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Stochastic Dominance in the Outer
Distributions of the α-Efficiency Domain

Sergio Bianchi, Augusto Pianese, Massimiliano Frezza,
and Anna Maria Palazzo

Abstract The departures from market efficiency are used to provide evidence of
overreaction and underreaction in two main stock indexes. Specifically, using the
notion of α-efficiency, we document the presence of stochastic dominance in the
conditional distributions of mean log-price variations.

Keywords Market Efficiency · Over/Underreaction · Pointwise Regularity

1 Introduction

The celebrated study of De Bondt and Thaler (see [5]) provided evidence that abnor-
mal profits are achievable in the long-run, simply going short a portfolio of “winner
stocks” (i.e., stocks with good performances in the past) and going long a portfolio
of “loser stocks” (i.e., stocks that performed badly in the past). The authors ascribe
these contrarian profits to the investors’ excess of optimism and pessimism, the so
called overreaction to information. Since then many studies documented contrar-
ian abnormal profits in international markets and/or for short time horizons. Other
results document the opposite phenomenon of underreaction: security prices can
also underreact to news (they can trend up after an initial positive reaction to a good
news and, samely, they can keep trending down after an initial negative reaction to a
bad news). This reaction generates what is called the momentum profit; the trading
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strategy in this case consists in going long a portfolio of extremely winner stocks
and going short a portfolio of extremely loser stocks (for a survey on overreaction
and underreaction, see e.g. [1, 12]). Obviously, both overreaction and underreaction
have much to do with the notion of informational (in)efficiency; once accepted the
idea that financial markets can indeed be inefficient, one main issue becomes to seize
the times and/or the markets (or even the individual stocks) susceptible to over or
under-react. This is precisely the purpose of this paper: we exploit the characteriza-
tion of semimartingales (Fama’s definition of efficiency [6]) in terms of pointwise
regularity exponent of their trajectories and the definition of α-efficiency introduced
by [4] to provide evidence that the distributions of mean returns in case of negative
inefficiency stochastically dominate the corresponding distributions originated by
positive inefficiencies. Thus, every expected utility maximizer with an increasing
utility function should prefer to go long on the market when it experiences negative
inefficiencies. We document these results for the U.S. and the U.K. markets.

2 Efficiency, Pointwise Regularity and α-Efficiency

As well known, EMH requires at any time t the price of any stock to fully reflect
all available information Ft . This implies that prices only change as a reaction
to new information or to (predictable or unpredictable) changes in stochastic dis-
count factors. Therefore, departures from the “fair” value would be immediately
arbitraged away by traders, who would outperform the market on a risk-adjusted
basis. Since its adoption, a number of contributions questioned the validity of
this assumption and, in this direction, one strand of research relies on the rela-
tion linking semimartingales to the value of the pointwise regularity exponent
H(t) of the price process at time t [4, 7], see Table1 for its financial interpreta-
tion.1 Several methods have been proposed in literature to estimate H(t) (see, e.g.,
[8, 10]) and here we will refer to [11], who merge the unbiased, large-variance
estimator Ĥν,n(t, a) introduced by [2, 9] with the biased, low-variance estimator
Ĥν,q,n,K ∗(t) deduced in [3]. In this way, they obtain the unbiased, low-variance esti-
mator

1 Given the stochastic process X (t, ω) with a.s. continuous and not differentiable trajectories over
the real line IR, the local Hölder regularity of the trajectory t �→ X (t, ω) with respect to some
fixed point t can be measured through the pointwise Hölder exponent, defined as αX (t, ω) =
sup

{
α ≥ 0 : lim suph→0

|X (t+h,ω)−X (t,ω)|
|h|α = 0

}
. ForGaussian processes, by virtue of zero-one law,

there exists a non random quantity aX (t) such that P(aX (t) = αX (t, ω)) = 1. In addition, when
X (t, ω) is a semimartingale (e.g. Brownian motion), αX = 1

2 ; values different from
1
2 describe

non-Markovian processes, whose smoothness is too high, when αX ∈ ( 1
2 , 1

)
, or too low, when

αX ∈ (
0, 1

2

)
, to satisfy the martingale property. In particular, the quadratic variation of the process

can be proven to be zero, if αX > 1
2 and infinite, if αX < 1

2 .



Stochastic Dominance in the Outer Distributions of the α-Efficiency Domain 97

Table 1 Financial interpretation of H(t)

H(t) Stochastic
consequence

Investors’ belief Market consequence

> 1
2 Persistence Future information will Low volatility/Underreaction

Low variance confirm past positions Overconfidence/Positive
inefficiency

= 1
2 Independence Past information fully Efficiency

Martingale discounted by prices

< 1
2 Mean-reversion Future information will High volatility/Overreaction

High variance contradict past positions Negative inefficiency

Ĥν,q,n(t, a) = Ĥν,q,n,K ∗(t) + 1

n

n∑
t=1

(
Ĥν,n(t, a) − Ĥν,q,n,K ∗(t)

)
, (1)

where ν is the size of the estimation window, q is the lag set for the increment
process (usually 1), n is the length of the sample, K ∗ is an arbitrary scale parameter
of the process and a is a discrete differencing operator acting to make the sequence
locally stationary and to weaken the dependence between the observations. Since
the martingale condition holds when H(t) = 1

2 , it comes natural to compare Ĥ(t),

estimated through Ĥν,q,n(t, a), with this value. This can be done because Ĥν,q,n(t, a)

is normally distributed around the true value with known variance, when H(t) = 1
2 .

Thus, one has

�(z) := �Ĥν,q,n(t,a)|H(t)= 1
2
(z) = 1

σ
√
2π

z∫

−∞
e− (x−1/2)2

2σ2 dx (2)

where σ =
(√

π �( 2k+1
2 )−�2( k+1

2 )
νk2 log2(n−1)�2( k+1

2 )

)1/2
.

Therefore, once the significant level α has been fixed, setting (x)+ = max{x, 0},
the contractive map of Ĥν,q,n(t, a) (see [4])

γ α(t) =
(
Ĥν,q,n(t, a) − �−1(1 − α/2)

)+ −
(
�−1(α/2) − Ĥν,q,n(t, a)

)+
(3)

filters out the values Ĥν,q,n(t, a) lying outside the confidence interval [�−1(α/2),
�−1(1 − α/2)]. In this framework, the following definition of α-efficiency can be
given

Definition 1 A market is α-efficient at time t if and only if γ α(t) = 0. Functions

γ α
+(t) =

(
Ĥν,q,n(t, a) − �−1(1 − α/2)

)+
(4)
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γ α
−(t) = −

(
�−1(α/2) − Ĥν,q,n(t, a)

)+
(5)

filter out only the one-directional exceedances, respectively above and below the
thresholds provided by the confidence interval. They characterize the positive (γ α+)
and negative (γ α−) inefficiencies that, according to the interpretation of Table1, trigger
underreaction and overreaction, respectively.

3 Conditional Distributions

The setting introduced in the previous Section was used to deduce the conditional
distributions of the time average log-price variations. They are calculated as follows:

• Build the sets Tγ α− = {
t : γ α−(t) < 0

}
and Tγ α+ = {

t : γ α+(t) > 0
}
collecting all the

epochs of negative (respectively, positive) inefficiencies;
• For each t ∈ Tγ α− (t ∈ Tγ α+ ), the price X (t + h) is collected, for a set of h trading
days ahead with respect to time t ;

• Vectors Ȳγ α− (h) = 1
#(Tγ α− )

∑
t∈Tγ α−

(
ln X (t+h)

X (t)

)
and Ȳγ α+ (h) = 1

#(Tγ α+ )

∑
t∈Tγ α+(

ln X (t+h)

X (t)

)
are calculated;

• the conditional distributions of the average log-price variations N (y) :=
FȲγ α− (1,...,hmax)

(y) and P(y) := FȲγ α+ (1,...,hmax)
(y) are estimated for some relevant

hmax.

The procedure ensures that the effects revealed by the conditional distributions do
not depend on any specific event. Indeed, since the epochs in Tγ α− (as well as in Tγ α+ )
can be very far one from each other, the consequent prices, the number of traded
stocks, the market phases or even the economic cycle can greatly differ. Given the
interpretation provided by Table1, we expect to observe two effects:

• N (y) ≤ P(y) for all y, with strict inequality at some y (first-order stochastic
dominance);

• ∫ ∞
−∞ (y − IE(y))2 dN (y) >

∫ ∞
−∞ (y − IE(y))2 dG(y) (larger variance for negative

inefficiency).

4 Application and Discussion of Results

The procedure described in Sect. 3 was applied to the analysis of two stock indexes:
the U.S. Dow Jones Industrial Average (DJIA), and the U.K. Footsie 100 (FTSE100),
both referred to a period of 35 years (from January 29, 1985 to December 31, 2019),
resulting in 8802 observations for the DJIA and 8824 observations for the FTSE100.

The analysis was performed by setting h from 1 up to 250 trading days and hmax to
1, 3, 6 tradingmonths and 1 trading year. The significance level to test for inefficiency
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Fig. 1 Time average returns with respect to H and number of days ahead, with hmax = 1 trading
year

Fig. 2 Two left panels: Conditional distributions of the averaged log-price variations for positive
(dotted line) and negative (continuous line) inefficiency, with hmax = 1 trading month. Two right
panels: Conditional distributions of the averaged log-price variations for positive (dotted line) and
negative (continuous line) inefficiency, with hmax = 6 trading months

was set at α = 0.05, corresponding to �−1(α/2) 
 0.47 and �−1(1 − α/2) 
 0.53.
The results, reproduced in Figs. 1 and 2, show that in the short term the returns
behave as expected. In detail, Fig. 1 displays that up to one trading year both the
indexes have conditional mean variations generally higher for negative inefficiency
than those of the positive inefficiency case. The pattern is even more evident if
one looks at the extremal values of the estimated pointwise regularity eponents. An
element of deep distinction between the two indexes can be observed as H approaches
to 1

2 : the conditional mean variations continue to be largely positive for the DJIA
whereas they incur in a significant downward correction for the FTSE100. A possible
explanation for this effect is constituted by the injections of liquidity that the Federal
Reserve provided to the U.S. market during the last global financial crisis. As well
documented, this caused U.S. financial market to raise.

Figure2 confirms the findings above in terms of (at least) first-order stochastic
dominance between the distributions of the conditional mean variations up to one
trading month (hmax = 21 days). Interestingly, as hmax increases up to six trading
months, the evidence becomes more questionable: whereas negative inefficiency
continues to generate (moderate) overreaction for the DJIA (with N (y) still domi-
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Fig. 3 Variance of the distributions of the averaged log-price variations, hmax = 21 days

nating P(y)), for the FTSE100, N (y) can be almost overimposed to P(y). Again,
this can be a symptom of the different level of liquidity provided to the two markets.
Finally, Fig. 3 displays the behaviour of the variances of negative and positive inef-
ficiency, up to hmax = 21 days, which is the larger time horizon for which we find
evidence of first-order stochastic dominance for both the indices. Data confirm that,
at least in the two samples, larger variance occurs for negative inefficiency.

5 Conclusions and Further Developments

We used the notion of α-efficiency to characterize a well-documented behaviour of
stockmarkets: the under/overreaction. Evidence is provided that negative inefficiency
generates overreaction, opposed to positive inefficiency which generally triggers
underreaction. More extensive analyses can be made on individual stocks.
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