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Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-
state electroencephalographic (rsEEG) rhythms in patients with Alzheimer’s disease with dementia (ADD). Clinical and instrumental
datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu).
Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the
(gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA
source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity
estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD
participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes,
and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural
integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD
and Nold persons.

Key words: Structural magnetic resonance imaging (sMRI); Default mode network (DMN); Resting state electroencephalographic (rsEEG)
alpha rhythms; Alzheimer’s disease with dementia (ADD); Exact low-resolution brain electromagnetic source tomography (eLORETA).
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Introduction
The framework model of the National Institute of Aging (NIA) and
Alzheimer’s Association (AA) posit that Alzheimer’s disease (AD)
diagnosis can be based on biomarkers derived from the in-vivo
measurement of amyloidosis (“A”), tauopathy (“T”), and neurode-
generation (“N”) from the brain of patients with AD, regardless of
disease clinical manifestations (Jack Jr et al. 2018). Those biomark-
ers derive from cerebrospinal fluid (CSF) or positron emission
tomography (PET) mapping. At the same time, neurodegeneration
can be probed by structural magnetic resonance imaging (sMRI)
or fluorodeoxyglucose (FDG) PET mapping (Jack Jr et al. 2018).

In the above framework model of AD, there is, unfortunately,
no reference to how AD-related neuropathology and neurode-
generation may affect oscillatory neurophysiological thalamo-
cortical mechanisms underpinning abnormalities in the general
cortical arousal and vigilance (Hughes and Crunelli 2005; Crunelli
et al. 2015), which are common symptoms of AD. Notably, these
mechanisms promote the summation of post-synaptic potentials
at cortical pyramidal neurons producing detectable changes in
the ongoing electromagnetic fields measured at the scalp level
during wakefulness (Pfurtscheller and Lopes da Silva 1999). The
measurement of these fields unveils the ongoing scalp-recorded
electroencephalographic (EEG) rhythms, which have a modest
spatial resolution of some squared centimeters but a very high
temporal resolution (ms), allowing to investigate cortical EEG
rhythms at different frequency bands within about 1–40 Hz during
a resting-state eyes-closed condition (rsEEG).

These features are extremely interesting for AD research as
biomarkers of the integrity of the neuromodulatory subcortical
ascending systems (e.g. reticular formation and noradrenergic,
dopaminergic, serotoninergic, and cholinergic pathways) under-
pinning the disease-related abnormalities in cortical arousal
and vigilance regulation (Babiloni et al. 2020, 2021; Rossini
et al. 2019). Compared with control cognitively unimpaired
old persons (Nold), AD patients with amnestic Mild Cognitive
Impairment (ADMCI) and dementia (ADD) were characterized
by increased rsEEG rhythms at delta (<4 Hz) and theta (4–7 Hz)
frequencies in widespread cortical regions as well as decreased
rsEEG rhythms at alpha (8–13 Hz), beta (14–30 Hz), and gamma
(30–40 Hz) frequencies distributed in central and posterior cortical
areas; these effects were typically discussed concerning the
degeneration of cortical synapses and neurons, axonal pathology,
and deficits in the cholinergic neurotransmission (Rossini et al.
2019; Babiloni et al. 2020, 2021).

The above rsEEG biomarkers may reflect the effects of AD
neuropathology on functional brain networks as revealed by the
functional MRI recorded during a resting-state condition in quiet
wakefulness (rs-fMRI), based on the measurement of blood oxy-
genation level-dependent (BOLD) signals; biomarkers of func-
tional connectivity may result from the intrinsic correlation of
the BOLD signals recorded between voxels/brain regions (Biswal
et al. 1997; Fox and Raichle 2007; Teipel et al. 2016). Among the
intrinsic resting-state cortical networks emerging from rs-fMRI,
the default mode network (DMN) spanning posterior and anterior
cingulate areas, angular gyri, precuneus, and parietotemporal
regions is of particular interest in AD research (Heine et al. 2012).
Such a network underpins self-related and internal processes
that can be parcellated into several sub-classes, including self-
awareness or “mental self” and introspection (Gusnard et al. 2001).
Specifically, previous rs-fMRI studies showed that AD patients
were characterized by decreased DMN activity (Greicius et al.
2004; Zhu et al. 2013; Li et al. 2016) and functional connectivity

(Greicius et al. 2004; Zhang et al. 2009; Zhang et al. 2010; Agosta
et al. 2012; Koch et al. 2012; Weiler et al. 2014; Xia et al. 2014).
Notably, neuroimaging data revealed a fine spatial co-localization
of the amyloid-β accumulation and abnormalities in the DMN
connectivity in the continuum formed by Nold and AD patients
(Myers et al. 2014; Pasquini et al. 2017).

As the generation of rsEEG activity depends on the (de)synchron
ization of neural activity across brain neural networks (Babiloni
et al. 2020), a bulk of rsEEG studies tested the hypothesis of age-
related abnormalities in the rsEEG rhythms localized within DMN.
Specifically, Caravaglios et al. (2022) showed that compared with
Nold participants, amnesic MCI patients were characterized by
increased rsEEG delta-beta rhythms (from 21 scalp electrodes)
localized in the frontal components of a source DMN model.
Exploring the disease progression, Hsiao et al. (2013) found that
in contrast with amnesic MCI participants, mild ADD patients
showed increased rsEEG delta–theta rhythms and decreased
rsEEG alpha–beta rhythms (from 21 scalp electrodes) within DMN
source model, with an association between posterior rsEEG theta
and alpha rhythms and measures of global cognitive status. Choi
et al. (2021) extended those effects with a high spatial-resolution
rsEEG approach (from 62 scalp electrodes). Compared with Nold
participants, ADD patients were characterized by increased
clustering connectivity at the rsEEG theta rhythms and decreased
clustering connectivity at the rsEEG alpha rhythms within a
source DMN model (Choi et al. 2021). Finally, Brueggen et al. (2017)
enriched our understanding of the relationship between the rsEEG
rhythms and the DMN in AD with a study using simultaneous
recordings of the rsEEG activity (from 19 scalp electrodes) and the
rs-fMRI. In contrast to Nold participants, ADD patients showed a
reduced correlation between posterior rsEEG alpha rhythms and
the activity within the DMN nodes, as revealed by the rs-fMRI
(Brueggen et al. 2017).

The above findings indicate a large variability in the relation-
ships between the rsEEG rhythms and the DMN in AD patients.
This issue motivated the evaluation of the magnetoencephalo-
graphic (rsMEG) counterpart of rsEEG rhythms, which can provide
cortical source imaging with a spatial resolution greater than
the conventional rsEEG. Unfortunately, those studies confirmed
the variability of the relationships of interest. With the rsMEG
methodology, Koelewijn et al. (2017) showed that, compared with
young and old control persons, mild ADD patients had decreased
alpha–beta rhythms (from 275-channel CTF radial gradiometers)
in frontoparietal, sensorimotor, and visual cortical networks local-
ized within a source model of the whole brain. Interestingly, those
rsMEG effects correlated with global cognitive status measures
(Koelewijn et al. 2017).

Similarly, Garcés et al. (2014) reported that, as opposed to
Nold persons, MCI patients showed decreased rsMEG alpha
rhythms (from 102 magnetometers and 204 planar gradiometers)
in a source connectivity DMN model. Furthermore, those MCI
patients presented disrupted structural connections among
DMN regions, as revealed by the MRI tractography (Garcés et al.
2014). In contrast, Bruña et al. (2022) reported that, compared
with Nold persons, MCI patients had increased rsMEG alpha
rhythms and decreased rsMEG beta and gamma rhythms (from
102 magnetometers and 204 planar gradiometers) in cingulate
and parietal areas of a source connectivity DMN model. This
paradoxical increase in the rsMEG alpha rhythms was explained
by the relatively younger age of the MCI patients and a very
early stage of the disease. Finally, Yu et al. (2017) did not find
effects at the rsMEG alpha rhythms when considered separately
from the other frequency bands (from a 306-channel whole-head
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system). ADD patients showed a specific vulnerability in “hubs”
localized in the posterior parts of the source DMN model only
when the procedure considered all rsMEG frequency bands mixed
into a single multiplex network. In that network, such “hubs”
vulnerability was associated with altered CSF amyloid-β42 levels
and cognitive status (Yu et al. 2017).

Keeping in mind the significant variability in the literature
about results on the relationship between the rsEEG rhythms and
the DMN in AD patients, we carried out the present exploratory
study using a methodological approach based on the correlation
between the rsEEG rhythms and the gray matter (GM) volume in
the DMN nodes. Specifically, this study was performed in patients
with ADD and matched old persons with unimpaired cognitive
status (Nold) to test the hypothesis of a specific relationship
between (1) the DMN structural integrity, (2) source activities
from rsEEG rhythms estimated in the regions of interest (ROIs)
representing the DMN core nodes, such as the medial prefrontal
cortex-anterior cingulate cortex (mPFC-ACC), the posterior cingu-
late cortex (PCC), the precuneus, and the inferior parietal cortex
(IPC), and (3) the cognitive status, as revealed by the mini-mental
state evaluation (MMSE) score.

To evaluate the specificity of the relationship, we used 2 control
neural networks such as (1) the dorsal attention network (DAN),
which comprises the frontal eye field (FEF) and inferior parietal
sulcus (IPS) and may be implicated in directed attention and work-
ing memory (Corbetta and Shulman 2002; Fox et al. 2006), and
(2) the cortical sensorimotor network (SMN), which groups multi-
ple somatosensory and motor areas, including primary motor cor-
tex (M1, Brodmann area 4, BA 4), caudal premotor (BA 6), and pri-
mary somatosensory cortex (S1, BA 3, 1, and 2). This network also
includes part of the lateral and medial posterior parietal areas (BA
5 L and BA 5 M) and a small portion of the middle-cingulate sulcus
(Yeo et al. 2011). This study’s clinical, MRI, and rsEEG datasets
were taken from an international archive, The PDWAVES Consor-
tium (www.pdwaves.eu). The analysis used freeware platforms
for MRI and rsEEG data to replicate the study results. Specifi-
cally, we used the official eLORETA freeware publicly available
at https://www.uzh.ch/keyinst/loreta, which is implemented only
with the MNI152 average brain template as a cortical source
space (Pascual 2007). This methodological approach will allow
any independent research group, including those of lower income
countries, to replicate this study, regardless of the availability
of individual structural MRIs. Furthermore, this methodological
approach allowed us to compare and discuss the present rsEEG
results with those obtained in our previous studies using the same
approach on patients with mild cognitive impairment due to AD
(MCI) and dementia due to other neurodegenerative diseases (e.g.
Lewy body and Parkinson’s disease; Babiloni et al. 2020, 2021).

Materials and methods
Participants
In this retrospective study of The PDWAVES Consortium (www.
pdwaves.eu), clinical and rsEEG data were provided by the fol-
lowing clinical units: Sapienza University of Rome (Italy), IRCCS
SDN of Naples (Italy), IRCCS Oasi of Troina (Italy), IRCCS Hospital
San Raffaele Pisana of Rome (Italy), University “G. d’Annunzio”
of Chieti-Pescara (Italy), Istanbul University (Turkey), Dokuz Eylül
University (Turkey), and Newcastle University (UK). Specifically,
those data referred to age-, gender-, and education-matched ADD
(n = 45) and Nold (n = 40) participants having rsEEG recordings with
consistent eyes-closed conditions. Of note, each clinical unit of
this study provided Nold persons and ADD patients. A larger

contribution of ADD patients came from the clinical units of Istan-
bul University, Dokuz Eylül University, and Newcastle University.

The diagnosis of ADD was based on the criteria of the Diag-
nostic and Statistical Manual of Mental Disorders, fourth edition
(DSM-IV-TR; American Psychiatric Association) and the National
Institute of Neurological Disorders and Stroke–Alzheimer Disease
and Related Disorders (NINCDS–ADRDA; McKhann et al. 2011).
Exclusion criteria for the ADD patients were other significant
neurological, systemic, or psychiatric illness, mixed dementing
diseases, enrolment in a clinical trial with experimental disease-
modifying drugs, the chronic use of antidepressant medications,
high dose of neuroleptics or frequent user of sedatives or hyp-
notics, antiparkinsonian medication and the frequent use of nar-
cotic analgesics (Babiloni et al. 2020).

The selected ADD patients underwent the following pharma-
cological therapies: selective serotonin reuptake inhibitors (SSRIs;
n = 2; 3.7%), selective serotonin and noradrenaline reuptake
inhibitors (SNRIs; n = 1; 1.8%), Acetylcholinesterase inhibitors
(AChEIs; n = 42; 77,8%), and antagonists of N-methyl-D-aspartate
receptors (aNMDARs; n = 11; 20.4%).

The Nold persons (n = 40) were selected from the clinical units
in equal percentages of the AD patients to be studied as age-
matched controls (19 males, mean age 72.4 years ±1.1 standard
error of the mean, SE, a range of 57–87 years). The exclusion
criteria for the Nold seniors were (1) the presence of neurological
or psychiatric diseases (previous or present), (2) the presence of
a condition of depression (detected with a GDS score higher than
5), (3) the use of chronic psychoactive drugs, and (4) significant
chronic systemic illnesses (e.g. diabetes mellitus).

All participants received the Mini-Mental State Examination
(MMSE) to measure the status of global cognition. Table 1 summa-
rizes the relevant demographic and clinical (i.e. MMSE score) infor-
mation about the Nold and ADD groups, together with the results
of the statistical analyses computed to evaluate the presence or
absence of statistically significant differences among them as
age (t-test), gender (Fisher’s exact test), education (t-test), and
MMSE score (Mann–Whitney U test). As expected, a statistically
significant difference was found between the 2 groups for the
MMSE score (P = 0.000005), showing a higher score in the Nold than
in the ADD group. On the contrary, we observed no statistically
significant differences in age, gender, and education between the
groups (P > 0.05).

The local institutional Ethical Committees approved the
study. All experiments were performed with each participant or
caregiver’s informed and overt consent, in line with the Code of
Ethics of the World Medical Association (Declaration of Helsinki)
and the standards established by the local Institutional Review
Board. All experimental data of this study were anonymized in
line with the European rules.

The rsEEG recordings
Electrophysiological data were recorded by professional digital
EEG systems licensed for clinical applications. Specifically, the
following digital EEG systems were used: BrainAmp 32-Channel
DC System (Brain Product GmbH, Germany), Waveguard caps
(ANT Neuro, The Netherlands), EB Neuro-BE LIGHT (EB Neuro,
Italy), Galileo NT Line—EB Neuro (EB Neuro, Italy), and EB Neuro-
Sirius BB (EB Neuro, Italy). The use of different digital EEG systems
was properly taken into account in the statistical analysis.

All rsEEG recordings were performed in the late morning. The
rsEEG recordings were performed in all participants using at
least 30 scalp exploring electrodes placed according to the 10–10
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Table 1. Mean values (± standard error, SE) of the demographic and clinical data as well as the results of their statistical comparisons
(P < 0.05) in the groups of Nold elderly subjects (Nold, n = 40) and patients with dementia due to Alzheimer’s disease (ADD, n = 45).
Legend: M/F = males/females; n.s. = not significant (P > 0.05).

Nold ADD Statistical comparisons

N 40 45
Age (mean ± SE) 72.4 ± 1.1 74.0 ± 0.9 T-test: n.s.
Sex (M/F) 19/21 23/22 Fisher’s exact test: n.s.
Education (mean ± SE) 11.0 ± 0.7 10.1 ± 0.5 T-test: n.s.
MMSE score (mean ± SE) 27.1 ± 0.2 19.0 ± 0.6 Mann–Whitney U test: P < 0.00005

Fig. 1. Electrode montage including 30 scalp exploring electrodes placed
according to the 10–10 system used in this study.

system. These electrodes were denoted as “selected electrodes,”
and their location is illustrated in Fig. 1.

The ground electrode was attached to the right clavicle or
on the forehead, while linked earlobes (A1 and A2) or Fz served
as the active reference for all the scalp electrodes during the
rsEEG recordings. The electrode impedance was kept below 5 kΩ.
Continuous EEG data recordings were performed at a 500–1024 Hz
sampling frequency and with appropriate antialiasing bandpass
filters between 0.01 and 60–100 Hz. The electrooculographic (EOG)
potentials (0.3–70 Hz bandpass) were also recorded to control eye
movements and blinking.

The participants were seated in a comfortable armchair during
the rsEEG recording and instructed to remain awake, psychophys-
ically relaxed (no movement), and with the mind freely wander-
ing (no mental planning or cognitive operations). Based on the
instructions given by an experiment, each rsEEG recording lasted
3–5 min in the eyes-closed condition, followed by 3–5 min in the
condition of eyes open. The experimenter supervised the partic-
ipants during the rsEEG recordings to monitor their adherence
to the protocol. All deviations by the protocol and verbal inter-
ventions between the experimenter and the participants were
annotated and considered during the phase of rsEEG data analysis
to select artifact-free EEG periods for the source estimation.

Preliminary rsEEG data analysis
The rsEEG data were centrally analyzed by experts of the Sapienza
University of Rome unit; they were blind to the participant’s

diagnosis. The recorded rsEEG data were exported as a European
data format (.edf) or EEGLAB set (.set) files and then processed
offline using the EEGLAB toolbox (Delorme and Makeig 2004; ver-
sion eeglab14_1_2b) running under the MATLAB software (Math-
Works, Natick, MA, USA; version: R2014b). The rsEEG data were
divided into epochs lasting 2 s (i.e. 5 min = 150 rsEEG epochs of 2 s
each) and analyzed offline.

Afterward, the rsEEG data were analyzed following a 3-step
procedure aimed at detecting and removing (1) recording chan-
nels (electrodes) showing a prolonged artefactual rsEEG activity
due to bad electric contacts or other reasons; (2) rsEEG epochs
with artifacts at several recording channels; and (3) intrinsic
components of the rsEEG epochs with artifacts.

The first step was based on a visual analysis of the recorded
rsEEG activity by 2 independent experimenters among 3 experts
(i.e. C.D.P, G.N., and S.L.) for a first identification of the selected
electrodes affected by irremediable artifacts. Indeed, no more
than 3 selected electrodes were removed for each participant. For
the clinical units with a digital EEG system using >30 exploring
electrodes, the removed electrodes were substituted with the
nearest electrodes not included among the original 30 selected
electrodes. The added electrodes were then used together with
the artifact-free selected electrodes to compute the interpolation
of artifact-free rsEEG data to reconstruct the rsEEG data at the
removed electrodes (EEGLAB toolbox, Delorme and Makeig 2004;
version eeglab14_1_2b), thus ensuring that all participants had
artifact-free EEG data at the locations of the 30 selected elec-
trodes.

The second step was based on a visual analysis of the recorded
rsEEG activity by 2 independent experimenters among those
involved in the operation (i.e. C.D.P, G.N., and S.L.) to develop a
first identification of the artifactual rsEEG epochs. The rsEEG
epochs contaminated by muscular, ocular, head movements, or
non-physiological artifacts were removed.

The third step was implemented by an independent compo-
nent analysis (ICA) from the EEGLAB toolbox, applied to remove
the ICA components representing the residual artifacts due to the
following causes: (1) blinking and eye movements; (2) involuntary
head movements; (3) neck and shoulder muscle tensions; and
(4) electrocardiographic activity (Jung et al. 2000; Crespo-Garcia
et al. 2008). For each rsEEG dataset, less than 5 ICA components
were removed from the original ICA solutions based on the work-
ing 30 ICA components. In the third step, the rsEEG datasets were
reconstructed with the remaining (artifact-free) ICA components,
and the putative artifact-free rsEEG epochs were visually double-
checked again by 2 independent experimenters (among C.D.P, G.N.,
and S.L.) to confirm or make the final decision about the inclusion
or the exclusion of a given rsEEG epoch.

The artifact-free EEG data for the common 30 selected elec-
trodes were used as input for 2 additional methodological steps.
The first additional step served to harmonize rsEEG data recorded
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by the clinical units using different reference electrodes and
sampling frequency rates. The rsEEG data were frequency-band
passed at 0.1–45 Hz and downsampled, when appropriate, to make
the sampling rate of all artifact-free rsEEG datasets equal 256 Hz.
Furthermore, all those rsEEG epochs were re-referenced to the
common average reference.

Spectral analysis of the rsEEG epochs
A standard digital FFT-based analysis (Welch technique, Hanning
windowing function, no phase shift) computed the power density
of artifact-free rsEEG epochs at all 30 scalp electrodes (0.5 Hz of
frequency resolution). From those spectral solutions, the rsEEG
frequency bands of interest were individually identified based
on the following frequency landmarks: the transition frequency
(TF) and individual alpha frequency (IAF) observed in the eyes-
closed condition. In the rsEEG power density spectrum, the TF was
defined as the minimum rsEEG power density between 3 and 8 Hz,
while the IAF was defined as the maximum power density peak
between 6 and 14 Hz. These frequency landmarks were previously
well described by Dr Wolfgang Klimesch (Klimesch 1996; Klimesch
et al. 1998; Klimesch 1999).

The TF and IAF were computed for each participant involved
in the study. Based on the TF and IAF, we estimated the individual
delta, theta, and alpha bands as follows: delta from TF -4 Hz to
TF -2 Hz, theta from TF -2 Hz to TF, low-frequency alpha (alpha 1
and alpha 2) from TF to IAF, and high-frequency alpha (or alpha
3) from IAF to IAF + 2 Hz. Specifically, the individual alpha 1 and
alpha 2 bands were computed as follows: alpha 1 from TF to the
frequency midpoint of the TF-IAF range and alpha 2 from that
midpoint to IAF.

The other rsEEG frequency bands were defined based on the
standard fixed frequency ranges used in the reference study series
(reviewed in Babiloni et al. 2021): beta 1 from 14 to 20 Hz, beta 2
from 20 to 30 Hz, and gamma from 30 to 40 Hz.

Of note, essential aspects of the procedure were as follows.
(1) Alpha band was divided into sub-bands because, in the

rsEEG data, dominant low-frequency alpha rhythms (alpha 1
and alpha 2) may denote the synchronization of diffuse cortical
neural networks regulating the fluctuation of the subject’s global
wakefulness and vigilance states. In contrast, the high-frequency
alpha rhythms (alpha 3) may denote the (de)synchronization of
more selective cortical neural networks specialized in process-
ing modal-specific or semantic information during event-related
paradigms (Klimesch 1999; Pfurtscheller and Lopes da Silva 1999).
When the subject is engaged in sensorimotor or cognitive tasks,
alpha and low-frequency beta (beta 1) rhythms do reduce in power
(i.e. desynchronization or blocking) and are replaced by fast EEG
oscillations at high-frequency beta (beta 2) and gamma rhythms
(Pfurtscheller and Lopes da Silva 1999).

(2) We focused on the individual delta, theta, and alpha fre-
quency bands because a mean slowing in the peak frequency of
the alpha power density may characterize a clinical group without
any substantial change in the magnitude of the power density. In
that case, using fixed frequency bands would result in a statistical
effect erroneously showing alpha power density values lower in
the clinical than in the control group.

(3) Fixed frequency ranges were used for the beta bands
because the individual beta frequency peaks were evident only in
a few subjects (<10%).

(4) We selected the beginning of the beta frequency range
at 14 Hz to avoid overlapping individual alpha and fixed beta
frequency ranges (i.e. IAF band ranged from TF to 14 Hz with an
IAF = 12 Hz).

Cortical sources of rsEEG rhythms in the DMN,
SMN, and DAN as computed by eLORETA
The procedures for the rsEEG cortical source estimations were
described in a previous reference article of our Consortium
(Babiloni et al. 2019). We used the official freeware tool called
exact LORETA (eLORETA) to linearly estimate the cortical source
activity generating scalp-recorded rsEEG rhythms (Pascual 2007).
The current implementation of eLORETA uses a head volume
conductor model composed of the scalp, skull, and brain.

Exploring electrodes can be virtually positioned in the scalp
compartment to give EEG data as an input to the source estima-
tion (Pascual 2007). The brain model relies on a realistic cerebral
shape from a template typically used in neuroimaging studies,
namely that of the Montreal Neurological Institute (MNI152 tem-
plate). The eLORETA freeware solves the so-called EEG inverse
problem estimating “neural” current density values at any corti-
cal voxel of the mentioned head volume conductor model. The
solutions are computed rsEEG frequency bin-by-frequency bin.

The input for this estimation is the EEG spectral power density
computed at scalp electrodes. The output estimates the neural
current density at the equivalent current dipoles, each localized
into one of the 6239 voxels (5 mm resolution) forming the cortical
source space, restricted to the cortical GM of the head volume
conductor model. Specifically, eLORETA estimates local neural
ionic currents at 3 axes, “z,” “x,” and “y,” of a dipolar source located
within each voxel of the cortical source space. The procedure
averages those values from the 3 axes to make each dipolar
source putatively sensitive to different directions of the local
neural ionic currents (https://www.uzh.ch/keyinst/loreta). The
eLORETA package provides the Talairach coordinates, lobe, and
BA for each voxel.

Following the above procedure, the eLORETA source activities
from rsEEG rhythms were estimated in specific ROIs representing
the main “hubs” included in the resting-state cortical networks
considered in this study (i.e. DMN, SMN, and DAN). In this line, the
average of the eLORETA source solutions across the voxels of a
given ROI could putatively reflect the local neural currents gen-
erated by radial, oblique, and tangential rsEEG sources from near
cortical circumvolutions, including gyri, sulci, etc. (Pascual 2007).

The selection of the DMN nodes to form the ROIs was per-
formed according to Yeo et al. (2011), while that of the DAN nodes
was performed according to Bedini and Baldauf (2021) for the FEFs
and to Anderson et al. (2011) for the anterior intraparietal sulcus
(aIPS). The correspondence between the network ROIs and the BA
is reported in Table 2.

The following procedure normalized eLORETA solutions com-
puted from the rsEEG eyes-closed data. For a given participant, we
averaged the eLORETA solutions across all frequency bins from
0.5 to 45 Hz and 6239 voxels of the brain model volume to obtain
the eLORETA “mean” solution. Afterward, we computed the ratio
between each original eLORETA solution at a given frequency
bin/voxel and the eLORETA “mean” solution. As a result, each
original eLORETA solution at a given frequency bin/voxel changed
to a normalized eLORETA solution.

For the present eLORETA cortical source estimation, we used
a 0.5 Hz frequency resolution as the maximum frequency resolu-
tion allowed using 2-s artifact-free EEG epochs.

MRI data acquisition and anatomical
preprocessing
All MRI scans were performed in the Nold and ADD participants
using 1.5 and 3.0 Tesla scanners. Each scanner brand was used
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Table 2. ROIs used for the estimation of the cortical sources of
the rsEEG rhythms in the cortical networks (DMN) explored in
this study. Each ROI is defined by some Brodmann areas of the
cerebral source space in the freeware used in this study, namely
the eLORETA. Legend: mPFC- ACC, PCC, precuneus, IPC, primary
somatosensory cortex (S1), primary motor cortex (M1), caudal
premotor cortex (PMc), anterior intraparietal sulcus (aIPS).

BRODMANN AREAS INTO THE NETWORK ROIs

DMN mPFC-ACC 25, 32, 34
PCC 30, 29, 31, 23
Precuneus 31, 23, 7, 39, 19
IPC 39, 40, 7

SMN S1 1, 2, 3
M1 4
PMc 6

DAN FEF part of BA 8 (Bedini and Baldauf 2021)
aIPS part of BA 7 (Anderson et al. 2011

in the Nold persons and the ADD patients and was considered a
bench confound in the group statistical analysis for reproducibil-
ity characterization (e.g. General Electric, Philips, Siemens).

The MRI protocol included anatomical T1 scans. The acquired
MRI data were anonymized according to international standards
to protect sensitive biomedical data. The participant workgroup of
the Sapienza University of Rome centrally performed the analysis.
Before analyses, all data were visually inspected for quality assur-
ance (i.e. visible artifacts including head motion, wrap-around,
radio frequency interference, and signal intensity or contrast
inhomogeneities). The MRI data were formatted according to
international Brain Imaging Data Structure (BIDS) standards.

Results included in this manuscript come from preprocessing
performed using fMRIPrep 20.2.0 (Esteban et al. 2018, 2019), which
is based on Nipype 1.5.1 (Gorgolewski et al. 2011). T1-weighted
(T1w) images were found within the input BIDS dataset. Each
T1w image was corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection (Tustison et al. 2010), distributed
with ANTs 2.3.3 (Avants et al. 2008), and used as T1w-reference
throughout the workflow. The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainEx-
traction.sh workflow (from ANTs), using OASIS30ANTs as the
target template. The brain tissue segmentation of CSF, white
matter (WM), and GM was performed on the brain-extracted
T1w using fast (FSL 5.0.9, Zhang et al. 2001). Brain surfaces were
reconstructed using recon-all (FreeSurfer 6.0.1, Dale 1999), and
the brain mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical GM of Mindboggle (Klein
et al. 2017). Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym) was performed through nonlin-
ear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both T1w reference and the T1w template.
The following template was selected for spatial normalization:
ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov
et al. 2009; TemplateFlow ID: MNI152NLin2009cAsym). Many
internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al.
2014), mainly within the functional processing workflow. For
more pipeline details, see the workflow section in fMRIPrep’s
documentation (https://fmriprep.org/en/20.2.0/workflows.html).

Cortical network parcellation
Cortical network parcellations were computed following the
7 resting-state cortical networks defined in the Yeo atlas

(Yeo et al. 2011). FreeSurfer outputs each network and participant’s
average cortical thickness, surface area, and volume. As men-
tioned above, we focused our analyses on the volume of 3
different cortical networks: the DMN as a main target of the
working hypothesis and the DAN and SMN as controls for the
specificity of the effects. We also extracted and evaluated the
FreeSurfer-derived measures of the total intracranial volume
(ICV). This measure was used for each participant to normalize
the cortical network volumes, dividing each measurement by
their ICV volume.

Statistical analysis of rsEEG source activities and
MRI markers
The statistical analyses of the rsEEG source activities and the
MRI markers in the Nold and ADD groups were performed by the
STATISTICA software, version 10.0 (StatSoft Inc., www.statsoft.
com). Mauchly’s test of sphericity was used to assess whether the
assumption of sphericity was met, while the Greenhouse–Geisser
correction was applied when the data violated that assumption
(Abdi 2015). The Duncan test was used for post-hoc comparisons
(P < 0.05, Bonferroni corrected).

As the use of analysis of variance (ANOVA) models implies
that the dependent variable must be normally distributed, the
Kolmogorov–Smirnov test (P < 0.05) was used to determine if the
regional normalized eLORETA rsEEG current density distributions
(i.e. the eLORETA source activities) of a given ANOVA model
approximated to Gaussian distributions (null hypothesis of non-
Gaussian distributions tested at P < 0.05). This prerequisite was
not true in some cases, so all regional eLORETA source activities
were used as inputs to the log 10 transformation to make the
eLORETA solutions Gaussian. The Kolmogorov–Smirnov test con-
firmed that all eLORETA regional solutions were Gaussian after
that transformation (P > 0.05).

The MRI variables respected the assumption of normality data
distribution according to the Kolmogorov–Smirnov test (P > 0.05).

Three statistical sessions were performed. The first statistical
session tested the working hypothesis that the MRI markers of
normalized GM volume in the DMN, DAN, and SMN may differ
between the Nold and ADD groups. An ANOVA was computed
using the normalized GM volume as a dependent variable to
address this hypothesis. That ANOVA used the following factors:
Group (Nold and ADD) and Network (DMN, DAN, SMN). The Clini-
cal Unit (recording site) was used as a covariate. The confirmation
of the working hypothesis may require (i) a statistically significant
ANOVA effect including the factor Group (P < 0.05) and (ii) a
post-hoc Duncan test indicating statistically significant (P < 0.05,
Bonferroni corrected) differences in the normalized GM volume
between the Nold and ADD groups (i.e. Nold �= ADD).

The second session tested the hypothesis that the rsEEG source
activities may differ between the Nold and ADD groups among the
different ROIs of each resting-state cortical network of interest. To
this aim, for each cortical network (DMN, SMN, DAN), one ANOVA
was computed using the normalized eLORETA solutions in the
specific network ROIs as a dependent variable. The ANOVA factors
were Group (Nold, ADD), network-ROIs (as previously defined),
and Band (delta, theta, alpha 2, alpha 3, beta 1, beta 2, and
gamma). The Clinical Unit (recording site) was used as a covariate.
The confirmation of the working hypothesis may require (1) a
statistically significant ANOVA interaction including the factor
Group (P < 0.05) and (2) a post-hoc Duncan test indicating sta-
tistically significant (P < 0.05, Bonferroni corrected) differences in
the rsEEG source activities estimated from network-ROIs between
the Nold and ADD groups at the delta and alpha bands, typically
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affected in the ADD patients using eLORETA rsEEG source estima-
tion and large lobar ROIs (Babiloni et al. 2020, 2021).

The third session used several linear regression models. They
evaluated the interacting effect between rsEEG source activity
from each specific network-ROI and the corresponding GM net-
work volume to predict the global cognitive status (MMSE score) in
the Nold and ADD participants. More specifically, they tested the
2-way interacting effect of the following predictors on the MMSE
score, considering the ADD and Nold participants as a whole
group:

• The rsEEG cortical source activity in each network-ROI (only
those showing statistically significant post-hoc differences
between the ADD and Nold groups in the previous analysis,
P < 0.05);

• The corresponding GM network volume.

Results
Cortical networks parcellation
Figure 2 shows the spatial distribution of the 3 resting-state corti-
cal networks, taken from Yeo’s atlas, used in the current study.
The DMN included the PCC, precuneus (PCUN), mPFC, and IPC
(Buckner et al. 2008; Andrews-Hanna et al. 2010; Raichle 2015).
The DAN comprised the FEF and IPS (Corbetta and Shulman
2002; Fox et al. 2006). The SMN grouped multiple somatosensory
and motor areas, including the primary motor cortex (M1, BA 4),
caudal premotor (BA 6), and primary somatosensory cortex (S1,
BA 3, 1, and 2; Yeo et al. 2011). This network also included most
(if not all) of the early somatosensory area BA 5 L, a small portion
of the midcingulate sulcus, and possibly part of BA 5 M (Yeo et al.
2011).

MRI markers of the normalized network GM
volume in Nold and ADD groups
The results of the first statistical session about the MRI markers in
all Nold and ADD participants are illustrated in Fig. 3. The ANOVA
evaluating the differences in the GM volume of the cortical net-
works of interest between the Nold and ADD groups showed a sta-
tistically significant interaction effect (F (2, 166) = 31.5; P < 0.001;
Clinical Unit as a covariate) among the factors Group (Nold and
ADD) and Network (DMN, SMN, and DAN). The Duncan planned
post-hoc testing (P < 0.05 Bonferroni correction for 2 groups X
3 Networks, P < 0.05/6 = 0.00833) revealed that the discriminant
pattern Nold > ADD was fitted by all the 3 cortical networks
considered DMN (P < 0.0001), SMN (P < 0.001), and DAN (P < 0.001)
networks but with more marked mean differences with the DMN.

Individual frequencies and distribution of
posterior rsEEG source activities in the Nold and
ADD groups
The mean TF was 5.7 Hz (± 0.1 SE) in the Nold group (n = 40) and
5.5 Hz (± 0.2 SE) in the ADD group (n = 45). Furthermore, the mean
IAF was 8.9 Hz (± 0.1 SE) in the Nold group and 8.4 Hz (± 0.2 SE) in
the ADD group. The T-tests of these data showed that the mean
IAF was greater in the Nold than in the ADD groups (P < 0.05).
No statistically significant difference was found for the mean TF
(P > 0.05).

The results of the second statistical session concerned the
rsEEG source activities estimated in the network ROIs in all Nold
and ADD participants and are illustrated in Figs. 4, 5, and 6. These
figures show the mean values (± SE, Log10 transformed) of the
rsEEG source activities estimated in the network-ROIs (as revealed

Fig. 2. Sagittal, coronal, and axial images showing the spatial distribution
of the DMN, DAN, and SMN, superimposed on a standard MNI152 T1
brain template. The network map distributions are based on a clustering
approach to identify and replicate networks of functionally coupled
regions across the cerebral cortex.

Fig. 3. DMN, SMN, and DAN normalized GM volumes (mean across
subjects ± standard error, SE) relative to a statistical ANOVA interaction
(F(2, 164) = 31.524, P < 0.001; unit as a covariate) among the factors group
(Nold elderly subjects, Nold, n = 40; Alzheimer’s disease patients with
dementia, ADD, n = 45) and these cortical networks. Individual ICV was
used to normalize network volumes for head size.

by normalized eLORETA solutions) for the comparison between
the Nold (n = 40) and ADD (n = 45) groups. The results showed
that the distribution of those rsEEG source activities differed
among the groups, network ROIs, and frequency bands. In the
Nold group, as a physiological reference, the (eLORETA) rsEEG
alpha 2 and 3 source activities showed dominant values over the
other frequency bands in several posterior network-ROIs: in the
PCC, precuneus, and IPC for the DMN (Fig. 4); in the M1 and PMc
for the SMN (Fig. 5); and in the aIPS for the DAN (Fig. 6). In the
same network ROIs, the rsEEG delta and theta source activities
were characterized by relatively low values, while the rsEEG beta1,
beta 2, and gamma source activities were generally very low in
magnitude.
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Fig. 4. DMN-ROI rsEEG source activity (mean across subjects ± standard
error, SE) relative to a statistical ANOVA interaction (F (21, 1722) = 4.16,
P < 0.0001; clinical unit as a covariate) among the factors group (Nold
elderly subjects, Nold, n = 40; Alzheimer’s disease patients with dementia,
ADD, n = 45), DMN-ROIs (mPFC-ACC, PCC, Precuneus, IPC), and bands
(delta, theta, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma. This
ANOVA design used the regional rsEEG eyes-closed normalized eLORETA
solutions as a dependent variable. The rectangles indicate the cortical
regions and frequency bands in which the posterior eLORETA solutions
(rsEEG source activities) presented a statistically significant pattern Nold
�= ADD (P < 0.05 uncorrected).

Fig. 5. SMN-ROI rsEEG source activity (mean across subjects ± standard
error, SE) relative to a statistical ANOVA interaction (F(14, 1148) = 2.0566,
P < 0.05; unit as a covariate) among the factors group (Nold elderly
subjects, Nold, n = 40; Alzheimer’s disease patients with dementia, ADD,
n = 45), SMN-ROIs (S1, M1, PMc), and bands (delta, theta, alpha 1, alpha
2, alpha 3, beta 1, beta 2, and gamma). This ANOVA design used the
regional rsEEG eyes-closed normalized eLORETA solutions as a depen-
dent variable. The rectangles indicate the cortical regions and fre-
quency bands in which the posterior eLORETA solutions (rsEEG source
activities) presented a statistically significant pattern Nold �= ADD
(P < 0.05 uncorrected).

The ANOVA results showed a statistical interaction effect
for the 3 resting-state cortical networks of interest (DMN: F(21,
1722) = 4.157, P < 0.0001; SMN: F(14, 1148) = 2.057, P < 0.05; DAN:
F(7, 574) = 3.608, P < 0.001) among the factors Group (Nold and
ADD), network-ROI (as defined above), and Band (delta, theta,
alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma). The Duncan
planned post-hoc (P < 0.05 uncorrected) testing showed that
compared with the Nold group, the ADD group exhibited the
following effects:

• Increased rsEEG source activities from delta to alpha 2 bands
in the mPFC-ACC, along with increased delta rsEEG source
activities in the precuneus and rsEEG source activities from
delta to alpha1 bands in the IPC (ADD > Nold, P < 0.005);

• Decreased rsEEG alpha 2 and alpha 3 source activities in the
PCC, Precuneus, and IPC DMN-ROIs (ADD < Nold, P < 0.00005
to P < 0.05);

Fig. 6. DAN-ROI rsEEG source activity (mean across subjects ± standard
error, SE) relative to a statistical ANOVA interaction (F(7, 574) = 3.6085,
P < 0.001; unit as a covariate) among the factors group (Nold elderly
subjects, Nold, n = 40; Alzheimer’s disease patients with dementia, ADD,
n = 45), DAN-ROIs (FEF, aIPS), and bands (delta, theta, alpha 1, alpha
2, alpha 3, beta 1, beta 2, and gamma). This ANOVA design used the
regional rsEEG eyes-closed normalized eLORETA solutions as a depen-
dent variable. The rectangles indicate the cortical regions and fre-
quency bands in which the posterior eLORETA solutions (rsEEG source
activities) presented a statistically significant pattern Nold �= ADD
(P < 0.05 uncorrected).

• Increased rsEEG delta, theta, and alpha1 source activities in
all SMN and DAN-ROIs (ADD > Nold, P < 0.00005);

• Decreased rsEEG alpha 3 source activities in the M1 and PMc
SMN-ROIs and the aIPS DAN-ROI (ADD < Nold, P < 0.005).

These findings were not due to outliers from those individual
regional normalized eLORETA current densities (log 10 trans-
formed), as shown by the results of the Grubbs’ test set with an
arbitrary threshold of P > 0.001.

For the third statistical session, we included the rsEEG source
activities within network ROIs showing statistically significant
differences between the Nold and ADD groups as predictors
in the linear regression models (P < 0.05). More specifically,
the following rsEEG source activities were included: the PCC,
Precuneus, and IPC for rsEEG alpha 2 and alpha 3 source
activities; the mPFC-ACC, S1, M1, PMc, FEF, and aIPS for the rsEEG
delta–theta-alpha 1 (average of the 3 frequency bands) source
activities; the mPFC-ACC for the rsEEG alpha 2 source activity;
the M1, PMc, and aIPS for the rsEEG alpha 3 source activity.
The results of this analysis are illustrated in Table 3. Only for
the DMN, statistically significant 2-way interaction effects were
observed (P < 0.05).

In the Supplementary Materials, we reported the results of the
control analyses exploring the following effects:

• Distribution of the posterior rsEEG source activity estimated
in the Nold and ADD groups (Fig. SM1);

• Correlation analysis between the MRI markers of the resting-
state cortical ROIs and the posterior rsEEG source activity
(Fig. SM2 and Table SM2);

Furthermore, Figs. SM3, 4, and 5 report the scatterplots of the
above results, while Table SM3 reports all coefficients and P-
values relative to the correlation analyses showing significant
associations between pairs of the following variables measured
in the Nold persons and ADD patients considered as a whole
group:

• Global cognition (MMSE, score)
• Neurodegeneration in the DMN, DAN, and SMN GM volumes
• rsEEG posterior source activities.
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Table 3. Statistically significant results of linear regression models showing the effect on the global cognitive status (MMSE) dependent
variable of 2-way interaction between the predictors DMN-ROI rsEEG source activity and the DMN GM volume. The selected
network-ROI rsEEG source activities showed statistically significant differences between the Nold and ADD groups in the previous
ANOVAs (Duncan’s post-hoc, P < 0.05). Only statistically significant 2-way interaction effects are reported (P < 0.05). Only for DMN,
statistically significant 2-way interaction effects were observed to predict the MMSE score. No statistically significant interacting effect
between SMN-ROI and DAN-ROI rsEEG source activity and GM network volume. Legend: GMVn = normalized gray matter volume.

F value P-value β coefficient SE

Alpha2 PCC
∗DMN_GMVn

6.2213 0.01466 230.564 92.438

Alpha3 PCC
∗DMN_GMVn

9.4478 0.002880 239.672 77.974

Alpha2 Precuneus
∗DMN_GMVn

4.8430 0.03061 204.64 92.99

Alpha3 Precuneus
∗DMN_GMVn

7.1090 0.009257 197.727 74.159

Alpha3 IPC
∗DMN_GMVn

5.9128 0.01724 171.777 70.643

Discussion
A new approach investigating the relationship
between DMN structural integrity and the
cortical rsEEG rhythms
Here we used a new methodological approach to explore the
relationship between the DMN structural integrity, cortical rsEEG
rhythms recorded in the resting-state condition, and the cog-
nitive status in Nold and ADD participants. The new approach
was based on the correlation analysis between the structural
MRI biomarkers measuring the DMN GM volume, the regional
(lobar) rsEEG source activities estimated from 30 scalp electrodes
within the DMN nodes, and the MMSE score. In this framework,
the DAN and SMN served as control resting-state cortical net-
works to test the specificity of that relationship. To promote the
results’ replicability, WEB-based freeware procedures were used
to extract structural MRI and rsEEG source markers (see Methods
for details). This new multimodal structural MRI-rsEEG approach
may partially overcome the intrinsic limitation in spatial resolu-
tion of rsEEG techniques, partially mitigating uncertainties in the
discrimination of rsEEG sources located in some small cortical
components of the DMN.

The results of this study showed that, compared with the Nold
group, the ADD group was characterized by a significant positive
association between the GM volume in the DMN, the rsEEG alpha
source activity estimated in the posterior DMN nodes (parietal
and PCC), and the global cognitive status (MMSE score) in the Nold
and ADD participants. Compared with the Nold group, the ADD
group showed lower DMN GM, lower rsEEG alpha source activity
in those nodes, and lower global cognitive status. This effect was
not observed in the DAN and SMN.

The results of the present structural MRI-rsEEG approach
emphasize the strict relationship between neurodegeneration
in the posterior DMN nodes and related abnormalities in the
rsEEG alpha rhythms in AD patients. They complement previous
findings derived from estimating rsEEG source activities into
mathematical models of the DMN in AD patients (using rsEEG
activity recorded from 19 to 62 scalp electrodes as an input for
a cortical rsEEG source imaging). Specifically, they agree with
previous findings showing that in comparison with Nold persons,
MCI and ADD patients were characterized by increased rsEEG
delta–theta source activities located in DMN regions of the source
models (Hsiao et al. 2013; Sheorajpanday et al. 2013; Choi et al.
2021; Caravaglios et al. 2022). In contrast, the present results

disagree with findings pointing to reduced rsEEG alpha–beta
source activities in those DMN regions (Hsiao et al. 2013; Choi
et al. 2021; Caravaglios et al. 2022).

Similarly, the present results complement previous findings
on estimating rsMEG source activities into mathematical models
of the DMN in AD patients (using rsMEG activity recorded from
>100 extracranial recording sensors as an input for a cortical
rsEEG source imaging). Specifically, they agree with previous
findings showing that as opposed to Nold persons, MCI and ADD
patients were characterized by no relationship between rsMEG
alpha rhythms and DMN regions of source models when those
rhythms were considered separately from the other frequency
bands (Yu et al. 2017). In this line, other rsMEG findings showed
that the association with alpha–beta rhythms regarded other
cortical networks, including frontoparietal, sensorimotor, and
visual cortical regions, within a source model of the whole brain
(Koelewijn et al. 2017). Furthermore, the association between the
rsMEG alpha rhythms and the DMN in AD patients may rely on
the source connectivity rather than the mere source activity as
reported in other studies (Bruña et al. 2022), even in correlation
with disrupted structural connections among DMN regions
(Garcés et al. 2014). Indeed, there was large heterogeneity in the
procedures previously used for the rsEEG/MEG source estimation,
the analysis of rsEEG/MEG source connectivity within the DMN,
and the fragmentation in ROIs within the DMN. Moreover, another
source of variability in those previous studies was the enrollment
of Nold, MCI, and ADD patients with significant age, sex, and
education differences.

The neurophysiological model on the generation
of rsEEG delta rhythms in the DMN
The present results show a positive association between the DMN
structural integrity and the related posterior rsEEG alpha source
activities in the Nold and ADD participants, which could reflect
the typical “slowing” of the rsEEG rhythms related to the age-
related neurodegenerative cortical process (i.e. synaptic and neu-
ronal loss), accelerated by the AD course (Smailovic and Jelic 2019;
Babiloni et al. 2021). At the early stage of this research line, we can
just provide the following speculative explanation of the present
results as a seed for future explorative studies.

The relationship between rsEEG alpha rhythms and brain neu-
ral circuits has been debated. It was proposed that in physiological
conditions, scalp rsEEG alpha rhythms may reflect the oscillatory
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neural activity along cortico-thalamic and thalamocortical loops
that functions in inhibiting cortical information processing across
local sensory, motor, and posterior associative areas (e.g. selective
attention/intentions and expectancy) as well as wide cortical neu-
ral networks inducing quiet levels of vigilance/consciousness with
mind wandering, introspection, etc. (Nunez et al. 1994; Klimesch
1999; Pfurtscheller and Lopes da Silva 1999; Babiloni et al. 2003).

In pathophysiological conditions characterizing several brain
diseases (including AD and other age-related neurodegenerative
diseases), posterior rsEEG alpha rhythms have low amplitude
and are associated with abnormalities in DMN and cognitive
functions (Hsiao et al. 2013; Brueggen et al. 2017; Choi et al. 2021).
Furthermore, decreased rsEEG alpha rhythms were related to the
following molecular, neuroanatomical, and pathophysiological
changes in the AD patients’ brains: (1) the Cystatin C genotyping
as an independent genetic risk of sporadic AD (Babiloni et al.
2006a); (2) the level of the neurotoxic free copper in the blood
(Babiloni et al. 2007); (3) vascular lesions in the subcortical WM
measured by MRIs (Babiloni et al. 2006b); and (4) the normalized
GM volume measured in the cerebral cortex by volumetric MRIs
(Babiloni et al. 2013).

Animal studies elucidated the neurophysiological basis of how
AD neuropathology may affect the functioning of cortical neu-
ral networks increasing the generation of slow-frequency EEG
rhythms. It was reported that in transgenic mice, an early abnor-
mal circulation of amyloid-b protein in the brain (before the for-
mation of amyloid plaques) perturbed cortical neural networks,
as revealed by fMRI measures, while an anti-amyloid treatment
prevented behavioral abnormalities (Shah et al. 2016). It was also
reported that transgenic mice producing an abnormal amyloid
accumulation in the brain showed altered EEG delta rhythms
recorded in wakefulness (Del Percio et al. 2018, 2020), which were
modulated by cholinergic but not anti-amyloid drugs (Lopez et al.
2020). Concerning the other AD neuropathological hallmark, it
was found that mice receiving the inoculation of human tau pro-
tein in the brain exhibited abnormal slow-frequency EEG rhythms
recorded in memory-related brain networks (Ahnaou et al. 2017).

Other hints on the relationship between AD neuropathology,
cortical networks, and rsEEG delta rhythms come from the Euro-
pean “The Virtual Brain” project (https://www.thevirtualbrain.
org/tvb/zwei; Ritter et al. 2013). This project developed a virtual
human brain model incorporating a priori neurobiological,
neuroanatomical, and neurophysiological knowledge enabling
it to predict the effects of AD-related amyloid plaques on the
excitatory/inhibitory balance in the cortical pyramidal cells and
interneurons that result in the “slowing” in rsEEG rhythms like
those quite often found in ADD patients (Stefanovski et al. 2019).

Overall, these data and considerations suggest that AD-related
neuropathology might induce pathophysiological abnormalities
in excitatory/inhibitory balance, neural signaling, and synaptic
neurotransmission in cortical and subcortical networks with high
intrinsic connectivity, including the DMN and ascending arous-
ing cholinergic systems. These pathophysiological abnormalities
may be responsible for a functional disconnection within those
neural networks reflected by exaggerated rsEEG delta rhythms
and reduced rsEEG alpha rhythms in quiet wakefulness (Myers
et al. 2014; Shah et al. 2016;Teipel et al. 2016; Ahnaou et al. 2017;
Pasquini et al. 2017; Del Percio et al. 2018, 2020; Lopez et al. 2020;
Babiloni et al. 2021).

Finally, the present results unveiled the strict relation-
ship in AD between the well-documented functional cortical
dysconnectivity and underlying neurophysiological mechanisms
oscillating at alpha frequency. Indeed, a bulk of structural,

molecular, and functional neuroimaging studies (Bozzali et al.
2001, 2002; Chételat et al. 2002, Chételat et al. 2013; Choo
et al. 2007; Whitwell et al. 2007; Thal et al. 2014; van den
Heuvel et al. 2009; Zhu et al. 2013; Babiloni et al. 2020, 2021)
previously reported that compared with Nold seniors, patients
with MCI and mild dementia due to AD showed poor (1) callosal,
thalamic, and anterior–posterior WM bundles; (2) cortical GM
volume in association with in-vivo neuroimaging maps of
abnormal deposition of tau and amyloid; (3) correlation of resting-
state functional MRI-BOLD signal in the DMN and DAN; and
(4) functional coupling of rsEEG alpha rhythms among anterior
and posterior cortical areas. These findings suggest that the
traditional in-vivo neuroimaging biomarkers of structural and
functional brain connectivity may offer an incomplete functional
picture of the effects of AD neuropathology/neurodegeneration
without a better understanding of the disease implications on
those neurophysiological oscillatory mechanisms involving the
posterior DMN hubs for the regulation of cortical arousal and
quiet vigilance. In line with a broader view of Precision Medicine,
combined structural MRI and rsEEG biomarkers in the DMN
may represent new promising endpoints for the assessment
and intervention of the effects of AD on cortical networks
underpinning arousal and quiet vigilance (Teipel et al. 2016).

The “dark side” of the biomarker panel for the
AD assessment
The present results and the above speculative explanation moti-
vate further investments and research aimed at testing the ben-
eficial heuristic and clinical effects of the inclusion of rsEEG
measures in the actual panel for the assessment of AD patients,
namely the A-T-N(C) Framework (Jack Jr et al. 2018). Those rsEEG
measures may be pathophysiological “P” biomarkers in the A-T-
N(C) Framework. In an extended A-T-N(C) Framework, the patho-
physiological (P) rsEEG biomarkers may be placed between those
for the tauopathy (T) and the neurodegeneration (N), as the rel-
ative neurophysiological mechanisms generating rsEEG rhythms
may be deranged even before the neural loss. With this update, the
A-T–P-N Framework may enlighten the “dark side” of the actual
instrumental assessment in AD patients (Babiloni 2022), and the
dream of Hans Berger (the “father” of human EEG) may come true
after almost 100 years ago from his first rsEEG recording.

Methodological remarks
In interpreting the present results, the pros and cons of the
present methodological approach should be considered. Here we
used the MNI152 cortical source model implemented in the offi-
cial eLORETA freeware (https://www.uzh.ch/keyinst/loreta). That
model was originally built from high-resolution structural T1-
weighted MRIs recorded in 152 adults (86 males and 66 females)
aged 18–44 years (Evans et al. 2012) and is commonly used as
a head template in neuroimaging and EEG studies. Notably, this
study’s participants were 57–87 years old, so some differences in
the head volume are expected (Fillmore et al. 2015). At this early
stage of the research, we used the MNI152 model over individual
MRIs to facilitate the replicability of the results and discussion
with reference to several previous field studies (Babiloni et al.
2020, 2021). Furthermore, we did it based on the following addi-
tional considerations: (1) high-resolution functional neuroimag-
ing studies in patients typically use a unique MRI-based brain
model as a template constructed by averaging the brain structural
MRIs of all participating patients and controls; (2) the rsEEG
rhythms are intrinsically generated by largely distributed cortical
sources; (3) eLORETA is characterized by spatially smoothing
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rsEEG source estimates (the reason for its name of “low-resolution
brain electromagnetic tomography”); and (4) here the eLORETA
rsEEG source estimates were averaged within relatively large cor-
tical ROIs, thus further reducing the spatial resolution of the rsEEG
source solutions. The general low resolution of the present rsEEG
estimation is expected to mitigate the effects of the variability in
the individual brains across middle and old ages.

Another methodological limitation of this study concerns the
harmonization of the experimental procedures. All clinical units
of this study belong to the PDWAVES Consortium and followed
local protocols for biofluid sampling, resting-state EEG record-
ings, structural MRI scans, and clinical and neuropsychological
testing in agreement with the procedures recommended by the
Consortium “Key” researchers (www.pdwaves.eu). However, we
used neither homemade videos/focus group meetings for a fine
procedural harmonization across the clinical units nor identical
settings for the rsEEG and neuroimaging data collection. Fur-
thermore, there were (minor) differences in the instructions for
the participants or in the instrumental recording settings across
the clinical units. Due to these sources of variability, we stated
that this study cannot be considered a well-controlled sponsored
clinical trial. To mitigate the effects of those variability sources,
we implemented the following procedures agreed upon by the
“Key” researchers of the PDWAVES Consortium (www.pdwaves.
eu): (1) the centralization of the analysis of the structural MRI and
rsEEG data at the Sapienza University of Rome Unit; (2) quality
control and qualification of all individual structural MRI and
rsEEG datasets; and (3) use of standard operating procedures for
the biomarker extraction double checked by 2 experimenters. In
addition, we followed the indication of the Reviewer and used
the “recording site” as a covariate in all the statistical analyses
to account for that source of variability.

Due to the above methodological limitations, the present
results motivate future studies using the following step-forward
design and procedures: (1) A prospective, longitudinal design
may be used to follow the effects of the disease progression
on the present relationship between the rsEEG alpha source
activity in the DMN, the structural integrity of the DMN,
and cognitive status in ADMCI patients; (2) Fully harmonized
procedures for all clinical and instrumental data recordings were
expected to cross-validate and extend the above relationship;
(3) Higher number of scalp electrodes, digitization of the
individual electrode montage, its integration within individual
MRI-based cortical source spaces, and principal component
analysis of the rsEEG solutions may enhance the spatial resolution
of those solutions and unveil further disruptive disease effects on
the neurophysiological oscillatory mechanisms generating rsEEG
rhythms and regulating vigilance; and (4) Combined estimation
of rsEEG source activity/connectivity and resting-state functional
MRI may reveal the extent to which the abnormalities in the rsEEG
alpha source activities estimated in the posterior DMN hubs may
impact the general topology of the functional connectivity in the
resting-state cortical neural networks. Furthermore, recording
functional MRI during an attention task would allow testing the
hypothesis that in ADD patients, the posterior DMN hubs showing
poor rsEEG alpha source activity may be characterized by poor
BOLD task-related de-activation, unveiling a loss of DMN function.

Conclusions
In this exploratory study, we tested the hypothesis of a specific
relationship between 2 typical AD features: the integrity in the
DMN and the “slowing” of the rsEEG rhythms. For this purpose,

clinical and instrumental datasets were available in an interna-
tional archive (www.pdwaves.eu). The main results showed a sig-
nificant positive association between the GM volume in the DMN,
the rsEEG alpha source activity estimated in the posterior DMN
nodes (parietal and PCC), and the global cognitive status (MMSE
score) in the Nold and ADD participants. Compared with the Nold
group, the ADD group showed lower DMN GM, lower rsEEG alpha
source activity in those nodes, and lower global cognitive status.
These results suggest that the DMN structural integrity and the
rsEEG alpha source activities estimated in the DMN posterior hubs
might be related and predict the global cognitive status in ADD
and Nold persons.
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