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Abstract. This work deals with two distinct guidance and control architectures for autonomous lunar ascent and orbit 

injection: (i) Variable-Time-Domain Neighboring Optimal Guidance and Constrained Proportional Derivative attitude 

control (VTD-NOG&CPD) and (ii) locally-flat near-optimal guidance and nonlinear reduced-attitude control. While (i) 

represents a well-consolidated implicit-type guidance, briefly outlined in this work, (ii) is a new explicit guidance 

scheme, accompanied by a novel quaternion-based reduced-attitude control algorithm, which enjoys quasi-global stability 

properties. Attitude control is aimed at pursuing the desired thrust alignment, identified by the guidance algorithm. 

Actuation, based on thrust vectoring, is modeled as well. Extensive Monte Carlo simulations prove the effectiveness of 

the guidance, control, and actuation architecture proposed in this study for precise lunar orbit insertion, in the presence of 

nonnominal flight conditions. 

INTRODUCTION 

Traditionally, two different approaches to guidance exist. Explicit algorithms [1] stem from the idea of re-

defining the flight trajectory at the beginning of each guidance interval, at which an updated trajectory (leading to 

the target final condition) is computed. Implicit algorithms [2] consider the perturbations from a specified nominal 

trajectory, and define the feedback control corrections aimed at maintaining the vehicle in the proximity of the 

nominal path. Neighboring optimal guidance (NOG) [3] can be regarded as an implicit guidance technique that 

relies on the analytical second-order optimality conditions, with the intent of finding the corrective control actions in 

the neighborhood of the reference (optimal) path. Although NOG schemes outperform all the explicit guidance 

algorithms, the latter have the great advantage of not requiring any nominal trajectory. Moreover, usually explicit 

guidance techniques are more robust than implicit algorithms.  

The work that follows is aimed at (i) outlining VTD-NOG & CPD [4], a particular implementation of 

neighboring optimal guidance, accompanied by a constrained proportional derivative attitude control scheme, (ii) 

introducing a new explicit near-optimal guidance, based on the local projection of the position and velocity 

variables, (iii) formulating and addressing the reduced-attitude-control problem, and (iv) modeling the actuation 

dynamics, based on thrust vectoring. The explicit guidance, control, and actuation approach proposed in this study 

does not require the offline preliminary computation of any reference trajectory or quantity. Monte Carlo 

simulations are run, for the purpose of ascertaining the effectiveness and accuracy of the architecture at hand, in the 

presence of significant displacements from the nominal initial conditions. 

SPACECRAFT DYNAMICS 

The ascent vehicle is assumed to be subject only to the gravitational attraction of the Moon, whose mass 

distribution is assumed spherical. Moreover, the (nominal) propulsive thrust is continuous and has constant 



magnitude T. The mass ratio, denoted with 7 0x m m  (where 0m  is the initial mass) obeys 7 0x n c  , where 0n  

is the initial thrust acceleration. The spacecraft dynamics is governed by the trajectory and attitude equations. 

The ascent vehicle trajectory can be described in an inertial reference frame, associated with the right-hand 

sequence of unit vectors  1 2 3
ˆ ˆ ˆ, ,c c c . Its origin is located at the center of the Moon, and the target orbit lies on the 

 1 2
ˆ ˆ,c c -plane. The position can be identified by the following three variables: radius r, right ascension  , and 

declination   [5]. The spacecraft velocity can be projected into the rotating frame  ˆˆ ˆ, ,r t n , where r̂  is aligned with 

the position vector r and t̂  is parallel to the  1 2
ˆ ˆ,c c -plane (and in the direction of the spacecraft motion). The 

related components are denoted with  , ,r t nv v v  and termed respectively radial, transverse, and normal velocity 

component. The upper stage is controlled through the thrust direction, defined by the in-plane angle   and the out-

of-plane angle  . The governing equations for  , , , , ,r t nr v v v   are omitted for the sake of conciseness (cf. [5]). 

The spacecraft instantaneous orientation is associated with the body frame. Its origin is in the center of mass of 

the vehicle, while its axes are aligned with the right-hand sequence of unit vectors  ˆˆˆ, ,j k , with ̂  pointing toward 

the longitudinal axis. In this research, the attitude  (referred to  1 2 3
ˆ ˆ ˆ, ,c c c ) is described through Euler parameters 

(quaternions), denoted with  0 ,q q , where 0q  is the scalar part, whereas q is the  3 1 -vector part. The attitude 

kinematics equations [6] involve the time derivatives of the Euler parameters and the  3 1 -vector ω , which 

includes the components (along  ˆˆˆ, ,j k ) of the angular velocity of the spacecraft with respect to  1 2 3
ˆ ˆ ˆ, ,c c c . Let 

 B

CJ  denote the spacecraft inertia matrix with respect to center of mass C, resolved in  ˆˆˆ, ,j k . The attitude 

dynamics equations are  

                                                       
      
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

    
 
J J Jω ω ω ω T                                                                      (1) 

where the  3 1 -vector CT  includes the (internal) torque components (along  ˆˆˆ, ,j k ) due to thrust misalignment. 

In Eq. (1), 
 B

CJ  is the time derivative of the inertia matrix, which is nonzero due to propellant consumption. 

OUTLINE OF THE IMPLICIT VARIABLE-TIME-DOMAIN NEIGHBORING 

OPTIMAL GUIDANCE AND CONSTRAINED ATTITUDE CONTROL 

Neighboring optimal guidance (NOG) schemes are based on minimizing the second differential of an objective 

function, typically propellant consumption or time of flight. This minimization principle leads to deriving all the 

corrective maneuvers. 

Most recently, VTD-NOG [4] emerged as an effective algorithm, capable of circumventing the major difficulties 

of former contributions focused on NOG. In fact, a normalized time scale is adopted as the domain in which the 

nominal trajectory is defined. This has three remarkable consequences: (i) the gain matrices remain finite for the 

entire time of flight, (ii) the updating law for the time of flight derives directly from the necessary conditions for 

optimality, and (iii) the termination corresponds to the upper bound of the normalized time domain. VTD-NOG 

identifies the trajectory corrections by assuming a thrust direction always aligned with the longitudinal axis of the 

spacecraft. In Ref. 4, the constrained proportional derivative algorithm (CPD) is employed for attitude control 

through thrust vectoring and side jets, and pursues this alignment condition.  

This new guidance and control concept was applied to lunar ascent and orbit injection, with the intent of testing 

its capabilities, in the presence of several nonnominal flight conditions, such as incorrect initial position, propulsive 

fluctuations, and imperfect modeling of the mass distribution and variation. Extensive Monte Carlo simulations 

pointed out that orbit injection occurs with excellent accuracy, thus demonstrating that VTD-NOG & CPD indeed 

represents an effective methodology for the application at hand. All the numerical results are reported in Ref. 4. 



EXPLICIT LOCALLY-FLAT NEAR-OPTIMAL GUIDANCE 

This research introduces a near-optimal guidance scheme based on local projection of the spacecraft position and 

velocity, under the assumption that the instantaneous trajectory is sufficiently close to the  1 2
ˆ ˆ,c c -plane, which 

contains the target path. This is assumed to be an elliptic orbit about the Moon, with specified periselenium and 

aposelenum radii, denoted with Ar  and Pr , respectively. Orbit injection is assumed to occur at periselenium. 

The guidance algorithm is run repeatedly and starts at equally-spaced times  
0, , 1k k N

t
 

; St  denotes the 

sampling time interval. At kt , the spacecraft position and velocity are projected onto the  ˆ ˆ ˆ, ,k k kx y z -frame, 

obtained from  1 2 3
ˆ ˆ ˆ, ,c c c  through a single counterclockwise rotation by angle k , and yield the flat coordinates  

  
, , , , , , , ,cos      0     sin      cos sin           sin cosk k k k k k k x k r k k n k k y k t k z k r k k n k kx r y z r v v v v v v v v                (2) 

These are governed by [5] 

                 
1 2 1 2 2               sin cos      cos cos      sinx y z x T y T x Tx v y v z v v a g v a v a                                 (3) 

where angles  1 2,   identify the thrust direction in  ˆ ˆ ˆ, ,k k kx y z , g denotes the (local) gravitational acceleration, 

and Ta  is the thrust acceleration. Using  , , , , ,x y zx y z v v v , the desired conditions at orbit injection are  
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2
     0     0          0A

f P f x f y f z f

P A P

r
x r z v v v

r r r


    


                                                 (4) 

The two optimal thrust angles  1 2,   minimize the time of flight needed to fulfill the boundary conditions (4), 

while holding the state equations (3). The optimal control problem at hand is proven to be amenable to an analytical 

solution if Ta  and g are constant. All the state components  , , , , ,x y zx y z v v v  can be written as closed-form 

functions of time, depending on 5 unknown quantities. These are found as the numerical solution of 5 nonlinear 

equations, arising from enforcement of the boundary conditions (4). A suitable guess, related to intuitive variables, 

is available [5], and allows the real-time numerical solution of this nonlinear system. As a result, the commanded 

thurst direction is identified in each sampling interval  1,k kt t  , and drives the attitude control system. 

REDUCED-ATTITUDE CONTROL AND ACTUATION VIA THRUST VECTORING 

Only the alignment of the longitudinal axis ̂  with 
 ˆ C
  is crucial for the purpose of pointing the thrust toward 

the correct direction. A reduced-attitude-tracking algorithm, aimed at pursuing the desired alignment for a single 

axis, is introduced in this research, as a suitable solution to the problem of interest. Let Cω  and 
B C
R  denote the 

commanded angular rate and the relative rotation matrix that relates the commanded attitude and the actual 

orientation;  :E C
B C

  Rω ω ω ;         0 1 2 3, , ,
E E E E

q q q q  denotes the error quaternion. The feedback control law 
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with                     
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f q , enjoys quasi global stability, i.e. it guarantees 

asymptotic convergence of the longitudinal axis of the ascent vehicle toward the commanded thrust direction. The 

two matrices A and B are constant and positive definite; A is also symmetric. 

The preceding feedback control law yields the three torque components along the three body axes. However, the 

longitudinal component is ineffective for the purpose of thrust alignment, thus it is set to 0. The remaining two 

components are actuated using thrust vectoring. In particular the two components 
 
,2

C

CT  and 
 
,3

C

CT  yield the 

commanded deflection angles 
 C

y  and 
 C

y , using 
         
,2 ,3cos sin    and   sin
C C C C C

C z y C zT Tl T Tl      , where T is 

the thrust magnitude, whereas l is the distance from the center of mass to the nozzle. These commanded values for 
 C

y  and 
 C

y  are saturated to 5 deg . The real deflection mechanism, which yields the actual deflection angles, is 

modeled using a first-order system, with time coefficient set to 0.1 sec (cf. also [4]). 



NUMERICAL SIMULATIONS 

The ascent vehicle has initial mass of 4700 kg and principal inertia moments equal to 24800 kg m , 29200 kg m , 

and 28100 kg m  [4]. The propulsion parameters are  2

0 0 00.5 g  g 9.8 m secn    and 3 km secc  . 

Homogeneous mass depletion is assumed (and the center of mass does not move as a result). Aposelenium and 

periselenium have altitudes equal to 100 km and 15 km, respectively. 

A Monte Carlo (MC) campaign is run, by assuming nonnominal flight conditions, namely (i) initial declination, 

with zero mean and standard deviation of 0.13 deg (corresponding to 4 km on the lunar surface), and (ii) propulsive 

fluctuations, modeled as in Ref. 4. Figure 1 illustrates the altitude and two components of the spacecraft velocity, 

obtained in the Monte Carlo campaign, composed of 100 simulations, using two distinct sampling intervals, i.e. 5 

sec up to 250 sec after launch, and 0.5 sec for the remaining time. Inspection of the numerical results and the related 

statistics (omitted for the sake of conciseness) reveals that the guidance, control, and actuation architecture at hand is 

very effective for precise lunar orbit injection. 

   
(a) (b) (c) 

FIGURE 1. Time histories of the altitude (a) and two components of the velocity (b,c), obtained in the MC campaign  

CONCLUSION 

This research proposes a new guidance, control, and actuation architecture for autonomous lunar ascent and orbit 

injection. The locally-flat near-optimal guidance projects the spacecraft position and velocity into a convenient 

reference frame, and solves a minimum-time trajectory optimization problem. This is proven to be amenable to a 

closed-form solution, whose unknown parameters can be determined by solving numerically a nonlinear system of 

equations. Real time solution was found in all the simulations, thanks to the availability of a suitable guess for the 

unknown parameters. Furthermore, a new, nonlinear reduced-attitude control algorithm is introduced, which enjoys 

quasi-global stability properties, and is capable of driving the actual longitudinal axis toward the commanded thrust 

direction. Actuation is based on the use of thrust vectoring. Monte Carlo simulations prove that the guidance, 

control, and actuation architecture at hand is very effective for precise lunar orbit injection. 
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