2 = 0.43, :3 = 8.32, :4 = 0.69, :5 = 0.035,
:6 = 8.32, :+ = 280, :− = 0.69, :∗ = 0.69, � = 0.0007.

(71)

The initial condition is D(0) = (1, 0, 0, 0, 0, 0, 0, 0.0057, 0)) , where numericallywe used 10−35 instead
of zero for vanishing initial constituents. The time interval is C ∈ [0, 321.8122].
For this test, the concept of oscillation is not clear as well. Nevertheless, we can observe

inaccuracy of somemethods also for this problem as some constituents are close to 0. We compute
the reference solution with 105 uniform time steps usingmPDeC5with equispaced sub-time steps,
which is in accordance with the reference solution [32] up to the fourth significant digit for all
constituents.
Testing with # = 103 uniform time steps, we spot troubles with the inconsistent methods found

in Section 6. We test the problem with many schemes presented above and we include the relative
plots in the supplementary material [47]. For brevity, we plot in Figure 8 just a sample.
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Figure 7.: Robertson problem with different methods and 20 time steps.
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MPRKSO(2,2,,�) with  = 0.3 and � = 2

10 2 10 1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ref u_1
u_1
ref u_4
u_4
ref u_6
u_6
ref u_9
u_9

10 2 10 1 100 101 102

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
ref u_2
u_2
ref u_3
u_3
ref u_5
u_5

10 2 10 1 100 101 102

0.0

0.1

0.2

0.3

0.4

0.5 ref u_7
u_7
ref u_8
u_8

Figure 8.: Simulations of HIRES problem run with different schemes with # = 103 time steps, plot in
logarithmic scale in time.
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For mPDeC, we observe the loss of accuracy only for equispaced time steps for high odd orders
(9, 11, 13 and so on). In Figure 8, we see the simulation for mPDeC6 with Gauss–Lobatto points.
We observe that the high accuracy helps in obtaining a good result at the end of the simulation,
when D7 and D8 react. The moment at which this change happens is hard to catch and only high
order methods are able to obtain it within this number of time steps.
We run theMPRK(2,2,) with  ∈ {1, 5}. As for the linear case, we observe great loss of accuracy

only for  > 1. This is demonstrated in Figure 8 for  = 5, where the evolution of some constituents
is completely missed, e.g., D2 , D3 , D5 , D9, while for  = 1 we obtain better results.
We test MPRKSO(2,2,,�) with  = 0.3, � = 2 and  = 0, � = 8. As expected, the second one

shows the spurious steady state. An oscillatory behavior can be observed, though, also in the first
simulation, which is shown in Figure 8. This is probably due to the CFL condition; refining the
time discretization, the oscillations disappear.
For MPRK(4,3,, �), we test  = 0.9, � = 0.6 and  = 5, � = 0.5, observing loss of accuracy only

for the second one, in accordance with the linear tests. For MPRKSO(4,3), MPRK(3,2), SI-RK2 and
SI-RK3, we do not observe significant loss of accuracy, as in the linear test, nor other particular
behaviors.

8. Summary and discussion

We proposed an analysis for Patankar-type schemes focused on two issues that some of these
schemes present: oscillations around the steady state and loss of accuracy when a constituent is
not present at the initial state. The oscillations are a property strongly linked to the positivity for
linear problems and it is equivalent for linearmethods. On the other side, the positivity preserving
Patankar-type methods are not linear, hence, they oscillate around steady states. Focusing on a
generic 2×2 linear test problem, we introduced an oscillation measure. Based thereon, we derived
a CFL-like time step restriction avoiding oscillations for all methods under consideration, either
analytically (whenever feasible) or numerically. Moreover, we investigated these methods near
vanishing components, discovering order reduction phenomena inmany of the modified Patankar
methods, even up to first order of accuracy. Finally, we applied the methods to more challenging
problems including stiff nonlinear ones. We observed that our proposed oscillation-free and
accuracy analysis generalizes reasonably well to these other problems.
Fromourpoint of view, this is a first step toward further investigations onPatankar-type schemes.

Extensions could be based on various Lyapunov functionals instead of our oscillation measure.
Moreover, different test systems could be considered. Nevertheless, we would like to stress that
our current approach seems promising and generalizes well to other demanding problems.
As mentioned in Remark 1.4, a stability analysis of all the considered methods with respect to

[23] is work in progress. Furthermore, the connection between our observations and the obtained
eigenvalues of the iterative process will be considered and compared in the future.
We plan also to extend our investigation to hyperbolic conservation laws. After a spatial semidis-

cretizations, we obtain ODEs that can be written as a production–destruction–rest system [11, 20,
33]. Here, the relation between the time step restrictions derived in this work and classical CFL
conditions will be the major focus of research.
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A. Third order modified Patankar Runge–Kutta methods
In the following part, the third order accurate MPRK(4,3,, �) from [27, 28] is repeated for completeness.
Please note that the investigated version is called "%' 43�(, �) in their papers. It is given by
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(MPRK(4,3,, �))

where ? = 3021 (031 + 032) 13 , @ = 021 , �2 = 1
2021

and �1 = 1 − �2. The Butcher tableaus in respect to the two
parameters

0
 

�
3�(1−)−�2

(2−3)
�(�−)
(2−3)

1 + 2−3(+�)
6�

3�−2
6(�−)

2−3
6�(�−)

(72)

with positive coefficients for

2/3 ≤ � ≤ 3(1 − )
3(1 − ) ≤ � ≤ 2/3
(3 − 2)/(6 − 3) ≤ � ≤ 2/3




for




1/2 ≤  < 2
3 ,

2/3 ≤  < 0 ,
 > 0 ,

and 0 ≈ 0.89255. When the coefficients are negative we swap the weights of production and destruction
terms as for (mPDeC).
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Next, also the MPRKSO(4,3) from [20] is repeated. It is given by
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(MPRKSO(4,3))

Here, the optimal SSP coefficients determined in [20] will be used. They are given by

=1 = 2.569046025732011� − 01, =2 = 7.430953974267989� − 01,
010 = 1, 020 = 9.2600312554031827� − 01,
021 = 7.3996874459681783� − 02, 031 = 2.0662904223744017� − 10,
110 = 4.7620819268131703� − 01, 030 = 7.0439040373427619� − 01,
032 = 2.9560959605909481� − 01, 120 = 7.7545442722396801� − 02,
121 = 5.9197500149679749� − 01, 131 = 6.8214380786704851� − 10,
130 = 2.0044747790361456� − 01, 132 = 5.9121918658514827� − 01,
�1 = 3.777285888379173� − 02, �2 = 1/3,
�3 = 1.868649805549811� − 01, �3 = 2.224876040351123,
I = 6.288938077828750� − 01, B = 5.721964308755304.

B. Initial correct direction of Patankar schemes
As seen in Section 4, we are looking for schemes that do not oscillate. To check this, there are two properties
that must be verified. Given an arbitrary initial condition, the first step should go towards the steady state,
Property 4.2, and should not overshoot the steady state, Property 4.1. In this section we investigate the
direction of the first step of a method, i.e., Property 4.2. In particular, if we know that the direction of the
first step is always towards the steady state, for any initial condition, we know that oscillations are possible
only around the steady state. We will first present some theoretical results for very few schemes, then we
summarize some numerical results we obtained varying � and �.

For symmetry we will check only Property 4.2 on the whole range of 0 < � ≤ � < 1.
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Theorem B.1 (Direction of MPE). MPE enjoys Property 4.2 unconditionally, i.e., if the initial condition is above
the steady state, then the first step will be below the initial condition, or, in other words,

D0
1 > (1 − �) =⇒ D0

1 > D1
1 . (73)

Proof. We write the MPE for the system (12) in the first equation, making use of the conservation property
and we collect all the implicit terms.

D1
1 = D

0
1 + ΔC

(
(1 − �)(1 − D0

1)
1 − D1

1

1 − D0
1
− �D0

1
D1

1

D0
1

)
, (74a)

D1
1 = D

0
1 + ΔC

(
(1 − �)(1 − D1

1) − �D1
1

)
, (74b)

D1
1(1 + ΔC) = H1

1 + ΔC(1 − �), (74c)

D1
1 =

D0
1 + ΔC(1 − �)
(1 + ΔC) <

D0
8 (1 + ΔC)
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1 . (74d)

Here, we have simply used the hypothesis on D0
1 > (1 − �) and we obtain the thesis of the theorem. �

Theorem B.2 (Direction of MPRK(2,2,) with  ≤ 1). MPRK(2,2,) for  ≤ 1 applied on the simplified system
(12) has the correct direction of the first time step for any ΔC > 0.

Proof. The first stage consists in a first MPE step with time step ΔC. So we obtain that H2
1 < H1

1 = D
0
1 . For the

second stage we can proceed analogously, exploiting the conservation property, the system (12), collecting
all the implicit terms and using the hypothesis D0

1 > (1 − �).
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So we have that

D1
1 < D0

1
#
�

(75d)
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with # > 0 and � > 0 deducible from (75c). If # < � we have our result, or, in other words, if # − � < 0.
So, let us compute
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Now, we know that H1
1 > H2

1 , hence
H1

1

H2
1
> 1 >

1 − H1
1

1 − H2
1
,

so, considering 0 <  ≤ 1, we have that 1/ > 0 and 1 − 1/ ≤ 0, we have
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Hence, #−�ΔC < 0 and the proof is complete. �

For the case with  > 1 it is not so easy to derive an estimation as the two terms have opposite signs.

Theorem B.3 (Direction of MPRKSO(2,2,,�) with � ≥ 1). MPRKSO(2,2,,�) applied on the simplified system
(12) for positive RK coefficients and for

� =
1 − � + �2

�(1 − �) ≥ 1

has the correct direction of the first time step.

Proof. The proof follows the same step of proof of Theorem B.2. The condition on the exponent of the
weights here is precisely � ≥ 1. �

Remark B.4 (Accuracy area). We want to remark that the area in the (, �) plane where � ≥ 1 and the RK
coefficients are positive is defined by

 ≤ � − 1
2�2 − � with � ≥ 1,

and this area coincide with the second order area for vanishing IC of MPRKSO(2,2,,�) found in Figure 4b.

B.1. Initial direction of other schemes
For all other schemes it is not so easy to prove directly that the direction of the first step is the correct
one. Nevertheless, we checked symbolically (when feasible) and numerically (otherwise) this property. The
numerical computations are included in CheckingDirection.ipynb in the repository [46], while the only
theoretical result is in MPRK_3_2.nb. We summarize in the following the results we obtained.
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Figure 9.: Simulation of (12) with � = 4 · 10−4 and D0
2 = � = 2 · 10−6 with mPDeC8 with equispaced points

for ΔC = 64

• MPRK(3,2) has the correct direction and we proved it in the Mathematica notebook MPRK_3_2.nb;

• MPRK(2,2,) have the correct direction for all 1/2 ≤  ≤ 4;

• MPRKSO(2,2,,�) have the correct direction in an area slightly larger than the positive RK weights
area displayed in Figure 5d, which coincide with the strictly positive ΔC bound area there;

• MPRK(4,3,, �) have the correct direction except in a small area around  = 2/3 where the RK
coefficients are negative;

• MPRKSO(4,3) has the correct direction;

• mPDeC with Gauss–Lobatto points have the correct direction (tested up to order 16);

• mPDeC with equispaced points have the correct direction up to order 7, for order 8, 9 and 15 we
found wrong directions for large ΔC(≥ 30) and very small initial conditions and �, all other mPDeC
with orders up to 16 have the correct direction;

• SI-RK2 and SI-RK3 have the correct direction.

In Figure 9, we show an example for mPDeC8 where the correct direction is not followed. We see that even
if we go away from the steady state, the scheme does not oscillate.
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1 Patankar Methods

In order to make the document self-contained, we list again the used methods.

• Modified Patankar Euler method [2]
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• Modified Patankar Runge–Kutta(2,2,) methods [2]
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• Modified Patankar Shu–Osher Runge–Kutta(2,2,, �) methods [5]
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(MPRKSO(2,2,,�))
where the parameters are restricted to  ∈ [0, 1], � ∈ (0,∞), � + 1/2� ≤ 1, and

� =
1 − � + �2

�(1 − �) . (1)

• Modified Patankar Deferred Correction methods [10]
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(mPDeC)
where �<A are the correctionweights and the �(9 , 8 , �<A ) are the indicator functions depending
on � if the values are positive or negative, see [10] for details. Finally, the new numerical
solution is D=+1

8 = H",( ).

• The new Modified Patankar Runge–Kutta(3,2) method based on the SSPRK(3,3)
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• (Patankar) Semi Implicit Runge–Kutta(2,2) methods [3]
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• Modified Patankar Runge–Kutta(4,3,, �) methods [8]
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• (Patankar) Semi Implicit Runge–Kutta(2,2) methods [3]
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where ? = 3021 (031 + 032) 13 , @ = 021 , �2 = 1
2021

and �1 = 1 − �2. The Butcher tableaus in
respect to the two parameters

0
 

�
3�(1−)−�2

(2−3)
�(�−)
(2−3)

1 + 2−3(+�)
6�

3�−2
6(�−)

2−3
6�(�−)

(2)

with
2/3 ≤ � ≤ 3(1 − )
3(1 − ) ≤ � ≤ 2/3
(3 − 2)/(6 − 3) ≤ � ≤ 2/3




for




1/3 ≤  < 2
3 ,

2/3 ≤  < 0 ,

 > 0 ,

and 0 ≈ 0.89255.

• Modified Patankar Shu–Osher Runge–Kutta(4,3) method [6]
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(MPRKSO(4,3))
Here, the optimal SSP coefficients determined in [6] will be used. They are given by

=1 = 2.569046025732011� − 01, =2 = 7.430953974267989� − 01,
010 = 1, 020 = 9.2600312554031827� − 01,
021 = 7.3996874459681783� − 02, 031 = 2.0662904223744017� − 10,
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110 = 4.7620819268131703� − 01, 030 = 7.0439040373427619� − 01,
032 = 2.9560959605909481� − 01, 120 = 7.7545442722396801� − 02,
121 = 5.9197500149679749� − 01, 131 = 6.8214380786704851� − 10,
130 = 2.0044747790361456� − 01, 132 = 5.9121918658514827� − 01,
�1 = 3.777285888379173� − 02, �2 = 1/3,
�3 = 1.868649805549811� − 01, �3 = 2.224876040351123,
I = 6.288938077828750� − 01, B = 5.721964308755304.

2 Vanishing initial condition

Here, we consider the linear initial value problem

D′(C) = 5 (D(C)) = 1
2

(−1 1
1 −1

)
D(C), D(0) = D0 =

(
1 − �
�

)
. (3)

To use the modified Patankar schemes with a generic implementation, � must be strictly positive
to avoid division by zero. As recommended in the literature [7], we set � to the smallest positive
number that can be represented as floating point number with given precision (usually 64 bit)
whenever we are interested in the limit �→ 0. In the following we first study the behavior of some
of the previously presented schemes for �→ 0, then we show where this study is meaningful and
where it is less.

2.1 Loss of accuracy for MPRK(2,2,)

In order to explain the kind of computations used in the following, we start with a simple example
using again MPRK(2,2,) with  = 1 to show how we study the accuracy of a method in the limit
of �→ 0. Recall that the system (3) conserves the sum of the constituents D1(C) + D2(C) = 1 and can
be formulated as

D′1(C) =
−D1(C) + D2(C)

2 =
1
2 − D1(C),

D′2(C) =
D1(C) − D2(C)

2 =
1
2 − D2(C),

with steady state solution D∗1 = D
∗
2 =

1
2 and exact solutions

D1(C) = 1
2 (1 + 4

−C(1 − 2�)) and D2(C) = 1 − D1(C).

Example 2.1 (Accuracy of MPRK(2,2,1)). We investigate the behavior of MPRK(2,2,1) applied to
(3). Due to the conservation property and the symmetry of the problem, it suffices to focus on the
first component D1. For the first non-trivial stage, we obtain
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2
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)
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1 + ΔC
2

1 + ΔC . (4)

Using this expression for H2
1 , the new numerical solution satisfies
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(5)
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This can be reformulated as(
1 + ΔC4

1 − D0
1

1 − H2
1
+ ΔC2 +

ΔC
4
D0

1

H2
1

)
D1

1 = D
0
1 +

ΔC
4

1 − D0
1

1 − H2
1
+ ΔC4 . (6)

Passing to the limit �→ 0 with D0
1 = 1 and lim�→0 H2

1 = (1 + ΔC/2)/(1 + ΔC) yields(
1 + ΔC2 +

ΔC
4
(1 + ΔC)
1 + ΔC/2

)
lim
�→0

D1
1 = 1 + ΔC4

⇐⇒ lim
�→0

D1
1 =

8 + 6ΔC + ΔC2
8 + 10ΔC + 4ΔC2

= 1 − ΔC2 +
ΔC2

4 −
ΔC3

16 + O(ΔC
4).

(7)

This tells us that the solution is consistent with the exact one and that, as expected, the second
order error is an O(ΔC3) for the first time step, indeed

D1(ΔC) = 1 − ΔC2 +
ΔC2

4 −
ΔC3

12 + O(ΔC
4). (8)

In general this is not true. We apply now for different  the same procedure onMPRK(2,2,) for
the symmetric problem (3). We observe the following behaviors.

• For  > 1, taking the limit � → 0 results in D1 = D0 and, by induction, D= ≡ D0. This can
also be observed numerically if sufficiently high accuracy is used, e.g. BigFloat in Julia. For
Float64, the first few steps do almost nothing and later steps result in the desired behavior.
The number of steps necessary to actually do something increases for  � 1.

• For  ∈ [1/2, 1), the schemes are consistent also for �→ 0, but we lose one order of accuracy.

These are analyzed in detail in the following.

Theorem 2.2. For the test problem (3) in the limit � → 0 the initial state becomes a spurious steady state
for MPRK(2,2,) with  > 1 .

Proof. This proofmakes use of explicit calculations usingMathematica [12]. All calculations can be
found in the notebook MPRK_2_2_alpha.nb in the accompanying reproducibility repository [11].
For  > 1 and � > 0, the first step of (3) can be computed explicitly. The second component

after the first step is of the form D1
2 = ℎ1(�)/ℎ2(�), where lim�→0 ℎ1(�) = lim�→0 ℎ2(�) = 0. Defining

ℎ̃8(�) := ℎ8(�)
� for 8 = 1, 2, we can rewrite D1

2 = ℎ̃1(�)/ℎ̃2(�), where

lim
�→0

ℎ̃1(�) = 2
1
ΔC(ΔC − 4 − 4ΔC)

( ΔC
1 + ΔC

) 1
 (9)

and this hold for all  > 1
2 , while the denominator is

lim
�→0

ℎ̃2(�) = ∞,  > 1, (10)

results in lim�→0 D1
2 = 0 = lim�→0 D0

2 for  > 1. Since the sum of all components of D is conserved,
lim�→0 D0 = (1, 0) is a spurious steady state. �

We remark that numerically this is appreciable also becausewe reduce to first orderwhen �→ 0.
Indeed, we will have that lim�→0 D1

1 = 1, which is brings in an error of O(ΔC) for some initial steps.
Hence, the global order reduces to 1.

Theorem 2.3. Consider the application of MPRK(2,2,) with  ∈ [0.5, 1] to the test problem (3) in the
limit �→ 0. The order of accuracy for  < 1 reduces to 1.
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Figure 1: Convergence study of the error of the first step for different members of the family MPRK(2,2,)
for the test problem (3) with � = eps(BigFloat).

Proof. This proofmakes use of explicit calculations usingMathematica [12]. All calculations can be
found in the notebook MPRK_2_2_alpha.nb in the accompanying reproducibility repository [11].
As in the proof of Theorem 2.2, we evaluate the limit �→ 0 of D1

2 = ℎ̃1(�)/ℎ̃2(�). The expression
of lim�→0 ℎ̃1(�) is given in (9), while for ℎ̃2 we have a different expression. In case  < 1, we have

lim
�→0

ℎ̃2(�) =
( ΔC
1 + ΔC

) 1

(
−8(1 + ΔC)(2 + ΔC) 1

 − 2
1
ΔC(4 − ΔC + 4ΔC)

)
, (11)

while for  = 1 we have the extra term −22+ΔC
1+ΔCΔC

2. Using (9) from before and Taylor expansion in
ΔC,

lim
�→0

D1
2(�) =

lim�→0 ℎ̃1(�)
lim�→0 ℎ̃2(�)

=




1 − ΔC2 +
ΔC2

4 −
ΔC3

16 + O(ΔC
4),  = 1,

1 − ΔC2 +
ΔC2

8 +
ΔC3

16 + O(ΔC
4),  ∈ [0.5, 1).

(12)

Hence, the term in ΔC2 for  < 1 does not coincide with the Taylor expansion of the exact solution
(8), resulting in a first order accurate scheme for � → 0. Note the discontinuity at  = 1 of
lim�→0 D1

2(�). �

Remark 2.4. This result does not demonstrate that there is an error in the proofs of the order of
accuracy of MPRK(2,2,) [7]. Indeed, studies of the order of accuracy focus on fixed � > 0 and
the limit ΔC → 0. Numerical experiments with  > 1 suggest that the numerical solutions stays
approximately constant for a certain number of steps determined by � (and with less sensitivity
also by ΔC) until small changes have accumulated and the exponential decay of D1 becomes visible.
In particular, the limits ΔC → 0 and �→ 0 are not interchangeable.

Expanding Remark 2.4, a careful error analysis can be conduced by constructing Taylor expan-
sions of the error after the first step for ΔC → 0 and � → 0 in both possible orders. Expanding
at first around ΔC = 0 shows that the leading order errors contain terms proportional to �−1 for
 ≠ 1, both for  < 1 and for  > 1. However, these leading order terms are in agreement with the
analysis of [7], i.e., they are proportional to ΔC3.
More insights can be gained by studying the expansions first for � → 0, expanding around

ΔC = 0 afterwards. Then, the leading order terms in � are O(ΔC3) for  = 1, O(ΔC2) for  = 0.5,
and O(ΔC) for  = 2, see MPRK_2_2_alpha.nb in [11]. This can also be observed in numerical
experiments using BigFloat in Julia [1] as shown in Figure 1.
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2.2 Accuracy study for other MP methods

A similar analysis can be conducted for the mPDeC algorithm. However, the approach we used
with Mathematica was only able to give results up to third order schemes. We study the multi-
variate function �(�,ΔC) := D1

1 − D1(ΔC), where the initial conditions depend on � and the time step
is ΔC, for different limits procedure. Letting ΔC go to zero faster than � and vice versa. In practice,
we compute a Taylor expansion first in ΔC and than in � and then the opposite in the Mathematica
notebooks mPDeC.nb and MPRK_3_2.nb [11].
Since mPDeC2 is equivalent to MPRK(2,2,1), we get the same results as before. In particular,

expanding ΔC around 0 first and then � we obtain

�(�,ΔC) =
(

1
12 −

�
6 + O(�

3)
)
ΔC3 + O(ΔC4),

while, doing the opposite, we obtain

�(�,ΔC) =
(
ΔC3

48 + O(ΔC
4)
)
+

(
ΔC2

8 −
11ΔC3

48 + O(ΔC4)
)
�+(

−ΔC4 +
ΔC2

16 +
3ΔC3
32 + O(ΔC

4)
)
�2 + O(�3).

Note that O(�) terms can be ignored when evaluating the order of accuracy. Hence, we see that in
both cases we have an error of O(ΔC3) for the first step, i.e., a second-order accurate method.
For the third-order algorithm mPDeC3, we have a different behavior and an order reduction for

small �: expanding first ΔC and then � in 0 we obtain

�(�,ΔC) =
(
− 1

13824�2 −
5

1152� +
1789
13824 −

1697�
6912 +

7�2

1536 + O(�
3)
)
ΔC4

+ O(ΔC5),
while, doing the opposite, we obtain

�(�,ΔC) =
(
−ΔC

2

6 + O(ΔC
3)
)
+

(
112ΔC + O(ΔC2)

)
� − 74880�2

+ O(ΔC�2) + O(�3).
If we let � → 0 before ΔC → 0, we have a reduction to first order accuracy. The computations for
these tests can be found in MPDEC.nb in the accompanying reproducibility repository [11].
For the second-order MPRK(3,2) proposed in this article, we observe a consistent second order

accuracy in the limit case �→ 0, i.e., expanding first ΔC and then � in 0 we obtain

�(�,ΔC) =
(
1
4 −

�
2 + O(�

3)
)
ΔC3 + O(ΔC4),

while, doing the opposite, we obtain

�(�,ΔC) =
(
ΔC3

6 + O(ΔC
4)
)
+

(
ΔC2

6 −
71ΔC3

96 + O(ΔC4)
)
�+(

−ΔC3 +
35ΔC2

96 + 139ΔC3
1152 + O(ΔC

4)
)
�2 + O(�3).

This results are computed Mathematica and the related notebook MPRK_3_2.nb is in the accompa-
nying reproducibility repository [11].

Remark 2.5. We have also analyzed MPRKSO(2, 2, , �)with selected parameters , �. We do not
present these analyses here; in general, they all agree with the numerical studies presented in the
following.
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(a) ΔC bound for MPRKSO(4,3) varying the system
through �. Minimum ΔC is 1.31.
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(b) SI-RK2: ΔC bound varying �, minimum ΔC is 1.41.
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(c) SI-RK3: ΔC bound varying �, minimum ΔC is 1.27.
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(d) MPRK(3,2): ΔC bound varying �. MinimumΔC is 16.56.

3 Oscillations on linear problems for varying systems

In this section we briefly present the results obtained for nonparametric Patankar schemes. We
plot the maximum ΔC for which no oscillations appear as a function of � the parameter which
governs the linear system. The study is performed checking all the possibile initial conditions. The
results for MPRKSO(4,3) are depicted in Figure 2a, for SI-RK2 in Figure 2b, for SI-RK3 in Figure 2c
and for MPRK(3,2) in Figure 2d.

4 Validation on nonlinear problems

4.1 Scalar nonlinear problem

The second problem on which we are testing our methods on is a scalar ODE with a source term
[3]. Find D : [0, 0.15] → R, with D(0) = 1.1

√
1/:, where : > 0 is a coefficient of the problem, and

D′ = −: |D |D + 1. (13)

The solution for this problem is monotonically decreasing and converging to D∞ =
√

1/:.
The schemes can be applied to this problem following simple prescriptions.

• The source shall be integrated in time without considering the Patankar trick, simply using
the coefficients of the original schemes.

9



0.0 0.5 1.0
Time

0.0100

0.0102

0.0104

0.0106

0.0108

0.0110
CFL=1
u1 MPRK(2,2,1)
u1 MPRK(2,2,10)
u1 MPRK(3,2)
u1 mPDeC5eq
u1 mPDeC12eq
u1 mPDeC13eq
exact

0.0 0.5 1.0
Time

0.00975

0.01000

0.01025

0.01050

0.01075

0.01100
CFL=2

0.0 0.5 1.0
Time

0.0090

0.0095

0.0100

0.0105

0.0110
CFL=32

Figure 3: Simulations of (13) at different CFLs for some schemes.

Table 1: Oscillation measure for problem (13) with mPDeC schemes with equispaced subtimesteps.
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPDeC1eq 0 0 2.7e-04 5.3e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04
MPDeC2eq 0 0 3.2e-04 6.1e-04 8.1e-04 9.3e-04 1.0e-03 1.0e-03
MPDeC3eq 0 0 0 0 0 0 0 0
MPDeC4eq 0 0 0 0 0 2.8e-05 8.5e-05 1.3e-04
MPDeC5eq 0 0 0 0 0 2.0e-05 7.1e-05 1.1e-04
MPDeC6eq 0 0 0 2.6e-06 4.4e-05 1.1e-04 1.6e-04 1.7e-04
MPDeC7eq 0 0 0 0 0 0 0 0
MPDeC8eq 0 0 0 5.9e-07 9.5e-06 7.4e-06 5.0e-07 8.9e-06
MPDeC9eq 0 0 0 0 0 0 0 0
MPDeC10eq 0 0 0 0 1.2e-06 8.2e-06 5.4e-05 1.2e-04
MPDeC11eq 0 0 0 0 0 0 0 0
MPDeC12eq 0 0 0 0 0 7.5e-06 3.7e-05 5.7e-05
MPDeC13eq 0 0 0 0 0 0 0 0

• The productions and destruction terms must be rewritten as 311 = : |D |D and ?11 = 0.

We can see oscillations around the steady state produced by the schemes.
In this section, we want to validate the analysis done in the linear case, trying to understand if

the ΔC bound we found in the previous section can be useful in the nonlinear case as well. Aiming
at that, we check the first time step, which often shows overshoots with respect to the steady state,
for different time steps.
In particular, we can observe that the Lipschitz constant of the right-hand side of (13) is �(:) :=

maxD : |D | = : |D0 | = 1.1
√
:. Hence, inspired by the theory for numerical PDEs, we use a CFL

number in R+ through which we set the ΔC step as

ΔC := CFL
�(:) . (14)

In this way, we study the bound on ΔC setting a condition on th CFL number instead. Doing so, we
essentially get rid of the dependence on :, through a rescaling factor both for time and amplitude
on the solution. Hence, the CFL number should be comparable with the ΔC bound found in the
previous sections. We fix : = 104 for the following simulations, but proportional results can be
obtained for different :.
Figure 3 shows the simulations for different CFLs. For low CFLs, we observe no oscillations

for essentially all methods. Increasing the CFL number, we observe that most of the schemes go
below D∞ for the first timestep.
In Tables 1 and 2, we list the oscillation measure for all mPDeC methods with equispaced

and Gauss–Lobatto subtimesteps, respectively. Increasing the CFL, we see that many schemes

10



Table 2: Oscillation measure for problem (13) with mPDeC schemes with Gauss–Lobatto subtimesteps.
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPDeC1GL 0 0 2.7e-04 5.3e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04
MPDeC2GL 0 0 3.2e-04 6.1e-04 8.1e-04 9.3e-04 1.0e-03 1.0e-03
MPDeC3GL 0 0 0 0 0 0 0 0
MPDeC4GL 0 0 0 0 0 0 0 0
MPDeC5GL 0 0 0 2.8e-06 6.2e-05 2.0e-04 3.4e-04 4.4e-04
MPDeC6GL 0 0 0 2.4e-05 1.3e-04 3.2e-04 5.0e-04 6.2e-04
MPDeC7GL 0 0 0 0 1.7e-05 2.8e-05 1.1e-05 0
MPDeC8GL 0 0 0 0 0 0 0 0
MPDeC9GL 0 0 0 0 0 0 0 0
MPDeC10GL 0 0 0 0 0 0 0 0
MPDeC11GL 0 0 0 0 1.4e-06 1.9e-05 9.0e-05 1.9e-04
MPDeC12GL 0 0 0 0 1.6e-06 2.5e-05 1.1e-04 2.1e-04
MPDeC13GL 0 0 0 0 0 2.2e-06 9.9e-06 3.2e-06

Table 3: Oscillation measure for problem (13) with MPRK(2,2,) for few .
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPRK(2,2,0.5) 0 0 2.7e-04 5.3e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04
MPRK(2,2,0.8) 0 0 3.1e-04 6.0e-04 8.0e-04 9.2e-04 9.9e-04 1.0e-03
MPRK(2,2,1.0) 0 0 3.2e-04 6.1e-04 8.1e-04 9.3e-04 1.0e-03 1.0e-03
MPRK(2,2,1.5) 0 0 3.3e-04 6.1e-04 8.0e-04 9.2e-04 9.8e-04 1.0e-03
MPRK(2,2,2.0) 0 0 3.2e-04 6.0e-04 7.9e-04 9.0e-04 9.6e-04 9.9e-04
MPRK(2,2,10.0) 0 0 2.9e-04 5.5e-04 7.2e-04 8.2e-04 8.8e-04 9.1e-04

overshoot the steady states. In particular, whenever we are below the ΔC bound found in the
linear case, we do not observe oscillations. In some cases, also above this bound we do not have
oscillations, but this might depend on the problem itself.
In Table 3, we show similar results for MPRK(2,2,) for some . In contrast to the previous case,

we observe oscillations even if the bound is higher than the CFL tested.
In Table 4, we testMPRK(4,3,, �), with some interesting values and then on the curve �(6−3) =

3−2. The first values show oscillations according to the ΔC bound found in the linear case, while,
on the bottom curve, we observe no oscillations starting from  = 1, which is slightly better then
expected, considering the (large but not so large) ΔC bounds of the linear case.
Another disappointing result comes from the schemes MPRKSO(2,2,,�) in Figure 5, where

even on the line  = 0 we do not have oscillation-free simulations with large ΔC as predicted by
the study of the linear case. Conversely, for the other parameters we expected the oscillations for
almost all CFL numbers larger than 1.
Finally, in Table 6, we have different behaviors, except for SI-RK2. The oscillations appear for

CFL neither too small nor too large. This is surprising, first of all for MPRK(3,2) of which we
expected no oscillations up to CFL ≈ 16, which shows anyway a very small oscillation (only very
high order schemes have comparable oscillation amplitudes) only for CFL=2. For MPRKSO(4,3)
and SI-RK3 we have slightly better results than expected for large CFLs and for SI-RK2 the results
are exactly following the ΔC bounds found in the linear case.

Conclusion 4.1. For this test, most of the schemes behaves as predicted based on the linear
example, with few exceptions for second-order methods. The bounds of the linear case can mostly
be transferred to the considered nonlinear problem. The linear analysis gives some meaningful
results also for more challenging problems.

4.2 HIRES

Thisproblem is calledHIRESafterHairer andWanner [4], referring to „High IrradianceRESponse“.
The original problemHIRES [9, Section II.1] can be rewritten into a nine-dimensional production–
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Table 4: Oscillation measure for problem (13) with MPRK(4,3,, �) for some interesting , �. The second
half of the table is on the curve �(6 − 3) = 3 − 2
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPRK(4,3,0.50,0.70) 0 0 6.4e-05 1.3e-04 1.1e-04 5.8e-05 1.8e-05 0
MPRK(4,3,0.90,0.65) 0 0 7.5e-05 1.6e-04 1.6e-04 1.4e-04 1.2e-04 1.1e-04
MPRK(4,3,1.00,0.67) 0 0 7.9e-05 1.7e-04 1.8e-04 1.6e-04 1.5e-04 1.3e-04
MPRK(4,3,1.00,0.33) 0 0 0 0 0 0 0 0
MPRK(4,3,1.25,0.60) 0 0 5.7e-05 1.2e-04 9.3e-05 4.6e-05 7.5e-06 0
MPRK(4,3,2.00,0.60) 0 0 4.5e-05 9.4e-05 5.7e-05 2.5e-07 0 0
MPRK(4,3,10.00,0.60) 0 0 2.1e-05 5.2e-05 0 0 0 0
MPRK(4,3,0.50,0.75) 0 0 6.8e-05 1.4e-04 1.3e-04 1.0e-04 7.0e-05 5.1e-05
MPRK(4,3,0.70,0.63) 0 0 1.0e-04 2.2e-04 2.7e-04 2.9e-04 2.9e-04 2.9e-04
MPRK(4,3,0.80,0.48) 0 0 8.4e-05 1.8e-04 1.9e-04 1.7e-04 1.5e-04 1.3e-04
MPRK(4,3,0.89,0.29) 0 0 1.8e-05 0 0 0 0 0
MPRK(4,3,0.90,0.29) 0 0 1.4e-05 0 0 0 0 0
MPRK(4,3,1.00,0.33) 0 0 0 0 0 0 0 0
MPRK(4,3,1.25,0.39) 0 0 0 0 0 0 0 0
MPRK(4,3,2.00,0.44) 0 0 0 0 0 0 0 0
MPRK(4,3,10.00,0.49) 0 0 0 0 0 0 0 0

Table 5: Oscillation measure for problem (13) with MPRKSO(2,2,,�) for some interesting , �
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPRKSO(2,2,0.0,0.5) 0 0 2.7e-04 5.3e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04
MPRKSO(2,2,0.0,1.0) 0 0 3.2e-04 6.1e-04 8.1e-04 9.3e-04 1.0e-03 1.0e-03
MPRKSO(2,2,0.0,2.0) 0 0 3.2e-04 6.0e-04 7.9e-04 9.0e-04 9.6e-04 9.9e-04
MPRKSO(2,2,0.0,5.0) 0 0 3.0e-04 5.7e-04 7.4e-04 8.5e-04 9.0e-04 9.3e-04
MPRKSO(2,2,0.0,10.0) 0 0 2.9e-04 5.5e-04 7.2e-04 8.2e-04 8.8e-04 9.1e-04
MPRKSO(2,2,0.1,1.5) 0 0 3.6e-04 6.7e-04 8.8e-04 1.0e-03 1.1e-03 1.1e-03
MPRKSO(2,2,0.1,6.0) 0 3.1e-04 9.7e-04 1.6e-03 2.1e-03 2.5e-03 2.7e-03 2.8e-03
MPRKSO(2,2,0.2,2.0) 0 5.9e-05 5.0e-04 9.1e-04 1.2e-03 1.4e-03 1.5e-03 1.6e-03
MPRKSO(2,2,0.3,1.5) 0 2.8e-05 4.5e-04 8.3e-04 1.1e-03 1.3e-03 1.4e-03 1.5e-03
MPRKSO(2,2,0.5,1.0) 0 0 2.7e-04 5.3e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04

Table 6: Oscillation measure for problem (13) with MPRK(3,2), MPRKSO(4,3), SI-RK2 and SI-RK3
CFL 0.5 1.0 2.0 4.0 8.0 16.0 32.0
MPRK(3,2) 0 0 5.2e-06 0 0 0 0 0
MPRKSO(4,3) 0 0 5.1e-05 7.7e-05 0 0 0 0
SIRK2 0 0 2.9e-04 5.4e-04 7.0e-04 8.0e-04 8.5e-04 8.8e-04
SIRK3 0 0 1.0e-04 3.3e-05 0 0 0 0
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Figure 4: Simulations run with MPRK(2,2,) with  = 1 with # = 1000 timesteps, top logarithmic scale in
time, bottom zoom on C ∈ [0, 5]

destruction system with

A1(D) = �, ?21(D) = 312(D) = :1D1 , ?12(D) = 321(D) = :2D2 ,

?42(D) = 324(D) = :3D2 , ?43(D) = 334(D) = :1D3 , ?13(D) = 331(D) = :6D3 ,

?34(D) = 343(D) = :2D4 , ?64(D) = 346(D) = :4D4 , ?65(D) = 356(D) = :1D5 ,

?35(D) = 353(D) = :5D5 , ?56(D) = 365(D) = :2D6 , ?57(D) = 375(D) = :2
2 D7 ,

?67(D) = 376(D) = :−
2 D7 , ?97(D) = 379(D) = :∗

2 D7 , ?76(D) = 367(D) = :+D6D8 ,

?78(D) = 387(D) = :+D6D8 , ?87(D) = 378(D) = :− + :∗ + :2
2 D7.

(15)

with parameters

:1 = 1.71, :2 = 0.43, :3 = 8.32, :4 = 0.69, :5 = 0.035,
:6 = 8.32, :+ = 280, :− = 0.69, :∗ = 0.69, � = 0.0007,

(16)

The time interval is C ∈ [0, 321.8122].
For this test the concept of oscillation is not clear, nevertheless, we can observe loss of accuracy

also for this problem. We compute the reference solution with 100,000 uniform timesteps. We use
the mPDeC5 with equispaced subtimesteps to obtain this reference solution and we see that is in
accordance with the reference solution [9] up to the fourth significant digits for all constituents.
Testing with # = 1000 uniform timesteps, we spot troubles with the methods that become first

order accurate. We test the problemwith many schemes presented above. For the mPDeCwe spot
the first order of accuracy issue only for equispaced timesteps for high odd orders (9, 11, 13 and
so on). In Figure 20 we see the simulation for mPDeC6 with Gauss–Lobatto points. We observe
that the high accuracy helps in obtaining a good result at the end of the simulation, when D7 and
D8 react. The moment at which this change happens is really hard to catch and only high order
methods are able to obtain it with this number of timesteps.
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Figure 5: Simulations run with MPRK(2,2,) with  = 5 with # = 1000 timesteps, top logarithmic scale in
time, bottom zoom on C ∈ [0, 5]
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Figure 6: Simulations run with MPRK(2,2,) with  = 0.7 with # = 1000 timesteps, top logarithmic scale in
time, bottom zoom on C ∈ [0, 5]
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Figure 7: Simulations run with MPRK(4,3,, �) with  = 5 and � = 0.5 with # = 1000 timesteps, top
logarithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 8: Simulations run with MPRK(4,3,, �) with  = 0.9 and � = 0.6 with # = 1000 timesteps, top
logarithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 9: Simulations run with MPRKSO(2,2,,�) with  = 0.3 and � = 2 with # = 1000 timesteps, top
logarithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 10: Simulations run with MPRKSO(2,2,,�) with  = 0 and � = 8 with # = 1000 timesteps, top
logarithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 11: Simulations run with MPRKSO(4,3) with  = 0 and � = 8 with # = 1000 timesteps, top logarith-
mic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 12: Simulations run with MPRK(3,2) with # = 1000 timesteps, top logarithmic scale in time, bottom
zoom on C ∈ [0, 5]
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Figure 13: Simulations runwith SIRK2with# = 1000 timesteps, top logarithmic scale in time, bottom zoom
on C ∈ [0, 5]
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Figure 14: Simulations runwith SIRK3with# = 1000 timesteps, top logarithmic scale in time, bottom zoom
on C ∈ [0, 5]
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Figure 15: Simulations run with mPDeC1 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 16: Simulations run with mPDeC2 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 17: Simulations run with mPDeC3 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 18: Simulations run with mPDeC4 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 19: Simulations run with mPDeC5 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 20: Simulations run with mPDeC6 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 21: Simulations run with mPDeC7 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]

10 2 10 1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ref u_1
u_1
ref u_4
u_4
ref u_6
u_6
ref u_9
u_9

10 2 10 1 100 101 102

0.0

0.1

0.2

0.3

0.4
ref u_2
u_2
ref u_3
u_3
ref u_5
u_5

10 2 10 1 100 101 102

0.000

0.002

0.004

0.006

0.008

0.010

0.012
ref u_7
u_7
ref u_8
u_8

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2 ref u_1
u_1
ref u_4
u_4
ref u_6
u_6
ref u_9
u_9

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4
ref u_2
u_2
ref u_3
u_3
ref u_5
u_5

0 1 2 3 4 5
0.000

0.002

0.004

0.006

0.008

0.010

0.012

ref u_7
u_7
ref u_8
u_8

Figure 22: Simulations run with mPDeC8 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 23: Simulations run with mPDeC9 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 24: Simulations run with mPDeC10 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 25: Simulations run with mPDeC11 with Gauss–Lobatto points with # = 1000 timesteps, top loga-
rithmic scale in time, bottom zoom on C ∈ [0, 5]
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Figure 26: Simulations run with mPDeC1 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 27: Simulations run with mPDeC2 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 28: Simulations run with mPDeC3 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 29: Simulations run with mPDeC4 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 30: Simulations run with mPDeC5 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 31: Simulations run with mPDeC6 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 32: Simulations run with mPDeC7 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 33: Simulations run with mPDeC8 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 34: Simulations run with mPDeC9 with equispaced points with # = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 35: Simulations runwithmPDeC10with equispaced pointswith# = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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Figure 36: Simulations runwithmPDeC11with equispaced pointswith# = 1000 timesteps, top logarithmic
scale in time, bottom zoom on C ∈ [0, 5]
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We run the MPRK(2,2,) with  ∈ [0.7, 1, 5]. As for the linear case, only for  > 1 we observe
accuracy loss as it is visible in Figure 5, where the evolution of some constituents is completely
missed, e.g. D2 , D3 , D5 , D9, while in Figure 4 we obtain accurate results.
We test MPRKSO(2,2,,�) with  = 0.3, � = 2 and  = 0, � = 8 and, as expected, the second

one shows the loss of accuracy. An oscillatory type behavior can be observed, though, in the first
simulation, which is depicted in Figure 9. This is probably due to the CFL condition as, refining
the time discretization, the oscillations disappear.
For MPRK(4,3,, �) we test  = 0.9, � = 0.6 and  = 5, � = 0.5, observing loss of accuracy

only in the second one, according with the linear tests. For MPRKSO(4,3), MPRK(3,2), SI-RK2 and
SI-RK3 we do not observe inaccurate behaviors, as in the linear test.
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