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Abstract: The central nervous system is essential for main-
taining homeostasis and controlling the body’s physiolo-
gical functions. However, its biochemical characteristics
make it highly vulnerable to oxidative damage, which is
a common factor in neurodegenerative diseases like amyo-
trophic lateral sclerosis (ALS). ALS is a leading cause of
motor neuron disease, characterized by a rapidly progres-
sing and incurable condition. ALS often results in death
from respiratory failure within 3–5 years from the onset
of the first symptoms, underscoring the urgent need to
address this medical challenge. The aim of this study is to
present available data supporting the role of oxidative stress
in the mechanisms underlying ALS and to discuss potential
antioxidant therapies currently in development. These thera-
pies aim to improve the quality of life and life expectancy for
patients affected by this devastating disease.

Keywords: antioxidants, amyotrophic lateral sclerosis, oxi-
dative stress, iron chelation, multitarget therapy

1 Introduction

Amyotrophic lateral sclerosis (ALS) is one of the main
causes of motor neuron diseases. These are a group of
diseases characterized by musculoskeletal atrophy and
sclerosis of the motor pathways of the spinal cord. It cor-
responds to a neurodegenerative disorder like other dis-
eases such as Alzheimer’s disease, Parkinson’s disease, and
other conditions where neurodegeneration is the common
marker. ALS, like other neurodegenerative diseases, has no
cure, so that when the first symptoms appear, it usually
progresses relatively quickly, leading to death from respira-
tory failure, usually within 3–5 years [1]. In this context, the
study of potential therapies to treat or attenuate the progres-
sion of the disease has become a longed-for objective for a
large part of the scientific population.

1.1 Epidemiology

The main epidemiological studies aimed at quantifying the
incidence and prevalence of ALS have been carried out on
the European continent. These studies have shown that the
overall incidence of the disease in Europe is approximately
2–3 persons per year per 100,000 inhabitants [2], slightly
higher than studies carried out in the United States, where
the annual incidence varies between 1.8 and 2.2 persons
per 100,000 inhabitants, according to some studies [3]. As
for the differences in incidence by age and gender, it
appears to be a disease that affects men and older people
more frequently. The overall incidence by gender is 1.3
men for every woman, with the main age group affected
being between 65 and 85 years, peaking in the group
between 75 and 79 years [4,5].

The established risk factors for the development of the
disease are currently accepted to be mainly older age, male
sex, and a family history of ALS. However, during the last
few decades, the environmental contribution has gained
importance, as several studies in Japan during the 1960s
and 1970s identified high-incidence clusters located in
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Guam and the Kii Peninsula [6–8]. Recognizing environ-
mental risk factors is extremely important, as they are
the only ones that can be modified. However, studies in
this area are complex because they require a large amount
of funding to quantify the exposures that accumulate over
years before the development of the disease. For example,
the neurotoxic protein naturally produced by cyanobac-
teria in some lakes called β-methylamino-L-alanine has
been related to increased rates of ALS and Parkinson’s
disease [9,10]. Alongside this, exposure to heavy metals
and pesticides has also been reported to be associated
with an increased risk of developing the disease [11–13].

1.2 Clinical presentation

The clinical presentation of ALS is characterized by a slow,
progressivemuscle weakness accompanied bymuscle cramps,
muscle atrophy, and muscular stiffness. The muscle weakness
spreads within the motor system, involving the spinal cord
segments and the motor cortex.

The typical presentation of the disease features unilat-
eral distal weakness and muscular atrophy in the upper
and lower limbs or bulbar muscles. In the upper limb, it
usually affects the dominant hand’s thenar muscles, while
in the lower limb, it affects the anterior tibial muscle.
When the bulbar muscles are affected, the patient may
experience dysarthria or dysphagia. In the later stages of
the disease, it may present with a head drop or postural
problems [14]. Some of the symptoms that may appear
during the course of the disease include muscular weak-
ness, sialorrhea, bronchial secretions, pseudobulbar condi-
tion, cramps, and spasticity [15].

There is no specific test suitable for diagnosing the dis-
ease. Therefore, it is based on clinical symptoms, physical
examination, and electromyography. It must also meet cer-
tain criteria of the World Federation of Neurology [14]. To
diagnose ALS, there must be the presence of positive criteria
of lower motor neuron (LMN) signs, upper motor neuron
signs, progression of symptoms and signs, and the absence
of sensory signs, sphincter disturbances, visual disturbance,
autonomic features, basal ganglion dysfunction, Alzheimer-
type dementia, and ALS mimic syndromes. Additionally, the
diagnosis is supported by fasciculations in one or more
regions, neurogenic changes in electromyography results,
normal motor and sensory nerve conduction, and the absence
of conduction block.

There are recommended mandatory tests such as blood
tests, electromyography, nerve conduction velocity, cranial/
cervical, thoracic, and lumbar magnetic resonance, and

finally, a chest X-ray. A definite ALS diagnosis is based on
the following criteria: LMN and UMN clinical signs or elec-
trophysiological evidence in three regions, UMN and/or
LMN clinical signs in one region, and the patient is a carrier
of a pathogenic SOD1-gene mutation. A clinically probable
ALS is based on UMN and LMN clinical or electrophysiolo-
gical evidence by UMN and LMN signs in two regions, with
some UMN signs rostral to the LMN signs. Finally, clinically
possible ALS is based on UMN and LMN clinical or electro-
physiological signs in one region only, or UMN signs in at
least two regions, or UMN and LMN signs in two regions
with no rostral UMN signs rostral to LMN signs, or neuroi-
maging and laboratory studies have excluded other diag-
noses [16].

2 Oxidative stress and
pathophysiology of lateral
amyotrophic sclerosis

2.1 Oxidative stress and antioxidant defense
system

Oxidative stress is a prevalent mechanism found in several
pathological conditions, characterized by an imbalance
between the production of reactive oxygen species (ROS)
and/or reactive nitrogen species and the antioxidant capa-
city of the cell. This imbalance disrupts redox homeostasis
and causes damage at the molecular level [17]. The most
important free radicals include oxygen-derived species
such as the superoxide anion (O2

−), hydrogen peroxide
(H2O2), and the hydroxyl radical (OH−), as well as nitrogen-
derived species such as nitric oxide (NO−), nitrogen dioxide
radical (NOO−), and peroxynitrite anion (ONOO−) [18]. These
molecules play essential roles in processes such as microbial
defense, activation of transcription factors, and protein
phosphorylation at low concentrations. However, in excess,
they become harmful because they possess unpaired elec-
trons in their outer orbitals that react with other molecules,
altering their structures [19,20].

Cells generate free radicals enzymatically and sponta-
neously from various sources. These sources include oxida-
tive phosphorylation in the inner mitochondrial membrane
(OXPHOS), NADPH oxidase (NOX) in activated leukocytes
during the respiratory burst process, as well as myeloperox-
idase and uncoupled nitric oxide synthase (uncNOS) [21,22].
The most prominent non-enzymatic pathways involve transi-
tion metal ions, such as iron or copper, which contribute to
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the production of free radicals. Notably, the Fenton and
Haber-Weiss reactions are examples of reactions in which
ROS are generated from free ionic iron [23].

Given the damage caused by ROS, cells have developed
various defense mechanisms to counteract their effects,
classified as enzymatic and non-enzymatic antioxidants.
Enzymatic antioxidants comprise superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPX), and
thioredoxin [24–29]. Their expression is mainly regulated
by Nuclear factor erythroid-2-related factor 2 (Nrf2), typi-
cally inhibited by the adaptor protein Keap1 under normal
conditions. However, oxidative stress induces a conforma-
tional change in Keap1, releasing Nrf2. Consequently, Nrf2
translocates into the cell nucleus, binding to promoter
regions called antioxidant response elements, leading to
the transcription of genes responsible for detoxification,
antioxidant protection, protein turnover, and other func-
tions [30–32].

Non-enzymatic antioxidants can be divided into endo-
genously produced substances, such as glutathione (GSH),
uric acid, and bilirubin, and those introduced externally
through diet or supplements, such as water-soluble vitamin
C or fat-soluble vitamins A and E, among others [33].

2.2 Pathophysiology of ALS

ALS is characterized by the progressive degeneration of the
pyramidal motor neurons in the corticospinal pathway
located in the motor cortex, brainstem, and spinal cord.
The etiology is typically sporadic and of unknown cause,
with only a small percentage attributed to inherited genetic
abnormalities in specific genes. The affected biochemical
pathways mainly involve altered metal ion homeostasis,
excitotoxicity, protein quality control failure, and neuroin-
flammation (Figure 1). In this context, oxidative stress serves
as a common biomarker for the disruption of these various
biochemical pathways, playing a significant role in pro-
moting damage and contributing to the progression of the
disease.

2.2.1 Alteration in metal ion homeostasis

Metal ions are widely distributed throughout the brain and
play pivotal roles in maintaining normal CNS functions.
Among the most important of these metals are transition
metals such as iron (Fe), copper (Cu), and zinc (Zn), which
exhibit redox activity. For instance, iron is essential for
myelin synthesis, participates in oxidative phosphorylation,

neurotransmitter production, oxygen transport, and numerous
other functions [34]. On the other hand, copper contributes to
neuronal excitability and serves as a cofactor for the enzyme
cytochrome c oxidase in the mitochondria. Additionally, it is
involved in the antioxidant enzyme type 1 superoxide dismu-
tase (SOD1), along with zinc (Zn) [35].

As mentioned, iron plays various crucial roles in the
CNS; however, to fulfill these functions, it must traverse the
blood–brain barrier (BBB). In this process, the ferric form
of iron (Fe3+), bound to transferrin, interacts with the
membrane protein transferrin receptor 1 (TfR1) on the
endothelium of the BBB, inducing endocytosis [36]. Subse-
quently, Fe3+ iron is released from transferrin and reduced
to ferrous iron (Fe2+) through the action of the enzyme
ferrireductase, accompanied by gradual endosome acidifi-
cation. Following this, Fe2+ exits the endothelium via fer-
roportin and can be taken up by brain transferrin, which is
primarily synthesized by oligodendrocytes. Notably, these
cells accumulate most of the iron in the CNS [37,38]. Once
inside neuronal cells, Fe2+ is retained in the labile iron pool
and can be re-oxidized to Fe3+ by H2O2 through the Fenton
reaction. Excess iron is typically stored in cytosolic ferritin
[39]. Therefore, maintaining the redox balance of iron is
critical for its uptake, transport, and storage.

Regarding the link between iron and ALS, multiple
studies have reported dysregulation of different iron meta-
bolism markers in ALS patients. This includes iron accu-
mulation in the CNS, decreased transferrin levels, and
increased serum ferritin levels [40–42]. Despite this, it
has proven challenging to unify these findings into a single
model that explains the pathogenic role of iron in ALS.
However, one potential candidate seems to be ferroptosis,
a type of programmed cell death initiated by oxidative
disruptions in the extracellular microenvironment. It is
under the constitutive control of GPx4 and can be inhibited
by iron chelators and lipophilic antioxidants [43]. Ferrop-
tosis occurs due to alterations in the intracellular Fe2+ home-
ostasis and a decrease in the cell’s antioxidant defenses,
causing ferrous iron to generate free radicals via the Fenton
reaction, leading to lipid peroxidation and cell death. Some
markers of ferroptosis in ALS patients supporting its invol-
vement in the disease include GPx4 depletion in post-
mortem spinal cord tissue in patients with both sporadic
and familial ALS, along with increased markers of lipid
peroxidation, such as 4-hydroxynonenal in plasma and cer-
ebrospinal fluid (CSF) [44,45].

On the flip side, copper assumes vital roles in the CNS,
acting as a cofactor in multiple oxidoreductase enzymes,
participating in the electron chain, neurotransmitter synth-
esis, and myelination, acting as an eliminator, and contri-
buting to iron homeostasis by facilitating the conversion of

Exploring antioxidant strategies in the pathogenesis of ALS  3



Fe2+ to Fe3+ through binding to ceruloplasmin [35,46,47]. In
the context of its connection to the pathophysiology of ALS, it
is postulated that this is primarily due to mutations in the
enzyme SOD1, which relies on copper as a significant cofactor
[48]. Examination of the catalytic site in transgenic mouse
models with SOD1mutations has revealed a copper deficiency
at this site [49]. In this context, a therapy currently under
investigation for ALS is the use of CuII(atsm), demonstrated

to facilitate the incorporation of copper into SOD1 [50]. This
process transforms the abnormal, copper-deficient SOD1 into
its physiologically mature, copper-rich form. Although this
drug has shown promising results in animalmodels, its actual
implication in non-SOD1-related ALS cases is still unknown, as
this mutation only explains approximately 2% of total cases.
Nevertheless, studies on sporadic ALS have been conducted,
unveiling copper deficiencies in other cuproenzymes like

Figure 1: Summary of the main pathogenic pathways involved in ALS. (a) Schematic diagram showing the neurotoxic effects of neuroinflammation in
ALS and the main alterations in the cytoplasm, such as reticulocyte stress, altered metal ion homeostasis, disruption of proteostasis, and axonal
transport dysfunction. The main events that characterize neuroinflammation in ALS include decreased activity of TH2-like cells and regulatory T
lymphocytes (Treg), as well as increased migration of proinflammatory T cells (TH1/TH17). These cells interact with microglia (M1 subtype) and
astrocytes, leading to motor neuron damage. (b) Enlargement of a synapse illustrating the mechanism of excitotoxicity due to excessive glutamatergic
activity and the involvement of astrocytes in this process. Red upward arrows (↑) or blue downward arrows (↓) indicate upregulation or down-
regulation. Transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), ferrous iron (Fe2+), sodium ions (Na+), calcium ions (Ca2+),
interleukin 1 beta (IL-1β), interleukin 4 (IL-4), T helper lymphocytes (TH1, TH2, TH17), regulatory T lymphocyte (Treg), inducible nitric oxide synthase
(iNOS), NADPH oxidase 2 (NOX 2), hydrogen protons (H+), oxygen free radicals (ROS), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor, N-methyl-D-aspartate (NMDA) receptor, excitatory amino acid transporter 2 (EAAT2), and cysteine/glutamate antiporter system (Xc−

System).
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ceruloplasmin, suggesting that treatment with CuII(atsm)
could be a potential therapy [51]. However, further research
is essential to evaluate the true role of copper in the dis-
ease’s pathogenesis and its potential therapeutic targets.

2.2.2 Excitotoxicity

Glutamate is the most abundant excitatory neurotrans-
mitter in the central nervous system. It is released from
presynaptic neurons into the synaptic cleft, leading to the
activation of ligand-gated ion channels (ionotropic receptors)
and G protein-coupled receptors (metabotropic receptors). This
results in depolarization of the presynaptic neuron due to the
influx of sodium (Na+) and calcium (Ca2+) and the outflow of
potassium (K+). The action of glutamate is terminated by reup-
take systems located in the astrocytes that surround the
synapses. In astrocytes, glutamate is converted into glutamine,
which lacks neurotransmitter properties and can be released
and then available to neurons for conversion back to gluta-
mate via a glutamine reuptake system [52].

The most important glutamate receptors are the iono-
tropic NMDA and AMPA receptors, which are permeable to
Na+ entry and K+ exit. The permeability of these channels
to calcium is different; NMDA channels are always perme-
able to Ca2+ influx, while AMPA receptors depend on the
presence of the GluR2 subunit, which, if present, makes
them impermeable [53]. Under resting conditions, the
NMDA channel is blocked by magnesium ions, which is
reversed following depolarization generated by the acti-
vation of AMPA channels.

In this context, excitotoxicity occurs when there is a
prolonged excitatory glutamate response, resulting in a
massive influx of calcium into the cell. This increase in
intracellular Ca2+ concentration can be initially buffered by
the mitochondria and endoplasmic reticulum (ER). However,
these systems can become overwhelmed. Increased Ca2+ in
the mitochondria leads to the depolarization of their mem-
brane, disrupting the respiratory chain. Additionally, overac-
tivation of ATP-dependent ion pumps in an attempt to restore
ionic homeostasis results in ATP depletion. Energy stress is
enhanced by the activation of catalytic enzymes and the gen-
eration of free radicals that cause further cellular damage.
For example, Ca2+ increases the activity of NOX, uncNOS, as
well as calpains that cleave cytoskeletal proteins, transpor-
ters, and membrane receptors [54,55]. All of this ultimately
leads to neuronal necrosis.

In this regard, several studies have attempted to elu-
cidate the mechanism of ALS excitotoxicity. Motor neurons
have been shown to be remarkably sensitive to this process
and vulnerable to oxidative stress derived damage. This

sensitivity arises from their large size, approximately
100 μm in diameter, and axons reaching up to 1 m in
length, involving high oxygen and energy demands and
increased ROS production. Unfortunately, this alteration is not
currently accompanied by enough increased activity of anti-
oxidant enzymes to recover a redox balance. Additionally,
motor neurons express high levels of Ca2+-permeable AMPA
receptors and low levels of Ca2+ transporter proteins that
otherwise could help buffering the increase in cytoplasmic
Ca2+ concentration [56].

Regarding the origin of alterations in glutamate sig-
naling in ALS, astrocytes have been proposed as one of the
main cells involved in the process. For example, some studies
reported a decrease in the EAAT2, which is involved in glu-
tamate reuptake in astrocytes [57,58]. In addition, there is an
increase in the expression of the cysteine/glutamate anti-
porter system (Xc− system), which primarily serves to support
the antioxidant response by regenerating reduced GSH.While
this increase may be a compensatory mechanism for the
oxidative stress triggered by the disease, it also causes an
enhanced glutamate, thereby increasing excitotoxicity [57].
This molecular pathway interacts with transition metal
imbalances. For example, it has been observed that iron
overload in astrocytes induces cytoplasmic Ca2+ imbalance
toward increased concentration, which could also impair
neuronal function [59].

Another factor that has been studied in relation to ALS
is the degeneration of the serotonergic system, which could
facilitate glutamate toxicity. This is because serotonin, in
physiological conditions, acts as a facilitator of neuronal
depolarization by glutamate. It has also been observed that
serotonin stimulates the expression of the GluR2 subunit
of AMPA, which would increase calcium impermeability
[60–63]. Nevertheless, there is still a lack of information to
fully understand the relationship between the seroto-
nergic system and the pathogenesis of ALS.

2.2.3 Disruption of proteostasis

The proteome is typically understood as the set of proteins
expressed in a given cell during its lifespan. Proteostasis, or
protein homeostasis, refers to the maintenance of each
protein in the specific proteome of each cell type, ensuring
it remains in the necessary conformation, concentration,
and location for proper cellular function. The proteostasis
network encompasses pathways that regulate protein bio-
genesis, trafficking, and degradation [64,65]. In ALS, this
network is significantly impaired, with various steps in
this process failing, leading to the loss of protein functions
and the pathological accumulation of proteins in the
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neuronal cytoplasm. For instance, the DNA-binding protein
TAR (TDP-43) is one of the main cytoplasmic inclusions
found in both familial and sporadic ALS. In the latter case,
it may be linked to enterovirus infection [66,67]. Another
significant constituent of the cytoplasmic inclusions in ALS
includes SOD1, Fused in Sarcoma, among many others
[68,69]. The loss of these functions ultimately leads to neu-
ronal death.

The formation of pathological protein aggregates, which
are part of the intermediate filaments of the cytoskeleton, is
a common pathological feature in ALS [70]. The primary
function of these proteins is to participate in axonal trans-
port. In ALS, these proteins are hyperphosphorylated, and
their dynamic assembly is impaired. This pathophysiological
feature predominantly affects motor neurons, given that, as
mentioned earlier, they have axons that can extend up to 1
m in length, making axonal transport vital [71].

Another crucial element triggered by the accumulation
of pathological aggregates is ER stress. This phenomenon is
characterized by the ER’s attempt to repair misfolded pro-
teins by reducing protein synthesis, increasing chaperone
expression, and activating the ER-associated degradation
pathway. Unfortunately, this response is insufficient to
compensate for the increased misfolded proteins, leading
to the generation of free radicals and the release of Ca2+

into the cytosol, thereby enhancing the above-mentioned
damage pathways [72,73].

2.2.4 Neuroinflammation

Neuroinflammation refers to the responses of glial cells,
such as astrocytes and microglia, as well as cells of the
circulating immune system, such as monocytes, neutro-
phils, and lymphocytes, when they interact with nerve cells
in the central nervous system during situations of infec-
tion, injury, or degeneration. Initially, this acute response
may be beneficial; however, if these cells fail to repair the
damage, they maintain their reactive state and continue to
recruit astrocytes and microglia, resulting in an ongoing
inflammatory process that leads to damage progression [74].

In this context, post-mortem anatomopathological stu-
dies and positron emission tomography imaging of ALS
patients have shown evidence of glial cell proliferation
and activation, as well as T-cell infiltration in areas affected
by ALS, indicating the pathogenic role of each of these cells
in the progression of ALS [75,76].

One of the cells involved is microglia, which is a resi-
dent macrophage in the CNS and has the capacity to exist
in various states, depending on its interaction with the
environment. It is typically in an inactive state; however,

certain signals can lead to its activation and the acquisition
of an inflammatory (M1) or anti-inflammatory (M2) pheno-
type. The M2 phenotype is characterized as protective,
producing anti-inflammatory cytokines and neurotrophic
factors, while the M1 phenotype is toxic and capable of
inducing ROS generation, as well as proinflammatory cyto-
kines [77]. Concerning its involvement in ALS, it has been
observed that in pre-symptomatic states, microglia are
found in the M2 state, overexpressing neurotrophic factors
and anti-inflammatory cytokines such as interleukin-10 (IL-
10). As the disease progresses, it acquires an M1 phenotype
with increased activity of pro-oxidant enzymes such as NOX,
inducible nitric oxide synthase (iNOs), and the release of
cytokines such as tumor necrosis factor alpha (TNF-α), and
IL-1β [78]. Regarding stimuli conditioning the microglia phe-
notype, IL-4 has been shown to have the ability to divert
microglia toward an M2 phenotype, improving clinical out-
comes in the early stages of ALS [79].

Astrocytes are other cell types involved, being the most
abundant glial cells in the CNS. Their main role is to pro-
vide nutrients and support to neurons, as well as to main-
tain the impermeability of the BBB. However, they also
have the capacity to regulate the immune system by secreting
cytokines, communicating with neighboring microglia, and
infiltrating immune cells [80]. Regarding their involvement
in ALS, it has been observed that these cells acquire a neuro-
toxic phenotype characterized by direct and indirect damage
to motor neurons. Direct damage occurs by secreting toxic
soluble factors such as inflammatory cytokines and ROS, as
well as by interacting with altered motor neuron receptors,
such as type 1 major histocompatibility complex [81,82]. On
the other hand, indirect damage is exerted by interacting
with microglia and T cells. For example, overexpression of
transforming growth factor beta (TGF-β1) by astrocytes inter-
feres with the neuroprotective response of microglia, as does
the expression of nuclear factor κB (NF-κB) in astrocytes
during the symptomatic phase, which promotes microglial
proliferation and accelerates disease progression [83,84].

Finally, another important cellular component that
modulates the inflammatory response at the CNS level in
ALS is T lymphocytes. These cells have basically two sub-
populations: CD4+ and CD8+. In ALS, both subpopulations
are actively involved. For example, CD4+ T cells in early
stages acquire an anti-inflammatory TH2 and Treg pheno-
type, which, through the secretion of IL-4, induces an M2
phenotype in microglia. In advanced stages, they acquire a
TH1/TH17-type inflammatory phenotype, releasing inflamma-
tory cytokines such as interferon gamma, ROS, and NO,
enhancing the neurotoxic effects of M1 microglia [85]. In
ALS patients, peripheral blood analysis shows that Treg and
Foxp3 levels correlate negatively with disease progression [86].
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In addition, CD8+ T cells also appear to have a dual role in
neuroprotection and cytotoxicity. For example, their infiltra-
tion of the peripheral nervous system has been associated
with myelin regeneration along the motor axon and at the
neuromuscular junction, thereby delaying muscle denerva-
tion and prolonging survival. Their infiltration in the spinal
cord, however, is neurotoxic to motor neurons [87,88].

In summary, various components of the immune system
interact with each other at different stages of the disease,
modulating neuroinflammation in ALS. A detailed under-
standing of the role of each cell remains an open question,
but once clarified, it could open the door to the development
of therapies for the treatment of ALS.

2.3 Potential antioxidant therapies

2.3.1 Actual therapy

There is currently no cure for ALS; however, there are two
FDA-approved treatments that aim to alleviate symptoms:
riluzole and edaravone. The former is an anti-glutamatergic
drug that blocks postsynaptic glutamate receptors, reduces glu-
tamate release, and inactivates voltage-dependent sodium chan-
nels [89]. Riluzole has been shown to prolong patients’ lives
by 3–6 months. Riluzole acts as a glutamate antagonist and
significantly influences the survival rate of ALS, slowing the
course of the disease progression. Its mechanism of action
includes inhibition of presynaptic glutamate release,
increased clearance, glutamate receptor antagonism, nor-
malization of sodium channel function, reduction of cortical
hyperexcitability, and stimulation of growth factor synthesis
to promote neuronal branching [90,91].

In turn, edaravone is a free radical scavenging antiox-
idant that targets peroxyl radicals by scavenging free radi-
cals, thereby reducing oxidative stress and protecting motor
neurons from oxidative damage. Edaravone inhibits the for-
mation of linoleic acid hydroperoxide via hydroxyl radicals
generated by the Fenton reaction rather than hydroper-
oxide itself. It has also been reported that edaravone does
not react with superoxide anion radicals and is lipophilic, so
it is able to diffuse passively across membranes to scavenge
lipid peroxide radicals [92,93]. These treatments offer impor-
tant options for ALS patients.

2.3.2 Opportunities for antioxidant treatment

It has been suggested that antioxidants could serve as a
potential therapy for ALS, given their ability to alleviate

oxidative stress, a factor implicated in the disease’s patho-
genesis. Numerous studies have delved into the therapeutic
potential of various antioxidant compounds in ALS, such as
vitamin E, N-acetyl-L-cysteine (NAC), coenzyme Q10 (CoQ10),
flavonoids, iron chelators, among others. However, despite
encouraging results in preclinical studies, the transition
from antioxidant therapies to clinical application has
proven challenging.

Many antioxidant compounds that demonstrated pro-
mising results in preclinical research have failed to show-
case therapeutic benefits in clinical trials involving ALS
patients. Against this backdrop, the subsequent section
will detail the primary antioxidants used, along with a
brief explanation of their mechanism of action and the
key clinical and preclinical findings.

2.3.2.1 Vitamin E
Vitamin E, a fat-soluble vitamin, exists in eight different
forms (α-, β-, γ-, δ-tocopherol, and α-, β-, γ-, δ-tocotrienol),
with δ-tocopherol being the most commonly utilized form.
Being fat-soluble, it is predominantly concentrated in cell
membranes, where it performs its antioxidant role by
restricting lipid peroxidation of polyunsaturated fatty acids
[94]. In addition to its antioxidant action, an anti-inflamma-
tory effect has been observed, mainly through the inhibition
of the enzyme cyclooxygenase-2 (COX-2), which limits the
formation of prostaglandin E2 [95]. These properties have
prompted research into the possible role of vitamin E sup-
plements in the treatment of ALS.

In this context, preclinical studies with murine models
of various neurodegenerative diseases have demonstrated
that vitamin E plays both a neuroprotective and a neuror-
egenerative role [96]. In addition to this evidence, an in
vitro study with human-induced pluripotent stem cell-
derived motor neurons (hiMN) showed the potential of
vitamin E to attenuate ferroptosis in motor neurons, a
process closely related to the pathogenesis of the dis-
ease [97].

Regarding clinical studies in ALS patients, there are
currently not a large number of them, and those that
have been conducted often have contradictory results,
making it difficult to draw solid conclusions. For example,
some observational studies have identified an inverse rela-
tionship between vitamin E levels and disease develop-
ment and progression, but these results have not been fully
replicated [98–102]. Concerning clinical trials in ALS patients,
their number is limited, and the results are not very encoura-
ging. For example, a study that attempted to investigate the
efficacy of treatment with high-dose vitamin E as an adjunct
to riluzole in ALS patients failed to obtain satisfactory results,
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as no significant differences were found compared to the
control group [103]. Thus, before adopting the use of vitamin
E as a viable therapeutic option, further human studies should
be conducted to determine its role in the course of the disease,
as well as to determine the effective dose and safety of its use.

2.3.2.2 NAC
NAC is an acetylated derivative of the amino acid cysteine,
widely employed in clinical and experimental contexts as
an antioxidant. Its capability to act as a precursor in the
synthesis of GSH makes it particularly valuable in replen-
ishing GSH consumed by free radicals [104,105]. This attri-
bute, coupled with its indirect role as a metal ion chelator
and its anti-inflammatory potential through NF-кB inhibi-
tion, positions it as a potential candidate for treating ALS
[106,107]. Preclinical in vitro and in vivo studies have
demonstrated that NAC suppresses oxidative stress and
inflammation, showcasing benefits in survival and motor
performance in murine models of ALS [108,109].

In the realm of human clinical trials, the availability of
results is limited and, unfortunately, not very encouraging.
These studies have failed to demonstrate that NAC admin-
istration in ALS patients is associated with significant
changes in survival or disease prognosis [110,111]. Difficulty
in achieving adequate concentrations in the brain and
spinal cord due to the BBB has been proposed as a possible
explanation for these unfavorable outcomes. Given this lim-
itation, some researchers have explored the intranasal route
as a non-invasive option, with promising results in animal
studies showing an increase in survival in mouse models of
ALS, while testing in humans is still pending [112].

In light of these results, while NAC has the potential to
play a protective role in ALS, more human studies are
needed to determine the effective dose as well as the
optimal route of administration.

2.3.2.3 CoQ10
CoQ10, also known as ubiquinone, is a lipophilic molecule
primarily located in the electron transport chain within
the inner membrane of mitochondria. However, its func-
tion extends beyond this, as it serves as a potent anti-
oxidant safeguarding cell membranes, thus limiting lipid
peroxidation and ferroptosis [113,114]. In the context of
ALS, an elevation in plasma oxidized CoQ10 concentration
has been noted in ALS patients, suggesting that supplemen-
tation might offer therapeutic benefits [115]. Preclinical
studies, particularly in murine models of the disease,
have demonstrated increased survival with CoQ10 supple-
mentation [116].

These findings have spurred clinical studies in humans
to evaluate the efficacy and tolerability of CoQ10 supplemen-
tation. While the administration of large doses is generally
well-tolerated, clinical effectiveness remains uncertain due
to conflicting results [117]. For instance, a phase II trial asses-
sing daily CoQ10 supplementation in ALS patients found no
significant difference between the CoQ10 group and the
placebo group, indicating insufficient evidence to support
a phase III trial [118]. The inconsistency in results has hin-
dered the utilization of CoQ10 as a therapy in ALS, empha-
sizing the necessity for additional studies to determine the
role of CoQ10 in the pathogenesis of ALS.

2.3.2.4 Polyphenols
Polyphenols are secondary metabolites primarily produced
by plants, and as such, they are present in various fruits,
flowers, leaves, and tree bark [119]. Renowned for their
antioxidant and anti-inflammatory properties, polyphenols
have found applications in various diseases, including ALS,
as evidenced by the study of certain polyphenols [120]:

2.3.2.4.1 Quercetin
Quercetin, a polyphenol within the flavonoid group, is
found in abundance in fruits such as grapes and vegetables
such as onions [121]. This substance exhibits remarkable
neuroprotective properties attributable to its antioxidant,
anti-apoptotic, and anti-inflammatory properties [122]. In
addition, it is actively involved in enhancing mitochondrial
function and exhibits iron-chelating abilities, making it an
effective agent against ferroptosis [121].

In this context, various mechanisms have been investi-
gated through in vitro and in vivo studies to evaluate the
potential therapeutic properties of quercetin for ALS.
Notably, its inherent capacity to reduce free radicals and
its ability to positivelymodulate silent information regulator
1 (SIRT1), which contributes to decreasing ER stress, apop-
tosis, inflammation, and limiting neuronal death resulting
from excitotoxicity, are significant [123–125].

Additionally, quercetin has been found to have the
ability to attenuate the formation of toxic SOD1 fibrils,
which are implicated in the disease [126–128]. Despite these
promising results, the application of quercetin in human
clinical trials has been limited due to its physicochemical
properties, which hinder the achievement of optimal con-
centrations in the central nervous system [129]. Given this
challenge, research on nanoformulations has recently been
initiated to improve its bioavailability; however, safety and
efficacy studies in the context of ALS have yet to be con-
ducted [130].
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2.3.2.4.2 Curcumin
Curcumin is a polyphenol present in the medicinal herb
known as turmeric (Curcuma longa). This compound exhi-
bits significant potential as a pharmacological agent, playing
a pivotal role in addressing oxidative stress and modulating
inflammatory responses. Curcumin can positively impact
antioxidant defenses by activating the adenosine monopho-
sphate-activated protein kinase (AMPK) pathway, which, in
turn, triggers Nrf2 signaling [131]. Regarding the regulation
of inflammatory responses, curcumin’s effectiveness lies in
its ability to inhibit the NF-κB pathway, a critical element in
the inflammatory process [131].

In terms of its potential application as a therapy for
ALS, several clinical trials have been conducted. One note-
worthy double-blind clinical trial revealed that curcumin
supplementation could lead to a slight slowing of disease
progression. Additionally, improvements in aerobic meta-
bolism and reductions in oxidative damage were observed
in ALS patients [132]. This trial is complemented by another
clinical study utilizing a nanotechnology-based formula-
tion to enhance protection against ALS. The results suggest
that nanocurcumin increased survival rates in treated
patients compared to the control group [133]. Despite these
promising findings, larger-scale clinical studies are still
necessary to obtain more representative results. It is also
crucial to determine the most appropriate doses and routes
of administration for curcumin as a therapy in the context
of ALS.

2.3.2.4.3 Resveratrol
Resveratrol, a natural polyphenol with antioxidant proper-
ties, has shown promising effects in treating ALS. Multiple
preclinical studies involving animal models and in vitro
cell culture assays suggest that resveratrol can delay dis-
ease onset, extend lifespan, and improve motor neuron
function in ALS by activating SIRT1 through AMPK activa-
tion, much like quercetin [134,135]. Furthermore, recent
research has found that resveratrol can correct the patho-
logical state of NF-κB acetylation, a factor implicated in the
pathogenesis of ALS [136].

Although these findings suggest that resveratrol may
be a promising therapeutic intervention for ALS, clinical
trials in ALS patients demonstrating the effects described
in the literature and evaluating the safety of resveratrol in
specific clinical settings are still lacking.

2.3.2.5 Melatonin
Melatonin is a neurohormone synthesized by the pineal
gland that has garnered significance due to its outstanding

antioxidant capacity. It acts as a direct free radical sca-
venger and enhances antioxidant defenses by triggering
GSH synthesis, along with the activation of antioxidant
enzymes like SOD and GPx [137,138]. This capability has
prompted the exploration of melatonin as a potential
therapy for ALS. Some preclinical studies have indicated
that melatonin inhibits cytochrome c release, prevents cell
death, and delays disease onset and progression in mouse
models of ALS [139]. However, the validation of these find-
ings encounters challenges, as certain studies with murine
models have not affirmed its neuroprotective role [140].

In terms of outcomes from clinical trials involving ALS
patients, a systematic review analyzing 23 clinical trials
employing melatonin discovered that its usage is linked
to slower disease progression and prolonged patient sur-
vival. Nevertheless, this review faced notable limitations,
including the retrospective nature of the analysis, a small
sample size, and the subjectivity of the databases employed
[141]. In this context, definitive conclusions regarding the
application of melatonin in ALS remain elusive, given the
persisting controversial results.

2.3.2.6 Apocynin
Apocynin, a natural antioxidant, stands out as a selective
inhibitor of NOX, one of the main enzymes generating ROS
in conditions of neuroinflammation [142]. Within this con-
text, several in vivo studies have been conducted using
murine models of the disease, yielding contradictory results.
For instance, a study utilizing a transgenic mouse model of
ALS (SOD1G93A) observed an increase in the number of
neurons in the spinal cord and a 50% extension in life expec-
tancy [143]. However, another study suggested that apocynin
might offer somewhat limited benefits for SOD1G93A mice,
as its administration failed to significantly prolong survival
[144]. Consequently, the preclinical data remain contentious
and insufficient for conducting patient trials.

2.3.2.7 Iron chelation
The use of iron chelators in ALS has shown potential neu-
roprotection as a treatment. As demonstrated in this review,
one of the pathophysiological mechanisms of ALS is the
altered homeostasis of metal ions, especially iron. In this
context, the following section describes the two main thera-
pies linked to this biochemical pathway:

2.3.2.7.1 M30
M30 is a novel iron chelator employed in models of neu-
rodegenerative diseases, showcasing its capability to
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inhibit the enzyme monoamine oxidase (MAO), scavenge
free radicals directly, induce survival signaling pathways,
and restrict iron-dependent lipid peroxidation [145,146]. This
positions M30 with significant potential as a neuroprotec-
tive. Within this framework, research has been undertaken
to assess its effectiveness as a potential therapy for ALS.

An in vivo study involving SOD1G93A mice unveiled
that the combination of M30 and a diet supplemented
with high-calorie content substantially enhanced neurolo-
gical/motor function and extended the lifespan of the mice
[147]. Another study, encompassing both in vitro experi-
ments with cell cultures and in vivo experiments with
transgenic mice, yielded comparable results [145]. These
investigations underscore the promise of M30 as an ALS
therapy, albeit the absence of human studies at present.

2.3.2.7.2 Deferiprone
Deferiprone is a commonly used iron chelator in the clinic
for treating hemosiderosis. One of its notable features is its
ability to traverse membranes, reduce regional iron accu-
mulation, and redistribute captured iron to extracellular
transferrin [148]. In the context of ALS, both an in vivo
study involving transgenic mice and a pilot clinical trial
with ALS patients have been undertaken. In mice, iron
chelation has demonstrated the extension of life expec-
tancy, showing a 56% increase in survival time after the
onset of the disease. Furthermore, the 12-month pilot clin-
ical trial in ALS patients revealed that deferiprone signifi-
cantly lowered iron levels, oxidative stress markers, and
neurofilament light chains in CSF. Additionally, during the
initial 3 months of deferiprone treatment, the reduction in
ALS Functional Rating Scale score was significantly less
compared to the 3-month period without treatment [149].
These findings suggest that further studies should be pur-
sued in the near future to explore iron chelation as a new
neuroprotective and treatment modality for ALS patients.

3 Conclusion

As demonstrated in this research, there are several limita-
tions when seeking a therapy with potential for sympto-
matic treatment or improving the survival of ALS patients.
While most therapies tested in mouse models have shown
promising results, many of these therapies evaluated in
clinical trials fail to demonstrate any beneficial effects on
ALS progression. In this study, several potential solutions
or contributions have been proposed that could signifi-
cantly aid in the development of an effective ALS therapy.

3.1 Pathogenesis study

Considering the recent discoveries in ALS pathogenesis,
many mechanisms lack a clear explanation. It is impera-
tive to delve deeper into these mechanisms to understand
how they function and identify new potential pharmaceu-
tical targets.

3.2 Better clinical characterization

Recognizing that ALS has different subtypes and that anti-
oxidant therapies show promise in slowing disease progres-
sion, it is crucial to take an individualized approach to each
patient. Rigorous disease characterization, including the
assessment of pathogenic markers such as iron levels and
oxidative stress markers, can help tailor therapy to each
patient. Investigating the role of oxidative stress in ALS
and conducting more clinical trials in various ALS subtypes
is necessary to determine the most effective therapy.

3.3 Sporadic murine model

A significant challenge in preclinical studies is the lack of
models that represent the sporadic form of ALS, which
accounts for approximately 90% of cases. Most studies use
SOD1 transgenic mice models, specifically the SOD1G93A
mutation. Developing transgenic mouse models that mimic
the sporadic presentation of the disease is essential to
improve the translation of positive results from mouse
models to clinical trials.

3.4 Multitarget antioxidant therapy

Given that oxidative stress plays a crucial role in ALS
pathogenesis and involves multiple pathways for generating
ROS, monotherapies may be insufficient to effectively provide
neuroprotection. Several studies suggest that single-target
approaches are not significantly effective. Therefore, adopting
multitarget strategies where different drugs target various
pathways may have a synergistic effect and slow down the
disease’s progression.

A potential multitarget therapy involves the use of
Riluzole, an FDA-approved drug known to have a signifi-
cant impact on ALS survival rates and disease progression.
Riluzole primarily functions by inhibiting glutamate
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presynaptic release and reducing cortical hyperexcitability
[150]. By combining Riluzole with antioxidant drugs, it may
be possible to address the oxidative aspects of ALS patho-
genesis and potentially reduce the associated oxidative
stress that contributes to disease progression (Table 1).
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