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Abstract. Within the structural health monitoring (SHM) field, consistent research efforts
have been invested in developing automatic vibration-based indirect methodologies for
inspecting existing heritage conditions. Current trends are mainly focused on output-only
automatic operational modal analysis (AOMA), specifically throughout the stochastic subspace
identification (SSI) technique among others. In the literature, a widespread workflow is
implemented in a four-step solution: choice of the SSI control input parameters, computation of
stabilization diagrams, stable poles’ alignments detection, and their final clustering. However,
the so far proposed solutions have not provided yet complete answers to some challenging and
still open questions. For instance, an arbitrarily poor initial choice of the SSI control parameters
may jeopardize the entire procedure. Therefore, in the current study, the authors present a novel
intelligent-based AOMA framework in a machine learning perspective. Specifically, random-
forest-driven Monte Carlo sampling of control parameters represents a promising intelligent
way to automatically choose the proper SSI control parameters. Furthermore, the recurrent
stable physical poles in the stabilization diagram among the Monte Carlo simulations deliver
some special insights about mode shape confidence intervals. A numerical benchmark is herein
analyzed illustrating some preliminary results and potentials of the proposed methodology.

1. Introduction

Nowadays existing infrastructure heritage is widely approaching its nominal life, and safety
issues are occurring due to advanced degradation phenomena [1]. Therefore, in the last decades,
a growing interest of civil engineers and the scientific community was focused to develop cutting-
edge structural health monitoring (SHM) methodologies, thus providing more efficient and
reliable methods for inspecting actual conditions of existing heritage [2, 3]. In particular, indirect
and non-destructive testing became tremendously popular due to their rapidity, efficiency, and
less-invasivity features [4]. Specifically, vibration-based dynamic identification strategies provide
special insights into the dynamic modal properties of investigated structures, i.e. mode shapes,
natural frequencies, and damping ratios, under operational and ambient vibration conditions.
The commonly adopted approach is represented by the operational modal analysis (OMA)
techniques, which include two typologies of methods: the parametric procedures on one side, and
the non-parametric ones on the other side [1,5,6]. Among the others, the stochastic subspace
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identification (SSI) method represent a highly acknowledged and widely adopted time-domain
parametric strategy. Based on the state-space identification, it configures in subspace projections
computation (denoting the SSI-data variant) [6,7] or via output covariance estimates (thus
designated as SSI-cov) [6, 8].

The majority of the current research efforts within the SHM field are devoted to developing
automatic operational modal analysis (AOMA) methods, especially suited for long-term dynamic
monitoring procedures [9]. In the scientific literature [8,10], a widespread workflow is often
implemented according to four main steps. The foremost phase is related to a starting arbitrary
choice of the SSI control input parameters, especially the time shift (number of block rows of
the Hankel matrix) and the maximum order of the stabilization diagram [6]. Secondly, the next
phase is the computation of the stabilization diagrams, collecting stables and spurious poles from
the numerical solution for varying the model order. Each pole is characterized by specific modal
parameters. In the third phase the stability check criteria are performed in terms of frequency,
damping, and mode shape [6], preparatory for the identification of stable poles’ alignments along
the order axis. Finally, in the current literature approaches, the automation and innovative
machine learning-based (ML) part is mainly based on clustering techniques for post-processing
stabilization diagrams and automatically collecting stable poles’ alignments. The arbitrary
choice of SSI control parameters within the first phase plays a key role, since a poor choice of
these parameters may jeopardize the quality of the entire identification process and the resulting
modal properties. Notwithstanding many scholars analyzed this issue providing some suggestions
for a proper choice of SSI input parameters, e.g. [11,12], to the authors’ knowledge, no fully
automated SSI parameters’ selection procedures have been proposed hitherto yet. Therefore,
in the current manuscript, the authors present a novel intelligent AOMA (intelligent-AOMA)
procedure aiming to provide an automatic Monte Carlo-based sampling of the input parameters
as described in detail in the next section.

The current manuscript is organized as follows. In the next section, the proposed intelligent-
AOMA method is illustrated. Finally, a preliminary numerical benchmark is analyzed based
on the five degrees-of-freedom (DOF) example proposed in [5]. This benchmark permitted us
to illustrate some preliminary results, showing the new advantages and potentialities of the
proposed solution, i.e. enhancing the automation level of actual AOMA available methods and
leveraging novel capabilities offered by innovative ML perspectives.

2. Description of the proposed AOMA method

Generally, the SSI-cov algorithm may provide the identification of spurious fictitious modes in
the conventional stabilization diagram, which are completely unrelated to the real structural
ones of actual interest. This issue is inherent to the SSI algorithm itself and it arises because the
actual DOFs of a real-world structure are unknown, thus a conservative approach consists in an
overestimation of the structural system order, however resulting in nonphysical poles next to the
physical ones [6]. Moreover, the worthless SSI-cov’s results may be further enhanced by the user’s
poor choice of the above-mentioned SSI-cov’s governing parameters. Therefore, in [13, 14], the
authors recently attempted to improve the SSI’s accuracy in detecting the real structural modal
parameters. They proposed a Monte Carlo-based stabilization diagram definition by considering
two varying input parameters, i.e. the length of the signals’ according to a shorter time window
and the SSI-cov maximum model order. The time window extracts a portion of the entire
signal with a specific time window length, symmetrically centered to a randomly generated time
instant. In [13,14], the authors demonstrated that executing a considerable number of Monte
Carlo simulations of those parameters, and consequently of SSI-cov analyses, the spurious modal
alignments were detected only occasionally whereas the actual physical structural modes were
identified in virtually all the recurring analyses. Therefore, the true structural modes were
supposed to remain basically unchanged among the SSI-cov analyses conducted for different
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Initialization:
Number of simulations for explorative phase
503 Define input SSI control parameters range

While loop until stored results for number of explorative sim

Generate Quasi-Monte Carlo samples of input control param.
Run SSI-cov algorithm
If infeasible parameters, then set IC to 0
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Stabilization diagram post-processing:

Overlap stabilization diagrams of every SSl-cov analysis
Stability checks criteria

KDE stable aligments selection

» Train ML model:

“ Define IC for every SSI-cov analysis
Train a RF algorithm

Figure 1. Flowchart of first step of intelligent AOMA.

small time windows of the same complete acquisition, centered at different time instants. Finally,
the results post-processing of the simulated Monte Carlo-based stabilization diagrams permitted
accurately discriminating between the recurrent true modal parameters of interest with respect
to the spurious ones. Despite the potentialities, the method proposed in [13, 14] evidences two
main limitations. The foremost is related to the arbitrary number of Monte Carlo simulations,
suggested equal to 100 without any apparent reason or motivation due to any convergence
criterion. The second limitation is related to the crucial choice of the time shift, still considered
an arbitrarily user-defined parameter. A poor choice of time shift may strongly affect the
reliability of the proposed AOMA framework. This also restricts the automatizing level of the
AOMA, since the user must still perform a prior proper tuning of the critical SSI-cov input
parameters. Furthermore, despite the final set of stabilization diagrams, another limitation is
the lack of any uncertainty evaluation of the Monte Carlo-based results.

Therefore, in the current study, the authors aim to overcome all the above-mentioned issues
by providing an intelligent-driven automatic OMA (denoted as intelligent-AOMA) to accomplish
the basic requirements of the state-of-art AOMA approaches, and without relying on the
commonly used ML-based clustering method. Inspired by the first attempts presented in [13, 14],
the proposed intelligent-AOMA increased the level of automatization considering as well the time
shift parameter into the Monte Carlo parameters’ sampling, thus avoiding any careful pre-tuning
user intervention. The proposed intelligent-AOMA has been conceptualized as a two main steps
procedure. The first step illustrated in Figure 1 is denoted as the Monte Carlo exploration
phase, whereas the second step depicted in Figure 2 is denoted as the intelligently-driven Monte
Carlo phase.

With the proposed framework, the authors determined that the SSI-cov control parameters
of main interest are the time shift, the time window length of a part of the entire signal, the
time target in which symmetrically centering the time window, and the maximum model order.
As depicted in Figure 1, in the first step of the proposed intelligent-AOMA, the algorithm may
provide a quasi-Monte Carlo sampling [15] of these four governing parameters and evaluate the
SSI-cov results. Since this first step is conceived as an exploration phase, the user is demanded
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Initialization:
Batch of 50 SSI-cov analyses to check convergence
503 Set an arbitrary maximum number of possible SSI-cov simulations

While loop until stored results for maximum number of sim.:

Generate Quasi-Monte Carlo samples of input control param.

If RF predict IC>IC threshold, then run SSI-cov algorithm, else no
If infeasible parameters, then set IC to 0

Every 50 analyses check convergence according ASCBR criterion

Stabilization diagrams post-processing:

Overlap stabilization diagrams of every SSI-cov analysis
Stability checks criteria

KDE stable aligments selection

Obtain the resulting recurrent physical mode shape parameters
Obtain mode shapes confidence bands

Figure 2. Flowchart of first step of intelligent AOMA.

to broadly define only the admissible range of the input governing parameters, which may be
retrieved by suggestions provided in [11, 13]. The number of exploratory Monte Carlo simulation
results may determine the quality of the next ML-based phase, therefore the authors adopted 100
simulations according to suggestions provided in [13]. The SSI-cov analysis is thus computed
for a number of randomly sampled sets of input parameters. However, some unfeasible sets
may happen, due to a wrong combination of time shift and model order parameters [6], or due
to excessively long computational time (set in this case as 30 seconds). The code is therefore
able to exclude those unfeasible sets and smartly invest computational resources in SSI-cov for
feasible sets only. The exploration loop is stopped when reaching a number of useful results
equal to the user’s defined 100 quasi-Monte Carlo SSI-cov exploratory simulations. Stability
check criteria retain only stable poles for each of the 100 generated stabilization diagrams.
The resulting stabilization diagrams are finally overlapped in order to evaluate which stable
poles’ alignments are recurrent among the exploratory simulations and which aren’t, according
to [13]. To avoid traditional and computationally expensive clustering algorithms, the authors
post-processed the overlapped stabilization diagram with the kernel density estimation (KDE)
algorithm [16], providing a normalized KDE graph which exhibits highly sharp peaks only in
natural frequencies associated with recurrent physical stable poles alignments. In summary,
based on the normalized KDE, only those poles falling around the KDE graph’s peaks within an
automatic-defined retaining frequency band are selected. The selction of the peaks of interest
in the normalized KDE graph was based on an automatic statistics-based criterion.

As illustrated in Figure 2, the second step of the proposed methodology relies on an ML-based
method to intelligently drive the quasi-Monte Carlo sampling process toward the best promising
sets of input parameters. The authors adopted a random forest (RF) model [17,18] to predict
if a new sampled set of input parameters is likely to produce useful results or not. To train the
RF algorithm, the results of the first exploratory step have been post-processed to deliver an
information content (IC) parameter associated with every Monte Carlo simulation. Specifically,
the IC has been calculated as the ratio between the number of poles falling within the KDE-based
frequency retaining bands and the total number of stable poles produced by every Monte Carlo
SSI-cov simulation. For those unfeasible sets of parameters, the IC was set to zero. The RF
algorithm was thus trained according to an information content threshold of 10%, attempting to



XII International Conference on Structural Dynamics 10P Publishing
Journal of Physics: Conference Series 2647 (2024) 212005 doi:10.1088/1742-6596/2647/21/212005

exclude those sets of newly quasi-Monte Carlo sampled parameters which are likely to produce
almost useless results with a waste of computational resources. The convergence analysis of
the mode shape results is evaluated every 50 iterations according to the acceptable shifting
convergence band rule (ASCBR) [19]. According to the generalized sample variance matrix, [20]
of the mode shapes associated with the found natural frequency recurrent physical modes, the
convergence criteria was set to a relative variation of the trace of the generalized sample variance
matrix within £0.02 for 50 iterations [19]. Once the convergence is reached, the intelligent-drive
RF SSI-cov loop is stopped and some post-processing procedures are performed, similarly to
the ones occurring in the first exploration step of the intelligent-AOMA method. Furthermore,
since every cluster of stable poles’ alignments contains poles coming from various choices of
input parameters, the authors analyzed the confidence bands for epistemic uncertainties of the
modal parameters, i.e. for natural frequencies, for damping ratios, and even for mode shapes.

3. Preliminary results on a benchmark problem

To validate the effectiveness of the proposed intelligent-AOMA methodology, the authors herein
provided some preliminary results based on a literature benchmark provided in [5]. Specifically,
the benchmark problem is related to a 5 DOF shear type system with lumped mass at each
floor, whose implementation details are reported in [5]. This benchmark structure is excited by
white noise simulating ambient vibration during operational conditions. The vibration response
acceleration signals were monitored on each floor for an hour with a sampling frequency of 100
Hz. The theoretical expected natural frequencies and mode shapes are provided in Figure 3.
Prior to the analysis with intelligent-AOMA, since all the natural frequencies are expected to
fall in a frequency range less than 10Hz, the data were decimated with a decimation factor of 5
[5].

4. Results and discussion

Figure 4 illustrates the main results provided by the first exploratory step of the proposed
intelligent-AOMA method retracing the entire procedure described in the previous sections. The
exploratory quasi-Monte Carlo simulations delivered a quite populated overlapped stabilization
diagram among the 100 SSI-cov analyses. However, the proposed KDE-based method showed
an interesting alternative method with respect to standard and computationally more expensive
ML-based clustering algorithms, able to reliably automatically detect those recurrent physical
stable poles’ alignments. The retaining frequency bands around the peaks were calibrated
according to the automatically defined bandwidth defined by the KDE algorithm itself [16]. At
the end of the first step of the proposed method, the IC was determined for all 100 exploratory
simulations.

Considering the unfeasible sets of parameters as well, the entire IC dataset was employed to
effectively train a predictive RF algorithm. Subsequently, in the second step of the proposed
method, the RF permitted intelligently driving quasi-Monte Carlo sampling of input parameters
attempting to avoid less informative sets and efficiently investing computational resources in the
most promising parameters’ sets. Thus after collecting 600 more actually informative SSI-cov

fi 0.88995 0.28463 —0.763521 1 0.918986  —0.5462
f2 2.59776 0.5462 -1 0.28463 —0.763521 0.918986
= [Hz] @ =[¢1 o ¢35 04 5] =

fa=f3; = (409511 0.763521  —0.5462 —0.918986 —0.28463 -1
1 5.2607 0.918986  0.28463 —0.5462  10.763521
s 6.0001 1 0.918986  0.763521  —0.5462 —0.28463

Figure 3. Theoretical natural frequencies and mode shapes of the benchmark problem.
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Figure 4. Benchmark results of step 1 of the proposed intelligent-AOMA.

results, the algorithm reached the convergence and exit from the quasi-Monte Carlo sampling
loop. In total 2105 quasi-random samples of SSI-cov input parameters were considered, however
only 600 were effectively computed with SSI-cov algorithms, demonstrating the efficiency of
the proposed ML-based methodology. Therefore, considering the 700 effective results from the
beginning, the overlapped stabilization diagram was post-processed with KDE to identify the
final modal properties, as shown in Figure 5. Specifically, it was possible to demonstrate the
great agreement with the natural frequencies of the five modes of interest with the expected
theoretical results of Figure 3. Moreover, the intelligent-AOMA results provided uncertainties
associated with the modal properties as shown in Table 1. In the Table, the symbol p indicates
the mean values of natural frequency f, and damping ratio &, for every mode, whereas o
indicates their respective standard deviation. Despite the uncertainties related to the natural
frequencies and damping ratios being very limited according to the Table, thus representing
almost deterministic results, it is worth noting that the final mode shapes confidence bands
around their respective average mode shape present a higher level of epistemic uncertainties,
especially in the mode corresponding to 5.253 Hz. Therefore, from these results, it is evident how
the various choice of parameters may provide quite uncertain results which propagate especially
in the final mode shape of interest, and thus an automatic approach likewise the present one
may avoid an arbitrary poor choice with deleterious effects.
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Figure 5. Benchmark results

5. Conclusions

of step 2 of the proposed intelligent-AOMA.

doi:10.1088/1742-6596/2647/21/212005

In the current study, the authors presented an innovative machine learning-based automatic
operational modal analysis framework conceived as a two main steps procedure attempting to
overcome the main limitations of the commonly widespread four steps automatic operational
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Table 1. Benchmark frequency and damping results.
Theoretical intelligent-AOMA
Fo 102 (%] | iz, (0] oy, (] p, (%] 0¢, [
0.8900  2.000 0.8906  0.00049 1.970 0.160
2.5978  2.000 2.6027  0.00064 1.990 0.213
4.0951  2.000 4.0897  0.00062 2.120 0.227
5.2607  2.000 5.2528  0.00062 2.131 0.237
6.0001  2.000 6.0040  0.00062 1.950 0.234

modal analyses framework in the existing literature. Inspired by [13, 14], the authors developed
the currently proposed method based on quasi-Monte Carlo sampling of four critical parameters
of the stochastic subspace identification algorithm. To validate the current method, the authors
provide some preliminary insights for a literature numerical benchmark problem [5]. The main
novelties of the current study may be summarized as follows:

e A first exploratory step of quasi-Monte Carlo stochastic subspace identification analyses is
preparatory to train a machine learning random forest algorithm to intelligently guide the
quasi-Monte Carlo parameters sampling in the second step;

e Stable poles’ clusters on stabilization diagrams are selected throughout a KDE method in
place of commonly widespread and more computationally expensive clustering techniques;

e The computational resources are smartly invested intelligently preferring those set of
parameters expected to provide informative results with less computational efforts, and
vice versa discarding the ones expected to provide useless results;

e The overall analysis of the overlapped stabilization diagram permitted investigation of the
uncertainty propagation of the input parameters on the modal properties.
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