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The ultrafast control of materials has opened the possibility to investigate non-equilibrium states
of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast
magnetization and demagnetization, as well as Floquet engineering. The characterization of the
ultrafast thermodynamic properties within the material is key for their control and design. Here, we
develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy
production and heat absorbed from experimental data for single phonon modes of driven materials
from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The
spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and
reveals a striking relation with the power spectrum of the displacement-displacement correlation
function by inducing a broad peak beside the eigenmode-resonance.

Entropy production has been introduced in the 19-th
century to describe the amount of irreversibility in ther-
modynamic cycles. It is behind the formulation of the
Clausius inequality and the second law of thermodynam-
ics. More generally, it characterizes heat and mass trans-
fer processes at the macroscopic scales [1], such as heat
exchange, fluid flow, or mixing of chemical species. Fur-
thermore, in terms of information-entropy, it plays a sig-
nificant role in information theory [2].

Successively, entropy production has been linked to
microscopic dynamics [3] to quantify the amount of ir-
reversibility and dissipation at the atomistic (single-
particle) level [4, 5]. In the framework of gases, soft
materials, or living organisms, each microscopic parti-
cle evolves in the presence of stochastic forces. These
forces are usually generated by internal mechanisms, e.g.,
metabolic processes, internal motors, or collisions due to
solvent molecules. The stochastic nature of the dynam-
ics allows us to characterize macroscopic observables as
averages of fluctuating variables, by considering the prob-
ability of observing a path of the microscopic trajectory.
This approach is at the basis of stochastic thermodynam-
ics [3], which aims of building the thermodynamic laws
in terms of fluctuating work, heat, and entropy which on
average are consistent with macroscopic thermodynam-
ics [6].

In ordered phases of matter, we argue that thermal
fluctuations of, e.g., ionic positions, spins, or charge lead
to stochastic forces on microscopic degrees of freedom.
Entropy is produced in non-equilibrium regimes, by ex-
citations of the material with an external drive. This
is motivated by immense progress in ultrafast control
and characterization of crystalline solids [7–19]. We put
specific focus on light-induced phonon dynamics [20–31].
Here, selected phonon modes are excited by strong THz
laser pulses [32, 33]. Remarkably, the ionic dynamics can
be resolved with high precision with time-resolved X-ray
scattering present at coherent X-ray light sources [34–46].

We deduce that the information obtained from such a
scattering experiment is sufficient to reproduce the spec-
tral entropy production rate of the medium within the
material, giving rise to information about the ultrafast
heat absorbed by the system.

In addition, characterizing and controling materials in
terms of thermal properties in the ultrafast regime has
emerged as a powerful research path [15, 47]. Hence,
developing stochastic thermodynamics properties gener-
ated at short time scales, e.g. entropy production and
heat, could open new perspectives for the comprehen-
sion of functional materials. In the following, we show
that non-equilibrium crystals, driven by a laser pulse,
are characterized by spectral entropy production. As il-
lustrated in Fig. 1, we propose to measure entropy pro-
duction of the medium from ionic displacements, e.g., ob-
tained from time-resolved X-ray scattering experiments.
Further, we show that the power spectrum of ionic dis-
placement shows a close connection to the spectral en-
tropy production. We compare our theory to experimen-
tal data for SrTiO3 and support our approach by provid-
ing estimates for the soft modes of KTaO3 and SrTiO3.

RESULTS

Ultrafast stochastic thermodynamics of crystals

We model the dynamics of an optical phonon mode by
the equation of motion [48–56]

ü(t) + ηu̇(t) + ω2
0u(t) =

√
2η kBT ξ(t) + F (t) , (1)

Here, kB is the Boltzmann constant while u(t) is a
phonon normal mode (units Å

√
a.m.u) with frequency

ω0, and damping or line width η. F (t) is an external
driving field, which, for a laser excitation can be writ-
ten as F (t) = ZẼ(t). Z is the mode effective charge
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FIG. 1. Schematic representation of a crystal (SrTiO3 or
KTaO3) excited by a THz laser pulse. From a direct measure
of the diffraction pattern, for instance, obtained from time-
resolved X-ray scattering experiments, the ionic displacement
can be deduced. Combining this measure with the shape of
the THz laser pulse, we can calculate the ultrafast entropy
production of the medium

by applying our theoretical results.

[57], Ẽ(t) = ϵ−1E(t) the screened electric field, and ϵ the
relative permittivity.

For simplicity, we neglect nonlinear effects [22, 55,
56, 58]. Furthermore, we add an uncorrelated noise√
2η kBT ξ(t) which models the interaction of the phonon

normal mode with thermally excited lattice fluctuations
ξ at the environmental temperature T [59, 60]. The equa-
tion of motion (1) has a formal solution in Fourier space,
given by

û(ω) = χ(ω)
(√

2η kBT ξ̂(ω) + F̂ (ω)
)
, (2)

with the susceptibility χ(ω) =
(
ω2
0 − ω2 + iηω

)−1
. An

example of the solution in real-time is reported in the
methods section. Let u = {u} denote a specific solution
or trajectory between the initial time t0 and the final
time T , with the initial conditions u0. The presence of
thermal noise in the equation of motion introduces a fi-
nal probability of realizing {u}, given by P [{u}|u0]. The
force F (t) breaks the time-reversal symmetry. As a con-
sequence, the probability of observing the time-reversed
path Pr [{u}|u0] differs from P [{u}|u0] [61–63]. This gen-
erates entropy production of the medium, Σ,

Σ(t) = kB log
P [{u}|u0]

Pr [{u}|u0]
=

∫ t

0

dτ ṡ(τ) , (3)

where we have conveniently introduced ṡ(t) as the en-
tropy production rate of the medium. This observable
can be naturally identified as the stochastic heat flow
absorbed by the system divided by temperature [64, 65].
In the case of uncorrelated noise ⟨ξ(t)ξ(t′)⟩ ∼ δ(t − t′),
the entropy production rate of the medium (Eq. (3)) is
given by ṡ(t) = ⟨v(t)F (t)⟩ /T , with v(t) = u̇(t) [3, 62].

Note, that this relation is general and thus also holds
for non-linear phonon dynamics. By decomposing Σ in
Fourier waves [66, 67], we introduce the spectral entropy
production of the medium σ̂(ω) as

σ̂(ω) =

∫
dω′ Sr(ω, ω

′) , (4)

with the entropy spectral density

Sr(ω, ω
′) =

i

T
ω′χ(ω′)F̂ (ω′)F̂ (ω − ω′) . (5)

Equations (4) and (5) are central theoretical results of
the paper. With the knowledge of the susceptibility and
the shape of the applied drive, quantities typically ac-
cessible in experiments, the spectral entropy production
of the medium, and thus the heat flow, can be deter-
mined (Fig. 1). As a result, our predictions hold beyond
phonons and can be applied for other excitations. In
stochastic systems, the entropy production rate is a real
fluctuating observable but its time average is positive in
agreement with the second law of thermodynamics. In
contrast, spectral entropy production is generally com-
plex. To shed light on the interpretation of the spectral
entropy production of the medium σ̂(ω), we note it can be
evaluated analytically for a periodic driving field F (t) =
A exp (iωdt). The imaginary part of σ̂ follows to be ℑσ̂ =

δ(ω − 2ωd)A
2(T )−1ωd(ω

2
0 − ω2

d)
(
(ω2

0 − ω2
d)

2 + η2ω2
d

)−1
.

Hence, it shows a delta peak at twice the driving fre-
quency ωd. Furthermore, it is negative (positive) if the
driving frequency ωd is larger (smaller) than the eigen-
frequency ω0. In contrast, the real part ℜσ̂ = δ(ω −
2ωd)A

2(T )−1ω2
dη

(
(ω2

0 − ω2
d)

2 + η2ω2
d

)−1
is an odd func-

tion of the damping η. Therefore, ℜσ̂ vanishes for zero
damping. Hence, ℜσ̂ is a measure of dissipation associ-
ated with η. Both, ℑσ̂ and ℜσ̂ decrease with the distance
between eigenfrequency ω0 and driving frequency ωd as
well as with increasing temperature.

The power spectrum and spectral entropy
production

The spectral entropy production of the medium can
be determined from the frequency profile of the external
force, e.g. THz laser pulses, and the susceptibility of the
system. Alternatively, the power spectrum

〈
u(t)2

〉
can be

expressed in terms of the entropy production generated
by the laser excitation and, therefore, can be used to
extract ultrafast thermodyamics properties of the system.
Evaluating

〈
u(t)2

〉
in Fourier space, the power spectrum

can be decomposed in two contributions as (see detail in
the methods section)

F
[〈
u(t)2

〉]
(ω) = F

[〈
u(t)2

〉]
eq
(ω) +F

[〈
u(t)2

〉]
neq

(ω) .

(6)
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The first one F
[〈
u(t)2

〉]
eq

has an equilibrium origin and,

indeed, arises from thermal fluctuations,

F
[〈
u(t)2

〉]
eq

= 2η kBTδ(ω)

∫
dω′

2π
χ̂(ω′)χ̂(−ω′) . (7)

As a result, it is ∝ Tδ(ω) and fully determined by the
susceptibility χ.

In contrast, the term F
[〈
u(t)2

〉]
neq

originates from

the external field (THz laser pulse) and, thus, reflects
the non-equilibrium part of the dynamics. Indeed, this
term (see methods section) can be expressed in terms of
the entropy spectral density, Sr(ω, ω

′), and reads

Fω⟨u2(t)⟩neq = T

∫
dω′

2π

χ̂(ω − ω′)
(iω′)

Ŝr(ω, ω
′) . (8)

Relation (8) is a key result of the paper providing an
alternative route to measure the spectral entropy pro-
duction of the medium, e.g. heat flow. It shows that
the ultrafast spectral entropy production in crystals can
be measured from the power spectrum of the phonon
displacement, an observable signature. In particular,〈
u2(t)

〉
is measured in time-resolved diffuse X-ray scat-

tering [68, 69].

Application to SrTiO3 and KTaO3 under laser pulses

To show that heat, i.e. entropy production rate of
the medium multiplied by the environmental tem-
perature, can be obtained from experiments, we
compare our model to time-resolved X-ray scattering
data obtained by Kozina et al., for the nonlinear
excitation of phonons in SrTiO3 [22]. The spectral
components of the used THz laser pulse are shown
in Fig. 2 (a). To sufficiently reproduce the shape
of the spectrum, we assume a superposition of two
Gaussian laser pulses, one at frequency ωd = 0.75 THz
and a higher-harmonic component with 2ωd, F (t) =

ZẼ0 (exp (2πiωdt) + α exp (4πiωdt)) exp
(
− 1

2
t2

τ2

)
, with

α ≈ 0.2858. The in-medium field strength is βE0,
with β = 0.215 and E0 = 480 kV cm−1, while the
pulse width is τ = 0.5 ps. The experiment was per-
formed at 100 K, where the soft mode frequency is
measured to be ω0/2π ≈ 1.669 THz with a damping of
η/2π ≈ 0.9 THz. The mode effective charge of SrTiO3 is
Z = 2.6 e− a.m.u.−1/2 [22, 70], with e− the elementary
charge and u.m.u. the atomic mass unit.

The measured spectral component of the time-domain
X-ray data [22] is scaled against the computed ampli-
tude of the soft mode according to Eq. (2) and shown
in Fig. 2 (b). The soft mode contribution to the experi-
mental spectrum is shaded in light blue. Data are used
to compute the spectral entropy production, |σ̃|, of the
soft mode as a function of ω and compared against our
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FIG. 2. Entropy production of the medium in SrTiO3 after
exposure to an intense THz laser pulse at 100 K. We com-
pare an estimate computed from time-resolved X-ray scatter-
ing data taken from Kozina et al. [22] with model data. (a)
Fourier transform of the THz laser pulse (solid dark blue),
compared with a theoretical Gaussian laser pulse (orange
dashed) with frequency ωd = 0.75 THz, superposed with
a higher-harmonic at 2ωd. (b) Comparison of experimen-
tal (solid dark blue) and computed (dashed orange) Fourier
transform of the phonon normal mode amplitude, û(ω). The
soft mode contribution is shaded in light blue. (c) Compari-
son of the spectral entropy production of the medium

, |σ̂|, computed from the full experimental data of the
phonon normal mode amplitude (solid dark blue) with our

model taking into account the soft mode only (dashed
orange). (d) Comparison of the power spectrum,

|F [⟨u2⟩]neq|, computed from the full experimental data (solid
dark blue) with our soft-mode-only model (dashed orange).

theory in Fig. 2 (c). |σ̃| computed from the experimental
data exhibits a peak at frequency ωσ1

/2π ≈ 2.33 THz,
that is reproduced by our model. Furthermore, we
reconstruct the power spectrum, |F [⟨u2⟩]neq|, given in
Fig. 2 (d), which is off-resonance with twice the soft-mode
frequency. The shape of |F [⟨u2⟩]neq| shows strong overlap
with the computed entropy production. Due to nonlinear
coupling between phonons, discussed in Ref. [22], a peak
of the second optical mode at ≈ 5.19 THz can be clearly
observed in Fig. 2 (b). We note that this mode (not con-
sidered in our model) has no spectral overlap with the
driving field, which is almost zero for ω > 3 THz. As a
result, the entropy production generated by the second
optical mode and the laser field is negligible (compare
Fig. 2 (b) and Fig. 2 (c), see also methods section).

To shed light on heat induced by laser fields, we com-
pute the spectral entropy production of the medium for
two different materials SrTiO3 and KTaO3, upon assum-
ing a simple Gaussian laser pulse, F (t) ∼ e2πiωdt with-
out higher-harmonic contribution. We fix the in-medium
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field strength to be Ẽ0 = 100 kV cm−1. As before, the
frequency of the driving field is ωd = 0.75 THz and the
pulse width is τ = 1 ps. The mode effective charges are,
SrTiO3: Z = 2.5 [22, 70], KTaO3: Z = 1.4 [70, 71].
We focus on the soft mode only, where frequency and
line width strongly depend on temperature [72, 73] (see
methods section).

SrTiO3 is a cubic perovskite with a tetragonal phase
transition at ≈ 105 K [74]. Further, SrTiO3 exhibits
a diverging dielectric constant at low temperatures as
well as an asymptotic vanishing of the soft-mode fre-
quency, both indicative of a ferroelectric phase transi-
tion [73, 75]. However, the transition is avoided due to
quantum fluctuations, making SrTiO3 a quantum critical
paraelectric [75]. According to Ref. [72], the soft-mode
frequency of SrTiO3 is in resonance with the driving fre-
quency, ω0 = ωd = 0.75 THz at T ≈ 52 K. In Fig. 3 (a),
we show the computed spectral entropy production of the
medium for SrTiO3 at various temperatures ranging from
30 K to 60 K. Due to the temperature dependence and
softening of the damping, the real part becomes maxi-
mal slightly above 50 K. In contrast, the imaginary part
of σ̂(ω) increases with decreasing temperature, showing
a clear sign change below 52 K. The absolute value of
the spectral entropy production shows a local maximum
around this temperature. Due to the narrow width of
the Gaussian laser field (1 ps), neither Re σ̂, Im σ̂, nor |σ̂|
have a peak at exactly 2ωd, but instead show a decreas-
ing peak frequency with decreasing temperature. Plot-
ting Fω⟨u2⟩neq reveals clear peaks at twice the soft-mode
frequency, which is indicated by dashed lines. A non-
symmetric broadening of the peak for frequencies occurs
in agreement with the spectral weight of the spectral en-
tropy production of the medium σ̂. This becomes specifi-
cally apparent for the temperatures 30 K, 40 K and 60 K.
Interestingly, the connection between a non-symmetric
broadening and entropy production has recently been dis-
cussed for active crystals, i.e., periodic arrangements of
self-propelled particles, such as bacteria, cells, or Janus
colloids. In those cases, the basic constituents of the
crystal produce entropy in contrast to the present paper
where entropy is generated by an external laser source.
This has led to the concept of entropons as a collective
signature for spectral entropy production [76].

In contrast to SrTiO3, KTaO3 remains cubic to liquid
helium temperatures [77]. It is also regarded a quantum
paraelectric, but outside the quantum critical regime [78].
As a result, the decrease of the soft-mode frequency and
damping is slower compared to SrTiO3, being in res-
onance with the driving frequency ωd = 0.75 THz at
≈ 26.4 K [72]. Therefore, we evaluate the spectral en-
tropy production for temperatures between 10,. . . ,40 K,
plotted in Fig. 3 (b). The steady increase of Re σ̂ with
decreasing temperature shows that the spectral entropy
production process dominates the decrease of the soft-
mode damping. As before, the sign change of Im σ̂ for

low temperatures can be clearly revealed. In agreement
with the absence of a theoretical ferroelectric transition
at low temperatures, the soft mode frequency remains
finite at low temperatures. As a result, the soft-mode
peaks at 2ω0 in Fω⟨u2⟩neq remain at higher frequencies,
compared to SrTiO3. Furthermore, the peaks occur fairly
close to the maxima of |σ̂| making the entropon broad-
ening less pronounced, in comparison to SrTiO3.
Our theory allows us to estimate the total amount of

dissipation due to the laser pulse, by calculating the to-
tal entropy production of the medium Σ(∞) according
to Eq. (3). This observable is shown for SrTiO3 and
KTaO3, in Fig. 4, where we have used a real-valued driv-
ing force and computed the entropy production Σ(∞)
from a direct solution of the equation of motion (1). For
a fixed laser frequency, we observe that the total entropy
production of the medium is maximized when the ferro-
electric soft mode is in resonance with the driving fre-
quency, i.e., at T ≈ 52 K for SrTiO3 and at T ≈ 26.4 K
for KTaO3, respectively (Fig. 4(a)). As soon as the soft
mode frequency is out of resonance, the entropy produc-
tion of the medium is suppressed. This implies that a
crystal is characterized by a non-monotonic capacity of
absorbing heat and producing entropy when subject to a
driving force. The maximal absorbed heat is a result of
a resonant effect between phonon modes and driving fre-
quencies. This process shows an additional temperature
dependence as can be seen in Fig. 4(b) where we vary
the driving frequency to match the soft mode frequency
at each temperature, i.e., ωd = ω0(T ). The computed
total entropy production increases with decreasing tem-
perature and diverges for T → 0.

DISCUSSION

We studied ultrafast thermodynamic processes, by de-
riving the absorbed heat, e.g. the ultrafast entropy pro-
duction of the medium, due to transient phonons in ma-
terials excited by a THz laser pulse. Specifically, the soft
modes of SrTiO3 and KTaO3 are evaluated by comparing
our theory to experimental data and simulation results.
The entropy production of the medium takes place on
the picosecond timescale and can be deduced from the
collective ionic displacement as observed, e.g., by time-
resolved X-ray scattering. While entropy production and
sample heating are well-known concepts in general, our
work sheds light on the microscopic mechanism behind
entropy production in driven quantum materials, using
the framework of stochastic thermodynamics. While the
maximal energy transfer from the laser to the sample
is determined by the laser intensity, the production of
entropy strongly increases with decreasing temperature.
Furthermore, the temporal signature of this process is
tightly bound to the soft mode frequency.

More generally, we envision ultrafast thermodynamics
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FIG. 3. Ultrafast thermodynamics properties for SrTiO3 (a) and KTaO3 (b). In each case, real part Re σ̂(ω), imaginary part
Im σ̂(ω) and modulus |σ̂(ω)| of the spectral entropy production of the medium, σ̂(ω), (see definition (4)), are shown together
with the Fourier transform of the non-equilibrium contribution of the power spectrum Fω⟨u2(t)⟩neq. Temperature-dependent
soft modes are considered. Dashed lines in the plot for Fω⟨u2⟩neq denote twice the soft-mode frequency.
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FIG. 4. Total entropy production in SrTiO3 and KTaO3 after
the laser pulse has fully decayed. (a) The driving frequency
is fixed to ωd = 0.75 THz. Resonance peaks emerge at 52 K
(SrTiO3) and 26.4 K (KTaO3) due to the temperature de-
pendence of the soft mode. (b) The driving frequency is cho-
sen to match the temperature depedent soft mode frequency,
ωd = ω0(T ).

to provide characteristic signatures of complex systems,
beyond phononic processes. We showed, in particular,
that, in the presence of uncorrelated noise, entropy pro-
duction depends on the materials’ response function. As
a consequence, Eq. (5) can be straightforwardly applied
to other collective excitations, as long as they are dis-
cussed in the linear regime. A particularly interesting ex-
tension of our theory would concern magnons [8, 16, 79].
However, since magnetic systems can be governed by cor-
related noise and non-Markovian dynamics [80], a gener-
alization of our theory to include these effects is required.

Coupling between phononic and magnonic degrees of
freedom represents another promising research line to
apply our theory. On the one hand, it has been re-
cently shown that circularly polarized or chiral phonons
can induce significant magnetization in nominally non-

magnetic crystals [21, 48, 81–83]. This feature becomes
particularly interesting when such a transient magneti-
zation is used to switch magnetic orders in layered struc-
tures [84]. On the other hand, influencing magnetization
by ultrafast heat production has been investigated in-
tensively [47]. In addition, in the case of the optically
induced magnetization due to the inverse Faraday effect,
the validity of a thermodynamic picture of magnetization
has been strongly debated [85–87]. Hence, we believe
that our theory can be insightful in these contexts.

Furthermore, our theory for the power spectrum of the
displacement-displacement correlation exhibits spectral
weight besides a sharp peak at twice the eigenfrequency
of the soft mode. We have shown that this part of the
power spectrum can be associated with spectral entropy
production. The emergence of such a feature is closely
related to the concept of entropons recently introduced
for intrinsic non-equilibrium systems reaching a steady-
state [76]. In contrast, here, the system is away from the
steady state, and entropy production is generated by the
transient force due to laser pulses.
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APPENDIX

Spectral entropy production

By applying the time Fourier transform to the equation
of motion for u(t), Eq. (1) (see Fig. 5 for an example of its
solution in real-time), we obtain the dynamics in the domain
of frequency ω(

−ω2 + ω2
0 + iωη

)
û(ω) =

√
2η kBT ξ̂(ω) + F̂ (ω) , (9)

where the hat-symbol denotes the time-Fourier transform of
a variable and ξ̂(ω) is a Gaussian noise with zero average and

⟨ξ̂(ω)ξ̂(ω′)⟩ = δ(ω + ω′). By defining the vector v(t) = u̇(t),
so that v̂(ω) = iωû(ω), Eq. (9) can be expressed as

iωû(ω) = v̂(ω) (10)

(iω + η) v̂(ω) + ω2
0 û(ω) =

√
2η kBT ξ̂(ω) + F̂ (ω) . (11)

The path-probability of the phonon normal mode, P [{u}|u0],
conditioned to the initial value u0, can be estimated by the
probability distribution of the noise history p[{ξ}|ξ0], condi-
tioned to the initial value ξ0. Here, curly brackets denote the
time history from the initial to the final time. The Gaussian
properties of the noise allows us to express p[{ξ}|ξ0] as [63]

p[{ξ}|ξ0] ∼ exp

(
−1

2

∫
dt ξ(t)2

)
(12)

= exp

(
−1

2

∫
dt

∫
dω

2π
e−iωt

∫
ds eiωsξ(s)2

)
= exp

(
−1

2

∫
dt

∫
dω

2π
e−iωt

∫
dω′

2π
ξ̂(ω′)ξ̂(ω − ω′)

)
,

where in the second and third equalities we have applied the
properties of Fourier transforms. From here, we can switch
to the probability of the trajectory for the phonon mode {u}
by handling the change of variables ξ → u, i.e. by using the

µ
σ

Time

D
is
p
la
ce
m
en
t

FIG. 5. Illustration of an ensemble of solutions of the equation
of motion with uncorrelated noise for generic parameters. The
blue solid line represents the mean solution, while dashed lines
are single trajectories that illustrate the standard deviation.

equation of motion in Fourier space

ξ̂(ω) =
1√

2ηkBT

[
(iω + η) v̂(ω) + ω2

0 û(ω)− F̂ (ω)
]
. (13)

Such a change of variables should involve the determinant of
the transformation. We ignore this term because it is irrel-
evant to the calculation of the entropy production since it
provides only an even term under time-reversal transforma-
tion [63]. As a consequence, the following relation holds

P[{u}|u0] ∼ p[{ξ}|ξ0] . (14)

The path-probability of the backward trajectory of the
phonon normal mode, Pr[{u}|u0], can be obtained by sim-
ply applying the time-reversal transformation (TRT) to the
particle dynamics. By denoting time-reversed variables by a
subscript r, the path-probability of the time-reversed noise
history, pr[{ξ}|ξ0], is still Gaussian and reads

pr[{ξ}|ξ0] ∼ exp

(
−1

2

∫
dt ξr(t)

2

)
= exp

(
−1

2

∫
dt

∫
dω

2π
e−iωt

∫
dω′

2π
ξ̂r(ω

′)ξ̂r(ω − ω′)

)
.

(15)

To switch to Pr[{ξ}|ξ0], we first have to evaluate the back-
ward dynamics, by simply applying the TRT to Eq. (1). By
using ur = u and vr = −v, we conclude that all the terms in
Eq. (1) are invariant under TRT except for the friction force.
Applying the Fourier transform to Eq. (1) and expressing the

noise ξ̂r(ω) as a function of ur(ω) and vr(ω), we can recur
to the change of variable ξr → u that allows us to use the
following relation

ξ̂r(ω) =
1√

2ηkBT

[
(iω − η) v̂(ω) + ω2

0 û(ω)− F̂ (ω)
]
. (16)

By neglecting again the determinant of the change of vari-
ables, Pr[{u}|u0] reads

Pr[{u}|u0] ∼ pr[{ξ}|ξ0] . (17)

To calculate the entropy production Σ, we use the defini-
tion (3), i.e. the log-ratio between the probabilities of forward
and backward trajectories of the phonon normal mode,

(2T )Σ = (2kBT ) log
p({u}|u0)

pr({u}|u0)

=

∫
dt

∫
dω

2π
e−iωt

∫
dω′

2π
×

×
(
⟨v̂(ω′)F̂ (ω − ω′)⟩+ ⟨v̂(ω − ω′)F̂ (ω′)⟩

)
. (18)

By comparing Eq. (18) with the definition

Σ =

∫
dt ṡ(t) , (19)

one can identify the entropy production rate, ṡ(t), as

ṡ(t) =

∫
dω

2π
e−iωt

∫
dω′

2π

1

2T
×

×
(
⟨v̂(ω′)F̂ (ω − ω′)⟩+ ⟨v̂(ω − ω′)F̂ (ω′)⟩

)
. (20)
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Applying the Fourier transform, we introduce the spectral
entropy production rate, σ̂(ω), as

ṡ(t) =

∫
dω

2π
e−iωtσ̂(ω) (21)

and, by comparison with Eq. (20), we obtain

σ̂(ω) =

∫
dω′

2π

1

2kBT

(
⟨v̂(ω′)F̂ (ω − ω′)⟩+ ⟨v̂(ω − ω′)F̂ (ω′)⟩

)
.

(22)
We remark that expressions (18) and (22) do not depend on
the choice of the force in the dynamics of û(ω). As a result,
they are unchanged by adding a non-linear force, e.g., due to
phonon-phonon coupling to Equation (9).

Finally, we mention that the dissipative properties of a
chain of harmonic oscillators have been previously studied
with a stochastic thermodynamics approach [88, 89]. In con-
trast, here, we focus on the entropy production associated to
each collective excitations, e.g. phonons, by explicitly model-
ing the dynamics of an optical phonon excited by a THz laser
pulse (Eq. (1))

Entropy spectral density

The formal solution of the equation of motion (1) in Fourier
space is given by

û(ω) =

√
2η kBT ξ̂(ω) + F̂ (ω)

ω2
0 − ω2 + iωη

= χ(ω)Â(ω). (23)

Here, χ(ω) is the (linear) susceptibility

χ(ω) =
1

ω2
0 − ω2 + iωη

, (24)

and Â(ω) =
√
2η kBT ξ̂(ω) + F̂ (ω). By using that v̂(ω) =

iωû(ω) and ⟨ξ̂(ω)⟩, the spectral entropy production, σ̂(ω),
can be expressed as

σ̂(ω) =
i

T

∫
dω′

2π
kF̂ (ω − ω′)χ(ω′)F (ω′) . (25)

By introducing the entropy spectral density, Ŝr(ω, ω
′), as

σ̂(ω) =

∫
dω′

2π
Ŝr(ω, ω

′) , (26)

we can immediately identify

Ŝr(ω, ω
′) =

(iω′)

T
F̂ (ω − ω′)χ(ω′)F (ω′) . (27)

Equation (27) coincides with formula (5) of the main text.
Non-linear force terms do not allow the system to have a
formal solution in terms of χ(ω). Thus, formula (27) holds
only in the linear case.

Dynamical correlation of the normal phonon mode

By using Eq. (23) the Fourier transform of the dynamical
correlation, F⟨u2(t)⟩, is given by

F⟨u2(t)⟩ =
∫

dω′

2π
⟨û(ω′)û(ω − ω′)⟩

=

∫
dω′

2π
⟨Â(ω′)Â(ω − ω′)⟩χ̂(ω′)χ̂(ω − ω′) .

(28)

First, we applied the convolution theorem and, second, we
used Eq. (23). Using the definition of Â(ω), Fω⟨u2(t)⟩ can be
decomposed into two terms,

Fω⟨u2(t)⟩ = Fω⟨u2(t)⟩eq + Fω⟨u2(t)⟩neq . (29)

The first term, Fω⟨u2(t)⟩eq, in the right-hand side of Eq. (28),
has an equilibrium origin: it arises from the Brownian noise
and is given by the convolution of the susceptibility with itself.
For uncorrelated noise, we have ⟨ξ̂(ω′)ξ̂(ω − ω′)⟩ = δ(ω), and
this term reads

Fω⟨u2(t)⟩eq = 2ηkBT

∫
dω′

2π
⟨ξ̂(ω′)ξ̂(ω − ω′)⟩χ̂(ω′)χ̂(ω − ω′)

= 2η kBTδ(ω)

∫
dω′

2π
χ̂(ω′)χ̂(−ω′) . (30)

As an equilibrium term, Fω⟨u2(t)⟩eq gives a DC contribution
(ω = 0) to the dynamical correlation and does not prevent
the system from reaching a steady state.

In contrast, the second term Fω⟨u2(t)⟩neq in the right-hand
side of Eq. (28) has a non-equilibrium origin. It disappears
when the non-equilibrium force vanishes and is given by

Fω⟨u2(t)⟩neq =

∫
dω′

2π
F̂ (ω′)F̂ (ω − ω′)χ̂(ω′)χ̂(ω − ω′) . (31)

This term can be linked to the entropy spectral density
Sr(ω, ω

′), defined in Eq. (27). As a result, Eq. (31), can be
written as follows,

Fω⟨u2(t)⟩neq = T

∫
dω′

2π

χ̂(ω − ω′)

(iω′)
Ŝr(ω, ω

′) , (32)

which corresponds to Eq. (8) of the main text.

Temperature dependence of the soft mode

The soft mode frequency and the damping or line width are
strongly temperature dependent. We model the temperature
dependence from data taken from Vogt [72] and fitting to a
second-order polynomial,

x(T ) = a0 + a1T + a2T
2 . (33)

Here, x = ω0, η is either the soft mode frequency ω0 or the
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FIG. 6. Temperature dependence of the soft mode frequency
(blue) and damping (orange) for SrTiO3 and KTaO3. Dots
correspond to experimental data taken from Vogt [72]. Solid
lines show the quadratic fit for comparison.
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a0 (THz) a1 (THz/K) a2 (THz/K2)

SrTiO3 ω0 0.078 0.0137 −17× 10−6

η 0.005 0.001 7× 10−6

KTaO3 ω0 0.42 0.013 −18× 10−6

η -0.008 0.0019 10× 10−6

TABLE I. Fitting parameters for the temperature dependence
of the soft mode frequency ω0 and the damping η for SrTiO3

and KTaO3.

damping η. In the past, other parametrizations of the soft
mode have been proposed, e.g., the four-parameter model by
Barrett [90]. However, for our purpose, a fit according to
Eq. (33) provides a reasonable accuracy within the discussed
temperature range. The fitting parameters are given in Tab. I,
while a comparison of the quadratic fit with experimental
data is reported in Fig. 6 for SrTiO3 and KTaO3 materials,
showing good agreement both for the soft mode frequency
and damping.

Coupled phonon modes

In the main text, we describe the driving of a single phonon
mode. However, the strong-field excitation of phonons intro-
duces the coupling with other phonon modes, as discussed in
detail for the SrTiO3 in Ref. [22]. Hence, one could wonder
if this coupling leads to an additional source of entropy pro-
duction. In the following, we will show that the entropy pro-
duction is only due to an external driving field and not via
the phonon-phonon coupling. Hence, off-resonant IR-active
modes do not contribute to the total entropy production.

We consider two modes denoted by û0 and û1, which are
coupled by an interaction potential V = V (û0, û1). The dy-
namics in frequency domain reads

(−ω2 + ω2
0 + iωη)û0(ω) =

√
2ηT ξ̂0(ω) + F̂ (ω)−

[
d

du0
V

]
(ω)

(34)

(−ω2 + ω2
1 + iωη)û1(ω) =

√
2ηT ξ̂1(ω) + F̂ (ω)−

[
d

du1
V

]
(ω)

(35)

Here, we do not specify the shape of V = V (û0, û1) to ensure
generality (typically V is given as a polynomial in û0, û1).

Since the noise ξ0 is independent of ξ1, our approach of
path integrals can be easily generalized to the present case,
giving rise to the following expression for the total entropy
production:

ṡ(t) =

∫
dω

2π
e−iωt

∫
dω′

2π

1

2T

[
v̂0(ω

′)F (ω − ω′) + v̂0(ω − ω′)F (ω′)
]

+

∫
dω

2π
e−iωt

∫
dω′

2π

1

2T

[
v̂1(ω

′)F (ω − ω′) + v̂1(ω − ω′)F (ω′)
]

(36)
Indeed, the interaction term is due to a potential and therefore
will produce only a boundary term in the expression for the
entropy production rate ṡ. This can be seen easily in real

space

η

2T

∫
dt

(
v0

d

du0
V (u0, u1) + v1

d

du1
V (u0, u1)

)
=

η

2T

∫
dt

d

dt
V (u1, u2) .

(37)

Being expressed as a total time-derivative, this term does not
contribute to the entropy production.

Eq.(36) implies that contributions to entropy production

only arise when F̂ and v̂α = iωûα, with α = 0, 1, overlap. As
a consequence, a silent mode does not significantly contribute
to entropy production.
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verse faraday effect in view of ultrafast magnetization
experiments, Phys. Rev. B 84, 214421 (2011).

[87] S. D. Gorelov, E. A. Mashkovich, M. V. Tsarev, and M. I.
Bakunov, Terahertz cherenkov radiation from ultrafast
magnetization in terbium gallium garnet, Phys. Rev. B
88, 220411 (2013).

[88] H. C. Fogedby and A. Imparato, Heat flow in chains
driven by thermal noise, Journal of Statistical Mechanics:
Theory and Experiment 2012, P04005 (2012).

[89] N. Freitas and J. P. Paz, Analytic solution for heat flow
through a general harmonic network, Physical Review E
90, 042128 (2014).

[90] J. H. Barrett, Dielectric constant in perovskite type crys-
tals, Physical Review 86, 118 (1952).

https://doi.org/10.1088/1367-2630/ac4ef2
https://doi.org/10.1088/1367-2630/ac4ef2
https://doi.org/10.1103/PhysRevLett.128.075901
https://doi.org/10.1103/PhysRevLett.128.075901
https://doi.org/10.1103/PhysRevB.81.104404
https://doi.org/10.1103/PhysRevB.81.104404
https://doi.org/10.1103/PhysRevB.84.214421
https://doi.org/10.1103/PhysRevB.88.220411
https://doi.org/10.1103/PhysRevB.88.220411
https://doi.org/10.1103/PhysRev.86.118

	Ultrafast entropy production in pump-probe experiments
	Abstract
	Results
	Ultrafast stochastic thermodynamics of crystals
	The power spectrum and spectral entropy production
	Application to SrTiO3 and KTaO3 under laser pulses

	Discussion
	Acknowledgements
	Appendix
	Spectral entropy production
	Entropy spectral density
	Dynamical correlation of the normal phonon mode
	Temperature dependence of the soft mode
	Coupled phonon modes

	References


