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Abstract

Mobile robots have the potentiality to accomplish complex tasks because of their
capability of adapting to different scenarios. This is particularly true for humanoid
robots, which can navigate unstructured environments thanks to their anthropo-
morphic structure, and steerable wheeled mobile robots (WMRs), which present an
increased mobility with respect to their non-omnidirectional counterpart.

In this thesis, we focus on the problem of generation and control of motion for
humanoid robots in 3D, and steerable WMRs. In particular, when developing a
framework for locomotion, one should take into account how the robot perceives
its surroundings, how to move, and how to actually perform the motion. These
problems, which lie under the categories of perception, motion planning, and control,
must be solved efficiently and simultaneously.

In the first part of this manuscript, we study the problem of motion generation
for humanoid robots in a world of stairs, a particular kind of uneven terrain where
all contact surfaces are piecewise-horizontal. We present a framework composed of a
RRT*-based footstep planner, a gait generation scheme based on Model Predictive
Control (MPC), a mapping module, and a localization module. The footstep planner,
which plans a feasible sequence of footsteps using an elevation map, exploits the
time the robot takes to complete a step to replan the footsteps, improving the plan
and taking into account changes in the map, which may occur due to the presence
of dynamic obstacles. In order to improve the reliability of locomotion, external
disturbances and pushes must be considered. To address these scenarios, we present
Feasibility-Aware Plan Adaptation (FAPA), a module for adapting footstep plans
(positions, orientations, and timings) in such a way to guarantee the feasibility of the
subsequence MPC stage. FAPA allows to sustain external pushes on stairs, allowing
the humanoid to safely complete locomotion tasks.

In the second part of this manuscript, we study the problem of motion control
for steerable WMRs (SWMRs). The development of control schemes for this kind of
platform is not trivial, due to the presence of kinematic singularities, which must
be taken into account in order to properly make the robot move. We propose a
framework for trajectory tracking of SWMRs using Nonlinear MPC (NMPC) based
on the real-time iteration scheme. The NMPC generates feasible motions for the
robot, taking into account both kinematic singularities of the mobile base, and
bounds on driving and steering velocities. Our NMPC works alongside a finite
state machine and a state trajectory generation scheme based on dynamic feedback
linearization, which makes our framework capable of tracking trajectories without
ever encountering singularities.

The proposed methods are validated in simulation using CoppeliaSim, and in
experimental settings using the Neobotix MPO-700 platform.
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1

Chapter 1

Introduction

Robots are shaping our world, progressively becoming an integral part of our society.
From manipulators in production lines, autonomous vehicles in space, surgical
systems in hospitals to vacuum cleaners in our homes, we can literally say that
robots are everywhere. Nevertheless, while the adoption of autonomous systems
has skyrocketed in the past few decades, and research has made great strides, the
technology of today is not yet ready for the adoption of more complex robots, such
as humanoids and mobile manipulators.

Humanoids robots, thanks to their anthropomorphic structure, are in principle
expected of interacting with our environment, in the same way we humans do. One
of the biggest challenges in the research of humanoids is that of locomotion in
3D environments, for which complex motions may be required. Indeed, in order
for humanoid robots to properly perform locomotion tasks, steeping over or onto
obstacles, climbing and descending stairs, and overcoming gaps must be taken into
account.

Mobile manipulators, on the other hand, are not designed to move in such complex
environments, but may possess the same manipulation capabilities if equipped with
proper arms. The lower body of mobile manipulators consists of a mobile base,
which differs depending on the tasks the robot is supposed to solve. Among the
possible choices, employing a mobile base equipped with steerable wheels allows the
robot to perform complex motions (because of the omnidirectionality of the base)
without sacrificing its robustness (because of the presence of classical wheels).

While, in literature, there exists a large number of methodologies for generat-
ing and controlling the motion of mobile robots, the problems of locomotion of
humanoids in 3D environment, and locomotion of robots equipped with steerable
wheels (steerable wheeled mobile robots), have not been entirely solved yet. The
reason lies in the complexity of the problem itself. In order to address locomotion,
one should take into account a multitude of subproblems, such as perception (how
the robot sees its sorroudings, and how to build a representation of the environment),
motion planning (how to use such representation and efficiently plan how the robot
is going to move), and control (how to actually perform the motion, possibly in a
robust way, taking into account disturbances and external perturbations).

The focus of this manuscript is that of studying the aforementioned problems,
and proposing new techniques which exploit modern planning and control algorithms.
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1.1 Contribution

Humanoid motion generation in a world of stairs

The first contribution of this thesis is a framework for the generation of motion of
humanoid robots in a world of stairs, an uneven terrain where all contact surfaces are
piecewise-horizontal. The problem is first addressed by assuming complete knowledge
of the environment, and then extended to the case in which the environment is
unknown. In order to develop such scheme, localization, mapping, motion planning
and control modules must efficiently work together. We propose to solve this problem
by implementing a footstep planner based on RRT*, which plans a sequence of
footsteps that brings the robot from its current configuration to a desired goal region.
Our footstep planner is capable of replanning the sequence of footsteps during
the execution of the motion, improving the footstep plan, and taking into account
changes in the map (we map the environment in real-time using an elevation mapping
module) due to dynamic obstacles. Moreover, our scheme uses a model predictive
control (MPC) algorithm that guarantees that the humanoid is dynamically balanced
at all times. This work led to a journal paper, which has been published in Robotics
and Autonomous Systems [19].

Feasibility-aware plan adaptation in humanoid gait generation

The second contribution of this thesis is a module for adapting footstep plans
(positions, orientations, and timings) in such a way to increase robustness of humanoid
robot locomotion in 3D environments. Indeed, while the robot walks, it may be
subject to external perturbations (such as pushes), which may make the robot lose
its equilibrium. The problem is first addressed by considering the case in which
adaptation does not allow to select a different contact surface with respect to the
one initially assigned to each footstep, and then extended to the case in which the
contact surface may be reassigned, further increasing the external disturbances the
robot can sustain. We propose to solve this problem by implementing the adaptation
scheme as a nonlinear programming problem for the first case, and as a mixed-integer
nonlinear programming problem for the second case. Our method, which is tightly
integrated with our MPC scheme, allows to perform adaptation without affecting the
performance of the MPC itself. This work led to a conference paper, which has been
published in 2023 IEEE-RAS International Conference on Humanoid Robots [20].

Nonlinear model predictive control for steerable WMRs

The third contribution of this thesis is a framework for trajectory tracking for
steerable wheeled mobile robots (steerable WMRs, or SWMRs). The difficulty with
this kind of platform, as we will discuss more in detail later, is the presence of
kinematic model singularities. These must be taken into account when developing a
control scheme, possibly together with constraints on actuation, in order to generate
feasible control actions. We propose to solve this problem by implementing a
nonlinear MPC based on the real-time iteration scheme. Our MPC is supported by
a finite state machine, and a state trajectory generation scheme based on dynamic
feedback linearization, which guarantee kinematic singularities are never encountered,
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and actutation constraints are always satisfied. At the time of writing of this
manuscript, this work is about to be submitted to IEEE Robotics and Automation
Letters.

1.2 Outline
The manuscript is organized as follows.

• Chapter 2 presents an historical overview on humanoid robots and steerable
wheeled mobile robots, discussing the role of robotics in our society and in
research.

• Chapter 3 reviews the literature on the topics of gait generation, footstep
planning, sensor-based locomotion, and footstep and timing adaptation for
humanoid robots, and motion control for steerable WMRs.

Part I: Motion generation for humanoid robots

• Chapter 4 introduces the dynamics of humanoid robots, focusing in particular
on the Linear Inverted Pendulum (LIP), and the condition of equilibrium for
humanoids in the world of stairs.

• Chapter 5 presents Intrinsically-Stable MPC (IS-MPC), the gait generation
scheme used in the subsequent chapters, which takes into account the dynamics
of the LIP, and guarantees the stability of the system via a stability constraint.

• Chapter 6 presents a framework for motion generation in a world of stairs,
which is composed of a footstep planner based on RRT*, a gait generation
scheme based on IS-MPC, a module to map the environment as an elevation
map, and a localization system based on SLAM.

• Chapter 7 presents Feasibility-Aware Plan Adaptation (FAPA), a module for
footstep plan adaptation in 3D environments which works alongside IS-MPC.

Part II: Motion control for steerable WMRs

• Chapter 8 briefly reviews the Nonlinear MPC scheme based on real-time
iteration (RTI), introducing the algorithms and the notation used in the
subsequent chapter.

• Chapter 9 presents a framework for trajectory tracking for steerable WMRs,
which makes use of a Nonlinear MPC based on RTI.

• Chapter 10 concludes the thesis, summarizing the contributions and discussing
future works.
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Chapter 2

Humanoids and steerable
WMRs

The idea of building a machine that replicates the human body, and is capable
of executing the same tasks that we do, has fascinated humanity since forever.
The earliest ideas can be dated back to the third century BC, when the Chinese
philosopher Lie Yokou described a humanoid automaton constructed of leather
and wood, capable of moving all parts of its body [21]. In the first century AD,
the greek mathematician and engineer Heron of Alexandria described a machine
capable of pouring wine for party guests [22]. In 1206, the Muslim engineer Ismail al-
Jazari published a book describing about one hundred mechanical devices, including
automata performing different facial expressions [23]. Among these ancient automata,
the most famous one is undoubtedly Leonardo’s mechanical knight (or Leonardo’s
robot), a humanoid automaton in a suit of a knight’s armor build by Leonardo
Da Vinci in 1495 [1]. Even though the history of robots started many centuries
ago, the word “robot” first appears only in 1920 in the science-fiction play R.U.R.
(Rossum’s Universal Robots), written by the Czech writer Karel Čapek. In the last
century, robots have become part of our world. Apart the adoption of robots in the
industry, and the use of robots in academia, we are now used to see robots in movies
(e.g., C-3PO in Star Wars, Fig. 2.1), in animation (e.g., The Iron Giant, Bender
and Baymax, Fig. 2.2), and in books (Isaac Asimov introduced the Three Laws of
Robotics in his 1942 “Runaround” story).

This chapter gives a brief overview on the main developments in the field of
robotics happened in the last 50 years, focusing in particular on humanoids (from
the WABOT-1 to the commercialization of humanoid robots) and steerable WMRs
(from space exploration to interaction with humans), which are the type of platforms
used in the following chapters.

First prototypes: WABOT-1 and WABOT-2

The first anthropomorphic robot ever developed is the WABOT-1 [2], whose project
started in 1967 and completed in 1972. The robot (Fig. 2.3), was constituted by
a limb-control system, which allowed it to walk, and a conversation system, which
allowed it to communicate with a person in Japanese. The development continued
with the WABOT-2 [3], introduced in 1984, a musician robot able to play a keyboard
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Figure 2.1. From left to right: Leonardo’s robot, constructed by Leonardo Da Vinci in 1495
[1]; R.U.R. (Rossum’s Universal Robots) by Karel Čapek introduced the word “robot”
in 1920; C-3PO, the famous humanoid robot from the Star Wars Cinematic Universe.

Figure 2.2. Humanoid robots in animation. From left to right: The Iron Giant (1999),
Bender from Futurama (1999), and Baymax from Big Hero 6 (2014).
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Figure 2.3. From left to right: the WABOT-1 (1972), which is the first anthropomorphic
robot ever developed [2], and the WABOT-2 (1984) playing a keyboard [3].

instrument (Fig. 2.3), and read a musical score with his eyes. The WABOT project
is considered as a turning-point in the development of humanoids, as it introduced
the first programmable multi-purpose humanoid robot.

Honda humanoids: E series, P series and ASIMO

During the 80s and the 90s, the development of humanoids was mainly dominated
by Honda (Fig. 2.4), which introduced his first humanoid, E0, in 1986. E0 had 6
degrees of freedom, and it could walk slowly (it needed around 5 seconds to complete
a step) in a straight line. This model was further developed into the E-series robots
(E1, introduced in 1987, to E6, introduced in 1993), which could walk faster, balance
autonomously, avoid obstacles and climb stairs. The E6 was much heavier (150 kg)
and taller (174 cm) with respect to the E0 (whose weight was 16.5 kg and height
was 101 cm). The development of Honda humanoids evolved into the P series. The
first of these robots, the P1, had 30 degrees of freedom, it was 191 cm tall and it
weighed 175 kg. The P1 was kept secret until the announcement of the P2 in 1996,
which is described in detail in [24].

In 2000, Honda introduced ASIMO (Advanced Step in Innovative Mobility)
[25], a humanoid robot capable of walking and running up to 9 km/h. Among its
physical capabilities, ASIMO was able to handle trays and carts, and pour drinks.
Moreover, because of its voice and image recognition technologies, it was able to
interact with people, giving presentations and providing explanations of exhibits [4].
The development of ASIMO has ceased in 2018, and its last public appearence took
place in 2022.

2000s: humanoids of the new millenium

Apart from ASIMO, the 2000s have seen the introduction of many humanoids of
different dimension and cost, which shaped the technology of today’s humanoids.
In 1998, Japan’s Ministry of Economy, Trade and Industry started the Humanoid
Robotics Project (HRP), together with Kawada Industries, the National Institute of
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Figure 2.4. Honda E series (E0 in 1986 to E6 in 1993) robots, Honda P series (P1 in 1993
to P3 in 1997) robots, and ASIMO (2000) [4].

Figure 2.5. Some of the humanoid robots developed in 2000s. From left to right: Aldebaran
NAO [5], PAL Robotics REEM-B [6], iCub [7], and HRP-4 [8].

Advanced Industrial Science and Technology (AIST) and Kawasaki Heavy Industries,
Inc. The project started with the Honda P3, which evolved during the decade into
the HRP-2 [26], the HRP-3 [27], the HRP-4 [8] (shown in Fig. 2.5) and the HRP-4C
[28]. These robots have been used in all sort of applications, such as ladder climbing
in industrial facilities [29], and aircraft manufacturing [30].

In 2006, the private company PAL Robotics introduced REEM-A, a humanoid
designed to play chess, that could also walk and speak. The REEM project continued
with the REEM-B [6], which was introduced in 2008. The year 2006 has seen the
introduction of two other humanoids which are still used nowadays: the NAO from
Aldebaran [5], used from healthcare scenarios [31] to soccer competitions [32], and
the iCub [7], used mainly for research in cognitive robotics.

2010s: DARPA robotics challenge

The development of humanoid robots in 2010s was mainly shaped by the DARPA
Robotics Challenge [33], a competition organized by the US Defence Advanced Re-
search Projects Agency in 2012, which had the objective to develop semi-autonomous
humanoid robots to be deployed in disaster scenarios. The competition consisted in
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Figure 2.6. Some of the humanoid robots developed in 2010s. From left to right: Boston
Dynamics ATLAS, WALK-MAN [9], NASA Valkyrie [10], and PAL Robotics TALOS
[11].

solving several tasks, such as driving a vehicle, opening a door, climbing an industrial
ladder, using a tool to break through a concrete panel, and turn on a valve. Amidst
the robots used during the challenge, we can find the ATLAS by Boston Dynamics
(Fig. 2.6), the WALK-MAN developed by Italian Institute of Technology [9], and
DRC-HUBO+ [34] from team KAIST, who won the challenge by completing all the
tasks in the shortest time.

Among the other humanoid robots developed in this decade, DLR designed
TORO [35] for the study of walking and multi-contact balancing, NASA designed
Valkyrie [10] for advancing human spaceflight and extraterrestrial exploration, and
PAL Robotics designed TALOS (Fig. 2.6), a research platform mainly targeted for
industrial applications [11].

2020s: humanoid robots as commercial products

The technology of humanoids is mature enough, and this is reflect by the increas-
ing number of companies interested in building humanoid robots, and the large
investments in robotics companies1.

Among the humanoids currently developed by private companies, we have Digit
by Agility Robotics (Fig. 2.7), Optimus by Tesla, Apollo by Apptronik, Figure 01
by Figure AI, NEO by 1X, Phoenix by Sanctuary AI, H1 by Unitree, and GR-1 by
Fourier Intelligence. All these humanoids are being developed with one common
idea in mind: they must be general-purpose. Indeed, the tasks they are expected to
perform vary from moving packages in a factory, unloading trailers, palletization,
last mile delivery to automotive production, and home assistance.

In the near future, we can thus expect to see an even more rapid growth in
humanoid robot technologies, and the introduction of humanoids in a vast number
of industries, revolutionizing the way we work, interact, and experience the world
around us.

1Just to give an example, in February 2024, Figure AI has raised $675 million in funding, reaching
a valuation of $2 billion.
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Figure 2.7. Some of the humanoid robots developed in 2020s for commercial purposes.
From left to right: Digit by Agility Robotics, Optimus by Tesla, Apollo by Apptronik,
and Figure 01 by Figure AI.

Steerable WMRs: space exploration, disaster response, and human col-
laboration

The development of the first steerable WMRs (SWMRs) focused on industrial
operations and planetary exploration. In 1990, Weisbin developed HERMIES-III
[36], a mobile robot equipped with two steerable wheels, whose tasks consisted
in radiation monitoring, decontamination, and assembly operations in industrial
settings. In 1990, NASA presented Nomad [37], a SWMR equipped with four
steerable wheels, with the purpose of advancing space exploration technology. The
Nomad project focused on long-distance and long-duration explorations, and it has
been used to explore the Atacama Desert in Chile.

In the years 2000s, a large number of steerable WMRs has been developed with
the goal of studying omnidirectionality. A six-wheeled omnidirectional mobile robot
for field navigation was presented in [38]. Among mobile robots equipped with four
steerable wheels we have the OMR-SOW [39], the AZIMUT-1 [40], which was later
developed into the AZIMUT-2 [41] and the AZIMUT-3 [42].

The technology developed in these years, was used to build more complex
robots which were equipped with steerable wheels with the aim of increasing their
mobility. Rollin’ Justin [12], Care-O-bot 3 [13], and iMoro [14] (shown in Fig. 2.8)
were respectively developed for astronaut assistance in space, household tasks, and
inspection of contaminated environments. Among more recent robots, ExoMars
[15] was developed for the exploration of Mars surface (Fig. 2.9), CENTAURO
[16] for loco-manipulation tasks in disaster scenarios, and BAZAR [17] for physical
human-robot interaction in assembly lines.
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Figure 2.8. Robots equipped with steerable wheels to be deployed in different areas. From
left to right: Rollin’ Justin [12], used for household work and astronauts assistance in
space, Care-O-bot 3 [13], used as service robot, and iMoro [14], used for inspection of
contaminated environments.

Figure 2.9. More recent robots equipped with steerable wheels. ExoMars [15], conceived
for space exploration, CENTAURO [16], designed for loco-manipulation in disaster
scenarios, and BAZAR [17], designed to interact with humans in assembly lines.
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Chapter 3

Literature review

In this chapter, we give an overview on the literature of locomotion for humanoid
robots and motion control for steerable wheeled mobile robots (SWMRs). In the first
part of the chapter, we introduce the problems of gait generation, footstep planning,
sensor-based locomotion, and footstep and timing adaptation for humanoids robots.
In the second part of the chapter, we study motion control algorithms for SWMRs.

3.1 Humanoid robots

3.1.1 Gait generation

In order for humanoid robots to successfully complete their tasks, they need to
maintain balance at all times. The problem of gait generation consists in the
generation of trajectories that keep the robot balanced, and the realization of such
trajectories on the humanoid itself. The most common type of gaits studied for
humanoids are walking and running. In this section, we briefly review the main
scientific contributions to the problem of walking gait generation in planar and 3D
environments.

Humanoid walking can be static or dynamic. In case of planar contacts, in static
walking, the projection of the Center of Mass (CoM) lies within the support polygon,
defined as the convex hull of the contact points. In dynamic walking, it is the
Zero-tilting Moment Point (ZMP) [43], defined as the point where the moment of the
contact wrench aligns with the normal of the contact surface [44], which lies within
the support polygon. In case of non-coplanar contacts, an algorithm for testing
static equilibrium has been developed by Bretl in [45], while for dynamic walking, a
more general condition on the ZMP has been presented by Caron in [46].

Because of the complex nonlinear dynamics of the humanoid, the problem of gait
generation is typically decomposed into two sub-problems: trajectory generation
and whole-body trajectory tracking. The problem of trajectory generation is usually
solved considering a simplified dynamics, such as the Centroidal Dynamics (the
dynamics of the humanoid projected at its CoM) [47] or the Linear Inverted Pendulum
(LIP) [48]. The problem of trajectory tracking is solved with a kinematic controller,
typically implemented as a stack-of-tasks [49], and solved through a hierarchy of
Quadratic Programming (QP) problems.
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The LIP relates the CoM to the ZMP through a linear dynamics, proving a
theoretical tool that can be used for the generation of walking gait in real-time
[50]. More advanced techniques for the control of the ZMP can be found in [51],
which presents a walking pattern generation scheme using preview control, or in
[52], which develops a Linear Model Predictive Control scheme. In particular, the
latter adopted a Cart Table model [53], minimizing the CoM jerk while enforcing the
dynamic balance condition (ZMP within the support polygon) as a constraint. This
technique was further developed taking into account automatic footstep placement
[54], stability [55] and recursive feasibility [56] of the MPC.

More recently, Scianca introduced Intrinsically-Stable MPC (IS-MPC) [57, 58],
a gait generation scheme which uses the LIP as prediction model, enforcing dynamic
balance by constraining the ZMP within the support polygon, and using a stability
constraint to ensure that the CoM does not diverge with respect to the ZMP [59].
IS-MPC, which will be used for gait generation throughout this manuscript, has
been extended to uneven ground in [18] by considering a dynamic balance condition
in 3D [60, 61]. Because IS-MPC is formulated as a QP problem, it can be efficiently
solved by a QP solver and deployed on a real robot.

3.1.2 Footstep planning

Gait generation schemes such as IS-MPC rely on footstep plans, which specify how
the walking should be performed at high level (where to place each footstep, the
trajectory of the swing foot, and the duration of single and double support phases).
Footstep plans can either be manually defined, or computed by a footstep planner.
In this section we review the literature on footstep planners, diving them in two
categories. The first one will cover footstep planners employing continuous techniques
(optimization-based), while the second one will cover footstep planners employing
discrete techniques (deterministic and randomized approaches).

Planners based on continuous techniques compute sequences of footsteps via
optimization, treating their poses as continuous decision variables. Several methods
in this category (e.g., [62, 63, 64]) rely on the implicit assumption that the ground
is completely flat and, therefore, are not tailored for motion generation in 3D
environments. Explicit account of 3D environment is instead made in [65]: the
ground surface is decomposed as a set of convex regions (with the aid of a manual
initialization phase) and footsteps are placed by solving a mixed-integer quadratic
problem (MIQP). A more recent work [66] casts the MIQP into a l1-minimization
problem: to reduce the computational complexity, a suboptimal solution is found by
considering only those regions that intersect with the reachable workspace of the
feet along a pre-planned trajectory for the floating base of the robot.

Planners based on discrete techniques find a solution by searching among par-
ticular sequences of footsteps. These sequences are generated by concatenation of
primitives. A primitive is a displacement between two consecutive footsteps, selected
among a finite number of possible displacements from a catalogue.

To search among all possible sequences, one possibility is to use a deterministic
approach (search-based), which is typically represented by a variant of A* [67].
Chestnutt implemented the A* footstep planner in [68] for the ASIMO humanoid
robot [25]. The work has been later extended to adaptively extend the catalogue
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of primitives [69] depending on the terrain. Hornung implemented Weighted A*
[70], ARA* [71] and R* [72] footstep planners with anytime replanning strategies in
[73]. Replanning strategies using D* Lite [74] and AD* [75] have been respectively
implemented in [76] and [77]. Although search-based algorithms have been applied
to 3D environments [78], this kind of approach suffers from two main issues: the
performance strongly depends on the chosen heuristic, which is often difficult to
design, and node expansion can be very expensive when using a large set of primitives,
because it requires the evaluation of all possible successors.

An alternative option is to use a randomized approach (sampling-based) such as
a variants of the Rapidly-exploring Random Tree (RRT) algorithm [79]. This has
been first developed in [80, 81] in 2D environments, and later applied in simple 3D
environments [82, 83], showing good performance both in planning and replanning
for dynamic environments. Recently, Ferrari [84] presented a RRT footstep planner
for humanoid navigation in uneven terrain, which is integrated with IS-MPC. Clearly
the disadvantage of RRT over a deterministic approach is that it does not account,
at least in its basic form, for the quality of the footstep plan.

3.1.3 Sensor-based locomotion

So far, it was assumed that a complete knowledge of the environment is available
from the start, or that, in case of dynamic environment, changes to the latter are
readily communicated to the planner. However, this is not often the case in practical
situations. In fact, the environment could be unknown, either partially or completely,
and it must be reconstructed online with the aid of on-board sensors.

Many existing methods exploit information acquired through on-board sensors
to identify planar surfaces that define safe regions where the robot can step onto
[85, 86, 87, 88, 89]. Such environment representation was used in combination
with different kinds of footstep planners, for example, based on simple geometric
criteria [90], A* [91, 92] and MIQP [93]. Other methods maintain a more complete
representation of the environment by employing an elevation map [94]. Examples
can be found in [95, 96], where ARA*-based approaches are used to plan footsteps on
uneven ground; the use of on-line information is aimed at improving the plan during
the execution, and not for replanning/extension using newly acquired information.
To achieve more flexibility in the on-line capabilities, [97] proposed to use adaptive
sets of possible foot displacements in an A*-based planner, which proved to be
effective in relatively simple scenarios. Alternatively, [98] proposed a two-stage
method that first finds a collision-free path for a bounding occupancy volume and
then computes a compatible sequence of footsteps, which is a suitable technique as
long as it is not necessary to traverse narrow passages.

3.1.4 Footstep and timing adaptation

The techniques discussed so far assume that the robot is not subject to strong
disturbances. Nevertheless, in order for the humanoids to be deployed in real-world
scenarios, the presence of possible external forces must be taken into account. In
principle, when subject to external perturbations, the humanoid should be able to
adapt the footstep plan by changing the position, the orientation, and the timing of
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the footsteps.
Model Predictive Control schemes, in their basic form, allow to perform real-time

footstep position adaptation [99] and obtain reactive stepping so to reject pushes
and impacts. However, in order to be able to formulate the optimization problem as
a Quadratic Program (QP), constraints should be kept linear. For this reason, most
schemes only adapt footstep positions, leaving out footstep orientation and step
timing, and not considering the possibility to place footsteps on a different contact
surface, which is crucial when walking on uneven terrains.

Several efforts to improve this basic paradigm have been made. To include
automatic step timing adaptation, one could make the MPC nonlinear [100, 101,
102, 103], denying real-time implementation or requiring significant compromise in
the control rate. A linear formulation is obtainable by considering only the duration
of the first footstep [104, 105]. As for footstep orientation, this is also often ignored
or planned independently of the dynamics [99]. To couple rotation decision with
the dynamics, some schemes employ non-convex optimization through nonlinear
[106, 107] or Mixed-Integer Programming (MIP) [100]. MIP can also be used to
alternatively select between multiple convex regions in which to place the footsteps,
which would otherwise constitute a non-convex constraint [108, 65].

3.2 Motion control for steerable WMRs
As already discussed in the previous chapter, mobile robots equipped with multiple
steerable wheels have greater maneuverability than other wheeled mobile robots,
since they are omnidirectional [109]. Besides, they can transport higher payloads
than omnidirectional robots equipped with mecanum wheels [110] or with omni
wheels [111]. Nevertheless, modeling and controlling these robots is not trivial due
to the presence of kinematic singularities [112], which need to be handled with
particular care, in order to avoid negatively affecting their functionalities.

While many different approaches for modeling and control of steerable wheeled
mobile robots (SWMRs) exist in literature, none of them fully exploits their poten-
tialities. The main property of this kind of robots, indeed, is that their instanteneous
center of rotation (ICR) can be located anywhere on the plane [113]. This natu-
rally leads to a parametrization based on two-dimensional cartesian [114] or polar
coordinates [115], which, however, leads to singularities that can make it difficult
to develop a control scheme. Sorour et al. [112] developed an ICR-based controller
which handles singularities of the steering axes. The work is further improved in
[116], where the singularity of the ICR at infinity is taken into account through a
complementary route strategy. While these approaches consider all singularities of
their parametrization, the velocity and acceleration bounds are only considered at
the level of the ICR, often resulting in undesired motions with high velocity and high
acceleration of the steerable wheels. A singularity-free representation is presented in
[117] and [118], and used in of [119], where a free-of-singularity motion controller
is developed. Here, time scaling is performed to satisfy velocity and acceleration
constraints on the wheels, resulting however in non-optimal motion execution.
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Part I

Motion generation for humanoid
robots





19

Chapter 4

Dynamics of humanoid
locomotion

Humanoid locomotion is based on exchanging contact forces with the environment,
which, thanks to friction, allows the robot to move. In order for the humanoid to
successfully complete locomotion tasks, such as walking or running, the motion of
the robot must be dynamically balanced, i.e., the robot must not fall.

To formally define the condition for dynamic balance, it is important to under-
stand the dynamics of humanoid locomotion. The motion of humanoid robots is
characterized by a sequence of foot contact phases. For example, a walking gait
is composed of double support and single support phases. During double support,
both feet are in contact with the ground. During single support, only one foot is in
contact with the ground, while the other one (the swing foot) moves towards the
subsequent footstep location. Each single and double support phase has a duration,
which determines how quickly the robot walks. Moreover, the swing foot motion is
described by a swing foot trajectory, which must be collision free. Single and double
support durations are chosen accordingly to the desired behavior and the phyisical
limitations of the robot.

The problem of generation of a walking gait therefore depends on the computation
of contact forces that keeps the robot balanced during its motion. In particular,
contact forces must be such that they lie within the friction cone relative to their
contact surface, in order for the rigid body in contact not to slip. In literature, this
condition is often simplified by assuming sufficient (or infinite) friction, and it allows
to focus only on unilaterality of contact. This makes it possible to define a condition
on the zero-tilting moment point (ZMP), which must lie within a support region
during locomotion. This support region is called support polygon when walking on
flat ground, and it is defined as the convex hull of all contact points.

In this chapter, we will define a condition of dynamic balance that can be used
for walking over terrains composed of stairs. To do so, we will first introduce the
Lagrangian dynamics of the humanoids, which fully describes the evolution of the
system through exchange of forces with the environment. We will then consider the
centroidal dynamics of the system, which is the dynamics of the humanoid project at
the center of mass (CoM). The centroidal dynamics allows us to introduce template
models such as the Variable-Height Inverted Pendulum (VH-IP) and Linear Inverted
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Pendulum (LIP), which can be used to generate a walking gait in real-time. In
particular, in this manuscript the LIP model will play a fundamental role, as it will
be used to design a control framework for humanoid walking on stairs.

4.1 Lagrangian dynamics
Consider a humanoid robot as an open kinematic chain composed of n + 1 rigid
bodies (links), connected by n joints. We define the joint configuration of the robot1

as qj ∈ (SO(2))n, and assume they are actuated by a torque τ ∈ Rn. The root of the
tree defining the kinematic chain represents the floating base link, as it is not fixed
to the world frame. The floating base configuration is parametrized by qb ∈ SE(3),
and it is composed of the position pb ∈ R3 and the orientation θb ∈ SO(3) of the
floating base itself. We define the configuration of the robot as

q =
[
qb

qj

]
∈ SE(3)× (SO(2))n .

As already mentioned before, humanoid robots move by interacting with the en-
vironment through the exchange of contact forces. Let fk ∈ R3 be the unilateral
contact force exchanged with a contact surface with normal nk at the k-th contact
point pk ∈ R3. Unilaterality of k-th contact is formally defined by

nk · fk > 0,

and it describes the impossibility of pulling on the ground. Moreover, we assume
constant contact phase, hence not considering impact dynamics, which would make
the model hybrid.

The equation of motion of the humanoid [120] is characterized by the following
Lagrangian dynamics:[

Mu

Ma

]
q̈ +

[
cu(q, q̇)
ca(q, q̇)

]
=
[

0
τ

]
+

K∑
k=1

[
J⊤

k,u

J⊤
k,a

]
fk, (4.1)

where M is the inertia matrix, b encodes Coriolis, centrifugal and gravitational
terms, and Jk is the contact Jacobian relative to the k-th contact point pk. Note
that the structure of the above dynamics highlights the underactuated (u subscript)
and the actuated (a subscript) dynamics of the system, which respectively describe
the evolution of the floating base and the joints.

Note that, in order for the dynamics (4.1) to be consistent, the contact mode
must be fixed [121], (which implies that bodies in contact must not roll or slide). A
contact force fk is feasible if it lies in the friction cone Ck directed by the contact
normal nk:

∥fk − (fk · nk)nk∥2 ≤ µk(fk · nk) (4.2)
with µk static friction coefficient.

In the following we will assume that there always exists joint torques τ that
realize the actuated part of eq. (4.1).

1Note that, while this definition of joint configuration considers humanoids composed only by
revolute joints, the presented analysis is valid also for robots composed of prismatic joints, or a
combination of both.
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4.2 Centroidal dynamics

The above hypothesis allows us to focus on the unactuated part of the equation
(4.1), and define the centroidal dynamics [47] of the humanoid:[

mp̈c

L̇c

]
=
[
mg
0

]
+

K∑
k=1

[
fk

(pc − pk)× fk

]
, (4.3)

where m is the total mass of the robot, pc is the position of its center of mass (CoM),
defined as

pc =
∑n+1

i=1 mipli∑n+1
i=1 mi

=
∑n+1

i=1 mipli

m
,

with pli and mi are respectively the position and the mass of the i-th link, g =
(0 0 −g)⊤ is the gravity vector (g = 9.81 [m/s2]), fk is the contact force applied at
a point with coordinates pk over a contact surface with normal nk, K is the total
number of contacts, and Lc is the angular momentum of the robot taken at the
CoM.

Let us define the gravito-inertial wrench taken at point O as

wgi
O =

[
fgi

τ gi
O

]
=
[

mg −mp̈c

(pc − pO)× (mg −mp̈c)− L̇c

]
. (4.4)

Similarly, the contact wrench wc
O can be defined as

wc
O =

[
f c

τ c
O

]
=

K∑
k=1

[
fk

(pk − pO)× fk

]
. (4.5)

Note that the centroidal dynamics (4.3) can be rewritten as a sum of the two
above wrenches

wgi
O + wc

O = 0. (4.6)

4.3 Zero-tilting moment point

Consider the gravito-inertial wrench defined in 4.4. Zero-tilting moment points
(ZMPs) are points z where the moment of the contact wrench aligns with the normal
n of the contact surface [44], i.e.,

τ gi
z × n = 0, (4.7)

which, using Varignon formula2, can be rewritten as(
τ gi

O + (pO − pz)× fgi
)
× n = 0,

2A screw wO = (f , τO) represents the generalized force acting on a rigid body [122], and it
is composed of a linear force f passing through O, together with the total moment τO about
O. That total moment around any other point A can be computed using Varignon formula as
τA = τO + f × (pA − pO).
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which, developing the triple cross product3, the above equation becomes

τ gi
O × n− (n · fgi)(pO − pz)− (n · (pO − pz)) fgi = 0. (4.8)

Assuming that a point Z lies on a plane with normal n intersecting the point O,
i.e. z ∈ Π(O,n), the term n · (pO − pz) = 0, and the above equation can be easily
rewritten as

pz = pO + n× τ gi
O

n · fgi , (4.9)

finally defining the ZMP z. Note that, more in general, there exists an infinity of
ZMPs which lie on the non-central axis defined by (4.7). For more details, please
refer to [44].

4.3.1 Relationship between CoM, ZMP and angular momentum

Consider the non-tilting condition of Eq. (4.7). Using Varignon formula τ gi
z =

τ gi
c + fgi × (pz − pc), we have that(

τ gi
c + fgi × (pz − pc)

)
× n = 0, (4.10)

which, computing the triple product, becomes

τ gi
c × n− (n · (pz − pc)) fgi + (n · fgi)(pz − pc) = 0. (4.11)

Applying the definition of gravito-inertial wrench of eq. (4.4) and rearranging
the terms, it is simple to prove [46] the following relationship between the CoM
acceleration, the ZMP position and the angular momentum:

p̈c = g + n · (p̈c − g)
n · (pc − pz)(pc − pz) + n× L̇c

m (n · (pc − pz)) . (4.12)

4.4 Inverted pendulum models

4.4.1 Variable-Height Inverted Pendulum

Consider again the centroidal dynamics of eq. (4.3) and assume that the rate of
change of angular momentum is negligible (i.e., L̇c = 0). We define the dynamics of
the Variable-Height Inverted Pendulum (VH-IP) [123, 124] as

mp̈c = mg + f c. (4.13)

Note that, because L̇c = 0, the contact force f c can be parametrized [125] as

f c = mλ(t)(pc − pz), (4.14)

with λ(t) natural frequency of the VH-IP (where we explicitely denote the time
dependency of lambda to highlight the nonlinearity in the dynamics). Note that
λ(t) > 0 because of unilaterality of contact. The dynamics of the VH-IP can be
rewritten as

p̈c = λ(t)(pc − pz) + g (4.15)
by plugging the contact force (4.14) into eq. (4.13).

3The triple cross product between three vectors a, b, c ∈ Rn is defined as the cross product of
the vector a with the cross product of the other two: a × (b × c) = (a · c)b − (a · b)c. Note that,
since the cross product is anticommutative, the following holds: (a × b) × c = −(c · b)a + (c · a)b.
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CoM

xcxz

zc

zz

CoP

ZMP

x

z

Figure 4.1. A humanoid walking under LIP dynamics. Note the positions of the CoM, the
ZMP and the CoP, which lie on the same axis because of the assumption of conservation
of angular momentum.

4.4.2 Linear Inverted Pendulum

The dynamics of the VH-IP, as already mentioned, is nonlinear due to the variable
frequency λ(t). In this section, we derive the dynamics of the Linear Inverted
Pendulum (LIP) [53]. To do so, we constrain the vertical motion of the CoM [18] so
that

λ(t) = z̈c + g

zc − zz
= n · (p̈c − g)

n · (pc − pz) = η2, (4.16)

with η an arbitrary constant. In this way, the dynamics (4.15) becomes the dynamics
of the LIP:

p̈c = η2(pc − pz) + g, (4.17)

which is in equilibrium when the CoM and the ZMP are displaced by g/η2 [19].
Here, the gravity vector g acts as a constant drift. Figure 4.1 shows the humanoid
walking under the above dynamics.

When walking on flat floor (a single contact surface with normal ez = (0 0 1)⊤),
a common choice is to constrain the ZMP to lie on a plane which coincides with
the ground (i.e., without loss of generality zz = 0). As a consequence, the CoM
is constrained to lie on a parallel plane displaced by h from the ZMP plane (i.e.,
zc = h), and the LIP dynamics further simplifies to the following dynamics:

ẍc = η2(xc − xz)
ÿc = η2(yc − yz).

(4.18)

Note that, in this particular case, the ZMP coincides with the center of pressure
(CoP), which is the point of application of the contact force f c on the ground [44].
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The dynamics of eq. (4.17) is unstable [58]. Indeed, by rewriting it in state space
form as [

ṗc

p̈c

]
=
[

0 I
η2I 0

] [
pc

ṗc

]
+
[

0
−η2I

]
pz +

[
0
g

]
, (4.19)

it is possible to see that the state matrix has eigenvalues in ±η. The instability of
the system can be further highlight by the following change of coordinates:[

pu

ps

]
=
[
I 1

η I

I − 1
η I

] [
pc

ṗc

]
, (4.20)

which can be used to decouple the unstable and the stable subsystem. Indeed, by
taking the time derivative of eq. (4.20), we have[

ṗu

ṗs

]
=
[
ηI 0
0 −ηI

] [
pu

ps

]
+
[
−ηI
ηI

]
pz +

[
g
η

−g
η

]
The coordinate pu highlights the unstable component of the system (4.17), and

it is referred to as divergent component of motion [126] or capture point [127].

4.5 Contact equilibrium
We are interested in defining the condition of equilibrium of a humanoid robot. While
there exists a general condition on contact equilibrium based on contact wrench
cone [128], in this manuscript we assume that the friction coefficient defined in (4.2)
is sufficiently large to avoid slipping at the contact surfaces.

This hypothesis allows us to focus on a simplified contact equilibrium condition,
which is relatively easy to deal with when developing a locomotion scheme. In
particular, consider the case of LIP dynamics of eq. (4.17) with all contact forces
directed towards the CoM, as described in [50]. In this case, the contact forces can
be rewritten as

fk = pc − pk

∥pc − pk∥2
fk, (4.21)

with fk > 0 the norm of fk. By plugging eq. (4.21) into eq. (4.3), we obtain

mp̈c = mg +
K∑

k=1

pc − pk

∥pc − pk∥2
fk. (4.22)

Moreover, using the dynamics of eq. (4.17), we can obtain (after rearranging the
terms), the following:

pz = pc −
K∑

k=1

pc − pk

∥pc − pk∥2
fk

mη2 .

Because of the assumption of sufficient joint torque actuation made in Sec. 4.1,
in principle, we could modulate fk to position the ZMP within the area defined by
the following set:

Z =
{

pz

∣∣∣∣∣pz = pc +
K∑

k=1
γk(pk − pc), γk > 0

}
, (4.23)
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Z

Figure 4.2. 3D balance: the ZMP pz must be inside the polyhedral cone Z.

which is a polyhedral cone with apex pc (Fig. 4.2), and is known in literature as
support region [61], as it contains all feasible positions of the ZMP. Note that under
dynamics (4.18), the support region becomes the support polygon, which is defined
as the convex hull of all contact points [44].

Despite the above hypothesis on contact forces seems a strong assumption, it
has been used successfully for both walking and running tasks [50, 18, 61, 129].
Moreover, when in single support (or when all contacts are coplanar), the above
condition is always satisfied if L̇c = 0 [60].
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Chapter 5

Gait generation via IS-MPC

In the last chapter, we have given an overview on humanoid locomotion dynamics,
focusing in particular on the model of the Linear Inverted Pendulum (LIP). We
have described its dynamics, we have seen that it is unstable, and we have given a
condition for contact equilibrium on non-coplanar surfaces for the humanoid. In this
chapter, we exploit the previously presented analysis to develop a gait generation
scheme for humanoid locomotion in a world of stairs, an uneven terrain where all
contact surfaces are piecewise horizontal.

The approach adopted in this manuscript is based on Intrinsically-Stable MPC
(IS-MPC) [58], a model predictive control scheme which, given as input a footstep
plan (which defines the desired motion of the robot at high-level specifying desired
footstep positions, orientations, single and double support durations, and swing
foot trajectories), generates a stable center of mass (CoM) trajectory, which can
be tracked by a whole-body controller. In IS-MPC, where the model is the one
of the LIP, stability is guaranteed via a stability constraint, which bounds the
displacement between the CoM and the zero-tilting moment point (ZMP). Moreover,
dynamic balance is enforced via constraints on the ZMP position. In particular,
since the polyhedral cone of eq. (4.23) would result in a nonlinear constraint, it is
conservatively approximated with a convex region. Because both constraints are
linear, IS-MPC can be formulated as a Quadratic Programming (QP) program, and
solved efficiently at each control iteration.

This chapter presents IS-MPC in its entirety, describing the prediction model
(a LIP with a dynamic extension on the ZMP), the stability constraint and the
ZMP constraint, and the definition of the QP problem. In the end, the condition of
feasibility of IS-MPC optimization problem is discussed.

5.1 Overview

In this section, we describe the use of IS-MPC within a simple locomotion framework
(Fig. 5.1). Before going into the details of the scheme, we define the footstep plan
P = {Sf ,Sφ} as the sequence of footsteps Sf and swing foot trajectories Sφ that
bring the robot from its initial configuration to a desired goal. In particular, we
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Figure 5.1. Block scheme showing the use of IS-MPC within a locomotion framework.

define

Sf =
{

f1, . . . ,fn
}

Sφ =
{

φ1, . . . ,φn−2
}
,

with
f j =

(
xj

f , y
j
f , z

j
f , θ

j
f , T

j
ss, T

j
ds

)
collecting the position (xj

f , y
j
f , z

j
f ) and the orientation θj

f of the j-th footstep1, the
duration T j

ss of the j-th single support phase, and the duration T j
ds of the j-th

double support phase. The swing foot trajectory φj represents the j-th step, i.e.,
the trajectory leading the foot from f j to f j+2. Note that (x1

f , y
1
f , z

1
f , θ

1
f ) and

(x2
f , y

2
f , z

2
f , θ

2
f ) respectively represent the initial swing foot and support foot pose.

Assuming a footstep plan P is available (it may be manually defined or computed
by a footstep planner [19]), at each timestep tk, the IS-MPC computes a reference
position pr

c of the CoM, which, together with the reference swing foot pose φr, is
sent to the kinematic controller which generates joint commands q̇r that are sent to
the robot. In this manuscript, we assume the robot is controlled in velocity, and
that the kinematic controller is QP-based (such as [49]). The robot is then localized
(using sensors mounted on the robot, such as an RGD-D camera as shown in the
block scheme), the estimated CoM position p̂c is fed back to to IS-MPC, and the
estimated swing foot pose is fed back to the kinematic controller.

1To represent the footstep orientation we only use the yaw angle, as roll and pitch are always
zero thanks to the piecewise-horizontal ground assumption in the world of stairs.
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5.2 Prediction model
As already mentioned in Sect. 4.4.2, control of the ZMP can be achieved by using
the LIP model, which relates the position of the ZMP and the acceleration of the
CoM. In order to obtain smoother trajectories, we dynamically extend the LIP
model (4.17), obtaining a model with derivative of the ZMP ṗz as control input.
Denoting the CoM as pc = [xc, yc, zc]⊤ and the ZMP as pz = [xz, yz, zz]⊤, the model
can hence be rewritten asẋc

ẍc

ẋz

 =

 0 1 0
η2 0 −η2

0 0 0


xc

ẋc

xz

+

0
0
1

 ẋz (5.1)

for the x component (and analogously for the y component), andżc

z̈c

żz

 =

 0 1 0
η2 0 −η2

0 0 0


zc

żc

zz

+

0
0
1

 żz +

 0
−g
0

 (5.2)

for the z component.
The IS-MPC gait generation scheme works over discrete time-steps of duration

δ, over which the input ṗz is assumed to be constant, i.e.

ṗz(t) = ṗk
z , t ∈ [tk, tk+1).

This assumption makes the ZMP piecewise linear over the IS-MPC sampling intervals,
i.e.,

xz(t) = xk
z + xk

z(t− tk), t ∈ [tk, tk+1), (5.3)
for the x component (an analogous relation can be written for the y and z compo-
nents).

The prediction model is used to forecast the evolution of the system over a
receding horizon window called the control horizon, spanning a time Tc = Cδ. The
number of footsteps that are contained within this control horizon is denoted as
F . In this manuscript, we consider that the available footstep plan fully covers the
receding horizon window. To do so, we assume that the robot comes to a complete
stop once the last element (representing the goal) is reached. When this hypothesis
is not satisfied, it is possible to consider a receding window called the preview horizon
[58].

Consider the following vectors collecting the ZMP positions:

Xk
z =

[
xk

z , x
k+1
z , . . . , xk+C−1

z

]⊤
(5.4)

Y k
z =

[
yk

z , y
k+1
z , . . . , yk+C−1

z

]⊤
(5.5)

Zk
z =

[
zk

z , z
k+1
z , . . . , zk+C−1

z

]⊤
. (5.6)

As explained in [57], by defining

P =


δ 0 · · · 0
δ δ · · · 0
...

... . . . ...
δ δ · · · δ

 , p =


1
1
...
1

 ,
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it is possible to express ZMP positions as

Xk+1
z = pxk

z + P Ẋk
z

Y k+1
z = pyk

z + P Ẏ k
z

Zk+1
z = pzk

z + P Żk
z .

This definition will be used to express the stability constraint and the ZMP constraint
in the following sections. Moreover, the vectors Ẋk

z , Ẏ
k

z , Ż
k
z will be the optimization

variables in the IS-MPC optimization problem, which, as mentioned before, is a QP
problem.

5.3 Stability constraint
Model (4.17), and consequently the dynamically extended model (5.1), as already
mentioned in Sect. 4.4.2, has a positive eigenvalue η, reflecting the intrinsic instability
of the humanoid dynamics. Given this instability, it is not sufficient to generate a gait
such that the ZMP is inside the support region (4.23), because the associated CoM
trajectory might be divergent, making the motion unrealizable by the humanoid. The
role of the stability constraint is to enforce a condition on the unstable component
of the dynamics in order to guarantee that the CoM trajectory does not diverge
with respect to the ZMP.

Despite the instability, the evolution of the system is bounded if the following
stability condition [59] is satisfied:

pk
u = η

∫ ∞

tk

e−η(τ−tk)pz(τ)dτ − g

η2 , (5.7)

where the superscript in pk
u indicates that the variable is sampled at time tk.

Condition (5.7) is non-causal as it requires knowledge of the future ZMP trajectory
pz up to infinity. In order to derive a causal implementation, we split the integral
at tk+C . Of the two separate integrals that result, the first, over [tk, tk+C), can be
expressed in terms of the MPC decision variables. A value for the second integral,
over [tk+C ,∞), can be obtained by conjecturing a ZMP trajectory using information
coming from the footstep plan. This conjectured trajectory is called anticipative tail
and is denoted with p̃z. In [58], the anticipative tail was used to prove recursive
feasibility and stability of the MPC scheme.

The stability constraint is then written as

η

∫ tk+C

tk

e−η(τ−tk)pzdτ = pk
u − c̃k + g

η2 . (5.8)

where c̃k is given by
c̃k = η

∫ ∞

tk+C

e−η(τ−tk)p̃zdτ. (5.9)

Enforcing constraint (5.8) allows to bound the displacement between CoM and
ZMP. In fact, the value of the bound is almost identical in most practical situation,
especially in view of the fact that the preview horizon is unlimited because the plan
is completely known.
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The stability constraint (5.8) can be rewritten in terms of Ẋk
z , Ẏ

k
z , Ż

k
z by com-

puting the integral over the piecewise linear ZMP trajectory (5.3). The final form of
the constraint can be found in [58]. For the purpose of this analysis, we will use the
compact expression s⊤ 0⊤ 0⊤

0⊤ s⊤ 0⊤

0⊤ 0⊤ s⊤


Ẋk

z

Ẏ k
z

Żk
z

 = bk + pk
u (5.10)

where

s = 1− e−ηδ

η


e−0·ηδ

e−1·ηδ

. . .

e−(C−1)·ηδ

 , bk =

bk
x

bk
y

bk
z

 = −pk
z −

 0
0

g/η2

 . (5.11)

Note that, from 4.20, we have that

pk
u =

xk
u

yk
u

zk
u

 = pk
c + 1

η
ṗk

c . (5.12)

5.4 ZMP constraint

As explained in Chapter 4, relating the dynamics of the CoM to those of the ZMP
is essential since the latter encodes information about the realizability of ground
reaction forces, and thus provides a criterion for balance. A common criterion for
balance in 3D environments such as world of stairs is to prescribe the ZMP to be
inside a polyhedral cone (Sect. 4.5). However, enforcing this condition directly
would lead to a nonlinear constraint in the MPC because the vertex of the pyramid
is the CoM of the robot [60]. Thus, we adopt a conservative approximation called
the moving constraint [130].

The IS-MPC block constructs ZMP constraints from the footstep plan P l, where l
is the index of the first footstep of the current subplan (at tk). The moving constraint
requires for the ZMP to be at all times within a convex polyhedron of fixed shape,
in our case a box of dimensions dx, dy and dz centered in pmc = [xmc, ymc, zmc]⊤,
which we call the moving box. Note that approximating the polyhedral cone Z with
a box might seem overly conservative. However, we argue that the neglected portion
of the pyramid region is not crucial here, because large displacements of the ZMP in
the z direction would only be required to generate large vertical accelerations, which
are not necessary in the considered setting (walking in a world of stairs). Clearly,
less conservative approximations can still be envisaged and used for generating more
dynamic motions.

Along the prediction, the moving box can translate but not rotate, and its center
moves in such a way that it is always fully contained within the 3D pyramid Z (Fig
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CoM

x

z

Figure 5.2. During double support, the box constraint slides from the previous to the next
support foot [18].

5.2). The vectors

Xk+1
mc =

[
xk+1

mc , x
k+2
mc , . . . , x

k+C
mc

]⊤
Y k+1

mc =
[
yk+1

mc , y
k+2
mc , . . . , y

k+C
mc

]⊤
Zk+1

mc =
[
zk+1

mc , z
k+2
mc , . . . , z

k+C
mc

]⊤
collect the coordinates of the center of the moving box in the control horizon.

Because of its constant orientation in the prediction, at each time we can choose
the orientation of the axes to align with the orientation of the moving box (taken as
the orientation of the current support foot) and obtain a ZMP constraint that is
decoupled along the 3 axes. We can write it as

Xm,k+1
z ≤Xk+1

z ≤XM,k+1
z

Y m,k+1
z ≤ Y k+1

z ≤ Y M,k+1
z

Zm,k+1
z ≤ Zk+1

z ≤ ZM,k+1
z ,

(5.13)

where Xm,k+1
z ,XM,k+1

z ,Y m,k+1
z ,Y M,k+1

z ,Zm,k+1
z ,ZM,k+1

z are the ZMP bounds along
the prediction, which can be expressed as

Xm,k+1
z = Xk+1

mc − p
dx

2 XM,k+1
z = Xk+1

mc + p
dx

2

Y m,k+1
z = Y k+1

mc − p
dy

2 Y M,k+1
z = Y k+1

mc + p
dy

2

Zm,k+1
z = Zk+1

mc − p
dz

2 ZM,k+1
z = Zk+1

mc + p
dz

2 .

(5.14)
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The size of the moving box [dx, dy, dz]⊤ is determined in such a way to always be
contained inside the pyramid Z [18, 19]. The center of the moving box pmc must
be expressed in terms of the plan P l. First we define the piecewise-linear sigmoid
function

σ(t, ti, tf ) = 1
tf − ti

(ρ(t− ti)− ρ(t− tf )) ,

where ρ(t) = tδ−1(t) is the unit ramp. σ(t, ti, tf ) is 0 before ti, 1 after tf , and it
transitions linearly in the interval [ti, tf ]. This function is useful to represent the
transition between consecutive footsteps.

The vectors Xk+1
mc ,Y k+1

mc ,Zk+1
mc collecting the positions of the moving constraint

along the horizon can be written as

Xk+1
mc = MX l

f + mxl
f

Y k+1
mc = MY l

f + myl
f

Zk+1
mc = MZ l

f + mzl
f

(5.15)

where

X l
f =

[
xl

f , x
l+1
f , . . . , xl+F

f

]⊤
Y l

f =
[
yl

f , y
l+1
f , . . . , yl+F

f

]⊤
Z l

f =
[
zl

f , z
l+1
f , . . . , zl+F

f

]⊤
collect the footstep positions. M ∈ RC×F is a mapping matrix whose elements Mij

are defined as

Mij = σ
(
tk+i, t

l+j
s , tl+j

s + T l+j
ds

)
− σ

(
tk+i, t

l+j−1
s , tl+j−1

s + T l+j−1
ds

)
,

(5.16)

and m ∈ RC is a vector whose elements mi are given by

mi = 1− σ
(
tk+i, t

l
s, t

l
s + T 1

ds

)
,

where tls is the starting time of the l-th step and

tjs = tls +
l+j−1∑

λ=l

(
T λ

ds + T λ
ss

)
.

5.5 IS-MPC algorithm

IS-MPC solves, at each time tk, the following QP problem:
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min
Ẋk

z ,Ẏ k
z ,Żk

z

∥∥∥Ẋk
z

∥∥∥2
+
∥∥∥Ẏ k

z

∥∥∥2
+
∥∥∥Żk

z

∥∥∥2
+ β

∥∥∥Xk+1
z −Xk+1

mc

∥∥∥2

+ β
∥∥∥Y k+1

z − Y k+1
mc

∥∥∥2
+ β

∥∥∥Zk+1
z −Zk+1

mc

∥∥∥2
(5.17)

subject to:

• stability constraints (5.10)

• ZMP constraints (5.13)
The algorithm takes as input the footstep plan P , which is used to construct, at

each timestep tk the stability and the ZMP constraints, as explained in the previous
sections. In the cost function, the first three terms act as regularization while the
remaining attempt to bring the ZMP as close as possible to the center of the moving
box, with a strength modulated by the weight β.

The IS-MPC iteration performs, at each timestep tk, the following steps:

1. Solve the QP (5.17) to obtain Ẋk
z , Ẏ

k
z , Ż

k
z .

2. From the solutions, extract the first sample
[
ẋk

z , ẏ
k
z , ż

k
z

]
.

3. Integrate (5.1) from
[
xk

c , ẋ
k
c , x

k
z

]
considering ẋz = ẋk

z , obtain
[
xk+1

c , ẋk+1
c , xk+1

z

]
.

Compute
[
yk+1

c , ẏk+1
c , yk+1

z

]
and

[
zk+1

c , żk+1
c , zk+1

z

]
similarly (using (5.2) for

the z component).

4. Send the CoM position pk+1
c =

[
xk+1

c , yk+1
c , zk+1

c

]⊤
to the kinematic controller.

5.6 Feasibility region

The feasibility region is the region of the state space in which the IS-MPC optimization
problem (5.17) is feasible.

Proposition 1 IS-MPC is feasible at time tk if

s⊤P −1
(
Xm,k+1

z −pxk
z

)
≤xk

u+bk
x≤s⊤P −1

(
XM,k+1

z −pxk
z

)
,

s⊤P −1
(
Y m,k+1

z −pyk
z

)
≤yk

u+bk
y≤s⊤P −1

(
Y M,k+1

z −pyk
z

)
,

s⊤P −1
(
Zm,k+1

z −pzk
z

)
≤zk

u+bk
z≤s⊤P −1

(
ZM,k+1

z −pzk
z

)
.

(5.18)

Proof. We focus the proof on the inequalities for the x component, as the logic, for
the other components is identical. The bounds of the feasibility region along x are
given by

xk,b1
u = s⊤P −1

(
Xm,k+1

z − pxk
z

)
− bk

x,

xk,b2
u = s⊤P −1

(
XM,k+1

z − pxk
z

)
− bk

x.
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Then, if xk
u is inside the feasibility region, it is possible to express it as a convex

combination of the two bounds, i.e.,

xk
u = αxk,b1

u + (1− α)xk,b2
u , α ∈ [0, 1]. (5.19)

Consider the following ZMP velocity trajectory:

Ẋk
z = αP −1

(
Xm,k+1

z − pxk
z

)
+ (1− α)P −1

(
XM,k+1

z − pxk
z

)
. (5.20)

We will show that this particular trajectory satisfies both the stability constraint
and the ZMP constraints. As for the stability constraint, multiply both sides of
(5.20) by s⊤ and plug in the definitions of xk,b1

u and xk,b2
u to obtain

s⊤Ẋk
z =

(
α
(
xk,b1

u + bk
x

)
+ (1− α)

(
xk,b2

u + bk
x

))
.

Using (5.19), this is equivalent to the stability constraint (5.10).
To prove satisfaction of the ZMP constraint. Left-multiplying (5.4) by Z, the

chosen ZMP velocity trajectory can be rewritten as

Xk
z − pxk

z = α
(
Xm,k+1

z − pxk
z

)
+ (1− α)

(
XM,k+1

z − pxk
z

)
,

which simplifies to Xk
z = αXm,k+1

z + (1 − α)XM,k+1
z , and therefore the ZMP

constraint (5.13) is satisfied.
Note that, because P is a lower-triangular matrix filled with δ, its inverse is

simply

P −1 =



1/δ 0 0 . . . 0 0
−1/δ 1/δ 0 . . . 0 0

0 −1/δ 1/δ . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1/δ 0
0 0 0 . . . −1/δ 1/δ


.
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Chapter 6

Humanoid motion generation in
a world of stairs

In this chapter we consider the problem of generating a humanoid motion in a
world of stairs, a specific kind of uneven ground consisting of horizontal patches
located at different heights. In order to successfully achieve this, it is necessary
to plan a footstep sequence and a whole body motion for the humanoid realizing
such sequence. We choose to approach the problem by keeping these two stages
separate. The reason for this choice is that in this way we can better control the
quality of the produced motions. In fact, the quality of the footstep plan can be
evaluated based on global requirements, such as the number of steps taken, or a
different performance index. As for the quality of the motion itself, this should be
mainly addressed by its capability to satisfy all the required constraints, in order to
avoid falls and instabilities. Maintaining a separation between planning and control
also greatly simplifies the tuning because the domain in which any given parameter
has effect is reduced.

Keeping planning and control separated is relatively straightforward when the
planning is done off-line. However, it might be more difficult to realize if one wants
to allow for on-line planning and replanning. In this chapter, we will discuss an
on-line architecture that achieves this by having short planning stages interleaved
with the motion, in such a way that the planning can fully utilize sensor information
gathered by the robot as it moves, and that the robot itself can take advantage of
the on-line planner to find more efficient and safe footstep sequences. Moreover, we
consider planning both in off-line situations, in which the environment is completely
known, and on-line situations, in which the geometry of the environment is not
known in advance and must be reconstructed by the robot itself during motion
using on-board sensors. In this case, planning and execution are interdependent: the
former clearly requires the latter in order to determine where to place the footsteps,
but the converse is also true, as the real-time motion of the robot is necessary to
acquire information about the environment.
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Figure 6.1. An instance of the considered problem. The robot must reach the goal region
(in yellow) by traversing a world of stairs. Patches that are not visible correspond to
infinitely deep holes or trenches.

6.1 Problem formulation
In the situation of interest (Fig. 6.1), a humanoid robot moves in a world of stairs, a
specific kind of uneven ground consisting of horizontal patches that (i) are located at
different heights, and (ii) constitute a partition1 of IR2. Depending on its elevation
with respect to the neighboring areas, a patch may be accessible for the humanoid to
climb on from an appropriate direction; otherwise, it actually represents an obstacle
to be avoided. Any accessible patch may be stepped on, stepped over or even
circumvented, depending on the generated motion.

The mission of the robot is to reach a certain goal region G, which will belong in
general to a single patch (Fig. 6.1). In particular, this locomotion task is accomplished
as soon as the robot places a footstep inside G.

We want to devise a complete framework enabling the humanoid to plan and
execute a motion to fulfill the assigned task in the world of stairs. This requires
addressing two fundamental problems: finding a 3D footstep plan and generating a
variable-height gait that is consistent with such plan. Footstep planning consists in
finding both footstep placements and swing foot trajectories between them; overall,
the footstep plan must be feasible (in a sense to be formally defined later) for the
humanoid, given the characteristics of the environment. Gait generation consists
in finding a CoM trajectory which realizes the footstep plan while guaranteeing
dynamic balance of the robot at all time instants. From the trajectories of the
CoM and the feet, a whole-body motion may be computed using inverse kinematics
methods.

In particular, we will address two versions of the above problem, henceforth
referred to as the off-line and on-line case. In the first, the geometry of the
environment is completely known in advance, while in the second it is reconstructed

1This implies that the whole volume of space below any horizontal patch is occupied.
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by the robot itself as it moves. In the following we describe the architectures designed
for the off-line and on-line case supposing that the environment is static. However,
we will also show that the latter can be used effectively in dynamic environments,
thanks to its fast replanning capabilities.

The problem will be solved under the following assumptions.

A1 Information about the environment is maintained in an elevation map Mz,
i.e., a 2.5D grid map of equally-sized cells that, whenever needed, can be
queried as z =Mz(x, y), to provide the height of the ground at the cell having
coordinates [x, y] [94]. In the off-line case,Mz is available a priori, while in the
on-line case it must be incrementally built by the humanoid based on sensory
information.

A2 The humanoid is equipped with a head-mounted RGB-D camera, which is
used for localization in both the off-line and on-line cases, and also updating
the elevation map Mz in the latter.

A3 The humanoid is endowed with a localization module which provides an
estimate of the camera pose at each time instant, based on information gathered
by the RGB-D camera. This is used in both the off-line and on-line cases.

A4 The friction between the robot feet and the ground is sufficiently large to avoid
slipping at the contact surfaces2.

In the off-line case, a complete footstep plan leading to the goal region G will be
computed before the humanoid starts to move. In the on-line case, the footstep plan
will instead be updated during motion, based on new information added to Mz.

In the following, we first address in full detail the off-line case and then proceed
to extending the proposed approach to the on-line case.

6.2 The off-line case

We start this section by describing the general structure of the proposed method.
Then we will describe the footsep planner and present some simulations. The gait
generation scheme used is the one presented in Chapter 5.

6.2.1 General architecture

To solve the described problem in the off-line case, we adopt the architecture shown
in Fig. 6.2, in which the main components are the footstep planning, gait generation
and localization modules.

In the following, we denote by f = (xf , yf , zf , θf ) the pose of a certain footstep,
with (xf , yf , zf ) representing the coordinates of a representative point, henceforth

2Since our objective is to generate walking gaits in a world of stairs, we expect that the
horizontal components of the ground reaction forces will be rather limited with respect to the
vertical components, making this assumption reasonable. Nevertheless, the constraint that ground
reaction forces must always be contained in the friction cone can be incorporated in our formulation;
this extension would be required in the case of non-horizontal contact surfaces.
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Figure 6.2. Block scheme of the proposed solution approach for the off-line case.

collectively denoted as pf , and θf its orientation3. Moreover, a pair (fswg,fsup)
defines a stance, i.e., the feet poses during a double support phase after which a step
is performed by moving the swing foot from fswg while keeping the support foot at
fsup.

The footstep planner receives in input the initial humanoid stance4 (f ini
swg,f

ini
sup) at

t = 0, the goal region G, a time budget ∆T , and the elevation map Mz representing
the environment.

The time budget represents the time given to the planner to find a solution.
When this time runs over, the algorithm either returns a solution or ends with
a failure. Explicitly specifying this time as input to the algorithm allows us to
evaluate the performance of the planning module, but also proves to be useful for
the extension to the on-line case, where the time budget is set equal to the duration
of a step in order to meet the real-time requirement.

The planner works off-line to find, within ∆T , an optimal footstep plan P∗ =
{Sf ,Sφ} leading to the desired goal region G. In P∗, we denote by

Sf =
{

f1, . . . ,fn
}

the sequence of footstep placements, whose generic element f j is the pose of the
j-th footstep, with f1 = f ini

swg and f2 = f ini
sup. Also, we denote by

Sφ =
{

φ1, . . . ,φn−2
}

the sequence of associated swing foot trajectories, whose generic element φj is the
j-th step, i.e., the trajectory leading the foot from f j to f j+2. Its duration T j

s is split
in T j

ss and T j
ds, respectively the single and double support phases. The timestamp

3To represent the footstep orientation we only use the yaw angle, as roll and pitch are always
zero thanks to the piecewise-horizontal ground assumption.

4The initial support foot can be chosen arbitrarily.
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of a generic footstep indicates the beginning of the j-th step, i.e., of the j-th single
support phase; thus, f j has an associated timestamp tjs = tj−1

s + T j−1
s , with t1s = 0.

Once the footstep plan has been generated, the sequence of footsteps Sf is sent
to a gait generator based on IS-MPC (Chapter 5), which computes in real time
a variable-height CoM trajectory that is compatible with Sf and guaranteed to
be stable (i.e., bounded with respect to the ZMP). In particular, we denote by pr

c
the current reference position of the CoM produced by IS-MPC. Also, let φr be
the current reference pose of the swing foot, obtained by sampling the appropriate
subtrajectory in Sφ. Then, pr

c and φr are passed to a kinematic controller which
computes the joint commands q̇r for the robot.

Visual information, gathered by the head-mounted camera in the form of RGB-D
images, is provided to the localization module, which continuously updates the
estimate ŝ of the pose of the camera frame. From this, and using joint encoder data,
it is possible to obtain estimates for the CoM position and swing foot pose (p̂c and
φ̂, respectively) through kinematic computations. Finally, these estimates are used
to provide feedback to both the gait generation and kinematic control modules.

6.2.2 Footstep planning

The input data for this module are the initial robot stance (f ini
swg,f

ini
sup), the goal

region G, the time budget ∆T and the elevation map Mz. Given an optimality
criterion, the footstep planner returns the best footstep plan P∗ leading to G found
within ∆T .

The planning algorithm builds a tree T , where each vertex v = (fswg,fsup)
specifies a stance, and an edge between two vertexes v and v′ = (f ′

swg =fsup,f
′
sup)

indicates a step between the two stances, i.e., a collision-free trajectory such that
one foot swings from fswg to f ′

sup and the other is fixed at fsup.
The expansion process makes use of a catalogue U of primitives, which allows

to generate new footsteps by selecting them from a finite set of displacements with
respect to the support foot. The catalogue is split in two subsets, one for the case
of left support and the other for the case of right support; at each instant, the
appropriate subset is used. An example catalogue is shown in Fig. 6.3.

Each branch joining the root of the tree to a generic vertex v represents a footstep
plan P. The sequences Sf and Sφ for this plan are respectively obtained by taking
along the branch the support foot poses of all vertexes and the steps corresponding
to all edges.

Footstep feasibility

Footstep f j =
(
xj

f , y
j
f , z

j
f , θ

j
f

)
∈ Sf is feasible if it satisfies the following requirements:

R1 f j is fully in contact within a single horizontal patch.

To guarantee this, each cell of Mz belonging to, or overlapping with, the
footprint at f j must have the same height zj

f . In practice, one typically uses
an enlarged footprint to ensure that this requirement will still be satisfied in
the presence of small positioning errors.
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left support right support

catalogue

Figure 6.3. An example catalogue U of primitives, containing a finite set of landings for
the swing foot with respect to the left or right support foot.

R2 f j is kinematically admissible from the previous footstep f j−1 (this is actually
stance feasibility).

The admissible region (a submanifold of IR3 × SO(2)) for placing f j next to
f j−1 is defined by the following constraints:

−
[
∆−

x

∆−
y

]
≤ R⊤

j−1

xj
f − x

j−1
f

yj
f − y

j−1
f

± [0
ℓ

]
≤
[
∆+

x

∆+
y

]
(6.1)

−∆−
z ≤ z

j
f − z

j−1
f ≤ ∆+

z (6.2)

−∆−
θ ≤ θ

j
f − θ

j−1
f ≤ ∆+

θ . (6.3)

Here, Rj−1 is the planar rotation matrix associated with θj−1
f and the ∆

symbols are lower and upper maximum increments, see Fig. 6.4.

R3 f j is reachable from f j−2 through a collision-free motion (this is actually step
feasibility).

Since information about the whole-body motion of the robot is not yet avail-
able during footstep planning (it will only be defined in the subsequent gait
generation phase), this requirement can only be tested conservatively. In
particular, we say that R3 is satisfied if (i) there exist a collision-free swing foot
trajectory φj−2 from f j−2 to f j generated by the engine of Sect. 6.2.2, and (ii)
a suitable volume B accounting for the maximum occupancy of the humanoid
upper body at stance (f j−1,f j) is collision-free. More precisely, B is a vertical



6.2 The off-line case 43

Figure 6.4. The 3D admissible region identified by the first two kinematic constraints of
requirement R2, i.e., eqs. (6.1– 6.2). Footstep orientation is not represented.

cylinder whose base has radius rb and center at (xm, ym, zm + zb), where xm,
ym, zm are the coordinates of the midpoint m between the footsteps and zb is
a vertical offset representing the average distance between the ground and the
hip (Fig. 6.5). Note that any nonzero height can be used for the cylinder in
view of the world of stairs assumption, which implies that B is collision-free 5

if each cell of Mz belonging to, or overlapping with, its ground projection has
height smaller than zm + zb.

Vertex identity, neighbors and cost

The identity of a vertex v = (fswg,fsup) indicates whether fswg refers to the left (L)
or the right (R) foot:

id(v) =
{
L if id(vparent) = R

R if id(vparent) = L,

where vparent is the parent vertex of v. This definition determines the identity of
each vertex, once the identity of the root is assigned.

We also define the set of neighbors of v = (fswg,fsup)

N (v) = {v′ = (f ′
swg,f

′
sup) ∈ T : γ(fsup,f

′
sup) ≤ rneigh}

where rneigh is a threshold distance and

γ(f ,f ′) = ∥pf − p′
f∥+ kγ |θf − θ′

f | (6.4)

is a footstep-to-footstep metric, with kγ ≥ 0.
5Even though the volume for checking the upper body collision is chosen conservatively, this does

not guarantee obstacle avoidance because the lower body is not considered. However, whole-body
collision avoidance can be obtained by including appropriate constraints in the kinematic controller
[49].
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Figure 6.5. Visual representation of the process for checking requirement R3. The red
cylinder accounts for the maximum occupancy of the humanoid upper body, while the
yellow line represents the swing foot trajectory.

Assume that the edge between two vertexes va and vb of T has a cost l(va, vb).
The cost of a vertex v is defined as

c(v) = c(vparent) + l(vparent, v)

and represents the cost of reaching v from the root of T . Then, the cost of a plan P
ending at a vertex v is c(P) = c(v).

In particular, we will consider three possibilities for the cost of an edge. The
first is

l1(va, vb) = 1, (6.5)

for all edges in T . The corresponding vertex cost will be denoted by c1(v) and
represents the length of the corresponding plan in terms of number of edges (i.e.,
steps).

The second edge cost represents the net height variation of the swing foot during
a step:

l2(va, vb) = |zb
f,sup − za

f,swg|, (6.6)

where za
f,swg and zb

f,sup are the z-component of, respectively, the swing foot at va

and the support foot at vb. The corresponding vertex cost will be denoted by c2(v)
and represents the cumulative height variation along the corresponding plan.

Finally, we also consider as edge cost

l3(va, vb) = 1
σ(f b

sup) , (6.7)
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1. Select vertex for expansion 2. Generate candidate vertex

3. Choose parent 4. Rewire

Figure 6.6. The four steps of a generic iteration of the footstep planner. First, a sampled
point is used to select a vertex for expansion. Then, the selected vertex is used to
generate a candidate vertex to be inserted in the tree. In the third step, a parent for the
candidate vertex is chosen. Finally, a rewiring procedure is called to update the tree,
guaranteeing that the cost of the nodes is optimal.
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where σ(f b
sup) is the clearance of the support foot f b

sup at vb, defined as the distance
between the representative point of f b

sup and the closest point in Mz w.r.t. which
the absolute height variation is larger than max{∆−

z ,∆+
z }6. This cost penalizes

steps that bring the swing foot too close to a drop or to a vertical surface leading
to a contiguous higher patch, while still allowing to approach accessible patches
such as staircases. The corresponding vertex cost, denoted by c3(v), represents the
cumulative inverse clearance along the corresponding plan.

Other kinds of cost functions can be considered. For example, one could penalize
unnecessary rotations of the next footstep with respect to the support footstep in
order to obtain smoother plans. In general, it may be advisable to use a weighted
combination of several optimality criteria for better practical performance.

Algorithm

We now describe the footstep planning algorithm for the off-line case (Algorithm 1).
At the beginning, T is rooted at (f ini

swg,f
ini
sup), the initial stance of the humanoid.

Then, T is expanded using an RRT*-like strategy. The generic iteration consists of:
selecting a vertex for expansion, generating a candidate vertex, choosing a parent
for the new vertex and rewiring the tree. These individual steps are described in the
following, see also Fig. 6.6.

Algorithm 1: FootstepPlanner
Input: (f ini

swg,f
ini
sup),G,∆T ,Mz

Output: P∗

1 vini ← (f ini
swg, f ini

sup);
2 AddVertex(T , ∅, vini, ∅);
3 ExpandTree(T , ∆T , Mz);
4 P∗ ← RetrieveBestPlan(T ,G);
5 return P∗;

Selecting a vertex for expansion: A point prand
xy is randomly selected on the

xy-plane, and the vertex vnear that is closest to prand
xy is identified. To this end, we

define a vertex-to-point metric as

µ(v,pxy) = ∥mxy(v)− pxy∥+ kµ|ψ(v,pxy)|,

where mxy(v) represents the planar position of the midpoint between the feet at
stance v, kµ is a positive scalar, and ψ(v,pxy) is the angle between the robot sagittal
axis (whose orientation is the average of the orientations of the two footsteps) and
the line joining mxy to pxy. This step corresponds to the functions SamplePoint
and NearestVertex in Procedure 1. ◀

Generating a candidate vertex: After identifying the vertex
vnear = (fnear

swg ,f
near
sup ), a candidate footstep is first generated using the catalogue

U (see Fig. 6.3). In particular, we set the support foot to fnear
sup and randomly select

6This information may be precomputed from the elevation map Mz and stored in a clearance
map.
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Procedure 1: ExpandTree
Input: T ,∆T ,Mz

Output: none
1 while not TimeExpired(∆T ) do
2 prand

xy ← SamplePoint();
3 vnear ← NearestVertex(T ,prand

xy );
4 f cand

sup ← GenerateCandidateFootstep(fnear
sup , U,Mz);

5 if R1(f cand
sup ) and R2(f cand

sup ,fnear
sup ) then

6 φnear ← SwingTrajectoryEngine(fnear
swg ,f

cand
sup );

7 if R3(φnear, (fnear
sup ,f cand

sup )) then
8 vcand ← (fnear

sup ,f cand
sup );

9 N ← Neighbors(T , vcand);
10 (vmin,φmin)← ChooseParent(T ,N , vnear, vcand,φnear);
11 vnew ← (fmin

sup ,f
cand
sup );

12 AddVertex(T , vmin, vnew,φmin);
13 ReWire(T ,N , vnew);
14 end
15 end
16 end
17 return;

one element from the subset of U associated to the identity of vnear, which may be
L (left) or R (right). Note that all elements of U are chosen so as to automatically
satisfy conditions (6.1–6.3) of requirement R2. Call f cand

sup the chosen candidate
footstep. The z coordinate to be associated to the footstep f cand

sup is then retrieved
from Mz, and both the requirement R1 and the last condition (6.2) of R2 can now
be checked.

To test the last requirement R3, we invoke an engine (Procedure 2) that generates
a swing foot trajectory φnear from fnear

swg to f cand
sup . Such engine uses a parameterized

trajectory which, given the endpoints, can be deformed7 by varying the maximum
height h along the motion. Using the elevation map and increments of ∆h, the engine
tries growing values of h in a certain range [hmin, hmax] looking for a collision-free
trajectory.

If all requirements have been satisfied, a candidate vertex is generated as vcand =
(f cand

swg ,f cand
sup ), with f cand

swg = fnear
sup ; however, vcand is not added to T because the

planner first needs to identify the best parent for it. If any requirement among
R1–R3 is violated, the current expansion attempt is aborted and a new iteration is
started. This step corresponds to lines 4-8 in Procedure 1. ◀

Choosing a parent: Although vcand was generated from vnear, there might be
a different vertex in the tree that leads to the same vertex with a lower cost. To find
it, the planner checks for each vertex v′ = (f ′

swg,f
′
sup) ∈ N (vcand) whether setting v′

as parent of vcand satisfies requirements R2-R3, and whether this connection reduces

7As a deformable trajectory we used a polynomial, but other choices (e.g., B-splines and Bezier
curves) are possible.
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Procedure 2: SwingTrajectoryEngine
Input: fa, f b

Output: φa

1 h ← hmin;
2 while h ≤ hmax do
3 φa ← DeformTrajectory(fa,f b, h);
4 if CollisionFree(φa) then
5 return φa;
6 end
7 h← h+ ∆h;
8 end
9 return ∅;

the cost of vcand, that is

c(v′) + l(v′, vcand) < c(vnear) + l(vnear, vcand).

The vertex vmin = (fmin
swg ,f

min
sup ) that allows to reach vcand with minimum cost is

chosen as its parent. If vmin = vnear, then vcand can be added to the tree together
with the edge joining it to vnear. However, if a different parent vmin ̸= vnear is chosen,
the candidate vertex vcand must be modified by relocating its swing footstep to
the support footstep of vmin. To this end, a new vertex vnew = (fnew

swg ,f
new
sup ) with

fnew
swg = fmin

sup and fnew
sup = f cand

sup is generated and added to T as child of vmin. The
edge between vmin and vnew corresponds to the swing foot trajectory φmin. This
step corresponds to the function ChooseParent in Procedure 3. ◀

Procedure 3: ChooseParent
Input: T ,N , vnear, vcand,φcand

Output: vmin,φmin

1 vmin ← vnear;
2 φmin ← φcand;
3 cmin ← c(vnear) + l(vnear, vcand);
4 foreach v′ ∈ N do
5 if R2(f cand

sup ,f ′
sup) then

6 φ′ ← SwingTrajectoryEngine(f ′
swg,f

cand
sup );

7 if R3(φ′, (f ′
sup,f

cand
sup )) and c(v′) + l(v′, vcand) < cmin then

8 vmin ← v′;
9 φmin ← φ′;

10 cmin ← c(v′) + l(v′, vcand);
11 end
12 end
13 end
14 return (vmin, φmin);

Rewiring: This final step checks whether vnew allows to reach with a lower cost
some vertex already in T , and updates the tree accordingly. In particular, for each
v′ = (f ′

swg,f
′
sup) ∈ N (vnew), the procedure checks whether setting v′ as a child of
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vnew satisfies requirements R2-R3, and whether this connection reduces the cost of
v′, that is

c(vnew) + l(vnew, v′) < c(v′).

If this is the case, v′ is modified (similarly to what was done when choosing a parent)
by relocating its swing footstep to fnew

sup , and then reconnected to T as a child of
vnew. The edge between vnew and v′ corresponds to the swing foot trajectory φnew.
Finally, for each child v′′ = (f ′′

swg,f
′′
sup) of v′, the swing foot trajectory φ′ from the

relocated f ′
swg to f ′′

sup is generated and the edge between v′ and v′′ is accordingly
updated8. This step corresponds to the function ReWire in Procedure 4.

Note that, although N (vnew) can contain ancestors of vnew, no cycle will be
generated by rewiring. In fact, it can be easily shown that any ancestor of vnew will
have a cost lower or equal than c(vnew), so that it will never be set as its child. ◀

Procedure 4: ReWire
Input: T ,N , vnew

Output: none
1 foreach v′ ∈ N do
2 if R2(f ′

sup,f
new
sup ) then

3 φnew ← SwingTrajectoryEngine(fnew
swg ,f

′
sup);

4 if R3(φnew, (f ′
swg,f

′
sup)) and c(vnew) + l(vnew, v′) < c(v′) then

5 UpdateVertex(T , v′, (fnew
sup ,f

′
sup));

6 UpdateEdge(T , vnew, v′,φnew);
7 Vchild ← ChildVertexes(T , v′);
8 foreach v′′ ∈ Vchild do
9 φ′ ← SwingTrajectoryEngine(f ′

swg,f
′′
sup);

10 if φ′ ̸= ∅ then
11 UpdateEdge(T , v′, v′′,φ′);
12 else
13 RemoveSubtree(T , v′′);
14 end
15 end
16 end
17 end
18 end
19 return;

When the assigned time budget ∆T runs out, tree expansion is stopped. The set
Vgoal of vertexes v such that pf,sup ∈ G is retrieved. The vertex v∗ with minimum
cost is selected as

v∗ = argmin
v∈Vgoal

c(v) (6.8)

and the corresponding footstep plan P∗ is retrieved from the branch of T joining
the root to v∗.

8In case the engine fails to find such trajectory, the subtree rooted at vertex v′′ (including v′′

itself) is simply removed from T .
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Figure 6.7. The considered scenarios, from left to right: Rod, Ditch, Corridor, Maze,
Spacious.

Figure 6.8. Examples of footstep plans found in the scenarios Rod, Ditch, Corridor and
Maze, respectively, when minimizing the number of steps.

Clearly, the larger the time budget, the better the quality of the obtained footstep
plan. We conjecture that our planner inherits the asymptotic optimality property of
the general RRT* algorithm [131], although we do not have a formal proof yet.

Planning results

To assess the performance of the proposed footstep planner, we performed a campaign
of planning experiments through our C++ implementation on an Intel Core i7-8700K
CPU running at 3.7 GHz. The tree constructed by the planner is stored in a k-d tree
structure [132], which allows to efficiently perform search and insertion operations.
The used robot is HRP-4, a 1.5 m tall humanoid with 34 degrees of freedom by
Kawada Robotics.

We considered the five different scenarios (see Fig. 6.7) of different complexity
described in the following.

• Rod. A thin straight obstacle, which does not provide a large enough surface
to step on, must be overcome before ascending and descending a staircase.

• Ditch. A ditch can only be entered from the left and exited from the right,
because the platform in the middle of it is too low to be accessed directly.

• Corridor. A corridor must be exited before ascending and descending a
staircase.

• Maze. A maze must be navigated, including ascending and descending a
staircase, to reach the goal region.

• Spacious. The goal region can be reached either by traversing a flat ground or
ascending and descending a staircase.

The height of each step is 8 cm for all scenarios except Ditch where the height is
10 cm.

In all scenarios, the robot has to reach a circular goal region of radius 0.5 m.
The catalogue of primitives U is generated by listing all possible combinations of
the following parameters: longitudinal displacement {−0.08, 0.00, 0.08, 0.16, 0.2} [m],



6.2 The off-line case 51

Figure 6.9. Examples of footstep plans found in the scenario Spacious when minimizing
the number of steps, minimizing the height variation and maximizing the clearance,
respectively.

lateral displacement {0.20, 0.30} [m] for right support and {−0.20,−0.30} [m] for left
support, angular displacement {0.00, 0.40} [rad] for right support and {0.00,−0.40}
[rad] for left support (see Fig. 6.3). In the off-line footstep planner we have set kµ = 1,
kγ = 0, hmin = 0.02 m, hmax = 0.24 m, ∆h = 0.02 m, ∆−

x = 0.08 m, ∆+
x = 0.24 m,

∆−
y = 0.07 m, ∆+

y = 0.07 m, ∆−
z = 0.16 m, ∆+

z = 0.16 m, ∆−
θ = −0.3 rad,

∆+
θ = 0.3 rad, ℓ = 0.25 m, zb = 0.3 m, hb = 1.2 m, and rb = 0.25 m. The elevation

map Mz has a resolution of 0.02 m. The three quality criteria described in Sect.
6.2.2 are considered in each scenario.

Tables 6.1–6.3 show the performance of the planner in each scenario, for different
values of the time budget, when choosing the three optimality criteria described in
Sect. 6.2.2, respectively. In each table, each row reports the results obtained over 100
runs on a combination of scenario and time budget. A total of six performance indexes
are tracked and averaged over the total number of successful runs. In particular, a
run is considered unsuccessful if the planner terminates without placing any footstep
in the goal region. Note that all unsuccessful cases are due to inappropriate time
budget. Examination of the table confirms that increasing the time budget both
solves this problem by ensuring a high success rate, and improves the quality of the
plan in terms of the average cost (Avg Cost). This result supports our conjecture
about the asymptotic optimality of the proposed footstep planner.

Figure 6.8 shows the plans generated by minimizing the number of steps in the
scenarios Rod, Ditch, Corridor and Maze. In particular, in Rod the plan allows to
correctly pass over the thin obstacle and walk the stairway, eventually reaching the
goal region; in Ditch the plan reaches the left patch before traversing the low central
patches; in Corridor the plan manages to exit the first room, reaching the stairway
and avoiding the obstacles; in Maze the plan takes the left path among the two
available, which is the optimal one. Figure 6.9 compares the plans generated in the
scenario Spacious for each considered cost function. In particular, when minimizing
the number of steps the plan goes straight towards the goal region; when minimizing
the height variation, the plan avoids the stairway; when maximizing the clearance
the plan first moves away from the wall placed on the left flank of the robot at its
starting configuration, and then moves towards the goal region while keeping the
other obstacles at a safe distance.

6.2.3 Localization

The localization module is continuously fed with the RGB-D images gathered by
the head-mounted camera. Based on such information, it is in charge of updating
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Scenario Time Budget [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

Rod

1 22.938 15.000 35.000 6393.8 2948.7 96/100
5 19.810 15.000 28.000 21537.8 9863.0 100/100
10 18.050 15.000 25.000 34758.2 15705.5 100/100
25 16.600 15.000 24.000 62862.0 27944.5 100/100

Ditch

1 40.364 30.000 51.000 5966.7 2119.5 33/100
5 36.450 27.000 47.000 18632.4 7100.4 100/100
10 33.420 25.000 42.000 29195.2 11503.3 100/100
25 30.940 25.000 38.000 52090.5 20755.6 100/100

Corridor

1 57.823 51.000 68.000 6131.4 1880.7 17/100
5 60.213 46.000 86.000 21589.9 5068.1 89/100
10 55.687 42.000 81.000 36426.8 8068.1 99/100
25 49.700 42.000 60.000 70242.7 14415.3 100/100

Maze

1 74.773 62.000 89.000 5813.2 2264.9 22/100
5 70.949 54.000 94.000 21482.0 8695.5 99/100
10 65.520 53.000 80.000 35986.2 15327.2 100/100
25 58.240 50.000 76.000 67507.5 28891.7 100/100

Spacious

1 47.156 37.000 68.000 5749.5 2971.2 96/100
5 41.700 35.000 55.000 20899.7 10630.8 100/100
10 39.290 33.000 55.000 34665.6 17412.8 100/100
25 36.570 31.000 46.000 65308.0 31889.3 100/100

Table 6.1. Performance of the off-line footstep planner when minimizing the number of
steps.

Scenario Time Budget [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

Rod

1 0.450 0.420 0.480 6634.0 3186.5 96/100
5 0.431 0.420 0.480 20559.8 9883.2 100/100
10 0.425 0.420 0.480 31652.4 15140.0 100/100
25 0.423 0.420 0.480 53598.0 25297.7 100/100

Ditch

1 0.640 0.640 0.640 6218.1 2294.4 34/100
5 0.640 0.640 0.640 17250.0 6750.3 100/100
10 0.640 0.640 0.640 25333.2 10171.4 100/100
25 0.640 0.640 0.640 42419.5 17402.7 100/100

Corridor

1 0.400 0.400 0.400 6437.1 2035.2 26/100
5 0.400 0.400 0.400 20834.9 5288.8 92/100
10 0.400 0.400 0.400 33405.4 8035.9 99/100
25 0.400 0.400 0.400 61279.5 13747.2 100/100

Maze

1 0.480 0.480 0.480 6170.1 2455.4 24/100
5 0.480 0.480 0.480 20751.2 8991.1 99/100
10 0.480 0.480 0.480 33049.3 14808.7 100/100
25 0.480 0.480 0.480 57441.5 26592.6 100/100

Spacious

1 0.346 0.000 0.400 5961.4 3254.5 97/100
5 0.248 0.000 0.400 20470.8 11047.0 100/100
10 0.212 0.000 0.400 32485.0 17641.2 100/100
25 0.168 0.000 0.400 57866.5 30630.2 100/100

Table 6.2. Performance of the off-line footstep planner when minimizing the height
variation.
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Scenario Time Budget [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

Rod

1 30.060 20.556 58.287 4925.5 2143.6 92/100
5 25.480 18.266 42.102 16219.7 6785.2 100/100
10 23.142 17.586 36.173 26342.3 10602.8 100/100
25 20.331 17.627 27.902 48444.6 18275.1 100/100

Ditch

1 78.095 58.308 98.540 4200.6 1446.2 10/100
5 72.377 54.725 99.004 13681.3 4456.7 96/100
10 64.840 49.282 83.708 21817.8 7302.6 100/100
25 55.466 44.438 71.903 39632.2 13139.3 100/100

Corridor

1 94.234 72.764 112.454 4538.3 1376.9 12/100
5 97.323 73.304 139.995 15477.9 3418.1 82/100
10 88.866 66.266 139.700 26354.5 5314.1 98/100
25 78.178 64.615 102.587 52076.3 9236.0 100/100

Maze

1 107.971 95.340 127.139 4374.8 1744.1 8/100
5 106.620 81.630 149.408 16037.0 5919.7 88/100
10 99.264 73.844 133.529 27154.9 10394.0 100/100
25 84.433 65.234 119.569 52035.2 19752.6 100/100

Spacious

1 52.476 32.652 85.874 4467.9 2286.9 97/100
5 47.138 30.160 70.100 15879.2 7689.2 100/100
10 43.535 28.001 66.777 26325.6 12425.1 100/100
25 38.048 27.357 57.544 49981.9 22038.9 100/100

Table 6.3. Performance of the off-line footstep planner when maximizing the minimum
clearance.

in real time the estimate ŝ of the pose of the camera frame. To this end, it uses
RTAB-Map [133], an open source visual SLAM library. In particular, the visual
odometry and graph optimization tool are employed. The first tracks the features
automatically extracted from the RGB-D images, while the second minimizes the
odometry error through a graph-SLAM algorithm and a loop closure detector. It is
worth mentioning that our architecture is independent from the specific implementa-
tion of the localization module, hence any off-the-shelf visual SLAM method can be
employed in place of RTAB-Map (see assumption A3 in Sect. 6.1).

Given the pose ŝ of the camera frame estimated through visual SLAM and
the measured joint positions, the direct kinematics module produces the estimates
p̂c and φ̂ of, respectively, the CoM position and swing foot pose. These are then
provided to the gait generation and kinematic control module to achieve closed-loop
control.

6.2.4 Simulations

We performed simulations on the HRP-4 humanoid robot in the CoppeliaSim
environment. We tested our off-line framework in multiple environments (Fig. 6.7).
For the gait generation module we have set η = 3.6 s−1, the single support duration
Tss = 0.6 s, the double support duration Tds = 0.4 s, the size of the moving box
d̃z

x = d̃z
y = dz

z = 0.05 m, β = 1000, C = 100 and δ = 0.01 s. To solve the QP
problems we used HPIPM [134], which requires less than 1 ms to solve each QP and
is thus able to run in real-time with an ample margin.

Figure 6.10 shows the robot traversing the scenario Ditch. The robot starts
by moving to its left (first snapshot), approaching the accessible patch (second
snapshot). It then accesses the platform in the middle correctly avoiding the obstacle
(third and fourth snapshots), eventually reaching the goal region by climbing the
final two patches (fifth and sixth snapshots). Figure 6.11 shows the robot moving
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Figure 6.10. The robot reaches the goal going through the ditch, which can only be
accessed from the left and exited from the right.

Figure 6.11. The robot reaches the goal avoiding the corridor, climbing and descending
the staircase while avoiding the obstacles.

inside the scenario Corridor. The robot first exits the room in which it starts (first
and second snapshots), approaching the stairway (third snapshot). Then, it goes up
and down the staircases avoiding the obstacles (fourth and fifth snapshots), finally
reaching the goal region (sixth snapshot).

We invite the reader to watch the video, available at https://youtu.be/
BF43qUcx4gY, which includes clips related to the above simulations as well as
additional cases.

6.3 The on-line case

We now extend the proposed method to the on-line case. This section starts with a
description of the general architecture which, compared to that proposed for the
off-line case, includes two additional modules, i.e., the mapping and visual task
generation module, and employs a sensor-based version of the footstep planner,
which will now work on-line; all the other modules, in particular gait generation,
remain instead identical. Then, we describe the mentioned components and present
some simulation results.

https://youtu.be/BF43qUcx4gY
https://youtu.be/BF43qUcx4gY
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Figure 6.12. Block scheme of the on-line case. The red blocks and arrows highlight the
additional modules and signals compared to the off-line case.

6.3.1 General architecture

The proposed architecture for the on-line case is given in Fig. 6.12, where the
additional modules and feedback signals are shown in red.

At the beginning, the map Mz is initialized combining some limited exogenous
knowledge about the starting location of the robot and information available by the
head-mounted camera at its initial pose. Such initial map M0

z, together with the
initial humanoid stance (f ini

swg,f
ini
sup), the goal region G and a preassigned time budget

∆T , is provided to the footstep planner to find a first (possibly partial) footstep
plan P1,∗ = {S1

f ,S1
φ}.

After this initial off-line phase, all the modules run in parallel, generating the
humanoid motions in a sensor-based, closed-loop fashion. The mapping module
incrementally builds the elevation map Mz using the RGB-D images acquired by
the humanoid while walking and the estimate ŝ of the camera pose produced by
the localization module. To account for changes in Mz and take advantage of
newly acquired information, the footstep plan is on-line updated and/or extended
by repeatedly invoking the footstep planner at every step of the humanoid, with the
ultimate objective of reaching G.

More precisely, consider the generic timestamp tjs, i.e., the beginning of the j-th
step. Let (f̂ j

swg, f̂
j
sup) be the current stance, with f̂ j

swg and f̂ j
sup the estimates of the

swing and support foot poses at tjs, and Pj,∗ = {Sj
f ,Sj

φ} be the current footstep plan
– computed during the previous (j − 1)-th step – where the sequences of footstep
placements and associated swing trajectories are defined as

Sj
f =

{
f j|j , . . . ,f j+n|j

}
,

Sj
φ =

{
φj|j , . . . ,φj+n−2|j

}
with their generic elements f j+i|j and φj+i|j denoting, respectively, the (j + i)-
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th footstep and trajectory produced by the j-th planner invocation, f j|j ≈ f̂ j
swg,

f j+1|j ≈ f̂ j
sup and the last footstep f j+n|j henceforth referred to as subgoal. Also, let

(f j+1
swg ,f

j+1
sup ) be the stance that the humanoid is supposed to achieve at tj+1

s = tjs +T j
s ,

with f j+1
swg = f̂ j

sup and f j+1
sup = f j+2|j , after performing the swing trajectory φj|j

having duration T j
s . Then, during the time interval [tjs, tj+1

s ), motion execution and
footstep planning take place simultaneously as follows.

• At any time instant t ∈ [tjs, tj+1
s ), the current reference position pr

c of the CoM
is produced by the gait generator, based on the sequence Sj

f , similarly to the
off-line case; the current reference pose φr of the swing foot is obtained by
sampling the trajectory φj|j ; moreover, the visual task generator produces the
reference pose sr of the camera frame, given its current estimate ŝ and the
sequence Sj

f , that allows to direct the gaze towards the subgoal extracted from
Sj

f , and then to enlarge Mz in the area of the current destination. References
pr

c, φr, sr, together with their estimates p̂c, φ̂, ŝ, are passed to the kinematic
controller to compute the joint commands q̇r for the robot.

• At tjs, the footstep planner is invoked providing in input the stance (f j+1
swg ,f

j+1
sup ),

the goal region G, a time budget equal to T j
s , and the elevation map Mj

z

currently available by the mapping module. At tj+1
s , the planner returns a

new footstep plan Pj+1,∗ = {Sj+1
f ,Sj+1

φ }, where the sequences Sj+1
f and Sj+1

φ

are defined similarly to Sj
f and Sj

φ, f j+1|j+1 = f j+1
swg and f j+2|j+1 = f j+1

sup .
The first element φj+1|j+1 of Sj+1

φ will define the next ((j + 1)-th) step of the
humanoid.

Note that, while the footstep planner will make use of a fixed mapMj
z during the

time interval [tjs, tj+1
s ), the map Mz will continuously be updated by the mapping

module during the same time interval, which will generally provide a different map
Mj+1

z for the next invocation of the planner.
Clearly, in the on-line case, only the quality of the partial footstep plans can be

accounted for, ultimately leading to an overall plan that is globally suboptimal.

6.3.2 Mapping

At the generic time instant, the mapping module receives in input the last RGB-D
image acquired by the head-mounted camera and the current estimate ŝ of the
camera pose produced by the localization module. It is responsible for integrating
such newly acquired information into the elevation map Mz.

First, the depth data extracted from the RGB-D image are used to construct
a point cloud. Then, the latter is given in input, together with the estimate ŝ
and a sensor noise model, to Elevation Mapping [135], an open source framework
designed for rough terrain mapping; this accordingly updates a local (limited around
the robot) representation of the environment in the form of a 2.5D grid map (see
Assumption A1). Finally, such local map is integrated into Mz in order to maintain
a global representation of the explored area of the environment.

The mapping module, at the time tjs of the generic j-th invocation of the footstep
planner, provides it with a copy Mj

z of the available map Mz. Meanwhile, during
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the planner operation, the map Mz is continuously updated through the process
described above.

6.3.3 Sensor-based footstep planning

This module consists in a sensor-based version of the footstep planner proposed in
Sect. 6.2.2 which works using the knowledge about the environment incrementally
acquired by the robot during motion. We now describe the footstep planning
algorithm for the on-line case (Algorithm 2).

Algorithm 2: SensorBasedFootstepPlanner
Input: (f j+1

swg ,f
j+1
sup ),G,∆T j ,Mj

z

Output: Pj+1,∗

1 (T j+1, vroot) ← InitializeTree(T j , (f j+1
swg ,f

j+1
sup ));

2 Vchild ← ChildVertexes(T j+1, vroot);
3 foreach v′ ∈ Vchild do
4 UpdateTree(T j+1, v′,Mj

z);
5 end
6 ExpandTree(T j+1,∆T j −∆T e,Mj

z);
7 Pj+1,∗ ← RetrieveBestPlan(T j+1,G);
8 return Pj+1,∗;

The input data for the j-th invocation of the footstep planner are the next robot
stance (f j+1

swg ,f
j+1
sup ), the goal region G, the time budget ∆T j and the elevation map

Mj
z. Given an optimality criterion, the footstep planner returns the best footstep

plan Pj+1,∗, found within ∆T j , either leading to G or terminating in proximity of
the frontier of Mj

z. The latter case is typical whenever G is not included in Mj
z,

e.g., due to occlusions or simply being placed far from the robot.
The planning algorithm builds a tree T j+1 reusing portions of the tree T j

built up to the previous invocation. In this tree, vertexes and edges are defined
as described in Sect. 6.2.2, with the only difference that a vertex v = (fswg,fsup)
can contain a support footstep fsup whose z-coordinate is unspecified, indicating
that Mj

z does not provide enough information (in a sense formally defined in the
following) about the ground under the foot at fsup. Vertexes with this characteristic
represent stances located on the frontier of Mj

z and thus indicate possible direction
for further exploration of the environment. The generic invocation consists of:
initializing, updating and expanding the tree. These individual steps are described
in the following.

Initializing: The vertex vroot = (f root
swg ,f

root
sup ) of T j that is closest to (f j+1

swg ,f
j+1
sup )

is identified. To this end, we define a stance-to-stance metric as

ζ(v, v′) = γ(fswg,f
′
swg) + γ(fsup,f

′
sup) (6.9)

where γ(·) is the footstep-to-footstep metric defined in (6.4). The subtree of T j

rooted at vroot is extracted (including vroot itself) and represents the initial version
of T j+1. To match the stance that the humanoid is supposed to reach at the end of
the simultaneously executed step, vroot is modified by relocating f root

swg to f j+1
swg and

f root
sup to f j+1

sup . This step corresponds to Procedure 5. ◀
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Procedure 5: InitializeTree
Input: T j , (f j+1

swg ,f
j+1
sup ))

Output: T j+1, vroot

1 vroot ← NearestVertex(T j , (f j+1
swg ,f

j+1
sup ));

2 T j+1 ← ExtractSubtree(T j , vroot);
3 UpdateVertex(T j+1, vroot, (f j+1

swg ,f
j+1
sup ));

4 return (T j+1, vroot);

Updating: At this point, requirements R1–R3 are satisfied by construction in
T j+1 according to the previous map Mj−1

z . Then, R1–R3 must now be checked in
T j+1 using the most recent map Mj

z, consequently updating vertexes and edges
in order to satisfy them. To this end, we perform a pre-order traversal of T j+1 as
described in the following.

When a vertex v = (fswg,fsup) is visited, it is modified9 by relocating its swing
footstep to the support footstep fparent

sup of its parent vparent = (fparent
swg ,fparent

sup ), and
setting the z coordinate zf,sup of fsup according to Mj

z. In particular, consider the
cells of Mj

z belonging to, or overlapping with, the footprint at fsup; let nk and nu
be the number of these cells whose height is known and unknown, respectively. If
the rate of cells with known height is larger than a predefined threshold n̄, i.e.,

nk
nk + nu

> n̄,

zf,sup is set to the average value of the nk known heights. Otherwise, zf,sup is left
unspecified.

Once v has been updated, requirements R1–R3 are checked similarly to what
was done in the off-line case, with the only two differences described in the following.

• If zf,sup is unspecified, requirements R1–R3 are checked conjecturing that it is
equal to the z-component zf,swg of fswg.

• Requirement R1 is considered satisfied if for each of the nk known heights, the
net variation from zf,sup does not exceed a predefined threshold z̄, i.e.,

|zk − zf,sup| ≤ z̄.

with zk the generic known height among the nk available.

If any requirement among R1–R3 is violated, vertex v is removed from T j+1,
along with its descendants. Otherwise, the edge connecting v to vparent is replaced by
the trajectory φparent generated while checking R3; the set Vchild of child vertexes of
v is retrieved, and the procedure is recursively invoked on them. To guarantee on-line
performance and save time to be used for expanding T j+1, recursion is stopped on
vertexes having a maximum depth κ̄. This step corresponds to Procedure 6. ◀

Expanding: Once T j+1 has been updated, it can be further expanded in
the map Mj

z. Let ∆T e be the time elapsed since the beginning of the current
9This modification is not made on vroot as it corresponds to the stance that the robot must

reach at the end of the simultaneously executed step.
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Procedure 6: UpdateTree
Input: T j+1, v,Mj

z

Output: none
1 vparent ← ParentVertex(T j+1, v);
2 zf,sup ← DetermineFootstepHeight(fsup,Mj

z);
3 UpdateVertex(T j+1, v, (fparent

sup , (xf,sup, yf,sup, zf,sup)));
4 if R1(fsup) and R2(fsup, fparent

sup ) then
5 φparent ← SwingTrajectoryEngine(fparent

swg ,fsup);
6 if R3(φparent, (fswg,fsup)) then
7 UpdateEdge(T j+1, vparent, v,φparent);
8 if Depth(T j+1, v)) = κ̄ then
9 return;

10 end
11 Vchild ← ChildVertexes(T j+1, v);
12 foreach v′ ∈ Vchild do
13 UpdateTree(T j+1, v′,Mj

z);
14 end
15 else
16 RemoveSubtree(T j+1, v);
17 end
18 else
19 RemoveSubtree(T j+1, v);
20 end
21 return;

invocation of the footstep planner, i.e., the time spent in initializing and updating
T j+1. The expansion of T j+1 works iteratively as described in Sect. 6.2.2 using
the remaining portion of the time budget ∆T j −∆T e and the map Mj

z, with the
following modifications.

• The choice of the z-coordinate for a candidate footstep f cand
sup and the check of

requirements R1–R3 are done exactly as when updating a generic vertex.

• A vertex whose support footstep has unspecified z-coordinate cannot be set
as parent of another vertex. Then, such vertexes are excluded both when
selecting the vertex vnear for an expansion attempt and when choosing a parent
for a candidate vertex vcand. ◀

Similarly to the off-line case, when the assigned time budget ∆T j runs out,
tree expansion is stopped and the set Vgoal of vertexes v such that pf,sup ∈ G is
retrieved. If Vgoal is not empty, the vertex v∗ with minimum cost is selected as in
(6.8). Otherwise, if Vgoal is empty, the planner retrieves the set Vfron containing
all vertexes of T j+1 having at least one child vertex whose support footstep has
unspecified z-coordinate. In practice, vertexes in Vfron contain stances located in
proximity of the frontier of the current map Mj

z. Then, the vertex v∗ is selected as

v∗ = argmin
v∈Vfron

c(v) + g(v) (6.10)
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Figure 6.13. The on-line footstep planner in the scenario Corridor minimizing the number
of steps. Here the planner finds a footstep sequence of 54 steps.

where g(v) represents the cost-to-go of vertex v, i.e., a lower-bound on the minimum
cost to reach G from v. A possible choice for g(v) when minimizing the number of
steps along the plan will be described in Sect. 6.3.5.

Finally, the footstep plan Pj+1,∗ is retrieved from the branch of T j+1 joining
the root to v∗. Clearly, if Vgoal is not empty, Pj+1,∗ will be a complete footstep
plan leading to G; otherwise, Pj+1,∗ will be a partial footstep plan leading in the
direction of an unknown area of the environment whose exploration is considered
useful – according to the adopted cost-to-go – to proceed towards G.

6.3.4 Visual task generation

At any time instant during the execution of the generic j-th step, given the current
estimate ŝ of the camera pose and the subgoal f j+n|j , which is readily extracted
from the current sequence Sj

f of footstep placements, the visual task generator is
in charge of producing a suitable reference sr of the camera pose which aims at
directing the gaze towards the current destination of the robot. The rationale beyond
this choice is that, since the current footstep plan terminates in an area on the
frontier of the map Mz that is considered promising for goal-oriented exploration of
the environment, looking in the direction of f j+n|j allows to enlarge the map in that
particular area. In principle, whenever possible, this will privilege further extension
of the footstep plan in that promising direction.

To compute sr, one possibility consists in adopting an image-based visual servoing
scheme [136]. In particular, one may define a virtual feature in the image plane of
the camera at ŝ associated to the representative point p

j+n|j
f of the subgoal footstep

f j+n|j . Then, the reference pose sr of the camera frame can be computed so as to
keep such feature at the center of the image plane.

The produced reference pose sr is passed to the kinematic controller which, in
practice, only controls the camera yaw and pitch angles.

6.3.5 Simulations

In this section we present simulations obtained with the discussed architecture for
the on-line case. Parameters are set to the same values of Sect. 6.2.4, with the
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Figure 6.14. The on-line footstep planner in the environment Maze minimizing the number
of steps. The environment is dynamic, namely the elevation map can be changed by
moving obstacles around. Here the planner finds a footstep sequence of 106 steps.

Figure 6.15. The on-line footstep planner in the dynamic environment Maze minimizing
the number of steps. Here the planner finds a footstep sequence of 103 steps.
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only exception of setting kγ = 1 in (6.4) when used in (6.9), n̄ = 0.9, z̄ = 0.02 and
κ̄ = 5. For each j-th invocation of the footstep planner the time budget ∆T j is set
to Tss + Tds. In all performed simulations, the quality criteria considered by the
footstep planner is the number of steps, while the cost-to-go of each vertex v is an
underestimation of the number of steps needed to reach the goal region G from the
double support configuration specified by v. This value is computed as the distance
between the position of the support foot specified by v and G, divided by the longest
step among the catalogue of primitives U .

Figure 6.13 shows the robot walking in the scenario Corridor together with the
reconstructed elevation map. Here, the planner continuously receives an updated
version of the map, which is built while the robot moves. Initially (first snapshot)
the robot starts exploring its surrounding environment, moving towards the end of
the corridor (second snapshot). As soon as the footstep planner realizes that the
room is closed, it replans a sequence of footsteps which brings the robot outside the
corridor (third snapshot). The robot keeps exploring the environment, going up and
down the stairs and avoiding the obstacles placed along the path (fourth and fifth
snapshot). Finally, the robot reaches the desired goal region (sixth snapshot).

Figure 6.14 shows the robot accomplishing the locomotion task in the scenario
Maze. In this case the scenario was rendered dynamic by manually moving the
obstacles at runtime. Here, the planner is facing the additional challenge of operating
under continuous changes in the elevation map, which reflects the new locations of
the obstacles. The robot starts by moving outside the initial room (first snapshot),
choosing the path on its right (second snapshot). The footstep plan is invalidated
by placing obstacles in front of the robot, forcing the robot to choose the other
direction (third snapshot). The footstep planner correctly drives the robot towards
the other area of the maze (fourth snapshot), making it go up and down the staircase
(fifth snapshot), avoiding another obstacle which is placed in front of the robot right
before reaching the goal region (sixth snapshot).

Figure 6.15 shows a situation, again in a dynamic version of the scenario Maze,
in which the planner reaches a point in which is not able to find a new subgoal.
This occurs when, once the time budget expires, both Vgoal and Vfron are empty.
For example, this may happen when the humanoid must exit a long corridor or
when dynamic obstacles invalidate large portion of the created tree. In this specific
situation, a simple solution consists in keeping the portion of the current footstep
plan that is still valid after the updating step of the planner. If this happens multiple
times in a row, the robot reaches the subgoal and stops. At this point, the footstep
planner is invoked with an unlimited time budget and terminates as soon as a
new subgoal is found. As before, the robot starts by moving outside the initial
room, moving towards its left (first and second snapshots). The footstep plan is
invalidated by moving an obstacle in front of the robot (third snapshots), which
stops its motion upon reaching the current subgoal (fourth snapshot). As soon as the
footstep planner finds a new subgoal, the robot starts moving again (fifth snapshot),
eventually reaching the desired goal region (sixth snapshot).

Clips of the described simulations are available at the following link: https:
//youtu.be/BF43qUcx4gY.

https://youtu.be/BF43qUcx4gY
https://youtu.be/BF43qUcx4gY
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6.4 Discussion
The proposed approach integrates several components and is designed to work both
off-line and on-line. Since, to the best of our knowledge, no existing method can
address the same wide range of situations, we focus in the following on the two main
components (footstep planning and gait generation) separately.

As a representative of the state of the art in footstep planning, we selected the
algorithm in [78], which uses a weighted A∗ algorithm to search for optimal footstep
sequences on uneven ground10. At each iteration, the vertex providing the lowest
estimate for the path cost is expanded. This estimate is computed by adding to the
cost of the vertex a heuristic cost-to-go, given by the distance to the goal divided
by the maximum step length and multiplied by a weight w ≥ 1, which can be used
to increase the bias towards the goal region. The main difference with respect to
our approach lies in the expansion mechanism, which is deterministic in [78] and
probabilistic in our method.

Both our scheme and the weighted A∗ approach use a catalogue of primitives. In
order to perform a fair comparison, we use for the weighted A∗ approach the same
catalogue described in Sect. 19. As for the optimality criterion, we aim to minimize
the number of footsteps, corresponding to an edge cost given by (6.5). In order to
allow for the possibility that our implementation might not be the most efficient, we
assigned to the weighted A∗ planner a time budget of 100 s, which is four times the
largest budget used when testing our planner.

The results obtained showed that standard A∗ search, corresponding to w = 1,
is unable to find solutions within the allotted time budget in any of the considered
scenarios. By increasing w, weighted A∗ performs rather well in scenarios where the
solution does not involve considerable backtracking (Rod and Spacious), but fails to
find the solution in any other scenario. In particular, Table 6.4 collects the results
obtained for w = 5. These results should be compared to those in Table 6.1, which
show that our approach has a 100% success rate with a fourth of the time budget.
We also ran tests with larger weights (w = 10, w = 25), obtaining results that are
essentially identical, with slightly longer paths and no increase in the success rate.

Indeed, the outcome of the above comparison was rather predictable. It is well
known that weighted A∗ works quite well in environments where the path leading to
the goal does not deviate significantly from a straight line. However, as acknowledged
by the authors of [78], its performance may degrade severely in the scenarios that
require even mild amounts of backtracking.

10The algorithm in [78] actually contemplates the possibility of tilted surfaces, but obviously
works in a world of stairs as a particular case.
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Scenario Cost Iters Tree Size
Rod 22.0 650 4049

Ditch Fail 11687 21911
Corridor Fail 12343 22483
Spacious 31.0 34 546

Maze Fail 9546 22333
Table 6.4. Performance of the off-line weighted A∗ footstep planner when minimizing the

number of steps (w = 5.0).
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Chapter 7

Feasibility-aware plan adaptation
in humanoid gait generation

In Chapters 5 and 6 we have seen how to design a scheme for humanoid locomotion,
which allow the robot to perform walking motions in complex scenarios. One of
the characteristics that marks the presented framework is the separation into a
footstep planning phase (based on RRT*), and a Model Predictive Control (MPC)
gait generation algorithm. Most available schemes used for humanoid walking rely on
such separation, lightening the computational load on the control side, and allowing
it to run in real-time. Nevertheless, with this kind of design, the planner is unaware
of the underlying dynamics, and the controller is unaware of any disturbances acting
on the robot.

In this chapter, we present an on-line Feasibility-Aware Plan Adaptation (FAPA)
module which can locally adapt footsteps (positions, timings and orientation) in
such a way that to guarantee feasibility of the subsequent Intrinsically Stable MPC
(IS-MPC) stage. Indeed, because our architecture is based on IS-MPC (Chapter 5),
which involves an explicit stability constraint ensuring the boundedness of the CoM
trajectory with respect to the ZMP, it is possible to use its feasibility region (i.e.,
the state space region for which the constrained QP admits a solution) to enhance
the capabilities of the scheme itself. Two examples of such strategy rely on adapting
the time of the first step [104] and allowing for non-convex regions [137].

With the FAPA module, which depends on the system state and the dynamics
of the chosen template dynamic model, we obtain the generality given by nonlinear
constraints without sacrificing much performance as the number of variables in
FAPA is much lower than that of the variables of the MPC, making it very fast and
capable of working in real time. Furthermore, we explore the inclusion of integer
variables, further increasing the range of situations that can be covered. Note that
while modules for online footstep adaptation using nonlinear optimization have been
proposed [138], they do not work in conjunction with MPC. Our approach is not
only designed to work along with the MPC module, but it specifically aimed at
enhancing its capabilities.

We present two versions of the proposed FAPA scheme: one with a fixed regions
assignment for placing the footstep and another one where the regions are selected
automatically through mixed-integer programming.
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Figure 7.1. An example simulation using the proposed architecture: the robot is walking
along a staircase while being subject to multiple pushes. The adaptation module modifies
position, orientation and timing of the footsteps real-time to guarantee a successful
execution.
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Figure 7.2. A block scheme of the proposed architecture. The candidate footstep subplan
P̂ is adapted by the FAPA module, guaranteeing the feasibility of IS-MPC. The IS-MPC
module receives the adapted footstep subplan P, and generates a desired trajectory
of the CoM p∗

c , which is used by the kinematic controller, together with the desired
trajectory of the swing foot p∗

swg, to generate the desired joint velocities q̇∗.

7.1 Problem formulation

The proposed architecture is shown in Fig. 7.2. An external candidate plan is
provided, which in this chapter will be either a basic plan to demonstrate simple
motions, or a plan generated by randomized exploration (Chapter 6) for more
complex environments. A subplan, i.e., a portion of the candidate plan, is given as
input to the scheme at each timestep.

The basic components of the considered scheme are:

• a Feasibility-Aware Plan Adaptation (FAPA) block, that can modify locally
the high-level footstep plan;

• an IS-MPC gait generation block (Chapter 5) that generates CoM/ZMP
trajectories based on the output of FAPA;

• a kinematic controller that realizes at the joint level the generated CoM and
swing foot trajectories.
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While the high-level footstep plan is designed considering the humanoid’s kine-
matic limitations, it is entirely unaware of its dynamics and is not informed by the
robot state since it is fully generated off-line. To make up for this deficiency, the
FAPA module performs a local adaptation of the planned footsteps before these
enter the IS-MPC stage.

This adaptation is based on a gait feasibility constraint that guarantees feasibility
of the next IS-MPC stage while trying to match the original plan. It can concurrently
change the footstep positions, orientations, as well as step timings.

To formulate this constraint, we leverage the feasibility region of IS-MPC (i.e.,
the subset of the state space where the problem is feasible at a given time), and
define it in an implicit form with the nonlinear dependency on the footstep positions,
orientations, and step timings.

The fact that the feasibility of the MPC can be efficiently captured by the
expression of this constraint is a crucial aspect of the formulation, because it means
that the scheme can harness the power of nonlinear optimization without burdening
the MPC itself, which remains linear and can run at a high rate. The nonlinear
optimization part is external to the MPC, which allows the number of variables to
be kept small and thus to keep the computation time manageable.

We propose two versions of the FAPA module, that differ by the optimization
problem required for their implementation. In particular, the first version only uses
continuous optimization, while the second one also employs discrete variables and
is formulated as a Mixed Integer Nonlinear Program (MINLP). Being the latter
very general it can be used to account for more adaptation scenarios, e.g., in which
the footsteps can also be moved to different terrain patches than the ones assigned
by the high-level planner. As will be discussed extensively in Sect. 7.4, the second
version is more demanding in terms of computation time, but we present it as a
proof of concept as we strongly believe it can be made to work in real time with
proper code optimization.

7.2 Preliminaries

In this section we describe the environment and the structure of the footstep plan
used in our scheme.

7.2.1 Environment

The considered environment is a world of stairs, i.e., constituted by flat horizontal
regions. The robot is allowed to walk across different regions if these are relatively
close in height, and if there is sufficient available surface to step on them, otherwise
they will constitute obstacles to be avoided.

The arrangement of these regions is assumed to be known, and it is processed
and encoded in the following way:

• regions are reduced in size so that they represent the collision-free area available
for the center of the footprint. This is done by performing a Minkowski
difference between each flat region and the area swept by a footprint (accounting
for all possible footstep orientations);
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• after reduction, non-convex regions are subdivided into non-overlapping convex
polytopic patches.

A patch P is identified by the inequality

A(P )p ≤ b(P ),

where A(P ) ∈ RV (P )×2 and b(P ) ∈ RV (P ) define a polytope (with V (P ) vertices)
and p = (x, y)⊤ is a generic 2D point. In this way, non-polytopic portions of ground
(e.g., round edges) are approximated, but the number of vertices can be arbitrarily
large. Since each patch P is flat, its height is denoted simply as z(P ).

7.2.2 Footstep plan

The high-level footstep plan is a sequence of candidate footsteps f̂ , each identified
by the tuple f̂ = (x̂f , ŷf , ẑf , θ̂f , T̂ss, T̂ds). For each planned footstep f̂

• x̂f , ŷf and ẑf are the coordinates of its center;

• θ̂f is its orientation around the z axis;

• T̂ds and T̂ss are the durations of its double support and single support phases,
respectively;

• we denote by Π(f̂) the patch that contains the footstep, i.e., the patch P such
that1

[x̂f , ŷf ]⊤ ∈ P, ẑf = z(P ).

The footstep plan P̂ is computed off-line, and at each time tk a subplan P̂ l of size
F + 1 is extracted, where l is the index of the first footstep of the current subplan (at
tk), and F a fixed parameter. The subplan contains the next F candidate footsteps:

P̂ l =
{

f̂ l, . . . , f̂ l+F
}
.

The FAPA block, which performs footsteps adaptation, modifies P̂ l in the adapted
subplan P l, i.e., in the input of the IS-MPC block

P l =
{

f l, . . . , f l+F
}
.

After every iteration, if adaptation took place (i.e., P l differs from P̂ l), the
algorithm performs a footstep plan override, i.e., the corresponding portion of the
high-level footstep plan is substituted with the adapted subplan P l. Note that the
remaining part of the plan (after the index l+ F ) is unchanged, so if the adaptation
makes the robot stray from the initial path it will later try to catch up. This behavior
is often acceptable, but might sometimes be undesirable, and can be improved in
future versions if we allow the high-level planner to replan on-line (see [19]).

1Note that this patch is unique because the environment is subdivided into non-overlapping
patches.
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Figure 7.3. Admissible region of the kinematic constraint in the x-y plane.

7.3 Feasibility-Aware Plan Adaptation
In this following section, we describe how to use the feasibility region to formulate a
constraint for the FAPA module, and thus ensure that the output of FAPA can be
used by IS-MPC to construct a feasible QP. The FAPA module runs in real-time
and performs a local adaptation of the subplan P̂ l, including their timing. We now
describe the constraints and the optimization problems that define the adaptation
procedure.

7.3.1 Kinematic constraint

The j-th footstep f j is ensured to be kinematically feasible by limiting its dis-
placement with respect to the previous footstep f j−1. In practice we constrain the
geometric components of f j to be within the admissible region

n⊤
1

(
pl+j

xy − pl+j−1
xy −R(θl+j−1

f )v1
)

...
n⊤

V

(
pl+j

xy − pl+j−1
xy −R(θl+j−1

f )vV

)
 ≥ 0,

∆zm ≤ zl+j − zl+j−1 ≤ ∆zM,

∆θm ≤ θl+j − θl+j−1 ≤ ∆θM,

(7.1)

with R
(
θl+j−1

f

)
a 2D rotation matrix, ni the vector normal to the i-th segment of

the convex region computed as

ni =
[
0 −1
1 0

]
R
(
θl+j−1

f

)
(vi+1 − vi),

and vi being the vertices defining the convex polygon (different depending whether
the support foot is left or right), shown in Fig. 7.3. Furthermore, ∆m

z , ∆zM, ∆θm,
and ∆θM define limits for the foot reachability over vertical displacement and relative
orientation.

7.3.2 Timing constraint

Single and double support duration are subject to minimum and maximum duration
constraints

Tmin
ss ≤ T l+j

ss ≤ Tmax
ss , Tmin

ds ≤ T l+j
ds ≤ T

max
ds , (7.2)
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where the bounds Tmin
ds , Tmax

ds , Tmin
ss , Tmax

ss are chosen in such a way to avoid
excessively fast trajectories that might be difficult to track, as well as very slow steps
that could result in quasi-static motion.

7.3.3 Patch constraints

We describe alternative versions of this constraint, as we will later compare the
module using either of them, both in terms of the quality of the resulting plan
and of the computational load. The first version of the constraint simply restricts
the (l + j)-th footstep to lie within its associated patch Π(f l+j), which is the one
originally chosen by the high-level planner. This constraint can be written asA

(
Π
(
f l+j

)) [
xl+j

f yl+j
f

]⊤
≤ b

(
Π
(
f l+j

))
,

zl+j
f = z

(
Π
(
f l+j

))
.

(7.3)

The second version of the patch constraint allows the footstep to be moved to a
different patch. To entertain this possibility, we introduce binary variables in order
to formulate a mixed-integer constraint. This constraint defines a logical implication
in which, if a certain binary variable bl+j,κ is true, then a linear constraint must be
verified:

bl+j,κ = 1⇒

A (P κ)
[
xl+j

f yl+j
f

]⊤
≤ b (P κ) ,

zl+j
f = z (P κ) .

(7.4)

This forces the (l + j)-th footstep to lie within the κ-th patch. Since each footstep
can only be inside a single patch, we also impose

R∑
κ=1

bl+j,κ = 1. (7.5)

In MIP, logical implications can be implemented using binary variables through
the so-called big-M technique [139]. In this case, we rewrite (7.4) as

A (P κ)
[
xl+j

f yl+j
f

]⊤
≤ b (P κ) + (1− bl+j,κ)M1V (P κ),

zl+j ≤ z (P κ) + (1− bl+j,κ)M,

−zl+j ≤ −z(P κ) + (1− bl+j,κ)M,

(7.6)

where M is a constant large enough to relax the constraints if bl+j,κ = 0 and 1V (P κ)
is a row vector with V (P κ) ones. We define κ̂l+j as the index of Π(f̂ l+j). Note that
this requires turning the equality constraint into two inequality constraints. Based
on the patches of the candidate footsteps in P̂ l, we also define candidate binary
variables as

b̂l+j,κ =
{

1, if κ = κ̂l+j ,

0, if κ ̸= κ̂l+j .

Finally, (7.5) and (7.6) assume that every footstep may be mapped to every patch,
which requires F ×R binary variables. However, since the computational load of a
MIP is largely related to the number of binary variables, we employ a heuristic that
allows a footstep f j to be assigned only to the patches adjacent to Π(f̂ j).
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7.3.4 Current footstep constraints

The first footstep in the subplan f l corresponds to the footstep currently in contact
with the ground, which means that some of its components cannot be changed.
In particular, its geometric components should be constrained to be equal to the
corresponding components of f̂ l, i.e.,

xl
f = x̂l

f , yl
f = ŷl

f , zl
f = ẑl

f , θl
f = θ̂l

f . (7.7)

Note that, because of the footstep plan override, the components of f̂ l are not the
same as in the original plan, but rather those adapted at the previous iteration.

If tk belongs to a single support phase, the double support of the current step
cannot be changed anymore because it is already passed. This is expressed by the
constraint

tk − tls > T l
ds ⇒ T l

ds = T̂ l
ds. (7.8)

Note that the implication in (7.8) is handled at the code level and does not require
introducing binary variables.

To avoid footstep changes when the swing foot is close to touching the ground,
when nearing the end we add the following constraint:

T l
ds + T l

ss − tk + tls < tchange ⇒ f l+1 = f̂ l+1. (7.9)

7.3.5 Gait feasibility constraints

The gait feasibility constraints are introduced to ensure that IS-MPC is feasible.
They do so by constraining the current state to be within the feasibility region
(5.18).

The expression of the feasibility region (5.18) uses the ZMP bounds, that clearly
depend on the motion of the moving box, and thus on the footsteps positions and
timings. To derive a constraint, we simply make this dependency explicit by plugging
(5.14) and (5.15) inside (5.18). This results in

xk
u + bk

x ≤ s⊤P −1
(

MX l
f + mxl

f + p

(
dx

2 − x
k
z

))
yk

u + bk
y ≤ s⊤P −1

(
MY l

f + myl
f + p

(
dy

2 − y
k
z

))
zk

u + bk
z ≤ s⊤P −1

(
MZ l

f + mzl
f + p

(
dz

2 − z
k
z

))
.

(7.10)

with xk
u, y

k
u, z

k
u, b

k
x, b

k
y , b

k
z , s,p,P ,m,M , dx, dy, dz, x

k
z , y

k
z and zk

z already defined in
Chapter 5.

7.3.6 Feasibility-driven plan adaptation algorithm

We present two different versions of the FAPA algorithm. The first one is not allowed
to move footsteps from a different patch to the one in the original plan, and is thus
referred to as Fixed patches FAPA (F-FAPA). The second one is instead allowed
to choose different patches, and goes under the name of Variables patches FAPA
(V-FAPA).
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The decision variable over the planning horizon are collected as

X l
f =

[
xl

f , . . . , x
l+F
f

]
, Y l

f =
[
yl

f , . . . , y
l+F
f

]
,

Z l
f =

[
zl

f , . . . , z
l+F
f

]
, Θl

f =
[
θl

f , . . . , θ
l+F
f

]
,

T l
ds =

[
T l

ds, . . . , T
l+F
ds

]
, T l

ss =
[
T l

ss, . . . , T
l+F
ss

]
,

Bl =

 bl,1 . . . bl,L
... . . . ...

bl+F,1 . . . bl+F,L

 ,

while the corresponding candidate values are identified by the vectors X̂ l
f , Ŷ l

f , Ẑ l
f ,

Θ̂l
f , T̂ l

ds, T̂ l
ss, B̂l, similarly defined.

F-FAPA solves the following problem, with decision variables
U l =

[
X l

f ,Y
l

f ,Z
l
f ,Θl

f ,T
l
ds,T

l
ss

]
:

min
U l

wx

∥∥∥X̂ l
f −X l

f

∥∥∥2
+ wy

∥∥∥Ŷ l
f − Y l

f

∥∥∥2
+

wz

∥∥∥Ẑ l
f −Z l

f

∥∥∥2
+ wθ

∥∥∥Θ̂l
f −Θl

f

∥∥∥2
+

wds
∥∥∥T̂ l

ds − T l
ds

∥∥∥2
+ wss

∥∥∥T̂ l
ss − T l

ss

∥∥∥2

subject to:

• kinematic constraints (7.1), for j = 1, . . . , F

• timing constraints (7.2), for j = 0, . . . , F

• fixed patch constraints (7.3), for j = 1, . . . , F

• current footsteps constraints (7.7), (7.8) and (7.9)

• gait feasibility constraints (7.10)

Since F-FAPA does not have binary variables, it can be implemented using a
regular nonlinear solver (i.e., IPOPT [140]).

V-FAPA solves the following problem, with decision variables which now include
the binary variables Bl that is W l =

[
X l

f ,Y
l

f ,Z
l
f ,Θl

f ,T
l
ds,T

l
ss,B

l
]
:
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min
W l

wx

∥∥∥X̂ l
f −X l

f

∥∥∥2

2
+ wy

∥∥∥Ŷ l
f − Y l

f
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2
+

wz

∥∥∥Ẑ l
f −Z l

f

∥∥∥2

2
+ wθ

∥∥∥Θ̂l
f −Θl
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∥∥∥2

2
+

wds
∥∥∥T̂ l

ds − T l
ds

∥∥∥2

2
+ wss

∥∥∥T̂ l
ss − T l

ss

∥∥∥2

2
+

wb
∥∥∥B̂l −Bl

∥∥∥2

2

subject to:

• kinematic constraints (7.1), for j = 1, . . . , F

• timing constraints (7.2), for j = 0, . . . , F

• variable patch constraints (7.5) and (7.6), for j = 1, . . . , F

• current footsteps constraints (7.7), (7.8) and (7.9)

• gait feasibility constraints (7.10)

Since V-FAPA contains the binary variables B it is implemented as a MINLP.

7.4 Simulations

We ran four simulations in MATLAB, using CoppeliaSim to kinematically visualize
the resulting motions. The system is an AMD Ryzen 9 5900X (4.8 GHz, 12 core)
with 16 GB DDR4 3600 MHz running Ubuntu 22.04 LTS. IS-MPC runs at 100 Hz
and is solved using quadprog, while FAPA runs at 10 Hz and is solved using the
CasADi interface. In CasADi, we used IPOPT [140] for F-FAPA, and BONMIN
[141] for V-FAPA. We also ran tests with the commercial solver Knitro [142], to
compare the performance (see Table 7.2).

All the simulations use the parameters of Table 7.1. Simulation videos are
available at https://youtu.be/4_QYsZH1E7Y.

Simulations take place in 3 different scenarios: empty, which is completely flat
with no obstacles, and is represented using a single patch; 2-patches is constituted
by two patches at different heights (0 and 0.06 [m]); stairs has a total of 7 patches of
increasing height. While walking, the robot is subject to impulsive pushes (lasting
0.01 [s]), transformed in equivalent acceleration imparted on the CoM.

In the first simulation, the robot is walking forward in the empty scenario. At
4.5 [s] it receives a 15.6 [m/s2] push in the direction (−2,−1, 0), that without FAPA
would make the MPC infeasible. F-FAPA reacts by adapting footstep positions,
orientations and timings concurrently, allowing the MPC to recover feasibility. Figure
7.4 shows nominal and adapted footsteps, trajectories and step timings. Figure 7.5
shows a sequence of snapshots of the HRP-4 humanoid robot executing the motion.

In the second simulation (shown in Fig. 7.6), the scenario is 2-patches, and the
robot must climb a step. Upon receiving the push, the footsteps do not change
significantly, because the F-FAPA algorithm is not allowed to move the footstep to

https://youtu.be/4_QYsZH1E7Y
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Symbol Value
δ 0.01 [s]
Tc 2.0 [s]
Tp 4.0 [s]
η 3.6 [s−1]
β 100

dx, dy, dz 0.035 [m]
F 3
v1 [0.28, 0.13]⊤ [m]
v2 [0.2, 0.43]⊤ [m]
v3 [−0.12, 0.43]⊤ [m]
v4 [−0.2, 0.13]⊤ [m]

∆m
z -0.10 [m]

∆M
z 0.10 [m]

∆m
θ -0.4 [rad]

∆M
θ 0.4 [rad]

Tmin
ds 0.3 [s]

Tmax
ds 0.5 [s]
Tmin

ss 0.5 [s]
Tmax

ss 0.7 [s]
tchange 0.1 [s]
M 100

wx, wy, wz, wθ 1.0
wds, wss 1.0
wb 0.01

Table 7.1. Hyperparameters of F-FAPA and V-FAPA used in all the experiments.
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Figure 7.4. F-FAPA in the empty scenario. The robot is walking in a straight line and is
pushed at time 4.5 [s] (slightly before the first snapshot). Green footsteps represent the
original candidate plan, while the footsteps that are actually executed are shown in grey.
Red footsteps represent the current adapted subplan. The two bands on the bottom
show the nominal and adapted timings (green for double support and blue for single
support). The same color scheme is used for the rest of the figures.

Figure 7.5. HRP-4 walking in the empty scenario using F-FAPA. The robot walks in a
straight line and it is pushed at time 4.5 [s] (third snapshot). The robot is able to sustain
the push adapting the footsteps and the duration of single and double support (fourth
snapshot), eventually reaching its desired goal (last snapshot).
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Figure 7.6. F-FAPA in the 2-patches scenario. The robot is walking in a straight line and
is pushed at time 4.5 [s] (slightly before the first snapshot). Since changing patches is
not allowed, the magnitude of the push that can be tolerated is quite small, compared
to that of the other simulations.

the other patch. As a result, the tolerable push is smaller, i.e., 7.8 [m/s2]. Figure 7.7
shows a sequence of snapshots of the HRP-4 humanoid robot executing the motion.

In the third simulation (shown in Fig. 7.8 ), the scenario is still 2-patches, but
now the scheme is using V-FAPA. When the push is perceived, the first predicted
footstep is moved to the lower patch, and as a result the increase of the tolerable
push intensity is very significant, i.e., the same as in the empty scenario. Figure 7.10
shows a sequence of snapshots of the HRP-4 humanoid robot executing the motion.

In the last simulation, the robot is moving through a more complex environment
constituted by a long staircase. While climbing, the robot is subject to multiple
pushes, triggering several footstep adjustments. Figure 7.5 shows a sequence of
snapshots of the HRP-4 humanoid robot executing the motion.

To discuss the real-time applicability of the scheme, we report performance metrics
in Table 7.2. The solvers used are IPOPT and Knitro for F-FAPA, and BONMIN
and Knitro for V-FAPA. Knitro is faster overall, but IPOPT still demonstrates good
performance for F-FAPA, compatible with real-time requirements. For V-FAPA,
BONMIN is clearly too slow, while Knitro has an average performance that is
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Figure 7.7. HRP-4 walking in the 2-patches scenario using F-FAPA. The robot walks in
a straight line and it is pushed at time 4.5 [s] (third snapshot). The robot is able to
sustain the push adapting the duration of single and double support (fourth snapshot),
eventually reaching its desired goal (last snapshot).

Figure 7.8. V-FAPA in the 2-patches scenario. The robot is walking in a straight line and
is pushed at time 4.5 [s] (slightly before the first snapshot). Now the robot is allowed to
adapt the footstep position to the other patch, and is able to tolerate a stronger push.
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Figure 7.9. HRP-4 walking in the 2-patches scenario using V-FAPA. The robot walks in
a straight line and it is pushed at time 4.5 [s] (third snapshot). The robot is able to
sustain the push adapting the footsteps and the duration of single and double support
(fourth snapshot), eventually reaching its desired goal (last snapshot). Notice how the
robot is able to sustain a stronger push by placing the foot in the first patch.

Figure 7.10. HRP-4 walking in a scenario composed of multiple staircases using V-FAPA.
The robot follows a footstep plan and it is pushed multiple times during the execution
of the motion (second, fourth, sixth , eight and tenth snapshot). The robot is able to
sustain different pushes adapting the footsteps and the duration of single and double
support, and changing the patch when necessary. Eventually, the robot is able the reach
the final patch.
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Algorithm Solver Average [s] Std dev. [s] Max [s]
F-FAPA IPOPT 0.0207 0.0041 0.0467
F-FAPA Knitro 0.0144 0.0032 0.0329
V-FAPA BONMIN 0.3164 0.2075 1.2098
V-FAPA Knitro 0.0316 0.0393 0.3985

Table 7.2. Performance metrics of F-FAPA in the empty scenario and V-FAPA in the
2-patches scenario, using different solvers.

real-time on average, but some outliers violate the requirements. Since all results
in this chapter are simulated, real-time performance is desirable but not critical.
However, it is necessary for hardware implementation, which is why we will be
working to guarantee real-time performance in future works.
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Part II

Motion control for steerable
WMRs
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Chapter 8

Nonlinear model predictive
control based on real-time
iteration

Model Predictive Control (MPC) is a technique used to control complex constrained
systems that, in the past few years, has seen an increased interest in both acadamia
and industry. It works by solving on-line a finite horizon Optimal Control Problem
(OCP), which considers a prediction model of the system, its constraints, the
constraints on the control inputs, and a cost function to be minimized (which reflects
the desired behavior of the system itself). At each timestep, the controller receives
a new measurement of the state of the system, and it uses it to solve the OCP,
obtaining an optimal control action, which is applied to the system for a small time
interval [143]. These steps are repeated at each new measurement of the state, which
acts as feedback of the MPC itself.

Among the categories of MPC, Linear MPC (LMPC) is the most common one.
Indeed, because in LMPC the prediction model and the constraints are linear, and
the function is quadratic, the associated OCP can be efficienly solved via a Quadratic
Programming (QP) problem [144]. Nevertheless, most of the systems that we are
interested in controlling are nonlinear. That is particularly true in robotics, where
the systems exhibit both a nonlinear model, and nonlinear constraints. While, in
principle, it is possible to apply a LMPC to a nonlinear system by linearizing it
around a reference trajectory, it is often preferred to treat nonlinear dynamics and
constraints explicitely.

Nonlinear MPC (NMPC) [145] allows to use nonlinear models, constraints, and
cost functions, at the price of higher computational cost with respect to LMPC.
While this makes it more complex to deploy such kind of techniques on real platforms,
recent progress in efficient algorithms [146], and availability of powerful processing
power, is making the adoption of NMPC more and more common.

This chapter gives a brief overview on Nonlinear MPC, focusing in particular on
the real-time iteration scheme [144]. The algorithms presented here will be used in
Chapter 9 to develop a Nonlinear MPC for the control of the motion of a steerable
wheeled mobile robot.
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8.1 Optimal control problem and MPC formulation

Consider a robotic system whose equations of motion are described by the ordinary
differential equation

q̇(t) = f(q(t),u(t)), (8.1)

with q ∈ Rn state of the system, u ∈ Rm control inputs, and q(t0) = q0 initial state
of the system itself. Moreover, assume that the system is subject to constraints of
the kind

h(q(t),u(t)) ≤ 0, (8.2)

which collect linear constraints (e.g., hardware limitations due to actuators), and non-
linear constraints (e.g., collision avoidance constraints due to complex environments)
on the state and the control inputs of the system1.

At each time instant tk, given the estimate q̂k of the system, the NMPC solves
an OCP over a finite horizon [tk, tk + T ], taking into account the prediction model
(8.1) and the constraints (8.2). The OCP can be formulated as

min
u(·)

Φ(q(tk + T )) +
∫ tk+T

tk

L(q,u)dt

s.t. q̇(t) = f(q(t),u(t))
h(q(t),u(t)) ≤ 0
q(tk) = q̂k,

(8.3)

with Φ(q(tk + T )) terminal cost, and L(q,u) stage cost. The solution of the OCP
gives an optimal control input u∗

k(t), which is defined over the prediction horizon
[tk, tk + T ].

Given u∗
k(t), the NMPC extracts the control input uNMPC

k , corresponding to
the subinterval [tk, tk + δ], with δ sampling time of the NMPC. The control action
uNMPC

k is then applied to the system over the same interval [tk, tk + δ]. This steps,
which describes the NMPC algorithm, summarized in Algorithm 3, are repeated
each time a new estimate of the state is available.

Algorithm 3: NMPC algorithm
1 k ← 0;
2 while true do
3 tk ← kδ;
4 q̂k ← receive the estimated state of the system at time tk;
5 u∗

k(t)← solve the OCP (8.3) over t ∈ [tk, tk + T ];
6 uNMPC

k ← extract from u∗
k(t) the optimal control input corresponding to time

interval [tk, tk + δ];
7 apply uNMPC

k to the system over the time interval [tk, tk + δ];
8 k ← k + 1;
9 end

1We choose not to separate the notation on linear and nonlinear constraints to make the
description of the chapter simpler. Bear in mind, however, that modern implementations take it
into account in order to improve the performance of the software [147].
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8.2 Numerical methods for the OCP solution
The solution of the OCP (8.3) is fundamental for the NMPC algorithm. Indeed, the
method chosen determines the performance and the behavior of the NMPC itself.

In literature, there exists three classes for the numerical solution of the OCP.
The first one is based on dynamic programming and Hamilton-Jacobi-Bellman

equation [148], and requires the solution of a partial differential equation. These
methods, however, suffer from the curse of dimensionality and they are suitable only
to system whose state dimension is small.

The second class are the indirect methods, which are based on Pontryagin’s
minimum principle [149], and consist in solving a multi-point boundary value problem
for an ordinary differential equation.

The third class are direct methods, and consists in transcribing the OCP (which
is infinite-dimesional and continuous-time) into a Nonlinear Programming Problem
(NLP). In literature, there exists three transcription approaches (direct collocation,
single shooting and multiple shooting), whose difference depends on the way in which
the state and the conrol inputs are discretized.

Direct collocation discretizes both state and control inputs using piecewise con-
tinuous polynomials, resulting in a large and sparse NLP [150]. Single shooting
discretizes only the control inputs, resulting in a smaller NLP (whose decision vari-
ables are the control inputs themselves), which is however sensitive to nonlinearities
and instabilities of the system [151]. Multiple shooting discretizes both the state
and the control inputs, obtaining a large and sparse NLP (which is smaller then the
one obtained through collocation), guaranteeing continuity of the solution by adding
appropriate constraints on the shooting nodes [152].

In the following, we give a brief overview on multiple shooting, which will be
used in Chapter 9 for the transcription of the OCP associated to the trajectory
tracking problem of a steerable wheeled mobile robot.

8.2.1 Multiple shooting

In order to discretize the OCP (8.3) using the multiple shooting method, the
prediction horizon [tk, tk + T ] is partitioned into N subintervals

tk < tk+1 < · · · < tk+N = tk + T, (8.4)

where, typically, each subinterval has the same duration, and it is equal to the
sampling time of the NMPC, i.e. tk+i+1 = tk+i + δ. The control trajectory u(t) is
discretized assuming it is piecewise constant over each subinterval, i.e.,

u(t) = uk|i, ∀t ∈ [tk+i, tk+i+1],

with uk|i ∈ Rm.
The prediction model (8.1) is discretized over each subinterval by using a nu-

merical integration method [153] (typically the fourth order Runge-Kutta method).
Denoting by F (·) the discrete-time dynamics of the system (8.1), the prediction
model is discretized in the following way:

qi+1|k = F (qi|k,ui|k), ∀i ∈ IN−1
0
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with Ib
a = {a, . . . , b} ⊂ N subset of natural numbers containing all naturals from a

to b. The cost function of the OCP and the constraints (8.2) are evaluated at the
corresponding nodes of the subintervals (8.4).

The infinite-dimensional OCP (8.3) is hence transformed into the following
finite-dimensional NLP:

min
Qk,Uk

Φ(qN |k) +
N−1∑
i=0
L(qi|k,ui|k)

s.t. qi+1|k = F (qi|k,ui|k), ∀i ∈ IN−1
0

h(qi|k,ui|k) ≤ 0, ∀i ∈ IN−1
0

q0|k = qk,

(8.5)

with

Qk =
[
q⊤

0|k, q
⊤
1|k, . . . , q

⊤
N |k

]⊤
Uk =

[
u⊤

0|k,u
⊤
1|k, . . . ,u

⊤
N−1|k

]⊤
collecting the decision variables of the NLP.

Most of the optimization solvers use methods such as Interior-Point method and
Sequential Quadratic Programming (SQP) [154] to solve the NLP (8.5). In this
manuscript, we are going to solve the NMPC using the real-time iteration scheme
[144], which is based on SQP.

8.2.2 Sequential Quadratic Programming

SQP is an iterative method for the solution of constrained nonlinear optimization.
At each κ-th iteration, it solves a Quadratic Programming (QP) problem which
approximates the NLP (8.5). This procedure is repeated until a convergence criterion
is satisfied.

Let us simplify the notation of the NLP (8.5) by expressing it as

min
x

f(x)

s.t. g(x, x̂k) = 0
h(x) ≤ 0

(8.6)

with x collecting decision variables Qκ and Uκ, f(x) cost function, x̂k estimate of
the state at tk, g(x, x̂k) collecting equality constraints, and h(x) collecting inequality
constraints.

The NLP (8.6), at each κ-th iteration of SQP, is approximated by the follow-
ing QP:

min
∆xκ

1
2∆x⊤

κ Hκ∆xκ +∇f(xκ)⊤∆xκ

s.t. g(xκ, x̂k) +∇g(xκ)⊤∆xκ = 0
h(xκ) +∇h(xκ)⊤∆xκ ≤ 0

(8.7)

with ∇g(xκ) gradient of the equality constraints, ∇h(xκ) gradient of the inequality
constraints, ∇f(xκ) and Hκ gradient and Hessian of the cost function. Note that
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∇g(xκ) does not depend on x̂k. Moreover, because the computation of the exact
Hessian is computationally expensive, it is typically approximated.

The solution ∆xκ of the κ-th QP gives a direcion ∆xk, which is used to compute
the iterate of the subsequent SQP step:

xκ+1 = xκ + αk∆xκ (8.8)

with αk ∈ [0, 1] step size.
Algorithm 4 summarizes the SQP method. Note that the most computationally

intensive steps are the computation of sensitivies and the computation of the solution
of the QP. Regarding the latter, there exists off-the-shelf solvers which efficiently
exploit the sparsity of the problem in order to solve the QP more efficiently (e.g.,
OSQP [155], qpSWIFT [156]). Another approach is called condensing [152], and
it consists in reducing the number of variables in the QP by eliminating those
corresponding to the state of the system. The resulting QP can be efficiently solved
by using dense QP solvers (e.g., qpOASES [157], HPIPM [134]).

Algorithm 4: SQP algorithm at tk
Input: estimated state of the system x̂k and an initial guess x̃k

1 κ← 0;
2 xκ ← x̃k;
3 while convergence criterion not satisfied do
4 compute Hκ, g(xκ, x̂k),h(xκ) and sensitivities ∇f(xκ),∇g(xκ),∇h(xκ);
5 ∆xκ ← construct and solve the QP (8.7);
6 xκ+1 ← xκ + αk∆xκ;
7 κ← κ+ 1;
8 end
9 return xκ;

8.3 The real-time iteration
Iterating SQP algorithm to convergence requires a significant and unspecified amount
of time, which could make the computed optimal control input outdated, negatively
affecting the performance of the NMPC. Choosing whether solving the NLP to
convergence, applying a control input based on outdated information, or applying
an approximate solution but using most recent information available, is known as
real-time dilemma [158].

Luckily, recent advancements in optimal control methods enable NMPC to
perform in real-time. In this section, we give a brief overview on the real-time
iteration (RTI) scheme. For a more detailed description, please refer to [144].

The main idea behind RTI is to exploit the fact that NMPC solves OCPs which
are similar from one iteration to the other. Instead of solving SQP to convergence,
the NLP is approximated as a QP and solved only once. Moreover, the Newton step
(8.8) is taken with αk = 1, increasing the convergence rate. In RTI, the structure of
QP (8.7) is exploited in order to further reduce the feedback time. Indeed, the terms
Hk,h(xk) and the sensitivities ∇f(xk),∇g(xk),∇h(xk) could be computed before
the estimate x̂k is available. The real-time iteration scheme is, thus, composed of two
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phases: a preparation phase, where the QP (8.7) is prepared omitting the estimate
x̂k, and a feedback phase, where the QP is solved by introducing the estimate as
well. Algorithm 5 gives an overview of the RTI scheme for NMPC.

Algorithm 5: RTI for NMPC
Preparation phase performed over t ∈ [tk−1, tk)
Input: previous solution xk−1

1 prepare a guess x̃k from xk−1 ;
2 compute Hk,h(xk) and sensitivities ∇f(xk),∇g(xk),∇h(xk);
3 prepare QP (8.7) omitting x̂k;
4 return QP (8.7);

Feedback phase performed at tk
Input: x̂k, QP (8.7)

5 ∆xk ← solve QP (8.7) by introducing x̂k;
6 xk+1 ← xk + ∆xk;
7 return NMPC solution xk+1;
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Chapter 9

Nonlinear model predictive
control for steerable WMRs

Steerable wheeled mobile robots (SWMRs) are known to be flexibile and robust
thanks to their omnidirectionality and the presence of conventional wheels. Never-
theless, their modeling and control is complex, due to the presence of singularities
in their representation or in the control scheme.

In this chapter, we consider the problem of trajectory tracking for steerable
wheeled mobile robots (SWMRs), equipped with two or more wheels. The robot
is required to follow a user-defined reference pose trajectory in an environment
free of obstacles, without violating the driving and steering velocity constraints of
each wheel. Note that, in order to successfully perform this task, it is of utmost
importance to take into account the kinematic singularities of the platform [116].
To solve this problem, we propose a framework which makes use of Nonlinear Model
Predictive Control [159]. While many existing work use MPC on differential drive
robots [160], on autonomous vehicles such as cars [161] and tractor trailers [162],
and on wheeled-legged robots [163], the application of MPC to SWMRs has yet to
be explored.

Our NMPC is supported by a finite state machine, responsible for starting and
stopping the motion of the robot, while guaranteeing that it never encounters any
kinematic singularity, and a state trajectory generation scheme based on dynamic
feedback linearization [164], which generates reference configurations and reference
control inputs for the NMPC itself, given the reference pose trajectory. The NMPC
is formulated as a Nonlinear Programming problem, and solved using the real-time
iteration scheme [144]. Our approach is validated on a Neobotix MPO-700 on
trajectories of increasing difficulty.

9.1 Kinematic model

In this section, we will develop the kinematic model of a steerable wheeled mobile
robot (SWMR), following the analysis presented in [109]. Note that while our mobile
base is equipped with steerable wheels, its kinematic model is identical to the one
described in [109], which considers caster wheels.

Consider a SWMR equipped with ns ≥ 2 independent steerable wheels. With
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Figure 9.1. The Neobotix MPO-700 steerable wheeled mobile robot.

reference to Fig. 9.2, we will denote the vector ξ = [x, y, θ]⊤ ∈ SE(2) as the pose of
mobile base, with (x, y) its position and θ its orientation. Let Si be the i-th steering
joint of the mobile base, and Wi the i-th wheel of the mobile base, and let oSi and
oWi respectively be their positions, the latter parameterized by the steering angle
βi. Each wheel is also described by two independent velocities, the driving velocity
vW i and the steering velocity vβi

, which are taken as control inputs. We define the
whole robot configuration via the vector q = [ξ⊤,β⊤]⊤, where β = [β1, . . . , βns ]⊤.

The position of the i-th steering joint Si is defined as

oSi =
[
x
y

]
+ R(θ)

[
bi

ai

]
,

and the position of the i-th wheel Wi is defined as

oWi = oSi + R(θ + βi)
[

0
−d

]
.

where R ∈ SO(2) is a rotation matrix.
Due to the assumption of no lateral skidding (i.e., the velocity of the contact

point of the wheel must be orthogonal with respect to the zero motion line of the
wheel itself), each wheel is subject to the Pfaffian constraint

[
− sin(θ + βi)
cos(θ + βi)

]⊤

ȯWi = 0. (9.1)

By combining the above equations, it is possible to rearrange the ns constraints
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Figure 9.2. Schematic model of a SWMR. Note that, even if the figure represents a robot
equipped with four wheels, our approach is generic and works with an arbitrary number
of 2 or more wheels.

in matrix form 
− sin(θ + β1) cos(θ + β1) ∆1 0 . . . 0
− sin(θ + β2) cos(θ + β2) ∆2 0 . . . 0

...
...

...
...

− sin(θ + βns) cos(θ + βns) ∆ns 0 . . . 0


︸ ︷︷ ︸

A⊤(q)

q̇ = 0, (9.2)

with ∆i = bi cosβi + ai sin βi.
For the mobile base to perform a motion, all wheel axles must instantaneously

intersect at the same point, the ICR. The existence of an ICR can also be seen as a
geometric constraint, which requires all wheel orientations to be coordinated. In the
following, we will study how the ICR constraint affects the robot mobility.

9.1.1 ICR constraint not satisfied

Whenever the robot configuration is such that it has no instantaneous center of
rotation (ICR), since from (9.2) q̇ ∈ N (A⊤(q)), the kinematic model of the robot is
the following:

β̇i = vβi
,

with vβi
steering velocities. In this case, the pose of the robot remains constant, and

it is only possible to control the steering angles.
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9.1.2 ICR constraint satisfied

Whenever the robot configuration is such that there exists an ICR, it is possible
to simplify (9.2) through the use of coordinating functions for βi [109], with i ≥ 2.
The idea is to let the ICR be defined by the trajectory of ξ, namely ξ (t). Indeed,
considering the i-th constraint in (9.2) and solving for βi yields the coordinating
function1 (holonomic constraint)

βi = hi(ξ, ξ̇) = arctan− sin θẋ+ cos θẏ + biθ̇

cos θẋ+ sin θẏ − aiθ̇
, (9.3)

which can be used to transform the last ns − 1 constraints of (9.2), obtaining:

[
− sin(θ + β1) cos(θ + β1) ∆1 0

] 
ẋ
ẏ

θ̇

β̇1

 = 0, (9.4)

βi = hi(ξ, ξ̇), i = 2, . . . , ns.

From (9.4), it is trivial to get the reduced kinematic model

ẋ = vS1 cos(θ + β1) + ω(b1 sin θ + a1 cos θ)
ẏ = vS1 sin(θ + β1) + ω(−b1 cos θ + a1 sin θ)
θ̇ = ω

β̇1 = vβ1 ,

(9.5)

which can be used together with (9.3) to express βi as

βi = hi(vS1 , ω, β1) = arctan vS1 sin β1 + ω(bi − b1)
vS1 cosβ1 + ω(a1 − ai)

. (9.6)

Note that the above equations (named coordinating functions) present a singu-
larity whenever the position of the i-th steering joint Si is constant (i.e., ȯSi = 0).
This needs to be considered when designing a controller. Note that this condition
is met when the platform is not moving or when the position of the ICR coincides
with the position of Si.

As a consequence, if the ICR does not lie on any of the steering joints Si and if
it does not change through time (i.e. β̇i = 0), all coordinating functions hi are free
of singularity. Two interesting cases when these hypotheses hold are when the ICR
is constant at infinity (i.e., ω = 0), and when the ICR is constant, not at infinity
(i.e., vS1 = ωR, with R > 0 the distance between ICR and oS1). Hereby, we define
the reduced kinematic models and coordinating functions for these 2 cases, which
we use to start/stop the robot.

1Note that βi can have two values, shifted by π. We select the one closest to the current βi.
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Nonlinear
MPC

state trajectory
generation

finite state
machine

state

open-loop
commands

NoICR/Ready/
Starting/Stopping

Moving

Figure 9.3. Block scheme of the proposed framework. A user-defined reference pose
trajectory ξref is fed to a Finite State Machine (FSM), which determines when to
start/stop robot motion. As soon as a reference trajectory is available, the state of the
FSM becomes Starting, and the mobile base is accelerated (using open-loop commands)
until all wheel driving velocities are non null. When this condition is met, the state
of the FSM becomes Moving, and the Nonlinear MPC takes full control of the robot
motion. In this case, a state trajectory generation scheme based on dynamic feedback
linearization computes the trajectories qref and uref (using ξref), which are used by the
Nonlinear MPC to compute control inputs vWi

,βi. The state of the FSM becomes
Stopping when ξref = 0, and the robot decelerates, then stops.

NoICR Ready

Starting

Stopping

Moving

Figure 9.4. Finite state machine defining the motion of the mobile base.



94 9. Nonlinear model predictive control for steerable WMRs

ICR constant at infinity

in this case, the steering angles are the same for all wheels and ω = 0. Then, the
robot’s reduced kinematic model (9.5) becomes

ẋ = vS1 cos(θ + β1)
ẏ = vS1 sin(θ + β1),

(9.7)

and the coordinating functions become

βi = hi(β1) = β1.

The robot can only move along a line parallel to the wheels’ sagittal axes.

ICR constant not at infinity

in this case, the robot’s reduced kinematic model (9.5) becomes

ẋ = ωR cos(θ + β1) + ω(b1 sin θ + a1 cos θ)
ẏ = ωR sin(θ + β1) + ω(−b1 cos θ + a1 sin θ)
θ̇ = ω,

(9.8)

and the coordinating functions become

βi = hi(β1) = arctan R sin β1 + bi − b1
R cosβ1 + a1 − ai

.

Note that R can be determined from the ICR, which can be computed as the
intersection of the wheel axles. In this case, the robot can only move along the circle
centered at the ICR, and radius corresponding to the distance between the position
of the robot and the ICR itself.

9.2 Proposed framework
This section describes in detail the main components of our framework (shown in
Fig. 9.3), namely: the finite state machine, responsible for starting and stopping
the robot while avoiding kinematic singularities, the state trajectory generation
scheme, which provides trajectories to the NMPC, and the NMPC itself, which
computes control inputs for the robot, while satisfying the driving and steering
velocity constraints of each wheel.

9.2.1 Finite state machine

Since the ICR constraint may not be satisfied at initialization, and since the NMPC
must avoid configurations in which coordinating functions (9.6) are singular, we
designed a finite state machine (FSM) to move the robot towards a configuration
free of singularity.

The FSM, shown in Fig. 9.4, consists of five states, described – along with the
triggering events – hereby.
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▶ NoICR. The configuration of the robot is such that the ICR constraint is not
satisfied. In this state, the wheels are regulated to a user-defined configuration
using a proportional controller. Once the ICR constraint is satisfied, the state
of the FSM becomes Ready.

▶ Ready. The configuration of the robot is such that the ICR constraint is
satisfied and the robot is not moving. Once a new trajectory is available, the
state of the FSM becomes Starting.

▶ Starting. An open loop controller makes the robot start its motion taking into
account the singularity-free kinematic models previously presented: either (9.7)
or (9.8), depending on the robot’s initial configuration. Once all velocities ȯSi

become non-null, the state of the FSM becomes Moving.

▶ Moving. The robot moves using the NMPC. If the trajectory tracking task is
about to be be completed, the state of the FSM becomes Stopping.

▶ Stopping. Similarly to Starting, an open loop motion makes the mobile base
reduce its speed until it stops. Once the robot stops its motion, the state of
the FSM becomes Ready.

9.2.2 Open-loop commands (starting and stopping)

In this section, we present our singularity-free strategy, for handling starting and
stopping motions. To this end, we first constrain the ICR to be constant, as explained
in Sect. 9.1.2, and we accelerate (respectively, decelerate) the mobile base along the
arc of circle defined by the initial position of the robot and the initial ICR, until all
velocities ȯSi are non-null (respectively, null).

If the ICR is constant at infinity, the robot evolves according to (9.7). Considering
the dynamic extension v̇S1 = aS1 , with aS1 new control input:

• when the state of the FSM is Starting, we accelerate the mobile base by
choosing aS1 = ainit

S1
, where ainit

S1
is a parameter;

• when the state of the FSM is Stopping, we decelerate the mobile base by
choosing aS1 = −Kstop

vS1
vS1 , with Kstop

vS1
> 0.

Assuming that the ICR is constant, but not at infinity and not lying on any of
the steering joint, the robot evolves according to (9.8). Considering the dynamic
extension ω̇ = aω, with aω new control input:

• when the state of the FSM is Starting, we accelerate the mobile base via
aω = ainit

S1
/R, which, since v̇W1 = aωR, is equivalent to accelerate S1 by ainit

S1
;

• when the state of the FSM is Stopping, we decelerate the mobile base via
aω = −Kstop

vS1
vS1/R, which is equivalent to decelerate S1 by −Kstop

vS1
vS1 .
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9.2.3 State trajectory generation

Once the velocities ȯSi become non-null, the state becomes Moving, and the robot
is controlled by the NMPC. In this section, we present the state trajectory genera-
tion scheme based on dynamic feedback linearization [164], which computes state
configurations and control input trajectories for the NMPC, given a reference pose
trajectory ξref of the mobile base. Note that both state trajectory generation and
NMPC are only active when the state is Moving.

Consider the output function z(q) = ξ and dynamically extend (9.5) by adding
the following integrators:

v̇S1 = aS1

ω̇ = aω,

so that u = [aS1 , aω, vβ1 ]⊤ are the new control inputs. In the following, unless
otherwise specified, we denote the robot configuration with dynamic extension as
q = [x, y, θ, β1, vS1 , ω]⊤. The dynamically extended kinematic model is

ẋ = vS1 cos(θ + β1) + ω(b1 sin θ + a1 cos θ)
ẏ = vS1 sin(θ + β1) + ω(−b1 cos θ + a1 sin θ)
θ̇ = ω

β̇1 = vβ1

v̇S1 = aS1

ω̇ = aω,

(9.10)

which, in the following, will be denoted as q̇ = f(q,u).
By deriving twice z(q), we obtain

z̈(q) =

ẍÿ
θ̈

 = M(q) + H(q)

aS1

aω

vβ1

 , (9.11)

with M(q) ∈ R3 and H(q) ∈ R3×3 defined as

M(q) =

− sin(θ + β1)ωvS1 + (b1 cos θ − a1 sin θ)ω2

cos(θ + β1)ωvS1 + (−b1 sin θ + a1 cos θ)ω2

0

 ,
H(q) =

cos(θ + β1) b1 sin θ + a1 cos θ − sin(θ + β1)vS1

sin(θ + β1) −b1 cos θ + a1 sin θ cos(θ + β1)vS1

0 1 0

 .
By choosing

u =

aS1

aω

vβ1

 = H(q)−1 (a−M(q)) ,

we can transform (9.11) into an equivalent chain of integrators

z̈ = a,
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which can be easily stabilized. Indeed, exponential regulation of the trajectory
tracking error e(t) = zref(t)− z(t), can be achieved by taking

a = z̈ref + KP e + KDė, KP ,KD > 0,

with zref(t) twice differentiable and persistent (i.e., vS1 ̸= 0) reference trajectory.
Note that the above decoupling matrix H(q) is singular at vS1 = 0. This kind of
singularity is structural for mobile robots [164].

Given the reference trajectories ξref , ξ̇ref , ξ̈ref , Algorithm 6 generates, at each
timestep tk, the states qref

j|k (j = 0, . . . , N), together with the control inputs uref
j|k

(j = 0, . . . , N − 1). These will be used by the NMPC, described in the next section,
to compute control inputs (aS1,k, aω,k, vβ1,k)T for the mobile base. In the pseudocode:
function Sample discretizes a trajectory, given over a time interval [tk, tk +NδMPC],
into N + 1 elements, with δMPC timestep of the NMPC, and function F integrates
kinematic model (9.10) using fourth-order Runge-Kutta over timestep δMPC.

Algorithm 6: StateTrajectoryGeneration
Input: ξref , ξ̇ref , ξ̈ref

Output: qref
0|k, . . . , q

ref
N |k,u

ref
0|k, . . . ,u

ref
N−1|k

1 ξref
0|k, . . . , ξ

ref
N |k ← Sample(ξref);

2 ξ̇ref
0|k, . . . , ξ̇

ref
N |k ← Sample(ξ̇ref);

3 ξ̈ref
0|k, . . . , ξ̈

ref
N |k ← Sample(ξ̈ref);

4 qref
0|k ← qref

0|k;
5 for j ← 0 to N − 1 do
6 aj|k ← z̈ref

j|k + KP (zref
j|k − zj|k) + KD(żref

j|k − żj|k);
7 uref

j|k ←H(qref
j|k)−1(aj|k −M(qref

j|k));
8 qref

j+1|k ← F (qref
j+1|k,u

ref
j|k);

9 end
10 return qref

0|k, . . . , q
ref
N |k,u

ref
0|k, . . . ,u

ref
N−1|k;

9.2.4 Nonlinear Model Predictive Control

The Nonlinear MPC solves, at each control cycle, a finite horizon constrained
Optimal Control Problem (OCP), taking into account the kinematic model (9.5),
wheel velocity and control inputs constraints, singularities of the coordinating
functions (9.6), and singularity of the decoupling matrix H(q) in the state trajectory
generation scheme. In the following, we will denote as Ib

a = {a, . . . , b} ⊂ N the
subset of natural numbers containing all naturals from a to b.
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The OCP can be defined as

min
u(·)

Φ(q(tk + TMPC)) +
∫ tk+TMPC

tk

L(q,u)dt

s.t. q̇ = f(q,u)
v−

W ≤ vWi ≤ v
+
W , ∀i ∈ Ins

1
ȯSi ̸= 0, ∀i ∈ Ins

1
a−

S ≤ aS1 ≤ a+
S

v−
β ≤ vβi

≤ v+
β , ∀i ∈ Ins

1

q(tk) = qk,

with TMPC duration of the prediction horizon, stage and terminal cost respectively
defined as

L(q,u) =
∥∥∥qref − q

∥∥∥2

Wq

+
∥∥∥uref − u

∥∥∥2

Wu

Φ(q) =
∥∥∥qref − q

∥∥∥2

Wq

,

Wq,Wu positive semi-definite weighting matrices, v−
W and v+

W min/max wheel
driving velocity, a−

S and a+
S min/max acceleration of points Si, v−

β and v+
β min/max

wheel steering velocity and qk initial configuration.
Note that the velocity constraints are linear for the coordinating wheel (since

vS1 and vβ1 are part of q) and nonlinear for the coordinated wheels. In particular,
because of the assumption of no lateral skidding (9.1), the driving velocity of the
coordinated wheels can be computed as

vWi =
[
cos(θ + βi)
sin(θ + βi)

]⊤

ȯWi .

Since the steering angles of the coordinated wheels are defined as βi = hi(vS1 , ω, β1),
the steering velocities can simply be computed as their time derivatives.

As already mentioned, since the coordinating function hi is singular when ȯSi = 0,
it is important to carefully design the control scheme. A simple strategy to make
the NMPC free of singularities, is to never let the position of the i-th steering joint
be at rest. Since the NMPC is activated only when changing the FSM state from
Starting to Moving, it is possible to constrain ȯSi so that it is never null. Indeed,
the constraint ȯSi ̸= 0, with a proper change of coordinates, can be rewritten as

R⊤(θ + βi)ȯSi =
[
vSi

0

]
̸= 0,

with

vSi =
[
cos(θ + βi)
sin(θ + βi)

]⊤

ȯSi .

To satisfy the above inequality, we need to have vSi ̸= 0, which is equivalent to
imposing constant sgn(vSi). Note that, because of the starting motion described in
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Sect. 9.2.2, vSi is either positive or negative when the NMPC is activated. This
implies that the constraint will simply be{

vSi > 0, if vSi(t0) > 0
vSi < 0, otherwise

,

with t0 time of activation of the NMPC. This guarantees that subsequent calls of
the state trajectory generation scheme are free of singularities.

We can transcribe the above OCP into the following nonlinear programming
(NLP) problem by using multiple shooting [152]:

min
Qk,Uk

Φ(qN |k) +
N−1∑
j=0
L(qj|k,uj|k)

s.t. qj+1|k = F (qj|k,uj|k), ∀j ∈ IN−1
0

v−
W ≤ vWi,j|k(·) ≤ v+

W , ∀i ∈ Ins
1 ,∀j ∈ IN−1

0

sgn(vS1,j|k) = sgn(vS1(t0)), ∀j ∈ IN
0

sgn(vSi,j|k(·)) = sgn(vSi(t0)), ∀i ∈ Ins
2 ,∀j ∈ IN−1

0

a−
S ≤ aS1,j|k ≤ a+

S , ∀j ∈ IN−1
0

v−
β ≤ vβ1,j|k ≤ v+

β , ∀j ∈ IN−1
0

v−
β ≤ vβi,j|k(·) ≤ v+

β , ∀i ∈ Ins
2 , ∀j ∈ IN−1

0

q0|k = qk,

with vectors

Qk =
[
q⊤

0|k, q
⊤
1|k, . . . , q

⊤
N |k

]⊤
Uk =

[
u⊤

0|k,u
⊤
1|k, . . . ,u

⊤
N−1|k

]⊤
collecting the decision variables of the NMPC at tk, TMPC = NδMPC, δMPC timestep
of the NMPC, and the cost function evaluated using qref

j|k (j = 0, . . . , N) and uref
j|k

(j = 0, . . . , N − 1), computed by the state trajectory generation scheme. Note that,
within the constraints, we used (·) to denote the use of nonlinear functions.

Once the NLP problem is solved, the control sample u0|k is extracted rom Uk,
and used to compute the driving velocities and the steering angles, which are sent
to the robot.

9.3 Experiments
The proposed framework has been implemented in Python, using the acados library
[147] to solve the aforementioned NLP problem with real-time iteration scheme
[144]. We use the robot Neobotix MPO-700, which has ns = 4 steerable wheels (Fig.
9.1). The scheme runs at 75 Hz on an Intel Core i5-10210U (1.6 GHz, 8 cores) with
Ubuntu 20.04 LTS.

We validate our implementation on a series of trajectory tracking experiments of
increasing complexity. We define the trajectories, using a geometric path ξref(s) and



100 9. Nonlinear model predictive control for steerable WMRs

Symbol Value
a (−0.19, 0.19, 0.19,−0.19) [m]
b (0.24, 0.24,−0.24,−0.24) [m]
d 0.045 [m]
ainit

S1
0.1 [m/s2]

Kstop
vS1

1.0
KP diag(4.0, 4.0, 2.0)
KD diag(2.0, 2.0, 1.0)
N 5

δMPC 0.1 [s]
Wq I9
Wu I3
v−

W -0.9 [m/s]
v+

W 0.9 [m/s]
a−

S −0.5 [m/s2]
a+

S 0.5 [m/s2]
v−

β −2.0 [rad/s]
v+

β 2.0 [rad/s]
Table 9.1. Hyperparameters used in all our experiments.

a timing law s(t) ∈ [0, 1]. Naming t0 and tf respectively initial and final time, all
s(t) are 5-th order polynomials, such that:

s(t0) = ṡ(t0) = ṡ(tf ) = s̈(t0) = s̈(tf ) = 0, s(tf ) = 1,

In the following, we will use t0 = 0 [s], and we will assume that the initial position
of the robot is x0 = 0 [m], y0 = 0 [m].

The hyperparameters used are listed in Table 9.1. We invite the reader to watch
the video, available at https://youtu.be/mkG7UASnu6I, which includes clips of all
the experiments described in this section.

9.3.1 Straight line motions

The forward motion trajectory, consists in the robot moving along a straight line,
without changing its orientation. It is defined by

xref(s) = x0 + s(xf − x0)
yref(s) = y0 + s(yf − y0)
θref(s) = θ0

xf = x0 + vref cos(θdir)(tf − t0)
yf = y0 + vref sin(θdir)(tf − t0),

with θdir = θ0 and vref > 0. The initial orientation of the robot is θ0 = 0.0 [rad],
and the initial configuration of the steering angles is given by β1,0 = β2,0 = β3,0 =
β4,0 = 0.0 [rad]. Moreover, tf = 25.0 [s] and vref = 0.2 [m/s]. Figure 9.5 shows
a sequence of snapshots of the mobile base moving while tracking the considered

https://youtu.be/mkG7UASnu6I
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Figure 9.5. Snapshots of the mobile base tracking a forward motion trajectory. The robot
accelerates for half the duration of the motion, eventually decelerating and stopping.
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Figure 9.6. Control inputs and trajectory tracking errors for the forward motion trajectory.

trajectory. Here, the robot starts moving, it accelerates until completing the first
half of the trajectory, it then decelerate, finally stopping its motion. Figure 9.6
show the control inputs computed by the NMPC and the trajectory tracking error.
Notice that both driving acceleration aS1 and steering velocity vβ1 are within their
boundaries. Figure 9.7 shows the corresponding driving and steering velocities. Note
that the initial spike in the steering velocity is due to the change of status of the
FSM from Starting to Moving.

The backward motion trajectory is defined similarly to the forward motion
trajectory, with the difference that vref < 0. The initial orientation of the robot
is θ0 = 0.0 [rad]. Moreover, β1,0 = β2,0 = β3,0 = β4,0 = π [rad], tf = 25.0 [s]
and vref = 0.2 [m/s]. Figure 9.8shows a sequence of snapshots of the mobile base
moving while tracking the considered trajectory. Figure 9.9 show the control inputs
computed by the NMPC and the trajectory tracking error. Figure 9.10 shows the
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Figure 9.7. Driving and steering velocities of the four wheels for the forward motion
trajectory. The driving velocities are increasing for the first part of the motion, and
decreasing until the robots stops for the second half. The steering velocities, apart for
the first spike (due to numerical approximations), are always close to zero, indicating
that the robot is not steering.

Figure 9.8. Snapshots of the mobile base tracking a backward motion trajectory.

corresponding driving and steering velocities. Note again, how constraints are always
satisfied during the motion of the robot. From the snapshots, it is possible to see
that the robot is slightly deviating from the straight line. This behavior is due the
odometric localization module, which is not as precise as a Kalman filter or SLAM
[165]. The integration of a better localization system will be part of future works.

The diagonal motion trajectory is defined similarly to the forward motion tra-
jectory, but with θdir ̸= θ0. The initial orientation of the robot is θ0 = π/4 [rad].
Moreover, β1,0 = β2,0 = β3,0 = β4,0 = −π/4 [rad], tf = 25.0 [s] and vref = 0.2
[m/s]. Figure 9.11 shows a sequence of snapshots of the mobile base moving while
tracking the considered trajectory. Figure 9.12 show the control inputs computed by
the NMPC and the trajectory tracking error. Figure 9.13 shows the corresponding
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Figure 9.9. Control inputs and trajectory tracking errors for the backward motion trajectory.
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Figure 9.10. Driving and steering velocities of the four wheels for the backward motion
trajectory.
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Figure 9.11. Snapshots of the mobile base tracking a diagonal motion trajectory.
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Figure 9.12. Control inputs and trajectory tracking errors for the diagonal motion
trajectory.

driving and steering velocities. Once again, the trajectory is tracking while keeping
the error close to zero, and satisfying all constraints of the system.

In all these experiments (forward, backward and diagonal motion), the reference
position of the robot is the same. The reference orientation, on the other hand, is
different. Note that the robot is able to track diagonal trajectories because of the
steerable wheels, which allow the mobile base behave as an omnidirectional robot.

9.3.2 Circular motions

In this section, we consider tasks in which the robot is required to follow a circle
with center (xC , yC) and radius R > 0. The reference position, which is in common
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Figure 9.13. Driving and steering velocities of the four wheels for the diagonal motion
trajectory. The profile is similar to the case of moving forward because the initial
configuration of the steerable joints are displaced by π [rad] with respect to the previous
experiment.

among all circular trajectories (defined below), is given by

xref(s) = xC +R cos(ϕ+ 2πs)
yref(s) = yC +R sin(ϕ+ 2πs).

In the circle with constant orientation trajectory, the reference orientation is
defined by

θref(t) = θ0,

with θ0 = π [rad]. The initial configuration of the steering angles are given byβ1,0 =
β2,0 = β3,0 = β4,0 = 0.0 [rad]. Moreover, R = 0.5 [m], ϕ = π/2 [rad], and
tf = 15.7 [s].

Similarly to the diagonal motion, the robot is able to track a circle while keeping
its orientation constant because of the steerable wheels. This kind of motion, indeed,
would not be possible with a differential drive robot. Figure 9.14 shows a sequence
of snapshots of the mobile base moving while tracking the considered trajectory.
Figure 9.15 shows the control inputs computed by the NMPC and the trajectory
tracking error. Figure 9.16 shows the corresponding driving and steering velocities.

In the circle with tangent orientation trajectory, the reference orientation is
defined by

θref(s) = atan2
(
∂yref(s)
∂s

,
∂xref(s)
∂s

)
. (9.14)

with θ0 = π [rad], β1,0 = β2,0 = β3,0 = β4,0 = 0.0 [rad]. Moreover, R = 0.5 [m],
ϕ = π/2 [rad], and tf = 15.7 [s]. Figure 9.17 shows a sequence of snapshots of the
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Figure 9.14. Snapshots of the mobile base tracking a circle with constant orientation.
Notice how the robot keeps the same orientation throughout the motion. This is possible
because of the omnidirectional capabilities of the platform.
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Figure 9.15. Control inputs and trajectory tracking errors for the circle with constant
orientation trajectory.
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Figure 9.16. Driving and steering velocities of the four wheels for the circle with constant
orientation trajectory.

Figure 9.17. Snapshots of the mobile robot tracking a circle with tangent orientation.

robot moving while tracking this trajectory. Here, it is possible to notice how the
mobile base changes its orientation according to the previously defined circle, ending
up in its initial pose at the end of the motion. Figure 9.18 show the control inputs
computed by the NMPC, together with the trajectory tracking error. Figure 9.19
shows the corresponding driving and steering velocities. The trajectory tracking
error is always close to zero, and the control inputs, together with steering and
driving velocities of the wheels, are always within their boundaries.

In the circle with inward orientation trajectory, the robot is required to follow
the previously defined circle, while pointing its front towards the center of the circle
itself. The reference orientation is defined as

θref(s) = atan2(yC − yref(s), xC − xref(s)).

Here, θ0 = −π/2 [rad], β1,0 = β2,0 = β3,0 = β4,0 = −π/2 [rad]. Moreover, R = 0.6
[m], ϕ = π/2 [rad], and tf = 18.8 [s]. Figure 9.20 shows a sequence of snapshots of
the mobile base moving while tracking the reference trajectory. In this experiment,
it is possible to notice that the position of the mobile base is identical to the one
of the previous section. The reference orientation, on the other hand, is such that
the front of the robot points towards the center of the circle. Figure 9.21 shows the
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Figure 9.18. Control inputs and trajectory tracking errors for the circle with tangent
orientation trajectory.
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Figure 9.19. Driving and steering velocities of the four wheels for the circle with tangent
orientation trajectory.
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Figure 9.20. Snapshots of the mobile base tracking a circle with inward orientation.
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Figure 9.21. Control inputs and trajectory tracking errors for the circle with inward
orientation trajectory.

control inputs computed by the NMPC and the trajectory tracking error. Figure
9.22 shows the corresponding driving and steering velocities.

In the circle with outward orientation trajectory, the robot is required to follow
the previously defined circle, while pointing its back towards the center of the circle
itself. The reference orientation is defined as

θref(s) = atan2(yref(s)− yC , x
ref(s)− xC).

Here, θ0 = π/2 [rad], β1,0 = β2,0 = β3,0 = β4,0 = π/2 [rad]. Moreover, R = 0.6 [m],
ϕ = π/2 [rad], and tf = 18.8 [s]. Figure 9.23 shows a sequence of snapshots of the
mobile base moving while tracking the considered trajectory. Figure 9.24 show the
control inputs computed by the NMPC and the trajectory tracking error. Figure
9.25 shows the corresponding driving and steering velocities. In this experiment, the
behavior is similar to the circle with inward orientation, as the only difference in the
reference trajectory is the orientation of the base.

9.3.3 Slalom motions

In this section, we consider tasks in which the robot is required to follow a sinusoidal
trajectory. The reference position, which is in common among all trajectories defined
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Figure 9.22. Driving and steering velocities of the four wheels for the circle with inward
orientation trajectory.

Figure 9.23. Snapshots of the mobile base tracking a circle with outward orientation.
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Figure 9.24. Control inputs and trajectory tracking errors for the circle with outward
orientation trajectory.
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Figure 9.25. Driving and steering velocities of the four wheels for the circle with outward
orientation trajectory.

below, is given by

xref(s) = 2πs
yref(s) = α sin(2πs).

In the slalom with constant orientation trajectory, the robot is required to follow
the above defined sinusoidal trajectory while keeping its orientation constant. The
reference orientation is given by

θref(t) = θ0.

Here, the initial orientation of the robot is θ0 = 0.0 [rad]. Moreover, β1,0 = β2,0 =
β3,0 = β4,0 = 0.0 [rad], α = 0.8, and tf = 31.4 [s].

Note that, similarly to the circle with tangent orientation, the tracking of this
kind of trajectory is only possible because of the steerable wheels. Figure 9.26 shows
a sequence of snapshots of the mobile base moving while tracking the considered
trajectory. Figure 9.27 show the control inputs computed by the NMPC and the
trajectory tracking error. Figure 9.28 shows the corresponding driving and steering
velocities. Note that the spike in the steering velocities computed by the NMPC is
due to the initial configuration of the wheels, which are not aligned with respect
to the reference trajectory the robot is required to track. In this case, the state
trajectory generation scheme generates a state trajectory of the steering velocities
which do not satisfy the constraints of the platform. The NMPC is able to take
this into account, generating a control action which satisfy all requirements. The
resulting behavior is a realignment of the steerable wheels at the beginning of the
motion, which makes it possible to successfully complete the assigned task.
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Figure 9.26. Snapshots of the mobile base tracking a slalom with constant orientation.
Notice how the robot keeps the same orientation throughout the motion. Again, this
behavior is possible because of the omnidirectional capabilities of the platform.
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Figure 9.27. Control inputs and trajectory tracking errors for the slalom with constant
orientation trajectory. Notice how the steering velocity vβ1 is at the upper bound when
the FSM changes its state from Starting to Moving. This is because of the state trajectory
generation scheme, which generates too high velocities, because of the steerable wheels
which are not aligned with the reference trajectory at the beginning of the motion. The
NMPC is capable of taking this into account, generating feasible control inputs.
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Figure 9.28. Driving and steering velocities of the four wheels for the slalom with constant
orientation trajectory. The steering velocities at the limit of the bound at the beginning
of the motion reflect the behavior of the control inputs computed by the NMPC.

Figure 9.29. Snapshots of the mobile base tracking a slalom with tangent orientation.

In the slalom with tangent orientation trajectory, the robot is required to follow
again the sinusoidal trajectory defined above, but while keeping its orientation
tangent to the trajectory itself. The reference orientation is given by eq. (9.14).
Here, the initial orientation of the robot is θ0 = atan(α) [rad]. Moreover, β1,0 =
β2,0 = β3,0 = β4,0 = 0.0 [rad], with α = 0.8, and tf = 31.4 [s].

Figure 9.29 shows a sequence of snapshots of the mobile base moving while
tracking the considered trajectory. Here, the reference position is the same as the
one defined in the previous section, while the reference orientation in different. In
the snapshots, it is possible to notice how the robot tracks the slalom while keeping
its orientation tangent to the slalom itself. Figure 9.30 shows the control inputs
computed by the NMPC and the trajectory tracking error, which is always close
to zero. Figure 9.31 shows the corresponding driving and steering velocities. Once
again, the NMPC generates feasible control inputs while satisfying driving and
steering velocity constraints on all wheels.
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Figure 9.30. Control inputs and trajectory tracking errors for the slalom with tangent
orientation trajectory.
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Figure 9.31. Driving and steering velocities of the four wheels for the slalom with tangent
orientation trajectory.
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Chapter 10

Conclusions

This thesis addressed the problem of generation and control of motion for humanoids
and steerable wheeled mobile robots. In particular, in the first part of the thesis we
have studied the problem of motion generation for humanoids in a world of stairs, a
particular uneven terrain where the contact surfaces are piecewise-horizontal. After
introducing their dynamics in Chapter 4, and Intrinsically-Stable Model Predictive
Control (IS-MPC) in Chapter 5, we have presented a sensor-based framework for
locomotion which makes use of a footstep planner based on RRT* in Chapter 6,
and a feasibility-aware plan adaptation module based on mixed-integer nonlinear
optimization in Chapter 7. In the second part of the thesis, after a brief overview of
Nonlinear Model Predictive Control (NMPC) based on the real-time iteration (RTI)
scheme in Chapter 8, we have introduced a framework based on RTI for the control
of the motion of steerable wheeled mobile robots (SWMRs) in Chapter 9. In the
following, we summarize the main scientific contributions of this manuscript, and
discuss possible future works.

In Chapter 6, we addressed the problem of motion generation for a humanoid
robot that must reach a certain goal region walking in a world of stairs. We
considered two versions of such problem: the off-line and on-line case. In the first,
the geometry of the environment is completely known in advance, while in the second,
it is reconstructed by the robot itself during motion using an on-board sensor. In
both cases, available information about the environment is maintained in the form
of an elevation map.

For the off-line case, we proposed an architecture working in two main stages:
footstep planning and gait generation. First, a feasible footstep plan leading to
the goal region is computed off-line using a randomized algorithm that takes into
account the quality of the plan specified by a given optimality criterion. Then, an
intrinsically stable MPC-based scheme computes a CoM trajectory that realizes the
footstep plan, while guaranteeing dynamic balance and boundedness of the CoM
with respect to the ZMP at all time instants.

For the on-line case, we proposed an extension of the architecture for the off-line
case where footstep plans are computed in parallel to gait generation and map
building. To this end, we presented a sensor-based version of the footstep planner
that uses the knowledge about the environment incrementally acquired by the robot
during motion.
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We validated the proposed architectures by providing simulation results obtained
in CoppeliaSim on the HRP-4 humanoid robot in scenarios of different complexity.

Our future work will explore several directions, such as

1. providing a formal proof of asymptotic optimality of the proposed footstep
planner;

2. developing a more general version of the proposed approach to deal with
arbitrary terrains, removing the world of stairs assumption;

3. implementing the presented architectures on a real humanoid robot;

4. extending them to the case of large-scale and multi-floor environments.

In Chapter 7, we presented Feasibility-Aware Plan Adaptation (FAPA), a module
for adapting footstep plans (positions, orientations and timings) in such a way to
enhance the IS-MPC scheme of Chapter 5. To do so, we exploited the feasibility
region of IS-MPC (Sect. 5.6), using a gait feasibility constraint. We considered two
versions of the scheme: Fixed patches FAPA (F-FAPA), where the regions assignment
for placing the footsteps is fixed, and Variable patches FAPA (V-FAPA), where
the regions can be selected automatically. In F-FAPA, the optimization problem
is formulated as a Nonlinear Programming Problem (NLP), while in V-FAPA it is
formulated as a mixed-integer NLP. We validated FAPA in MATLAB simulations,
showing that the plan is adapted in a very flexible way in reaction to strong pushes.
In our MATLAB prototype, the performance is fully compatible with real time in
the case of F-FAPA, while not yet in the case of V-FAPA.

Future works will be aimed at

1. reimplementing FAPA in C++ in order to meet real-time requirements;

2. introducing the on-line footstep planner of Chapter 6 inside the architecture
so that global replanning is possile;

3. explore convex relaxation [166] and use a MIQP solver such as Gurobi [167] to
further speed up the computation;

4. deploy FAPA on a real humanoid robot.

In Chapter 9, we presented a framework for trajectory tracking for steerable
wheeled mobile robots, which makes use of a Nonlinear MPC based on real-time
iteration. Our scheme is capable of tracking trajectories without violating wheels’
velocity constraints, while taking into account kinematic model singularities. We
have validated our approach on multiple trajectories using the Neobotix MPO-700,
showing that our scheme is always able to track them. To the best of our knowledge,
this is the first time a NMPC has been implemented on a SWMR.

In our future works, we plan to extend the framework in several ways:

1. extend the NMPC to a dual-arm mobile manipulators such as BAZAR robot
[17], making it interact with the environments with the arms while moving;
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2. implement a motion planning algorithm such as kinodynamic RRT* [168],
making the robot able to navigate autonomously in an environment with
obstacles;

3. further improve the performance of the framework by implementing it in C++
(while the scheme runs in real-time thanks to acados which compiles the NMPC,
most of the time is taken by the state trajectory generation module, which
completely relies on Python).
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