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Graphs have a superior ability to represent relational data, like chemical compounds, proteins, and social
networks. Hence, graph-level learning, which takes a set of graphs as input, has been applied to many tasks
including comparison, regression, classification, and more. Traditional approaches to learning a set of graphs
heavily rely on hand-crafted features, such as substructures. But while these methods benefit from good
interpretability, they often suffer from computational bottlenecks as they cannot skirt the graph isomorphism
problem. Conversely, deep learning has helped graph-level learning adapt to the growing scale of graphs by
extracting features automatically and encoding graphs into low-dimensional representations. As a result, these
deep graph learning methods have been responsible for many successes. Yet, there is no comprehensive survey
that reviews graph-level learning starting with traditional learning and moving through to the deep learning
approaches. This article fills this gap and frames the representative algorithms into a systematic taxonomy
covering traditional learning, graph-level deep neural networks, graph-level graph neural networks, and graph
pooling. To ensure a thoroughly comprehensive survey, the evolutions, interactions, and communications
between methods from four different branches of development are also examined. This is followed by a brief
review of the benchmark data sets, evaluation metrics, and common downstream applications. The survey
concludes with a broad overview of 12 current and future directions in this booming field.
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1 INTRODUCTION
Research into graph-structured data started with the Konigsberg bridge problem [1] in the 18
century, that is: “How can we design a path among seven bridges in Konigsberg city that crosses each
bridge only once?” Through modeling seven bridges into a graph in which nodes represent the
junctions between bridges and edges represent bridges, the Konigsberg bridge problem is proved
unsolvable. Since then, graph-structured data has become an indispensable tool for exploring the
world. In reality, researchers can model millions of molecules in which each presents a graph to
analyze molecular properties [2]. Such case learning the underlying semantics among a set of
graphs is graph-level learning.

Mining the underlying rules among a set of graphs is tough hard as graphs are irregular with an
unfixed number of disordered nodes and varied structural layouts. A long-standing challenge in
graph-level learning, the graph isomorphism problem, is “How to determine whether two graphs
are completely equivalent or isomorphic1?” An enormous number of studies [3–5] focused on this
question and concerned it as a candidate for NP-immediate until a quasi-polynomial-time solution
was proposed in 2016 [6]. To tackle the struggle in this area, tremendous efforts have been made
involving traditional methods and deep learning.

Generally, traditional graph-level learning builds the architecture upon handcrafted features (e.g.,
random walk sequences [7], frequently occurring substructure [8]) and classical machine learning
techniques (e.g., support vector machine). This paradigm is human-interpretable but is usually
restricted to simple small graphs rather than reality large networks. This is because traditional
methods cannot bypass the graph isomorphism problem, the predefined features require to preserve
the isomorphism between graphs, i.e., mapping isomorphism graphs to the same features. On the
contrary, deep learning techniques break the shackles by training the network to automatically learn
non-linear and low-dimensional features. This makes deep neural networks bring new benchmarks
for state-of-the-art performance and support the ever-increasing size of graph data. The fly in the
ointment is the black-box nature of deep learning, which leads to compromised trustworthiness.
An emerging trend is to develop reliable graph-level learning techniques that own the advantages
of neural networks and traditional methods.
Benefiting from these techniques, graph-level learning has applications and promise in many

fields. Wang et al. [9] took graphs of molecules, where the nodes denote atoms and the edges
represent chemical bonds, and performed graph regression as a way of predicting molecular
proprieties to help discover more economical crystals. In another study, a graph generation task
based on a series of protein graphs was used to produce graphs of proteins with specific functions
to support drug discovery [10]. Likewise, graph classification with brain graphs has the potential
to distinguish brain structures with neurological disorders from those of healthy individuals [11].
The success of applications qualifies the huge potential of graph-level learning, which raises a

practical demand to comprehensively survey this field spanning both traditional and deep learning
within the vast amount of literature. There are surveys on learning graph-structured data. However,
these reviews suffer from two main disadvantages. First, most existing surveys concentrate on
articles that explore the node/edge/substructures in a single graph, such as network embedding
[12], community detection [13, 14], anomaly detection [15], and graph neural networks [16, 17].
Graph-level learning is treated as a by-product taking up a subsection or less. The differences
between graph learning on a single graph and graph-level learning are illustrated in Fig. 1. Second,
graph-level learning is only investigated from a single perspective, such as graph kernels [18]
or graph pooling [19]. As such, the surveys have not covered a broad width and overlook the

1Two graphs G1 and G2 are isomorphic if the following two conditions are met: (1) There exists matching between nodes in
G1 and G2; (2) Two nodes are linked by an edge in G1 iff the corresponding nodes are linked by an edge in G2.
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(A) Graph Learning On a Single Graph. (B) Graph-level Learning On a Set of Graphs.

Fig. 1. Toy examples of graph learning on a single graph and graph datasets.

interactions between different graph-level learning techniques, e.g., adopting traditional techniques
to empower GL-GNNs (see sections 6.2 and 6.3).
To the best of our knowledge, this is the first comprehensive survey of graph-level learning

that spans both traditional methods and deep learning-based techniques (i.e. GL-DNNs, GL-GNNs,
and graph pooling). This article exhaustively depicts the mainstream techniques in different pe-
riods of graph-level learning (see Fig. 2), and further discusses the evolutions, interactions, and
communications between them. Thus, the contributions of this survey include:

• A comprehensive taxonomy: We propose a comprehensive taxonomy for graph-level
learning techniques. Specifically, our taxonomy covers graph-level learning through both
traditional and deep learning methods.

• An in-depth review: Over four categories, we summarize the representative algorithms,
make comparisons, and discuss the contributions and limitations of existing methods.

• Abundant resources: This survey provides readers with abundant resources of graph-
level learning, including information on the state-of-the-art algorithms, the benchmark
datasets for different domains, fair evaluation metrics for different graph-level learning
tasks, and practical downstream applications. The repository of this article is available at
https://github.com/ZhenyuYangMQ/Awesome-Graph-Level-Learning.

• Future directions:We identify 12 important future directions in the graph-level learning
area.

2 DEFINITIONS
This section, provides some definitions that are essential to understanding this paper. Bold lowercase
characters (e.g., x) are used to denote vectors. Bold uppercase characters (e.g., X) are used to denote
matrices. Plain uppercase characters (e.g., V) are used to denote mathematical sets, and lowercase
-italic characters (e.g., 𝑛) are used to denote constants.

Definition 2.1. (Graph): A graph can be denoted as G = (V, E), where the node setV having
𝑛 nodes (also known as vertices) and the edge set E having 𝑚 edges. In an undirected graph,
E𝑢,𝑣 = {𝑢, 𝑣} ∈ E represents that there is an edge connecting nodes 𝑢 and 𝑣 , where 𝑢 ∈ V and
𝑣 ∈ V . If G is unweighted, we use an adjacency matrix A ∈ {0, 1}𝑛×𝑛 to describe its topological
structure, where A𝑢,𝑣 = 1 if E𝑢,𝑣 ∈ E, otherwise, 0. If G is weighted, the value of A𝑢,𝑣 refers to the
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Fig. 2. The timeline of graph-level learning in terms of four mainstream techniques.

weight value of E𝑢,𝑣 . X ∈ R𝑛×𝑓 is the node attribute matrix and a node 𝑢 ∈ V can be described
by an attribute vector x𝑢 ∈ R𝑓 . Similarly, the edge feature matrix is denoted as S ∈ R𝑚×𝑑 , where
s𝑢,𝑣 ∈ R𝑑 describes the edge E𝑢,𝑣 ∈ E. Unless otherwise specified, the graphs in this paper are
undirected attributed graphs.

Definition 2.2. (Graph Dataset): A graph dataset G is composed of 𝑁 graphs, where G =

{G1, ...,G𝑁 }.

Definition 2.3. (Subgraph/Substructure): A graph 𝑔𝑚 = (V𝑔𝑚 , E𝑔𝑚 ) can be regarded as the
subgraph/substructure of G = (V, E) iff there exist an injective function 𝜙 : V𝑔𝑚 → V s.t.
{𝑢, 𝑣} ∈ E𝑔𝑚 and {𝜙 (𝑢), 𝜙 (𝑣)} ∈ E.

Definition 2.4. (Graph-level Learning): Graph-level learning takes a graph datasetG = {G1, ...,G𝑁 }
consisting of 𝑁 graphs as inputs and returns a function 𝑓 (·) which maps a graph G𝑖 to some output

, Vol. 1, No. 1, Article . Publication date: May 2023.



State of the Art and Potentialities of Graph-level Learning 5

𝑓 (G𝑖 ). For instance, in the graph classification task, for any graph G′
𝑖 isomorphic to G𝑖 , we have

𝑓 (G𝑖 ) = 𝑓 (G′
𝑖 ). In other words, 𝑓 (·) is permutation-invariant2.

3 TAXONOMY OF GRAPH-LEVEL LEARNING TECHNIQUES
This section provides a taxonomy of graph-level learning techniques. Its categories include tradi-
tional learning, graph-level deep neural networks (GL-DNNs), graph-level graph neural networks
(GL-GNNs), and graph pooling. Each category is briefly introduced next. The taxonomy tree de-
scribing these four branches of graph-level learning with selected algorithms can be found in Fig. 8
in Appendix A.
Traditional Learning. As the historically dominant technique, traditional learning tries to solve
the fundamental problem that is lacking feature representations of graphs, by manually defined
features. Given well-designed features (e.g., random walk sequences [7], frequently occurring
substructure [8]), off-the-shelf machine learning models were used to tackle graph classification
tasks, in a non-end-to-end fashion. The form of traditional learning is less applicable to reality
complex networks due to the computational bottlenecks, yet, it still provides great valuable insights,
such as better interpretability and better ability to model irregular structures [20].
Graph-Level Deep Neural Networks (GL-DNNs). Towards the deep learning era, neural net-
works achieved wide success in representing Euclidean data (e.g., images and texts). Thus, re-
searchers try to apply deep neural networks to graph data, the tentative explorations include
Skip-gram, RNNs, CNNs, and CapsNet. These four types of deep neural networks were not initially
designed to learn non-Euclidean data like graphs. Hence, one of the important issues with GL-DNNs
is how to enable these deep neural networks to learn graph-structured data that varies in size and
has irregular neighborhood structures.
Graph-Level Graph Neural Networks (GL-GNNs). GL-GNNs use graph convolution operations
specifically proposed for graphs as the backbone for performing graph-level learning [16]. Most GL-
GNNs use the graph convolutions MPNNs frameworks because they are simple, easy to understand,
and have linear complexity [21]. GL-GNNs condense the most fruitful achievements of graph-level
learning. In addition, some practitioners integrate the advantages of MPNN-based GL-GNNs with
other techniques, particularly traditional learning techniques, to improve graph-level learning.
Graph Pooling. GL-DNNs and GL-GNNs always encode graph information into node represen-
tations that cannot be directly applied to graph-level tasks, graph pooling fills this gap. Graph
pooling is a kind of graph downsizing technology where compact representations of a graph are
produced by compressing a series of nodes into a super node [17, 19]. It is worthy to be recorded
as a significant graph-level technique, as it is unique for graph-level learning without appearing
in node-level and edge-level tasks. In addition, graph pooling has great power to preserve more
information (e.g., hierarchical structure) for graph-level tasks, resulting in an abundant literature
of related methods.

4 TRADITIONAL LEARNING
Traditional graph-level learning algorithms work in a deterministic way, encoding graphs using
handcrafted features. Traditional graph-level learning methods can be divided into three main
types: i.e., those based on graph kernels (GKs, Section 4.1), subgraph mining (Section 4.2), and
graph embedding (Section 4.3). We summarize all discussed traditional graph-level learning models
in Table 2 in Appendix B.

2The prediction results of a graph-level learning algorithm are invariant to any permutations of the order of nodes and/or
edges of each input graph.
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Fig. 3. Different mechanisms of four graph kernels in decomposing and comparing pairwise graphs.

4.1 Graph Kernels (GKs)
GKs perform graph-level learning based on kernel values (i.e., pair-wise graph similarities) [].
Given a graph dataset G, GKs decompose each graph G into a bag-of-graphs 𝑆G = {𝑔1, ..., 𝑔𝐼 },
where 𝑔𝑖 ⊆ G and 𝑔𝑖 can be a node or a subgraph. Most GKs are based on the paradigm of an
𝑅-Convolution kernel [22] that obtains the kernel value 𝐾𝑅−𝑐𝑜𝑛𝑣 (G,G′) of two graphs G and G′

by:

𝐾𝑅−𝑐𝑜𝑛𝑣 (G,G′) =
𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝐾𝑝𝑎𝑟𝑡𝑠

(
𝑔𝑖 , 𝑔

′
𝑗

)
, (1)

where 𝐾𝑝𝑎𝑟𝑡𝑠
(
𝑔𝑖 , 𝑔

′
𝑗

)
is the kernel function that defines how to measure the similarity between 𝑔𝑖

and 𝑔′𝑗 . A kernel matrix that packages all kernel values is then fed into an off-the-shelf machine
learning model, such as a support vector machine (SVM), to classify the graphs.

4.1.1 Message Passing Kernels (MPKs). MPKs performmessage passing on neighborhood structures
to obtain graph representations. The 1-dimensional Weisfeiler-Lehman (1-WL) algorithm3 [4, 23]
is one of the most representative MPKs. 1-WL updates a node’s label (or color) iteratively. An
illustration of 1-th iteration is shown in Fig. 3 (D). At the ℎ-th iteration, 1-WL aggregates node
𝑣 ’s label 𝑙 (ℎ−1) (𝑣) and its neighbor’s labels 𝑙 (ℎ−1) (𝑢), 𝑢 ∈ N (𝑣) to form a multi-set4 of labels
{𝑙 (ℎ−1) (𝑣), 𝑠𝑜𝑟𝑡 (𝑙 (ℎ−1) (𝑢) : 𝑢 ∈ N (𝑣))}. Subsequently, 1-WL employs an injective hash function
𝜙 (·) to map the {𝑙 (ℎ−1) (𝑣), 𝑠𝑜𝑟𝑡 (𝑙 (ℎ−1) (𝑢) : 𝑢 ∈ N (𝑣))} into a new label 𝑙 (ℎ) (𝑣). Formally:

𝑙 (ℎ) (𝑣) = 𝜙
(
𝑙 (ℎ−1) (𝑣), 𝑠𝑜𝑟𝑡 (𝑙 (ℎ−1) (𝑢) : 𝑢 ∈ N (𝑣))

)
. (2)

When 𝜙 (·) no longer changes the labels of any nodes, 1-WL stops iterating and generates a vector
𝜙𝑤𝑙 (G) that describes G. That is,

𝜙𝑤𝑙 (G) = [𝑐 (0) (𝑙 (0)1 ), .., 𝑐 (0) (𝑙 (0)
𝐼0

); ...; 𝑐 (𝐻 ) (𝑙 (𝐻 )
1 ), ..., 𝑐 (𝐻 ) (𝑙 (𝐻 )

𝐼𝐻
)], (3)

where 𝑙 (ℎ)
𝑖

is the 𝑖-th label generated at the ℎ-th iteration, and 𝑐 (ℎ) (𝑙 (ℎ)
𝑖

) counts the occurrences of
nodes labeled with 𝑙 (ℎ)

𝑖
in the ℎ-th iteration. The kernel value of 1-WL between G and G′ is the

31-WL is also a well-known algorithm for graph isomorphism test.
4In a multiset, multiple elements are allowed to be the same instance.
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inner product of 𝜙𝑤𝑙 (G) and 𝜙𝑤𝑙 (G′):

𝐾𝑊𝐿 (G,G′) =< 𝜙𝑤𝑙 (G) , 𝜙𝑤𝑙 (G′) > . (4)

The followed upgrading of 1-WL mainly focuses on aggregation and relabeling steps. Hido and
Kashima [24] replaced the hash function with a binary arithmetic giving rise to a faster 𝜙 (·). Morris
et al. [25] used the idea of 𝑘-WL to relabel node groups consisting of 𝑘 nodes that could form a
connected graph. Theoretically, 𝑘-WL is more powerful than 1-WL for distinguishing between graph
structures. Further, Neumann et al. [26] proposed a random label aggregation process based on node
label distributions that only considers labels of part of neighbors. Random label aggregation saves
time and computational resources making work on large-scale graphs more efficient. Persistent
Weisfeiler–Lehman (P-WL) [27] is the recent enhancement to MPKs that adds weighted edges into
the aggregation process. To calculate the edge weight, P-WL measures the distance between the
continuous iterative updated labels of two end nodes. Additionally, P-WL can track changes in
substructures that cannot be identified by 1-WL, such as cycles.

4.1.2 Shortest-path Kernels (SPKs). SPKs denote the kernel value as a comparison between pair-
wise node sequences (see Fig. 3 B). For example, the shortest-path kernel [28] determines the
shortest path between the vertices 𝑣 and 𝑢 via the Floyd-Warshall [29] or Dijkstra’s [30] algorithms.
The distance between the pairwise shortest paths from G and G′ is defined as the kernel value
between them. Formally,

𝐾𝑆𝑃 (G,G′) =
∑︁
𝑣,𝑢∈𝑉
𝑣≠𝑢

∑︁
𝑣′,𝑢′∈𝑉 ′

𝑣′≠𝑢′

𝐾𝑃𝑎𝑟𝑡𝑠 ((𝑣,𝑢) , (𝑣 ′, 𝑢′)) :=
{
𝐾𝐷 (𝑃 (𝑣,𝑢) , 𝑃 (𝑣 ′, 𝑢′)) if 𝑙 (𝑣) ≡ 𝑙 (𝑣 ′) ∧ 𝑙 (𝑢) ≡ 𝑙 (𝑢′) ,
0 otherwise,

(5)
where 𝑙 (𝑣) is the label of node 𝑣 , 𝑃 (𝑣,𝑢) is the length of shortest path between vertices 𝑣 and 𝑢,

and 𝐾𝐷 (·, ·) is a kernel comparing the shortest path lengths. Nikolentzos [31] proposed a variant of
SPKs that draws on more information in a shortest path, such as node and edge labels, to calculate
the distance of any two paths.

4.1.3 Random Walk Kernels (RWKs). RWKs are another kernel method guided by node sequences.
Gärtner et al. [7] was the first to propose a random walk kernel. This technique counts the same
random walk sequences that pair-wise graphs both own. Performing random walks on G = (V, E)
and G′ = (V′, E′) simultaneously is the same as conducting random walks on a direct product
graph G× = (V×, E×), where

V× = {(𝑣, 𝑣 ′) : 𝑣 ∈ V ∧ 𝑣 ′ ∈ V′ ∧ 𝑙 (𝑣) ≡ 𝑙 (𝑣 ′)}, E× = {{(𝑣, 𝑣 ′) , (𝑢,𝑢′) ∈ V×} : E𝑣,𝑢 ∈ E ∧ E′
𝑣′,𝑢′ ∈ E′}.
(6)

Given G× , the kernel function is defined as:

𝐾𝑅𝑊 (G,G′) =
|V× |∑︁
𝑖=1

|V× |∑︁
𝑗=1

[
𝑃∑︁
𝑝=0

𝜆𝑝A𝑝
×

]
𝑖 𝑗

, (7)

where A× is the adjacency matrix of G× , 𝑃 is the predefined max length of random walking
sequences, and 𝜆𝑝 are the weights given to different 𝑃 . 𝐾𝑅𝑊 (G,G′) counts the occurrences of
common walk paths in G and G′ with lengths equal to or less than 𝑃 .

The random walk kernel in Eq. (7) assumes a uniform distribution for the beginning and ending
probabilities of the walks across two graphs. However, Vishwanathan et al. [32] proposed a gener-
alized version of RWKs. Specifically, they defined p and q as the beginning and ending probability
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vectors in G, respectively. In addition, they used the Kronecker product operation ⊗ to derive A× ,
that is A× = A ⊗ A′. Formally, the kernel value is:

𝐾𝑅𝑊 (G,G′) =
∞∑︁
𝑙=0

𝜇𝑙 (q ⊗ q′)⊤ (A×)𝑙 (p ⊗ p′), (8)

where 𝜇𝑙 is the convergence coefficient.
RWKs suffer from a problem called tottering, where a random walk sequence traverses 𝑣 to 𝑢

and immediately returns to 𝑣 via the same edge. To address tottering, Mahé et al. [33] employed a
second-order Markov random walk that considers the last two steps in the current random walk
sequence when deciding the next step.

4.1.4 Optimal Assignment Kernels (OAKs). Fröhlich et al. [34] was the first to propose OAKs. OAKs
consider nodes as a basic unit for measuring kernel values. Of all the GKs introduced in this paper,
OAKs are the only family of GKs that do not belong to 𝑅-Convolution paradigm. Specifically, given
a fixed 𝑖 in Eq. (1), OAKs only add in the maximum similarity value between 𝑔𝑖 and 𝑔′𝑗 where
𝑗 ∈ {1, ..., 𝐽 }. Formally, OAKs are defined as:

𝐾𝑂𝐴 (G,G′) =


max
𝜋∈∏𝐽

∑𝐼
𝑖=1 𝐾𝑝𝑎𝑟𝑡𝑠

(
𝑔𝑖 , 𝑔

′
𝜋 [𝑖 ]

)
, if 𝐽 ≥ 𝐼

max
𝜋∈∏𝐼

∑𝐽

𝑗=1 𝐾𝑝𝑎𝑟𝑡𝑠

(
𝑔𝜋 [ 𝑗 ], 𝑔

′
𝑗

)
, otherwise

(9)

where
∏
𝐼 represents all permutations of the indexes of a bag-of-graphs {1, ..., 𝐼 }, and 𝜋 is the

optimal node permutation to reach maximum similarity value between two graphs.
Searching for a pair-wise element with the maximum similarity tends to be a highly time-

consuming process. Hence, to reduce the time requirement of this task, Johansson et al. [35] mapped
the graphs in geometric space and then calculated the Euclidean distance between pair-wise nodes.
This method enables OAKs to use approximate nearest neighbors algorithms in Euclidean space as
a way to speed up the process. Transitive Assignment Kernels (TAKs) [36, 37] are variants of OAKs.
Unlike OAKs that search for the optimal assignment among pair-wise graphs, TAKs identify node
permutations that with the most similar node pairs among three or more graphs. OAKs have been
confined to node similarity measurement, although they can be extended to measure subgraph
similarities so as to capture a graph’s topological information [38]. As discussed next, we introduce
the GKs with subgraph information.

4.1.5 Subgraph Kernels (SGKs). SGKs calculate the similarity between two graphs by comparing
their subgraphs. For example, the representative SGK —Graphlet Kernel [39] uses either depth-first
search (DFS) or sampling to identify the subgraphs. With these subgraphs, the vector 𝜙𝑆𝐺 (G) =
[𝑐 (G)

T1 , ..., 𝑐
(G)
T𝑁 ] is then used to describe the graph G, where T𝑖 means the 𝑖-th isomorphism type of

subgraphs, 𝑁 is the total number of subgraphs’ types, and 𝑐 (G)
T𝑖 counts the occurrences of the T𝑖

category subgraphs in graph G. Graphlet’s kernel value is then defined as the inner product of
𝜙𝑆𝐺 (G) and 𝜙𝑆𝐺 (G′):

𝐾𝑆𝐺 (G,G′) =< 𝜙𝑆𝐺 (G) , 𝜙𝑆𝐺 (G′) > . (10)
There are several different implementations of SGKs kernel functions. For instance, Wale et al.

[40] employed a min-max kernel
∑𝑁

𝑖=1𝑚𝑖𝑛 (𝑐
(G)
T𝑖
,𝑐
(G′ )
T𝑖

)∑𝑁
𝑖=1𝑚𝑎𝑥 (𝑐

(G)
T𝑖
,𝑐

(G′ )
T𝑖

)
to measure the distance between two graphs.

SubgraphMatching Kernels (SMKs) [41] calculate the similarity between two subgraphs by counting
the number of nodes with the same labels. Then the similarities between all pairwise subgraphs
sourced from the two graphs are summed as the kernel value of the SMKs. Methods of identifying the
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subgraphs in SGKs have also been explored. For example, Neighborhood Subgraph Pairwise Distance
Kernels (NSPDK) [42] denotes the subgraphs as the first-, second-, and third-hop neighborhoods of
pairwise vertices with the shortest path of a predefined length. However, the main contributions of
SGKs lie in assessing the similarity of graphs in terms of a set of selected subgraphs, not how the
subgraphs are chosen. More detailed and sophisticated subgraph mining methods are demonstrated
next.

4.2 Subgraph Mining

...

Graph Dataset

𝒢1

𝒢2

𝒢3

Most Frequent 

Subgraphs

...

𝑔1

𝑔2

𝑔3

𝑔4

𝑔5

X1=(1,1,1,1,0,…) 

X𝑖 : Feature Vector for graph 𝒢𝑖

If 𝑔1 exists in graph 𝒢1, then 𝑥1
1 = 1

X2=(1,1,1,1,0,…) 

X3=(1,1,0,1,1,…) 

Classifier (e.g., SVM)

Frequent Subgraph Mining

(Unsupervised)

(A) Frequent Subgraph Mining (FSM).

...

Graph Dataset

𝒢1

𝒢2

𝒢3

Score Subgraphs

...

X1=(1,1,1,0)

X𝑖 : Feature Vector for graph 𝒢𝑖

If 𝑔1 exists in graph 𝒢1, then 𝑥1
1 = 1

X2=(1,1,1,0) 

X3=(1,0,1,1) 

Classifier (e.g., SVM)

Discriminative Subgraph Mining

(Supervised or Semi-supervised)
60.0

70.0

80.0

90.0

70.0

Discriminative subgraphs

𝑔1 𝑔2 𝑔3 𝑔4

Label of 𝒢1

(B) Discriminative Subgraph Mining (DSM).

Fig. 4. Different subgraph extraction methods of FSM and DSM.

Subgraph mining is similar to SGKs, where the vector x𝑖 = [𝑥1𝑖 , ..., 𝑥𝑀𝑖 ]⊤ is taken as a graph-level
representation of the graph G𝑖 . Here, 𝑥𝑚𝑖 ∈ {0, 1}, 𝑥𝑚𝑖 = 1 if 𝑔𝑚 ⊆ G𝑖 , otherwise, 𝑥𝑚𝑖 = 0. The
established graph-level representation is then directly input into an off-the-shelf machine learning
model, such as SVM classifier, for downstream tasks. What is different about subgraph mining
algorithms is that they place particular emphasis on how to extract the optimal subgraph set
S∗ = {𝑔1, ...𝑔𝑇 } from the subgraph set {𝑔1, ...𝑔𝑀 }, where 𝑔1, ..., 𝑔𝑀 denote all possible subgraphs of
G = {G1, ...,G𝑁 }. Techniques for extracting subgraphs can be divided into two branches depending
on how the supervision information is used. Frequent subgraph mining is the unsupervised method,
as illustrated in Fig. 4 A, while discriminative subgraph mining is the supervised or semi-supervised
method (see Fig. 4 B).

4.2.1 Frequent Subgraph Mining (FSM). FSM identifies the subgraphs whose frequency of oc-
curence in G sits over a predefined threshold 𝛿 . These subgraphs are then added to S∗. Apriori-like
algorithms, such as AGM [8] and FSG [43], enumerate subgraphs from size one to a predefined
largest size as candidates for S∗. In the enumeration, these apriori-like algorithms pick up the
candidates that occur more frequently than 𝛿 and add them to S∗. Others subgraphs are dropped
and expansions based on those subgraphs are no longer considered. Testing for subgraph isomor-
phism with vast numbers of candidate subgraphs can mean apriori-like algorithms suffer from
computation bottlenecks. To address this issue, gSpan [44] employs a depth-first-search (DFS)
strategy to search subgraphs, while assigning a unique DFS code of minimum length for each
subgraph searched. gSpan can then do a quick check for isomorphism by simply comparing the
DFS codes of pairwise subgraphs.
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10 Zhenyu Yang et al.

4.2.2 Discriminative Subgraph Mining (DSM). DSM extracts discriminative subgraphs from a set of
all possible subgraphs of G based on the label information. Given a binary graph classification task,
Thoma et al. [45] defined an evaluation criterion called CORK which describes the discriminative
score of a subgraph set S, S ⊆ {𝑔1, ..., 𝑔𝑀 }. Formally,

𝐶𝑂𝑅𝐾 (S) = −1 × 𝑛𝑢𝑚(G𝑖 ,G𝑗 ), 𝑠 .𝑡 . G𝑖 ⊂ G+ ∧ G𝑗 ⊂ G− ∧ ∀𝑔𝑚 ∈ S : 𝑥𝑚𝑖 = 𝑥𝑚𝑗 , (11)

where 𝑛𝑢𝑚(·) counts the number of pairs of graphs (G𝑖 ,G𝑗 ) satisfying the specific conditions. G+
is the set of graphs with positive labels, while G− is the set of graphs with negative labels. The
optimal subgraph set S∗ has the highest CORK score among all possible subgraph sets S containing
𝑇 subgraphs, denoted as:

S∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
S⊆{𝑔1,...,𝑔𝑀 }

𝐶𝑂𝑅𝐾 (S) 𝑠 .𝑡 . |S| ≤ 𝑇 . (12)

The CORK score can also be used to prune the subgraph search space of gSpan, mentioned
in Section 4.2.1. More specifically, if replacing any existing element of S∗ with a subgraph 𝑔𝑚
does not S∗’s CORK score, gSpan will no longer perform DFS along 𝑔𝑚 . To speed up DSM based
on discriminative scores and gSpan, Yan et al. [46] proposed LEAP, which initializes an optimal
subgraph set S∗ with frequent subgraphs. In this way, LEAP prunes gSpan’s search space right at
the beginning. In addition, Kong et al. [47] and Wu et al. [48] expanded DSM to the multi-label5
and multi-view6 scenarios, respectively. Note, however, that all the DSM methods discussed are
supervised methods. In terms of semi-supervised subgraph mining, Kong and Yu [49] proposed
gSSC which maps each graph into a new feature space by S∗. Unlabeled graphs are separated
from each other in the new feature space. In the labeled group, graphs with the same label are
close, whereas graphs with different labels remain distant. In addition, Zhao et al. [50] only used
the positively labeled graphs and unlabeled graphs to select S∗ when performing binary graph
classification tasks. This is because sometimes the real-world data is composed of an incomplete
set of positive instances and unlabeled graphs.

4.3 Non-learnable Graph Embedding
Graph embeddings are the compression of graphs into a set of lower-dimensional vectors. Some
non-learnable graph embedding methods extract graph-level representations from the inherent
properties of graphs, e.g., their topologies and eigenspectrums.
Local Degree Profile (LDP) [51] summarizes the degree information of each node and its 1-

hop neighbors as node features. LDP constructs graph representations by building an empirical
distribution or histogram of the hand-crafted node features. In addition to node degree, non-
learnable graph embedding can also leverage anonymous random walk sequences to describe a
graph’s topological information. Specifically, anonymous random walks record the status change
of node labels. Two anonymous random walk sequences 𝐴 → 𝐵 → 𝐴 and 𝐵 → 𝐴 → 𝐵 can be
both written as 1 → 2 → 1. Anonymous Walk Embeddings (AWE) [52] encodes a graph via an
𝑛-dimensional vector in which each element represents the occurrence frequency of a specific
anonymous random walk sequence.
In spectral graph theory [53], the spectrum of a graph is determined by its topology. Based on

this theory, the Family of Graph Spectral Distances (FGSD) method [54] proposes that the distance
between the spectrums of two graphs can be used to test whether the graphs are isomorphic.
5Each graph owns more than one label, such as a drug molecular can own different labels to represent anti-cancer effects
for various cancers, e.g., breast cancer (+) and lung cancer (-).
6An object has different views, where each view can represent a separate graph, e.g., a scientific publication network is
shown as two graphs, an abstract graph demonstrating the keywords correlations in the abstract of papers, and a reference
citation graph about citation relationships.
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Thus, the histogram of the spectrum is used to construct a graph-level representation. Analogously,
A-DOGE [55] depicts a graph by computing the spectral density across its eigenspectrum. However,
these methods are limited to use with small graphs given the prohibitive costs of computing
eigenspectrum decompositions with large-scale graphs. As a possible solution to this limitation,
SlaQ [56] uses stochastic approximations as a way of quickly calculating the distance between two
graphs’ spectral densities. More specifically, these authors employed von Neumann graph entropy
(VNGE) [57, 58] as a way of approximately representing the spectral properties of the graphs. In
turn, this approximation supports fast computation by tracing a Laplacian matrix of the graph.
Liu et al. [59] proposed another fast approximation method involving VNGE, which is based on
deriving the error bound of the approximation estimation.

5 GRAPH-LEVEL DEEP NEURAL NETWORKS (GL-DNNS)
GL-DNNs form the basis of a pioneering set of works that employ deep learning techniques to
achieve graph-level learning. Researchers have explored graph-level learning techniques based
on classic deep neural networks including skip-gram neural network, recurrent neural networks
(RNNs), convolution neural networks (CNNs), and capsule neural networks (CapsNets) to achieve
Skip-gram-based (see Section 5.1), RNN-based (see Section 5.2), CNN-based (see Section 5.3), and
CapsNets-based (see Section 5.4) GL-DNNs, respectively. The representative GL-DNNs mentioned
in this section are summarized in Table 3 in Appendix C.

5.1 Skip-gram-Based GL-DNNs
Skip-gram [60] is a widely used unsupervised neural networks, to predict the context words for the
target word. Initially, the researchers built a skip-gram model based on the relationship between
two adjacent subgraphs, namely subgraph2vec [61]. Subgraph2vec first takes the (𝑑-1)-, 𝑑-, (𝑑+1)-
hop neighborhoods of the 𝑣th selected node in the graph G𝑖 as three subgraphs 𝑔𝑖𝑣−1, 𝑔

𝑖
𝑣 , 𝑔𝑖𝑣+1,

respectively, where 𝑑 ≥ 1 is a predefined value. {w1
1−1, ...,w

1
𝑉+1; ...;w

𝑁
1−1, ...,w

𝑁
𝑉+1} are the randomly

initialized embeddings of all sampled subgraphs {𝑔11−1, ..., 𝑔1𝑉+1; ...;𝑔
𝑁
1−1, ..., 𝑔

𝑁
𝑉+1} respectively, where

𝑁 represents the total number of graphs, and 𝑉 is the number of selected nodes in each graph.
Then, the Skip-gram model is used to update the subgraph embeddings. The Skip-gram model takes
w𝑖
𝑣 as its input, and predicts the context of w𝑖

𝑣 (i.e., w𝑖
𝑣−1 and w𝑖

𝑣+1). Then the prediction results are
back-propagated to update w𝑖

𝑣 . To summarize, subgraph2vec’s learning objective is to maximize
the following log-likelihood:

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

log Pr
(
w𝑖
𝑣−1, . . . ,w

𝑖
𝑣+1 | w𝑖

𝑣

)
. (13)

Another method, Graph2vec [62] was designed to tackle graph representation tasks. By estab-
lishing a semantic association between a graph and its sampled subgraphs, Graph2Vec employs the
idea of Skip-gram to learn a graph embedding. Following this work, Dang et al. [63] replaced the
sampled subgraphs in Graph2vec with frequent subgraphs that have more discriminative features
for graph classification tasks.

5.2 RNN-Based GL-DNNs
RNNs are particularly good at learning sequential data, such as text and speech. There are two
main types of algorithms that apply RNNs to graph-level learning. One type transforms graphs
into sequential-structured data. The other aggregates neighborhood information about the target
node and relabels those aggregated features through an RNN. This is similar to Message Passing
Kernels (MPKs, Section 4.1.1).
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A natural way to capture the sequential information in graphs is to use a series of random walk
paths to represent a graph. For example, GAM [64] employs a long short-term memory (LSTM)
model to guide a random walk on graphs. Meanwhile, the LSTM model generates a representation
for the walk sequence to describe the graph. In addition, Zhao et al. [65] proposed an RNN-based
graph classification algorithm called SAN. Starting from a node, SAN employs an RNN model that
adds nodes and edges to form an informative substructure whose representation is progressively
generated by the RNN model. A graph-level representation that can be used for graph classification
tasks is then generated by summing all the representations of the formed substructures. Given
a graph generation task, NetGAN [66] uses an LSTM model as a generator to yield fake walk
sequences, while a discriminator disambiguates the graph’s real walk sequences from the generated
fake ones to reverse-train the generator. Another graph generation model Graphrnn [67] creates
various permutations of graphs, with various combinations of nodes and edges as sequential data
to be input into an RNN model.
The second category of RNN-based GL-DNNs implements neural networks version of MPKs

through RNN models. As such, the algorithms in this category can be viewed as the predecessors of
MPNNs. Scarselli et al. [68] recurrently updated node embeddings until reaching a stable situation,
that is:

h(𝑘 )
𝑣 =

∑︁
𝑢∈N(𝑣)

𝑓𝑤

(
x𝑣, s𝑢,𝑣, x𝑢, h

(𝑘−1)
𝑢

)
, (14)

where ℎ0𝑢 is randomly initialized and 𝑓𝑤 (·) is a parametric function that maps vectors into a
concentrated space to shorten their distance. To address the graph-level task, a super node connected
with all the other nodes is used to output the representation of the whole graph. In addition, Li et al.
[69] proposed the idea of using a gated recurrent unit (GRU) to relabel the aggregated information
from the 1-hop neighborhoods of the center node. This approach reduces the recurrent process for
updating node embeddings to a fixed number of steps and avoids control convergence parameters,
formulated as:

h(𝑘 )
𝑣 = GRU

(
h(𝑘−1)
𝑣 ,AGG(𝑘 )

(
h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

))
, (15)

where h(𝑘 )
𝑣 represents the node representation of 𝑣 at the 𝑘-th iteration, h(0)

𝑣 is the node feature
x𝑣 , and here AGG is a weighted sum aggregation function. This algorithm continues the recurrent
process until it hits the predefined 𝐾 number of iterations needed to form the node representations.
A graph-level representation is then produced via:

hG = tanh

(∑︁
𝑣∈V

𝑓𝑡

(
h(𝐾 )
𝑣 , h(0)

𝑣

)
⊙ tanh

(
h(𝐾 )
𝑣

))
, (16)

where 𝑓𝑡 (·) is a softmax function guided by an attention mechanism, that preserves and aggregates
valuable node representations for specific graph-level tasks. tanh (·) is an activation function, and
⊙ is element-wise multiplication.

5.3 CNN-Based GL-DNNs
Another significant deep learning technique that works in the Euclidean domain is CNN. Here,
grid-structured data, such as images, are studied. Similar to RNN-based GL-DNNs, there are two
main branches of CNN-based graph-level learning. In Appendix C.1, Fig. 9 depicts the details of
these two different branches.
The first branch sorts nodes and arranges the node features to form a concentration matrix, of

grid-structured data, to train the CNNs. PATCHY-SAN [70] selects a fixed number of neighbors of a
central node and sorts neighbors to concatenate their features as the grid-structured feature matrix.
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By choosing a series of central nodes, PATCHY-SAN constructs some matched feature matrices.
Finally, a graph-level representation is produced by the CNN model from the concatenation matrix
of all built feature matrices. In addition, Kernel Convolutional Neural Network (KCNN) [71] sorts all
vertices in a graph to form grid-structured data. A neighborhood graph is built for each vertex and a
kernel matrix is constructed by implementing the kernel function (i.e., an SPK or an MPK) between
all pairwise neighborhood graphs. In this work, the grid-structured data for feeding up CNN is the
kernel matrix, where each row is a vector describing the similarities between the neighborhood
graph of the matched index vertex and the other neighborhood graphs.
The second branch involves CNN-guided neural network versions of MPKs. These methods

have two main steps: aggregating neighborhood information to the central node, and using the
convolution operation to relabel the aggregated features. NN4G [72] performs a convolution kernel
upon 1-hop neighbors for updating the center node and outputs the graph-level representations
based on the node embeddings produced by each convolution layer, which is defined as:

h(𝑘 )
𝑣 = 𝑓

©­«w(𝑘−1)⊤x𝑣 +
𝑘−1∑︁
𝑖=1

w⊤
𝑘,𝑖

∑︁
𝑢∈N(𝑣)

h(𝑖 )
𝑢

ª®¬ , hG = 𝑓

(
𝐾∑︁
𝑘=1

w𝑘

1
|V|

∑︁
𝑣∈V

h(𝑘 )
𝑣

)
, (17)

where 𝑓 (·) is a linear or sigmoidal function and ℎ (0)𝑣 = 0. Another related work, ECC [73] concate-
nates 1-hop neighbor embeddings

(
h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

)
around the central node 𝑣 to construct a

feature matrix by the 𝑘-th iteration. Subsequently, a convolution and average operation is executed
on the aggregated neighbor feature matrix to obtain a representation for the central node. Then a
graph-level representation is produced via max-pooling the node embeddings.

H = [h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)], h(𝑘 )

𝑣 =
1

|N (𝑣) | (W ⊙ H) + 𝑏 (𝑘 ) , hG = MaxPooling
(
h(𝐾 )
𝑣 : 𝑣 ∈ V

)
.

(18)
Moreover, Diffusion CNN (DCNN) [74] aggregates multi-hop neighborhood features to the

central nodes through a matrix multiplication PX, where P = [A,A2, ...,Aℎ] ∈ Rℎ×𝑛×𝑛 is a three-
dimensional tensor containing multi-hop (i.e., 1-, 2-, ..., h-hops) adjacent matrices and X ∈ R𝑛×𝑓
is the node features matrix. PX ∈ Rℎ×𝑛×𝑓 represents the updated node features after multi-hop
aggregation. For graph classification tasks, DCNN permutes the dimensions giving PX ∈ R𝑛×ℎ×𝑓
and all node representations are averaged as P∗ ∈ Rℎ×𝑓 . Subsequently, a convolution operation
is implemented on P∗ to produce a graph-level representation. The convolution operation can be
defined as hG = 𝑓 (W ⊙ P∗) , where 𝑓 (·) is a nonlinear activation function, and W is a trainable
weight matrix for convolution and summation.

5.4 CapsNet-Based GL-DNNs
CapsNets [75] were originally designed to capture more spatial relationships between the partitions
of an entity than CNNs. CapsNets are available to assemble vectorized representations of different
features (e.g., colors, textures) to a capsule dealt with by a specific network. Thus, applying a
CapsNet to a graph preserves rich features and/or structure information at the graph level.

Graph Capsule Convolutional Neural Networks (GCAPS-CNN) [76] iteratively aggregates neigh-
bor information under different statistical moments (e.g., mean, standard deviation) to form a
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capsule representation of the central node, formulated as:

h(𝑘 )
𝑣 =

1
|N (𝑣) |



( ∑
𝑢∈N(𝑣)

h(𝑘−1)
𝑢

)
W1 (mean)( ∑

𝑢∈N(𝑣)

(
h(𝑘−1)
𝑢 − 𝜇

)2)
W2 (std)( ∑

𝑢∈N(𝑣)

(
h(𝑘−1)
𝑢 −𝜇
𝜎

)3)
W3 (skewness)

...


, (19)

where (W1,W2, ...) are the learnable weight matrices for mapping the aggregated features into a
uniform hidden space with a dimensionality of ℎ. If the number of statistical moments is 𝑝 and the
final iteration number is 𝐾 , each node will be represented as h(𝐾 )

𝑣 ∈ R𝑝×ℎ , and the matrix of all
𝑛 node embeddings will be 𝐻 (𝐾 ) ∈ R𝑛×𝑝×ℎ . This approach employs a covariance function as the
permutation-invariant layer to output a graph-level representation, defined as:

hG =
1
𝑛
(𝐻 (𝐾 ) − 𝜇)⊤ (𝐻 (𝐾 ) − 𝜇). (20)

CapsGNN [77] iteratively aggregates node features to a center node, and, in turn, adds the ag-
gregation results of each iteration to a capsule representation of the central node. An attention
mechanism is then applied to all node capsules so as to generate a graph capsule that can be
plugged into a capsule network for graph classification. Mallea et al. [78] employs the same ap-
proach as PATCHY-SAN [70] to find substructures in graphs, while the feature matrices of searched
substructures are assembled in a capsule network for graph classification.

6 GRAPH-LEVEL GRAPH NEURAL NETWORKS (GL-GNNS)
This section focuses on GL-GNNs, which are the most influential graph-level learning techniques
at present. The cornerstone branch of GL-GNNs —Message Passing Neural Networks (MPNNs)
(see Section 6.1) —are introduced first, followed by. Some emerging methods in GL-GNNs, such as
subgraph-based methods (see Section 6.2) and graph kernel-based methods (see Section 6.3). Notably,
these emerging approaches take advantage of some of the insights from traditional graph-level
learning methods. In addition, we review progress in spectral GL-GNNs (see Section 6.4), which
push graph-level learning forward through spectrum properties. There are also some contents
related to GL-GNNs in Appendix D, such as contrastive learning-based approaches (see Appendix
D.1), the expressivity (see Appendix D.2), generalizability (see Appendix D.3), and explainability
(see Appendix D.4) of GL-GNNs. Please refer to Table 4 in Appendix D for the GL-GNNs discussed
in this section.

6.1 Message Passing Neural Networks (MPNNs)
As mentioned, researchers have developed RNN- and CNN- based versions of MPKs. However, as
the influence of deep learning has expanded, researchers have also developed various feedforward
versions of Message Passing Kernels (MPKs, refer to Section 4.1.1). Collectively, these are called
MPNNs. MPNNs are similar to RNN-based MPKs in Eq. (15), but MPNNs set different weights in
separate layers rather than sharing weights in all layers. Gilmer et al. [21] summarizes a collection
of MPNNs [79–81] and further proposes a unified framework for this branch of techniques, as
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shown in Fig. 5 (A) and denoted as:

h(𝑘 )
𝑣 = 𝑈 (𝑘 ) ©­«h(𝑘−1)

𝑣 ,
∑︁

𝑢∈N(𝑣)
𝑀 (𝑘 )

(
h(𝑘−1)
𝑣 , h(𝑘−1)

𝑢 , E𝑣,𝑢
)ª®¬ , (21)

where h(0)
𝑣 = x𝑣 , 𝑀 (𝑘 ) is a function that outputs the passed message for the target node based

on itself and its neighbors, and 𝑈 (𝑘 ) (·) updates the embedding of the target node. After multiple
iterations, the node embeddings h(𝑘 )

𝑣 learn the local structure information and the graph-level
topology has distributed in all nodes. A readout function reads all node embeddings and outputs a
graph-level representation, that is:

hG = readout
(
h(𝑘 )
𝑣 : 𝑣 ∈ V

)
. (22)

MPNNs have become the mainstream of graph-level studies [21]. They are also representative of
spatial-based GL-GNNs since they are easy to use through matrix operations. Lastly, the time and
memory complexity of MPNNs only grows linearly with the graph size, making this a very practical
approach for large sparse graphs. In recent years, practitioners have developed numerous enhanced
versions of MPNNs, including subgraph-enhanced MPNNs (see Section 6.2), and kernel-enhanced
MPNNs (see Section 6.3).

A B
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(A) MPNNs aggregate neighbor’s 

information to target node

F

EAggregate

Encode
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(B) Subgraph Enhanced MPNNs
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(C) Kernel Enhanced MPNNs
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𝑢𝑝𝑑𝑎𝑡𝑒

𝑢𝑝𝑑𝑎𝑡𝑒

Fig. 5. Different mechanisms of MPNNs, Subgraph Enhanced MPNNs, and Kernel Enhanced MPNNs. In
Subgraph Enhanced MPNN, we used 1-hop neighborhoods as the subgraph for easy understanding, but the
specific subgraph extraction is up to the article.

6.2 Subgraph-Based GL-GNNs
In recent years, investigating GL-GNNs that are capable of capturing more topological information
has been a crucial stream of study. This is especially, since a number of works have uncovered
structure-aware flaws in MPNNs. To this end, practitioners have devised subgraph-based GL-GNNs,
which leverage the rich structural information in subgraphs. These subgraph-based GL-GNNs
can be divided into two branches. The first branch enhances an MPNN by injecting the subgraph
information into the aggregation process, as outlined in Fig. 5 (B). The other branch borrows
the graphlet idea and decomposes the graph into a few subgraphs, merging multiple subgraph
embeddings to produce an embedding of the entire graph.
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6.2.1 Subgraph Enhanced MPNNs. As mentioned, MPNNs learn topological information via a
neighborhood aggregation process. However, standard MPNNs only aggregate node features, not
structural information. Therefore, a straightforward way of strengthening an MPNNs is to enrich
the features of the nodes or edges with subgraph information. Graph Substructure Network (GSN)
[82], for example, counts the number of occurrences of a predefined subgraph pattern 𝑔1, ..., 𝑔𝑀
(e.g., a cycle or a triangle) that involves the target node 𝑣 or edge E𝑣,𝑢 . From these, subgraph feature
vectors are constructed for 𝑣 as x𝑔𝑣 or for E𝑣,𝑢 as S𝑔𝑣,𝑢 , denoted as:{

𝑥
𝑔𝑚
𝑣 = |{𝑔𝑠 ≃ 𝑔𝑚 : 𝑣 ∈ V, 𝑣 ∈ V𝑔𝑠 , 𝑔𝑠 ⊆ G}|, x𝑔𝑣 = [𝑥𝑔1𝑣 , ..., 𝑥

𝑔𝑀
𝑣 ]⊤ (Node),

𝑆
𝑔𝑚
𝑣,𝑢 = |{𝑔𝑠 ≃ 𝑔𝑚 : E𝑣,𝑢 ∈ E, E𝑣,𝑢 ∈ E𝑔𝑠 , 𝑔𝑠 ⊆ G}|, S𝑔𝑣,𝑢 = [𝑆𝑔1𝑣,𝑢, ..., 𝑆

𝑔𝑀
𝑣,𝑢 ]⊤ (Edge),

(23)

where 𝑔𝑚 is a predefined subgraph pattern, and 𝑔𝑠 ≃ 𝑔𝑚 means 𝑔𝑠 is isomorphic to 𝑔𝑚 , 𝑥
𝑔𝑚
𝑣 counts

the number of isomorphic subgraphs 𝑔𝑠 containing the node 𝑣 , and 𝑆
𝑔𝑚
𝑣,𝑢 indicates the number of

isomorphic subgraphs 𝑔𝑠 containing the edge E𝑣,𝑢 . As a last step, the subgraph feature vectors for
the node x𝑔𝑣 and the edge S𝑔𝑣,𝑢 are injected into the aggregation layer, which is defined as:

h(𝑘 )
𝑣 = 𝑈 (𝑘 )

(
h(𝑘−1)
𝑣 ,m(𝑘 )

𝑣

)
, m(𝑘 )

𝑣 =


∑

𝑢∈N(𝑣)
𝑀 (𝑘 )

(
h(𝑘−1)
𝑣 , h(𝑘−1)

𝑢 , x𝑔𝑣, x
𝑔
𝑢, E𝑣,𝑢

)
(Node),∑

𝑢∈N(𝑣)
𝑀 (𝑘 )

(
h(𝑘−1)
𝑣 , h(𝑘−1)

𝑢 , S𝑔𝑣,𝑢, E𝑣,𝑢
)
(Edge).

(24)

GSN is a promising start for subgraph-enhanced MPNNs. However, they have one fatal drawback
in that searching for and testing subgraphs for isomorphism is computationally prohibitive. To
avoid this high computational bottleneck, GNN-AK [83] samples subgraphs and swift encodes
them into node embeddings. Specifically, GNN-AK extracts the neighborhoods of each node as
subgraphs (i.e., the neighborhood of node 𝑣 is a subgraph 𝑔𝑣), and applies a base MPNN to each
neighborhood subgraph to obtain the final node embeddings, i.e.:

x𝑔𝑣 = [𝐸𝑚𝑏 (𝑣 |𝑔𝑣) |
∑︁

𝑢∈V∧𝑢≠𝑣
𝐸𝑚𝑏 (𝑢 |𝑔𝑣) |

∑︁
𝑢∈V∧𝑢≠𝑣

𝐸𝑚𝑏 (𝑣 |𝑔𝑢)], (25)

where 𝐸𝑚𝑏 (𝑣 |𝑔𝑣) is the embedding of node 𝑣 produced by running the base MPNN on subgraph
𝑔𝑣 , 𝐸𝑚𝑏 (𝑣 |𝑔𝑢) == 0 if subgraph 𝑔𝑢 does not contain node 𝑣 (i.e., 𝑣 ⊄ V𝑔𝑢 ), and x𝑔𝑣 is the subgraph
feature of node 𝑣 for MPNN’s aggregation.
Analogously, Nested Graph Neural Networks (NGNN) [84] extracts nodes (i.e., N(𝑣) ∪ 𝑣) and

edges (i.e., E𝑣1,𝑣2 ∈ E & 𝑣1, 𝑣2 ∈ N (𝑣) ∪𝑣) in the 1-hop neighborhood of node 𝑣 , as a neighborhood
subgraph 𝑔𝑣 , to be encoded by a GNN. The subgraph 𝑔𝑣 is then encoded as the embedding ℎ𝑔𝑣 ,
which denotes the subgraph feature of node 𝑣 .

One thing common to all the above methods is that they dilute or replace the node features. But
such feature properties are essential for graph-level learning. Thus, GraphSNN [85] incorporates the
idea of encoding the subgraph features into the edge’s weight for aggregation without changing the
node features. This approach defines the formula for calculating the degree of isomorphism between
two subgraphs. The weight of E𝑣,𝑢 is equal to the degree of isomorphism between two specific
subgraphs, where one of the subgraphs is the node 𝑣 ’s neighborhood subgraph, and the other
subgraph is the overlap between the neighborhood subgraphs of nodes 𝑢 and 𝑣 . By normalizing the
computed weights at the end, GraphSNN builds a subgraph-guided attention mechanism partaking
in the MPNN’s aggregation.

6.2.2 Graphlet. In addition to empowering MPNNs through subgraph information, researchers
have directly used the embeddings of subgraphs to form a graph-level representation. SUGAR
[86], for example, uses GNNs to embed discriminative subgraphs selected through reinforcement
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learning. A readout function over all learned subgraph embeddings is then used to build a graph-
level representation for classification, which can be used for classification. Correspondingly, the
graph classification results are back-propagated to train the GNNs that embed selected subgraphs.
Similarly, Subgraph Neural Networks (SubGNN) [87] views the subgraphs of a graph as instances
with independent labels. For each instance, SubGNN samples a few finer local structures, and forms
embeddings through the GNN. A representation of each instance is generated by aggregating all
the embeddings of the sampled local structures. Another approach, Equal Subgraph Aggregation
Network (ESAN) [88], enhances this branch by applying two GNNs, one for learning individual
embeddings for sampled subgraphs and the other for learning message passing among them.
Finally, a universal set encoder [89] compresses all the subgraph embeddings into one graph-level
representation.

6.3 Graph Kernel-Based GL-GNNs
Like the revival of the subgraph idea in the deep learning field, graph kernels that incorporate
deep learning techniques have also attracted attention. Similar to subgraph-based GL-GNNs, there
are generally two branches of graph kernel-based GL-GNNs. As Fig. 5 (C) shows, one branch
replaces the 1-hop neighbor aggregation and vertex update functions in MPNNs with a kernel
function. This group is, called the kernel-enhanced MPNNs. In the other branch, differentiable
and parameterizable kernels are designed to plug kernels into the neural networks so as to form
learnable and fast deep graph kernels.

6.3.1 Kernel-enhanced MPNNs. This type of method often uses a graph kernel to update the node
embeddings, which in turn are used to recalculate the graph kernel. Kernel-enhanced MPNNs break
the local update of the MPNN (i.e., the node features are aggregated via adjacent neighbors) so as
to capture more structure information.
For example, Graph Convolutional Kernel Networks (GCKN) [90] and Graph Structured Ker-

nel Networks (GSKN) [91] employ walk-based kernels to iteratively generate node embeddings.
Specifically, these methods generate 𝑞 walking sequences starting from the target node, where each
sequence records all node embeddings in the walk. As an example, in the 𝑘-th iteration, the one-step
walk sequence 𝑃𝑖 from node 𝑣 to 𝑢 would be represented as 𝑅(𝑃𝑖 ) = [h(𝑘−1)

𝑣 , h(𝑘−1)
𝑢 ]⊤. By building

a kernel function 𝐾
(
𝑅(𝑃𝑖 ), 𝑅(𝑃 𝑗 )

)
(e.g., a random walk kernel) as the similarity measurement for

any two walking sequences 𝑃𝑖 and 𝑃 𝑗 , GCKN and GSKN aggregate the kernel values as the updated
node embeddings, that is:

ℎ
(𝑘 )
𝑣 =

∑︁
1≤𝑖≤𝑞

[𝐾 (𝑅(𝑃1), 𝑅(𝑃𝑖 )) , · · · , 𝐾
(
𝑅(𝑃𝑞), 𝑅(𝑃𝑖 )

)
]⊤. (26)

To follow up, the node embeddings updated by the graph kernel are used to obtain the kernel
value in the next iteration. Du et al. [20] combined a Neural tangent kernel (NTK) [92] with an
MPNN, summarizing the advantages of this category of approach. Overall, the technique gives
better theoretical explanations, brought about by the graph kernel, and the convex-optimized tasks
are easy to train. Thus, kernel-enhanced MPNNs use a kernel function to replace the aggregation
and vertex update functions in MPNNs. The walk-based kernels do particularly well at capturing
local structures to encode into the node embeddings.

6.3.2 Deep Graph Kernel. Traditional graph kernels are limited by the theoretical computational
bottleneck, thus, researchers search for an optimal solution for comparing two graphs by neural
networks. Recently, Lei et al. [93] discussed deep graph kernels as parameterized learnable graph
kernels for deriving neural operations. These deep graph kernels can be optimized for specific tasks
with fast computation speeds and good interpretability.

, Vol. 1, No. 1, Article . Publication date: May 2023.



18 Zhenyu Yang et al.

Deep Divergence Graph Kernels (DDGK) [94] takes𝑀 base graphs {G1,G2, · · · ,G𝑀 } to repre-
sent a target graph G𝑡 as 𝑀-dimensional vectors hG𝑡

= [𝐾𝐷 (G1,G𝑡 ) , · · · , 𝐾𝐷 (G𝑀 ,G𝑡 )]⊤, where
𝐾𝐷 (G𝑚,G𝑡 ) is a trainable kernel for measuring the distance between G𝑚 and G𝑡 . First, DDGK uses
each base graph {G1,G2, · · · ,G𝑀 } to train an encoder {Z1,Z2, · · · ,Z𝑀 }. The encoderZ𝑚 takes
the one-hot encoding of nodes (e.g., the first node’s encoding is [1, 0, 0, · · · ]⊤) in G𝑚 as the input
and tries to predict their neighbors (e.g., if a node only links to the second and third nodes, the
correct output should be [0, 1, 1, 0, · · · ]⊤). Then, the trained encoder Z𝑚 is used for predicting the
node’s neighbors in G𝑡 , as the divergence score 𝐾𝐷 (G𝑚,G𝑡 ) between two graphs. That is:

𝐾𝐷 (G𝑚,G𝑡 ) =
∑︁

𝑣𝑖 ,𝑣𝑗 ∈V𝑡 ,E𝑖,𝑗 ∈E𝑡

− log
(
𝑣 𝑗 |𝑣𝑖 ,Z𝑚

)
. (27)

Random Walk graph Neural Networks (RWNN) [95] also derives a trainable random walk kernel
𝐾𝑅𝑊 (·, ·) through a series of learnable graph patterns {G1,G2, · · · ,G𝑀 }. A learnable graph G𝑚
has a fixed node setV𝑚 but a changeable edge set E𝑚 . RWNN produces graph-level embeddings
hG𝑡

= [𝐾𝑅𝑊 (G1,G𝑡 ) , · · · , 𝐾𝑅𝑊 (G𝑀 ,G𝑡 )]⊤ of the target graph G𝑡 for graph classification tasks.
Correspondingly, the classification results are backpropagated to change the adjacency matrix of
learnable graph patterns. That is, RWNN uses the prediction results to train the input of the kernel
function (i.e., graph patterns) so that the kernel values can be learned according to the downstream
task.

6.4 Spectral-Based GL-GNNs
Spectral-based GL-GNNs were started earlier by Bruna et al. [96], which designed graph con-
volutions via the spectral graph theory [53]. Recently, Balcilar et al. [97] described spectral and
spatial graph convolution in a unified way and performed spectral analysis on convolution kernels.
The analysis results demonstrate that a vast majority of MPNNs are low-pass filters in which
only smooth graph signals are retained. Graph signals with a low-frequency profile are useful for
node-level tasks on assortative networks where nodes have similar features to their neighborhoods
[98]. However, with graph-level tasks, graph signals beyond the low frequency may be critical
since they can highlight the differences between different graphs [99], and, although MPNNs have
been widely used, they overlook the signal frequency of graph data.
In terms of a feature x ∈ R𝑛 (a column vector of X ∈ R𝑛×𝑓 ) as a graph signal on a graph

with 𝑛 nodes, spectral graph convolution performs graph signal filtering after transforming the
graph signals x in spatial space into the frequency domain. According to spectral graph theory
[53], the frequency domain generally takes the eigenvectors of the graph Laplacian L = D − A
where D is the degree matrix (or the normalized version L = I − D− 1

2 AD− 1
2 ) of a set of space

bases. Note, though, that other bases can also be used, such as graph wavelet bases [100, 101].
Specifically, {𝜆1, ..., 𝜆𝑛} where 0 ≤ 𝜆1 ≤ ... ≤ 𝜆𝑛 ≤ 2, and U = (u1, ..., u𝑛) are the 𝑛 eigenvalues and
𝑛 orthogonal eigenvectors of L, respectively. 𝜆𝑖 represents the smoothness degree of u𝑖 about L.
Based on the graph Fourier transformation x̂ = UTx, the graph signal x is mapped to the frequency
domain. And x = Ux̂ is the graph Fourier inverse transformation that can restore the graph signal
in spectral domain to the spatial domain. The polynomial filter is adopted by most of spectral
graph convolution methods, for example, ChebNet [102] defines the spectral graph convolution as
Udiag(Φ(Λ))UTx, where Λ = diag({𝜆𝑖 }𝑖=𝑛𝑖=1 ), Φ(Λ) =

∑𝐾
𝑘=0 𝜃𝑘Λ𝑘 is the polynomial filtering function,

𝐾 are the hyper-parameters that realize the localized spectral graph convolution, and 𝜃𝑘 is the
polynomial coefficient.

Spectral graph convolution can be task-agnostic when graph signals with any frequency profiles
are filtered. Conversely, they can also be task-specific —for example, a band-pass filter can highlight
graph signals that are strongly relate to downstream tasks [97]. However, only a few practitioners
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have designed graph-level neural networks from the perspective of spectral graph convolution [103,
104]. The main problemwith applying spectral convolution in graph-level tasks is the transferability
of the spectral filter coefficients from the training graph set to the unseen graphs. The spectral
filters depend on the graph Laplacian decomposition, but different graph structures have different
graph Laplacian decomposition results. Most recently, Levie et al. [105] theoretically proved the
transferability of spectral filters onmultigraphs. Balcilar et al. [103] proposed a custom filter function
that could output frequency components from low to high to better distinguish between graphs.
Due to the limitation of polynomial filters in modeling sharp changes in the frequency response,
Bianchi et al. [104] employed an auto-regressive moving average (ARMA) filter to perform graph-
level tasks. The ARMA filter is more robust to the changes or perturbations on graph structures
as it does not depend on the eigen-decomposition of the graph Laplacian explicitly. In addition,
Zheng et al. [106] proposed a graph convolution based on graph Framelet transforms instead of
graph Fourier transform with a shrinkage activation to decompose graphs into both low-pass and
high-pass frequencies. However, there is no theoretical proof of the transferability of framelet
decomposition.

7 GRAPH POOLING
Generally, deep graph-level learning methods encode graphs based on node representations. Graph
pooling is a technique that integrates node embeddings into a graph embedding. In this section, we
introduce two mainstream types of graph pooling techniques, i.e., global and hierarchical graph
pooling (see Section 7.1 and 7.2). We summarize all discussed pooling approaches in Table 5 in
Appendix E. Moreover, we discuss the effectivity of graph pooling (see Section E.1).

7.1 Global Graph Pooling
There are four different types of global graph pooling —numeric operation, attention-based, CNN-
based, and global top-𝐾 —all of which aggregate all node embeddings at once to build a graph-level
representation.

7.1.1 Numeric Operation. Adopting a simple numeric operation for all node embeddings is a
common graph pooling method [81, 107], since it is easy to use and obeys the permutation invariant.
An illustration of a type of numeric operation (i.e., a summation) for all node embeddings is shown
in Fig. 6 (A). It is common to see practitioners aggregating node embeddings via summation,
maximization, minimization, mean, and concatenation functions. For example:

hG =
∑︁
𝑣∈V

h𝑣
/
max/min

𝑣∈V
(h𝑣)

/ 1
|V|

∑︁
𝑣∈V

h𝑣
/
[h𝑣1 |...|h𝑣|V| ] . (28)

Duvenaud et al. [81] empirically proved that, in graph-level learning, summation has no weaker
an outcome than a hash function. Similarly, GIN [107] shows us that the injective relabeling function
in the WL algorithm can be replaced with a simple numeric operation. Further, GIN also allows
us to analyze the efficacy of different functions: summation, maximization, and mean functions.
Summation comprehensively summarizes the full features and structure of a graph. Maximization
emphasizes significant node embeddings, and mean learns the distribution of labels. Inspired by
GIN, Principal Neighbourhood Aggregation (PNA) [108] employs all three of these functions to
pool the node embeddings, while TextING [109] includes both mean and maximization pooling to
capture the label distribution and strengthen the keyword features. A few variants of graph pooling
have also been developed. For example, Deep Tensor Neural Network (DTNN) [80] applies a neural
layer that processes the node embeddings before the summation function and second-order pooling
(SOPOOL) [110] is executed as hG = [h𝑇𝑣1h𝑣1 |...|h

𝑇
𝑣|V|h𝑣|V| ].
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7.1.2 Attention-based. The contributions of node embeddings to graph-level representations may
not be equal, as some of them contain may more important information than others. Hence, some
researchers have tried using an attention mechanism to aggregate the node embeddings based on
their particular contribution, as outlined in Fig. 6 (C). Li et al. [69] and Duvenaud et al. [81], for
example, both employ a softmax function as an attention-based global pooling for aggregation.
This can be written as:

hG =
∑︁
𝑣,𝑘

softmax
(
𝑤𝑘𝑣 , h

𝑘
𝑣

)
, (29)

where𝑤𝑘𝑣 is a trainable weight for the embedding ℎ𝑘𝑣 of node 𝑣 in iteration 𝑘 . Note that𝑤𝑘𝑣 will be
large if ℎ𝑘𝑣 is important to the downstream task. Set2Set [111] is a more complicated attention-based
graph pooling model. It learns the attention coefficients of all node embeddings from an ordered
sequence generated by LSTM. Although Set2Set handles sequential node embeddings, the order of
nodes is determined by an LSTM model without affecting permutation invariance.

7.1.3 CNN-based. PATCHY-SAN [70] and KCNN [71] are based on the idea of ordering vertices
and applying a 1-D convolutional layer to pool the ordered vertices features. These two models are
permutation invariant because they order vertices according to certain rules regardless of the input
order.

7.1.4 Global Top-𝐾 . Global top-𝐾 graph pooling sorts all nodes and selects the first 𝐾 node
embeddings for aggregation, as shown in Fig. 6 (B). In this way, the pooling layer only preserves 𝐾
significant vertices and drops out others. SortPool [112] employs graph convolution operations to
project each node into a one-dimensional vector as the ranking score for selecting the 𝐾 vertices
with the highest scores. Subsequently, a GL-GNN is used to produce the node embeddings of the
selected 𝐾 nodes, which come together to form the graph-level representation. Graph Self-Adaptive
Pooling (GSAPool) [113] is another global top-𝐾 graph pooling model that ranks nodes based on
the summing of feature and structure scores. The node structure scores are 1-dimensional vectors
projected by the graph convolution operations as same as SortPool, while the feature scores are
learned by feeding the node features into an MLP.

7.2 Hierarchical Graph Pooling
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Fig. 6. Toy examples of Global Pooling methods.

Global graph pooling ignores the hierarchical structures in graphs. The evolution of a graph is
to collect nodes into hierarchical structures (e.g., communities), then to form the graph. Hence,
researchers tend to capture hierarchical information through an aggregation process that has
multiple parses, which coarsens the graph each time. We have divided hierarchical graph pooling
techniques into three branches: clustering-based, hierarchical top-𝐾 , and tree-based.
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Fig. 7. Toy examples of Hierarchical Pooling methods.

7.2.1 Clustering-based. Clustering methods were originally designed to capture the hidden hierar-
chical structures in graphs, but these techniques can be incorporated into the pooling process. Fig.
7 (A) demonstrates clustering-based graph pooling, which has been the focus of many studies. For
instance, Henaff et al. [114] implemented multi-resolution spectral clustering [115] which assigns
each node to a matched cluster. Subsequently, the clusters in the input graph are treated as new
nodes of the new coarsened graph. The embedding of the new node is obtained by averaging
all node embeddings in the cluster. This coarsening process is iterative and operates until only
one or very few vertices remain in the most recent coarsened graph. Similarly, Bruna et al. [116]
adopted hierarchical agglomerative clustering [117] to coarsen graphs, while StructPool [118]
employs conditional random fields [119] to cluster each node by considering the assignments of
other vertices.

However, clustering-based graph pooling cannot optimize the clustering process for downstream
tasks given just any old off-the-shelf clustering method. Rather, the clustering method must be
designed to consider downstream tasks. For example, Graph Multiset Transformer (GMT) [120]
uses a multi-head self-attention mechanism to cluster nodes into different sets according to the
final task and a graph-level representation is therefore derived through these sets. MinCutPool
[121] assigns each node to a cluster via an MLP, which is optimized by two goals: first that the
clusters are similar in size, and, second, that the clusters’ embeddings are separable. Finally, the
graph-level representation is obtained by pooling the substructure-level embeddings. EigenPool
[122] involves a spectral clustering method that coarsens graphs and pools node embeddings into
cluster-level embeddings by converting spectral-domain signals. These clustering-based algorithms
assume that each node belongs to a certain cluster, yet DiffPool [123] assigns each node to multiple
clusters through a trainable soft assignment matrix S(𝑘 ) ∈ R𝑛 (𝑘 )×𝑛 (𝑘+1) , where 𝑛 (𝑘 ) is the number of
vertices in the input graph at the 𝑘-th layer, and 𝑛 (𝑘+1) represents the cluster’s number in the input
graph or the node’s number in the coarsened graph. To be specific, at the 𝑘-th layer, each row of
S(𝑘 ) corresponds to a node in the input graph, and each column of S(𝑘 ) corresponds to a new node
in the coarsened graph (i.e., a cluster in the input graph). The assignment matrix S(𝑘 ) is trained by
a graph convolutional layer, which is defined as:

S(𝑘 ) = softmax
(
Conv(𝑘 )

(
A(𝑘 ) ,H(𝑘 ) ,W(𝑘 )

))
, (30)

where A(𝑘 ) ∈ R𝑛 (𝑘 )×𝑛 (𝑘 ) and H(𝑘 ) ∈ R𝑛 (𝑘 )×𝑓 are the adjacent matrix and node embedding matrix of
the input graph at the 𝑘-th layer, respectively. W(𝑘 ) ∈ R𝑓 ×𝑛 (𝑘+1) is the trainable weight matrix, and
softmax (·) function is applied to each row.
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7.2.2 Hierarchical Top-𝑘 . The high complexity of the clustering process exacerbates the computa-
tional cost burden of cluster-based hierarchical graph pooling. For example, the DiffPool [123] is
extremely costly in terms of time and memory because the assignment matrices need to be trained.
So, to speed up the process of hierarchical graph pooling, researchers have looked to replace the
clustering process with a scheme that coarsens the graph according to the top-𝐾 idea, as shown in
Fig. 7 (B). Graph U-nets [124], for example, projects each node feature into a 1-dimensional vector
Y, as the rank score. Subsequently, the 𝐾 nodes with the highest score are selected to form the new
coarsened graph, which is defined as:

Y =
Z(𝑙 )P(𝑙 )

| |P(𝑙 ) | |
, idx = Top 𝐾 (Y) , Z(𝑙+1) =

(
Z(𝑙 ) ⊙

(
sigmoid (Yidx) 1⊤𝑍

) )
, A(𝑙+1) = A(𝑙 )

idx,idx,

(31)
where 𝑍 (𝑙 ) is the input node features at the layer 𝑙 , P(𝑙 ) is a learnable projection matrix, Top 𝐾 (·)
is a function that returns the index of the top-𝐾 nodes, and all the elements are 1 in the vector
1𝑍 which has the same dimension as the node feature. Cangea et al. [125] employed the Graph
U-nets to coarsen graphs and concatenated the mean and maximum values of node embeddings on
the coarsened graphs as graph-level representations. Further, SAGPool [126] chooses the top-𝐾
nodes to generate the coarsened graph by adopting a graph convolution operation to project node
features as scores.

All these methods generate a coarsened graph by preserving the top-𝐾 nodes. However, Ranjan
et al. [127] presented the novel idea of ranking the clusters and preserving on the top-𝐾 of them.
The clusters were ranked by employing a self-attention algorithm called Master2Token [128] that
scores each cluster based on the node embeddings within it.

7.2.3 Tree-based. Tree-based hierarchical graph pooling implements the coarsening process via
an encoding tree, where the input graph is coarsened layer by layer to the ultimate node from the
leaf layer to the root layer, as shown in Fig. 7 (C). ChebNet [102] and MoNet [129] use the Graclus
[130] algorithm to pair nodes in the graph based on the graph spectrum and merge the pair-wise
nodes as a new node in the coarsened graph. That is to say, these two methods build a balanced
binary tree to coarsen the graph, and each father node on the tree is obtained by coarsening its two
child nodes. Wu et al. [131] uses a structure encoding tree [132] for tree-based hierarchical graph
pooling. Structural coding trees compress the hierarchy of a graph into a tree. Here, the leaves are
the nodes, the root represents the whole graph, and the other non-leaf nodes are the hierarchical
structures (e.g., the communities). An MLP merges the features of the child nodes in the structure
encoding tree, to generate an embedding of the father node. The result is an embedding of the
root node, which serves as a graph-level representation. Moreover, Wu et al. [133] empirically
verified that the hierarchical tree pooling guided by structure entropy can preserve higher-quality
structural information than U-Nets and MinCutPool. Alternatively, EdgePool [134] scores edges
based on the features of the nodes the edges link, eliminating the highest-ranked edge by merging
its two end nodes. The features of the newly generated node, which maintains all the neighbors of
the original two nodes, are obtained by summing the features of the two merged nodes. EdgePool
falls into the category of being a tree-based hierarchical graph pooling method because it merges
two child nodes in a tree into a father node.

8 BENCHMARKS
8.1 Datasets
Table 1 summarizes a selection of benchmark graph-level datasets, including TUDateset [136], Open
Graph Benchmark (OGB) [141], MOLECULENET [2], MALNET [157], and others [150]. The graph

, Vol. 1, No. 1, Article . Publication date: May 2023.



State of the Art and Potentialities of Graph-level Learning 23

Table 1. Summary of Selected Benchmark Datasets

Category Dataset Size #Graphs Average
#Nodes

Average
#Edges

Node
Attr.

Edge
Attr. #Classes Source

Biology

ENZYMES Small 600 32.6 62.1 ✓ - 6 [135, 136]
PROTEINS Small 1113 39.1 72.8 ✓ - 2 [135, 136]
D&D Small 1178 284.3 715.7 ✓ - 2 [136, 137]
BACE Small 1513 34.1 36.9 ✓ ✓ 2 [2, 138]
MUV Medium 93087 24.2 26.3 ✓ ✓ 2 [2, 139]
ppa Medium 158100 243.4 2266.1 - ✓ 37 [140, 141]

Chemistry

MUTAG Small 188 17.9 19.8 ✓ ✓ 2 [41, 136]
SIDER Small 1427 33.6 35.4 ✓ ✓ 2 [2, 142]
ClinTox Small 1477 26.2 27.9 ✓ ✓ 2 [2, 143]
BBBP Small 2039 24.1 26.0 ✓ ✓ 2 [2, 144]
Tox21 Small 7831 18.6 19.3 ✓ ✓ 2 [2, 145]
ToxCast Small 8576 18.8 19.3 ✓ ✓ 2 [2, 146]
MolHIV Small 41127 25.5 27.5 ✓ ✓ 2 [2, 141]
MolPCBA Medium 437929 26.0 28.1 ✓ ✓ 2 [2, 141]
FreeSolv Small 642 8.7 8.4 ✓ ✓ - [2, 147]
ESOL Small 1128 13.3 13.7 ✓ ✓ - [2, 148]
Lipophilicity Small 4200 27.0 29.5 ✓ ✓ - [2, 149]
AQSOL Small 9823 17.6 35.8 ✓ ✓ - [150, 151]
ZINC Small 12000 23.2 49.8 ✓ ✓ - [150, 152]
QM9 Medium 129433 18.0 18.6 ✓ ✓ - [2, 136]

Social
Networks

IMDB-BINARY Small 1000 19.8 96.5 - - 2 [136, 153]
IMDB-MULTI Small 1500 13.0 65.9 - - 3 [136, 153]
DBLP_v1 Small 19456 10.5 19.7 ✓ ✓ 2 [136]
COLLAB Medium 5000 74.5 2457.8 - - 3 [136, 153]
REDDIT-BINARY Small 2000 429.6 497.8 - - 2 [136, 153]
REDDIT-MULTI-5K Medium 4999 508.5 594.9 - - 5 [136, 153]
REDDIT-MULTI-12K Medium 11929 11.0 391.4 - - 11 [136, 153]

Computer
Science

CIFAR10 Medium 60000 117.63 941.1 ✓ - 10 [150, 154]
MNIST Medium 70000 70.57 564.53 ✓ - 10 [150, 155]
code2 Medium 452741 125.2 124.2 ✓ ✓ - [141, 156]
MALNET Large 1262024 15378 35167 - - 696 [157]

* The category of computer science includes computer vision, cybersecurity, and program coding datasets.
* Node Attr. and Edge Attr. indicates the labels or features of nodes and edges, respectively.
* The size of datasets follows the setting of OGB [141], medium datasets have more than 1 million nodes or more than 10 million
edges, and large datasets own over 100 million nodes or 1 billion edges.

datasets collected by the group at TUDateset [136] have been widely used to evaluate graph-level
learning approaches. These graph datasets consist of molecules, proteins, images, social networks,
synthetic graphs, and data from many other domains. However, despite their wide use, they have
attracted criticism from some practitioners. For example, Ivanov et al. [158] contends that the sets
suffer from isomorphism bias, i.e., they contain isomorphic graphs with different labels, which
may hinder model training —a claim based on the analysis of 54 widely-used graph datasets. They
also note that some of the datasets are too small to train a data-hungry deep learning model. For
example, Dwivedi et al. [150] presented that most GL-GNNs have a close performance to others in
the small dataset. Further, some topology-agnostic baselines yield a performance that is competitive
to GL-GNNs.
Developing practical and large-scale benchmark datasets has become an important issue for

the graph-level learning community. To this end, Wu et al. [2] proposed a benchmark named
MOLECULENET that contains a set of large-scale graph datasets of molecules. The dataset is
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designed to be used for graph regression and classification tasks. Dwivedi et al. [150] transformed
images into graphs for classification, in which a group of pixels is clustered as a node. Based on real-
world cybersecurity scenarios, Freitas et al. [157] proposed a large-scale graph dataset of over 1.2
million graphs with imbalanced labels. Furthermore, OGB [141] has published application-oriented
large-scale graph datasets of molecules, proteins, and source code cooperation networks.

8.2 Evaluations
The development of graph-level learning has been impeded by unfair evaluations. For example,
Ruffinelli et al. [159] argue that some graph-level learning models only produce state-of-the-art
performance because of tricks with the model’s training, not because of the novel ideas proposed
in the articles. However, there is no consensus on which evaluation to use with the most widely
used graph datasets, such as TUDatasets, nor is there even a universally-accepted data split [160].
Hence, to evaluate the graph-level learning models in a unified and fair way, some researchers
have attempted to establish a standard model evaluation protocol. For example, Dwivedi et al.
[150] built a benchmark framework based on PyTorch and DGL7 that evaluates models on graph
classification and graph regression tasks with an unified model evaluation protocol. They do apply
training tricks, such as batch normalization, residual connections, and graph size normalization, to
GL-GNNs to measure their effects. But all models being evaluated with the protocol are subject
to the same training regime. Similarly, in addition to the large-scale graph datasets, OGB [141]
provides a standard model evaluation protocol that includes a unified way to load and split data, the
model evaluation itself, plus the cross-validations. Recently, Zhu et al. [161] provides a benchmark
framework for graph contrastive learning.

9 DOWNSTREAM TASKS AND APPLICATIONS
This section introduces the mainstream downstream tasks of graph-level learning and their corre-
sponding applications.
Graph Generation. This task aims to generate new graphs that have specific proprieties based on a
series of graphs. Graph generation has a broad application in the field of biochemistry. For instance,
drug development involves experimenting with a tremendous number of molecule arrangements,
but, through graph generation, the overall time and investment required to do this work can be
reduced [10]. Similarly, molecule generation [162, 163] has been used to explore new catalysts [164].
Sanchez et al. [165] applied graph generation into physical systems modeling to simulate real-world
particle motions. Scene graph generation [166, 167] can be used to understand the scene of images
and generate abstraction for images to summarize the relationship among objects in an image. Most
recently, a few works [168, 169] have employed graph generation for program debugging, which
modifies the nodes (i.e., variables or functions) and links in the program flow graph to fix bugs.
Graph Classification. The goal of graph classification is to learn the mapping relationship between
graphs and corresponding class labels and predict the labels of unseen graphs. Graph classification is
a critical graph-level learning task with a range of applications. For example, classifying molecular
graphs [9, 170] can be used to determine anti-cancer activity, toxicity, or the mutagenicity of
molecules. Classifying protein graphs [135] can help to identify proteins with specific functions,
such as enzymes. By converting texts to graphs in which nodes denote words and edges are
the relationships between words, text categorization [171, 172] can distinguish documents with
different topics. By the same token, pixels in images can be regarded as nodes and adjacent pixels
are linked to yield graphs for image recognition [173, 174]. This task can be extended to medical
diagnosis to deal with computed tomography scans [175] and clinical images [176]. In addition,

7DEEP GRAPH LIBRARY: https://www.dgl.ai
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graph classification can also be used for online product recommendation [177] and fake news detection
[178, 179]. Recently, it has been impressive to see that graph-level learning can deliver IQ tests
[180] that select graphs with a specific style from a group of graphs based on the style learning on
the other group of graphs.
Graph Comparison. This task involves measuring the distance or similarity of pair-wise graphs in
a graph dataset. The applications of this task include: semantic inference, which infers text-document
affiliations [181]; matching images with texts describing the same thing [182]; semantic metrics,
which measures the semantic similarity between texts [183, 184]; and cross-language information
retrieval, which seeks information in a language context that is different from the query [185, 186].
GraphRegression.This task aims to predict the continuous proprieties of graphs. Takingmolecules
as examples, graph regression can predict different molecular proprieties related to the tightness of
chemical bounds, fundamental vibrations, the state of electrons in molecules, the spatial distribution
of electrons in molecules, and so on [21, 187, 188]. Hence, the most promising application of graph
regression is drug discovery. In addition, employing graph regression to predict ratings or avenues
of films is feasible.
Subgraph Discovery. This is the task of detecting discriminative substructures in a graph dataset.
Subgraph Discovery can be applied to molecular structure search [81, 189], which explores the
functional structures in chemical compounds, or to social event detection [190], where subgraph
discovery can be used to detect the substructures that represent great events in a series of social
networks.
Applying Complex Scenarios. In addition to simple downstream tasks, researchers have extended
graph-level learning to some complex scenarios. For instance, multi-view GL targets learning in
scenarios where an object is described bymultiple graphs (i.e., multi-graph-views). In multi-view GL,
practitioners mine information from each single-graph-view and then strategically fuse information
from all graph-views [191, 192]. Multi-task GL [193, 194] is generally used to optimize multiple
related tasks; hence, it focuses on detecting the discriminative features across all the different
tasks. In real-world scenarios, there are a vast number of unlabeled graphs that go unused since
most GL techniques require learning from labeled information. Consequently, semi-supervised GL
[49] was developed, which can learn from a dataset containing only a few labeled graphs and
very many unlabeled graphs. Likewise, positive and unlabeled GL [195, 196] only requires a few
labeled graphs in one class along with other unlabeled graphs. In terms of dynamic scenarios,
there are also applications that record changing graphs over time as graph streams. For example, a
paper and its references can be regarded as a citation graph, and a graph stream can be produced
of citations in chronological order of the corresponding papers. Graph stream GL [197, 198], for
example, is specifically designed for graph stream data and mines valuable patterns from dynamic
graph records.

10 FUTURE DIRECTIONS
Although graph-level learning has gone through a long journey, there are still open issues that have
been less explored. In this section, we spotlight 12 future directions involving technical challenges
and application issues of graph-level learning for readers to refer to.

10.1 Neural Architecture Search (NAS) for GL-GNNs
Existing GL-GNNs often have a complex architecture, consisting of a number of different com-
ponents, e.g., multiple graph convolutions and graph pooling layers. GL-GNNs require careful
parameter tuning to achieve optimal performance since most of them are non-convex. Hence, it is
expensive to search for a well-performing architecture from among the bulk of optional components
and their numerous parameters.

, Vol. 1, No. 1, Article . Publication date: May 2023.



26 Zhenyu Yang et al.

Opportunities: Developing effective NAS methods to free researchers from the task of repeatedly
searching for good architectures manually and, in turn, tuning the parameters is an urgent goal. By
minimizing the entropy, Yang et al. [199] raised a dimension estimator, which can empower the GL-
GNNs to automatically encode graphs into suitable dimensional embeddings. Moreover, Knyazev et
al. [200] modeled the search for an architecture as a graph in which each node represents a neural
network layer or operation (e.g., a convolution layer) and each edge represents the connectivity
between a pair of operations. Subsequently, GNNs can work on the constructed graphs to seek the
optimal architecture. We argue that constructing an optimization goal based on knowledge of deep
learning might be a practical way of providing an automatic NAS for various GL-GNNs.

10.2 Geometrically Equivariant GL-GNNs
In geometric graphs [201], each node is described by two vectors, i.e., a feature vector and a
geometric vector. For example, in 3D molecule graphs, atoms are assigned geometric information
such as speeds, coordinates, and spins which together comprise the geometric vector. Constructing
GL-GNNs that can learn geometric graphs is an important part of modeling in chemistry and
physics.
Opportunities: GL-GNNs that can predict a set of geometric graphs need to be equivariant. For

example, when inputting a geometric graph with a specific rotation into a GL-GNN, the corre-
sponding output should reflect the same rotation. There are some algorithms about geometrically
equivariant GL-GNNs. For example, Satorras et al.’s [202] Equivariant Graph Neural Networks
(EGNN) expands MPNNs aggregating both feature vectors and geometric vectors, while GemNet
[203] infuses more geometric information into the message passing mechanism, like dihedral angles.
Both of these methods achieve state-of-the-art performance with 3D molecule prediction tasks. For
more details on this topic, we refer readers to [204].

10.3 Self-explainable GL-GNNs
Most algorithms for explaining the predictions of GL-GNNs are post-hoc (e.g., PGExplainer [205]),
where the aim is to train a model to interpret a pre-trained GL-GNN. In other words, the training
and explaining processes in GL-GNNs are independent.

Opportunities: Miao et al. [206] proposed that the separate prediction and explanation processes
will inevitably lead to sub-optimal model performance. For example, the explanation model may
detect substructures that have spurious correlations to the graph labels when interpreting predic-
tions [207]. Designing self-explaining GL-GNNs where the prediction and explanation components
enhance each other should therefore be a fruitful future direction of research for the graph-level
learning community.

10.4 Informative Graph Pooling
We categorized the existing pooling techniques into two families, i.e., global and hierarchical
pooling (see Section 7). The aim of the top-𝑘 approaches [112, 113], which are among the most
representative global pooling methods, is to select some nodes for the pooled graph. However, one
cannot ensure that the redundancy of the selected nodes will be low. Further, the mechanism of
the hierarchical family tends to smooth the node representations, which means the uninformative
nodes tend to be selected for the pooled graphs [208].

Opportunities: Existing state-of-the-art graph pooling methods are not able to coarsen the original
graph into a pooled graph with nodes of low redundancy. However, a pooled graph consisting
of dissimilar nodes is critical for graph-level learning. For example, an atomic pair composed
of different atoms can empower different proprieties to molecules. Traditional subgraph mining
methods [48, 177] can then be used to identify the discriminative subgraphs of low redundancy as
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representative graphs. Hence, referring to the ideas of traditional subgraphmining for graph pooling
methods that can identify informative nodes and/or subgraphs might yield feasible solutions to
this problem.

10.5 Graph-level Federated Learning
Graph data are generally sourced from information collected by institutions. However, due to
privacy considerations, graph data from different institutions is generally not used to jointly train
graph-level learning models. In practice, numerous graph-level learning techniques are data-hungry,
especially the currently mainstream GL-GNNs. Therefore, it is a practical topic to promote the joint
training of graph-level learning models by different institutions using their respective graph data.

Opportunities: Federated learning solves the data isolation problem, feeding data-driven machine
learning models from different sources with rich amounts of data while maintaining privacy. For
example, Xie et al. [209] proposed a federated learning framework specifically for GL-GNNs, where
different GL-GNNs are trained based on different graph sets and sharing weights are learned by
the GL-GNNs. Graph-level federated learning is an emerging topic with great challenges. In fact, a
benchmark for this task has recently been released [210].

10.6 Graph-level Imbalance Learning
A machine learning model trained on the data with an imbalanced label distribution might be
biased towards the majority classes. That is, with many samples and the minority classes consisting
only of a small number of samples, the model may be under-fit. Representative tasks that need
imbalance learning and must distinguish between samples from the majority and minority classes
include anomaly detection [211] and long-tail event detection [212].
Opportunities: Although imbalanced learning has been a long-standing issue in deep learning,

graph-level imbalance learning, especially with deep models, is underexplored. Wang et al. [213]
over-sampled graphs in the minority class to relieve imbalance distributions between the majority
andminority classes. They also appended a self-consistency between the original and the augmented
graphs. Over-sampling the minority samples is a traditional solution to imbalanced learning.
However, this approach has been criticized for some shortcomings, such as over-fitting and changing
the original distribution of the dataset. Additionally, minority graphs generally contain special
substructures that are different from those in the majority graphs. Strengthening the structural
awareness of the current graph-level learning tools could be a feasible way of overcoming this
problem.

10.7 Graph-level Learning on Complex Graphs
In this survey, almost all the investigated graph-level learning methods are assumed to work
on fundamental graphs (i.e., unweighted and undirected graphs and their nodes and edges are
homogeneous). This is because fundamental graphs are easy to understand and easy for models
to handle. However, realistic graphs are usually complex. For example, the edges between actors
and movies have a different meaning to the edges between two movies in multi-relational graphs.
Collaborators on a paper can be linked together by a hyperedge (i.e., hypergraphs), while authors,
papers, and venues can all be nodes in a citation network, even though they are distinct taxonomic
entities (i.e., heterogeneous graphs), etc.

Opportunities:Compared to highly developed graph-level learning on fundamental graphs, mining
complex graphs still requires further development. For instance, most GL-GNNs for heterogeneous
graphs rely on manually-defined meta-paths (i.e., a sequence of relations between nodes or edges)
that are based on domain knowledge. However, defining meta-paths is not only expensive, it will
not capture comprehensive semantic relationships [214, 215]. Lv et al. [216] also raised the issue
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that, empirically, some heterogeneous GL-GNNs do not perform as well as simple GL-GNNs. In
addition, it is hard to fairly evaluate hypergraph GL-GNNs since the hypergraphs are acquired from
a range of different sources and built by a range of different construction approaches. In conclusion,
there are numerous worthwhile directions to explore when it comes to graph-level learning with
complex graphs, such as benchmarking evaluation [216] and datasets.

10.8 Graph-level Interaction Learning
Almost all the literature on graph-level learning treats each graph in a dataset as an independent
sample. However, considering the interactions between graphs should lead to challenging and
highly novel research. For example, learning the interactions between graphs might be used to
predict the chemical reactions when two compounds meet or to explore the effect of taking two or
more drugs at the same time.
Opportunities: Although this topic has strong practical implications for graph-level learning

applications in biochemistry, it is still understudied. So far, only a few GL-GNNs have been designed
to tackle this topic and its related tasks. DSS-GNN [88], for instance, predicts the interactions
between subgraphs located in a single graph, while Graph of Graphs Neural Network (GoGNN)
[217] predicts chemical-chemical and drug-drug interactions. These two tasks own the off-the-shelf
datasets, DDI [218], CCI [219], and SE [218].

10.9 Graph-level Anomaly Detection
The aim of anomaly detection is to identify objects that significantly deviate from the majority of
other objects. However, when it comes to graph-structured data, almost all graph anomaly detection
research focuses on detecting anomalous nodes in a single graph [15].

Opportunities: Graph-level anomaly detection that identifies anomalous graphs in a graph dataset
is a research topic of great value application-wise. For example, such a method could help to detect
proteins with special functions from a large number of common protein structures. Some pioneering
studies [220–222] combine state-of-the-art GL-GNNs with traditional anomaly detection methods
(e.g., one-class classification [223]) to detect anomalous graphs in a graph dataset. However, these
graph convolution operations were not specifically designed to detect anomalous graphs. Most
graph convolution works like a low-pass filter [97] that smooths the anomalous information in a
graph [224]. Hence, more analysis of the reasons behind anomalous graphs is needed and specific
graph convolutions need to be proposed that are purposefully designed to detect anomalous graph
information manifested in graph structures and/or attributes.

10.10 Out-of-Distribution Generalization
Out-of-distribution (OOD) learning improves a model’s generalization ability. It applies to scenarios
where the test data does not have the same distribution as the training data. OOD settings can have
two types of distribution shift, concept shift and covariate shift. Concept shift refers to situations
where the conditional distribution between the inputs and outputs differs from the training data to
the test data. Covariate shift means that the test data has some certain features not shown in the
training data.
Opportunities: Almost all the graph-level learning algorithms assume that the training and the

test data will have the same distribution. However, this I.I.D. (independent, identically distributed)
assumption may be violated in some scenarios. For example, molecules with the same function
may contain some different scaffolds. When the test data have a scaffold that has never appeared in
training data, graph-level learning methods models will not perform nearly as well. The graph-
level learning community has recently noticed this issue and has embarked on related research in
response. Gui et al. [225] proposed a graph OOD learning benchmark. Inspired by invariant learning,
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Wu et al. [207] identified the casual subgraphs that are invariant across different distributions to
improve the OOD generalization ability of GL-GNNs. Similarly, Bevilacqua et al. [226] employed
an inference model to capture approximately invariant causal graphs to improve the extrapolation
abilities of GL-GNNs. In addition to invariant learning, many techniques such as meta-learning,
data augmentation, and disentanglement learning are feasible for OOD learning. Combining these
techniques with GL-GNNs is likely to be the future of achieving graph-level learning models with
a strong OOD generalization capacity.

10.11 Brain Graphs Analytics
Brain networks, also known as connectomes, are maps of the brain where the nodes denote the
brain regions of interest (ROIs) in the brain and the edges denote the neural connections between
these ROIs. An important application of machine learning models pertaining to brain networks
is to distinguish brains with neurological disorders from normal individuals and identify those
regions of the brain that are the cause of brain disease.

Opportunities: Existing graph-level learning algorithms especially GL-DNNs and GL-GNNs, tend
to be over-parameterized for learning brain networks, which are usually sparse. Further, obtaining
a brain network usually comes at a high cost, because it involves scanning an individual’s brain and
converting the neuro-image into a brain network. In addition, existing GL-DNNs and GL-GNNs
cannot handle the correspondence of nodes between different graphs. However, different brain
networks have the same ROIs, and node identities and ROIs are one-to-one correspondence [227].
In summary, graph-level learning with brain networks requires models that are lightweight and
can identify corresponding nodes between different graphs.

10.12 Multi-Graph-Level Learning
Standard graph-level learning views each graph as an instance, which can be restrictive in practical
applications. Considering a product that has multiple reviews on an online shopping page. Each
review can be represented as a graph of the textual semantics among the words. To predict any
properties of that online product, one needs to learn from review-based multi-graphs —that is,
multi-graph-level learning.
Opportunities: To the best of our knowledge, the current multi-graph-level learning algorithms

are all traditional. For example, Boosting based Multi-graph Graph Classification (bMGC) [228]
and Multi-Instance Learning Discriminative Mapping (MILDM) [229] are both subgraph mining
methods that classify multi-graph objects by extracting informative subgraphs. However, both
two methods cannot use label information to guide the feature selection process. Developing deep
learning models can better extract features for multi-graph-level learning via the label information.

11 CONCLUSIONS
This survey paper provides a comprehensive review of graph-level learning methods. Due to the
irregular structure of graphs, graph-level learning has long been a non-trivial task with related
research spanning the traditional to the deep learning era. However, the community is eager for
a comprehensive taxonomy of this complex field. In this paper, we framed the representative
graph-level learning methods into four categories based on different technical directions. In each
category, we provided a detailed discussion on, and comparison of, the representative methods.
We also discussed open-source materials to support research in this field, including datasets,
algorithm implementations, and benchmarks, along with the most graph-level learning tasks and
their potential industrial applications. Lastly, we raised 12 future directions based on currently
open issues that would make valuable contributions to the graph-level learning community.
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A TAXONOMY OF GRAPH-LEVEL LEARNING TECHNIQUES
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Fig. 8. The taxonomy tree of graph-level learning techniques.

The taxonomy tree in Fig. 8 depicts these four branches of graph-level learning with selected
algorithms highlighted.

B TRADITIONAL LEARNING
All traditional graph-level learning publications discussed in this section are summarized in Table
2.

C GRAPH-LEVEL DEEP NEURAL NETWORKS (GL-DNNS)
The representative GL-DNNs mentioned in this section are summarized in Table 3.

C.1 CNN-based GL-DNNs
There are two main branches of CNN-based graph-level learning. The first branch is illustrated
in Fig. 9 (A), which sorts nodes and arranges the node features to form a concentration matrix as
the grid-structured data for training the CNNs. As a second branch, researchers have developed a
CNN-guided neural network version of an MPK, which is shown in Fig. 9 (B).
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Table 2. Summary of Traditional Graph-level Learning Methods.

Subsection Model Year Method Venue Language Code Repository

Graph
Kernels

Message
Passing
Kernels

2009 NHK[1] ICDM Python https://github.com/ysig/GraKeL
2011 WL[2] JMLR C++ https://github.com/BorgwardtLab/graph-kernels
2016 PK[3] ML MATLAB https://github.com/marionmari/propagation_kernels
2017 Global-WL[4] ICDM C++ https://github.com/chrsmrrs/glocalwl
2019 P-WL[5] ICML Python https://github.com/BorgwardtLab/P-WL

ShortestPath
Kernels

2005 SPK[6] ICDM Python https://github.com/ysig/GraKeL
2017 SPK-DS[7] EMNLP - -

Random
Walk
Kernels

2003 RWK[8] LNAI Python https://github.com/jajupmochi/graphkit-learn
2004 ERWK[9] ICML Python https://github.com/jajupmochi/graphkit-learn
2010 SOMRWK[10] JMLR Python https://github.com/ysig/GraKeL

Optimal
Assignment
Kernels

2005 OAK[11] ICML - -
2013 PS-OAK[12] NeurIPS Python https://github.com/zju-3dv/multiway
2015 GE-OAK[13] KDD - -
2015 TAK[14] SIMBAD - -

Subgraph
Kernels

2009 Graphlet[15] AISTATS Python https://github.com/ysig/GraKeL
2010 NSPDK[16] ICML Python https://github.com/fabriziocosta/EDeN
2012 SMK[17] ICML C++ https://github.com/fapaul/GraphKernelBenchmark

Subgraph
Mining

Frequent
Subgraph
Mining

2000 AGM[18] ECML PKDD C++ https://github.com/Aditi-Singla/Data-Mining
2001 FSG[19] ICDM C++ https://github.com/NikhilGupta1997/Data-Mining-Algorithms
2002 gSpan[20] ICDM Python https://github.com/betterenvi/gSpan

Discrimina
-tive

Subgraph
Mining

2008 LEAP[21] SIGMOD - -
2009 CORK[22] SDM - -
2010 gMLC[23] ICDM - -
2010 gSSC[24] KDD - -
2011 gPU[25] ICDM - -
2014 gCGVFL[26] ICDM - -

Non-Learnable
Graph

Embedding

2017 FGSD[27] NeurIPS Python https://github.com/vermaMachineLearning/FGSD
2018 AWE[28] ICML Python https://github.com/nd7141/AWE
2019 LDP[29] ICLR RLGM Python https://github.com/Chen-Cai-OSU/LDP

2020 SLAQ[30] WWW Python https://github.com/google-research/google-research/tree/
master/graph_embedding/slaq

2021 VNGE[31] WWW Python https://github.com/xuecheng27/WWW21-Structural-Information
2021 A-DOGE[32] ICDM Python https://github.com/sawlani/A-DOGE

Table 3. Summary of Graph-Level Deep Neural Networks (GL-DNNs).

Model Year Method Venue Language Code Repository

Skipgram
-Based

2016 Subgraph2vec[33] KDD MLG Python https://github.com/MLDroid/subgraph2vec_tf
2017 Graph2vec[34] KDD MLG Python https://github.com/MLDroid/graph2vec_tf
2018 GE-FSG[35] SDM Python https://github.com/nphdang/GE-FSG

RNN-
Based

2016 GGNN[36] ICLR Python-Tensorflow https://github.com/Microsoft/gated-graph-neural-network-samples
2018 GAM[37] KDD Python-Pytorch https://github.com/benedekrozemberczki/GAM
2018 SAN[38] AAAI - -
2018 NetGAN[39] ICML Python-Tensorflow https://github.com/danielzuegner/netgan
2018 GraphRNN[40] ICML Python-Pytorch https://github.com/snap-stanford/GraphRNN

CNN-
Based

2016 PATCHYSAN[41] ICML Python https://github.com/tvayer/PSCN
2016 DCNN[42] NeurIPS Python https://github.com/jcatw/dcnn
2017 ECC[43] CVPR Python-Pytorch https://github.com/mys007/ecc

2018 KCNN[44] ICANN Python-Pytorch https://github.com/giannisnik/
cnn-graph-classification

CapsNet-
Based

2018 GCAPSCNN[45] WCB Python https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks
2019 CapsGNN[46] ICLR Python-Pytorch https://github.com/benedekrozemberczki/CapsGNN
2019 PatchyCaps[47] Arxiv Python https://github.com/BraintreeLtd/PatchyCapsules

D GRAPH-LEVEL GRAPH NEURAL NETWORKS (GL-GNNS)
We also illustrate the contrastive learning-based approaches (see Section D.1). In addition, we
investigate the expressivity (see Section D.2), generalizability (see Section D.3), and explainability
(see Section D.4) of GL-GNNs. Please refer to Table 4 for the GL-GNNs discussed in this section.
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Fig. 9. This figure shows two ways of tentative exploration by CNN-based GL-DNNs on graph-structured
data.

D.1 Contrastive Learning-Based GL-GNNs
Contrastive learning [82] is a data augmentation method that creates new, plausible instances
by transposing existing data without affecting the semantics. Investigating contrastive learning
for GL-GNNs is significant since GL-GNNs are data-driven models that will always encounter
bottlenecks given insufficiently labeled graphs.

Graph Contrastive Learning (GraphCL) [72] defines four approaches to creating new instances
as augmentation data: (1) node dropping, which randomly removes a proportion of nodes from the
graph; (2) edge perturbation, which randomly adds or removes a certain percentage of edges from
the graph; (3) feature masking, where some of the features of some nodes are randomly masked;
and (4) subgraphs, where subgraphs are taken from the graph. To be noticed, the newly-produced
instances must be labeled as the same class as the source graph. InfoGraph [73], for example,
samples subgraphs 𝑔𝑚 from a source graph G as new instances. A GL-GNN encoderH𝜙 with some
parameters 𝜙 is then used to generate graph-level representations of 𝑔𝑚 and G, denoted as h𝜙𝑔𝑚
and h𝜙G . InfoGraph’s learning objective is to maximize the mutual information between h𝜙G and all
h𝜙𝑔𝑚 , 𝑔𝑚 ∈ G. This can be brought of as an evaluation of the statistical dependencies between two
variables. Formally:

H𝜙 ,H𝜓 = argmax
𝜙,𝜓

∑︁
G∈G

1
|{𝑔𝑚}|

∑︁
𝑔𝑚∈G

𝐼𝜙,𝜓

(
h𝜙𝑔𝑚 ; h

𝜙

G

)
, (32)

where H𝜓 is the mutual information estimator with the parameters𝜓 , and 𝐼𝜙,𝜓 (·, ·) measures the
mutual information.
Similarly, Graph Contrastive Coding (GCC) [74] samples subgraphs 𝑔1, ..., 𝑔𝑀 from the graph

dataset G = {G1, ...,G𝑁 } as new instances. The embeddings of the subgraphs 𝑔𝑚 and graph G𝑛
produced by the GL-GNN are denoted as h𝑔𝑚 and hG𝑛

, respectively. In the GL-GNN, a GCC employs
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Table 4. Summary of Graph-Level Graph Neural Networks (GL-GNNs).

Model Year Method Venue Language Code Repository

Message
Passing
Neural

Networks

2015 Fingerprint[48] NeurIPS Python-Tensorflow https://github.com/HIPS/neural-fingerprint
2016 GraphSim[49] NeurIPS Python-Tensorflow https://github.com/clvrai/Relation-Network-Tensorflow
2017 MPNN[50] ICML Python-Pytorch https://github.com/priba/nmp_qc
2017 DTNN[51] NC Python-Tensorflow https://github.com/atomistic-machine-learning/dtnn
2019 GIN[52] ICLR Python-Pytorch https://github.com/weihua916/powerful-gnns
2019 K-GNNs[53] AAAI Python-Pytorch https://github.com/chrsmrrs/k-gnn
2019 PPGN[54] NeurIPS Python-Tensorflow https://github.com/hadarser/ProvablyPowerfulGraphNetworks
2019 RP[55] ICML Python-Pytorch https://github.com/PurdueMINDS/RelationalPooling
2021 FGNN[56] ICLR Python-Pytorch https://github.com/mlelarge/graph_neural_net
2021 SWL[57] ICML Python-Pytorch https://github.com/twitter-research/cwn
2021 CWN[58] NeurIPS Python-Pytorch https://github.com/twitter-research/cwn
2021 RNI[59] IJCAL - -

Subgraph
-Based

2020 SubGNN[60] NeurIPS Python-Pytorch https://github.com/mims-harvard/SubGNN
2021 SUGAR[61] WWW Python-Tensorflow https://github.com/RingBDStack/SUGAR
2021 NGNN[62] NeurIPS Python-Pytorch https://github.com/muhanzhang/nestedgnn
2022 GNN-AK[63] ICLR Python-Pytorch https://github.com/LingxiaoShawn/GNNAsKernel
2022 GraphSNN[64] ICLR Python-Pytorch https://github.com/wokas36/GraphSNN
2022 ESAN[65] ICLR Python-Pytorch https://github.com/beabevi/esan
2022 GSN[66] TPAMI Python-Pytorch https://github.com/gbouritsas/GSN

Kernel
-Based

2019 GNTK[67] NeurIPS Python https://github.com/KangchengHou/gntk

2019 DDGK[68] WWW Python-Tensorflow https://github.com/google-research/google-research/
tree/master/graph_embedding/ddgk

2020 GCKN[69] ICML Python-Pytorch https://github.com/claying/GCKN
2020 RWNN[70] NeurIPS Python-Pytorch https://github.com/giannisnik/rwgnn
2021 GSKN[71] WWW Python-Pytorch https://github.com/YimiAChack/GSKN

Contrastive
-Based

2020 GraphCL[72] NeurIPS Python-Pytorch https://github.com/Shen-Lab/GraphCL
2020 InfoGraph[73] ICLR Python-Pytorch https://github.com/fanyun-sun/InfoGraph
2020 GCC[74] KDD Python-Pytorch https://github.com/THUDM/GCC
2020 MVGRL[75] ICML Python-Pytorch https://github.com/kavehhassani/mvgrl
2021 JOAO[76] ICML Python-Pytorch https://github.com/Shen-Lab/GraphCL_Automated

Spectral
-Based

2016 ChebNet[77] NeurIPS Python-Tensorflow https://github.com/mdeff/cnn_graph
2021 GNNTFS[78] JMLR - -
2021 GNNMatlang[79] ICML Python-Tensorflow https://github.com/balcilar/gnn-matlang
2021 ARMA[80] TPAMI Python-Pytorch https://github.com/dmlc/dgl/tree/master/examples/pytorch/arma
2021 UFG[81] ICML Python-Pytorch https://github.com/YuGuangWang/UFG

InfoNCE loss [83] as the learning objective, that is:

L =
∑︁
G𝑛∈G

− log

∑
𝑔𝑚∈G𝑛

exp
(
h⊤
G𝑛

h𝑔𝑚/𝜏
)

∑𝑀
𝑖=0 exp

(
h⊤
G𝑛

h𝑔𝑖 /𝜏
) , (33)

where 𝜏 is the temperature hyper-parameter. If 𝑔𝑚 ∈ G𝑛 , the InfoNCE aims to maximize the
similarity between h𝑔𝑚 and hG𝑛

. Otherwise, it separates h𝑔𝑚 and hG𝑛
as far away in the semantic

space as possible. Hassani et al. [75] extended graph contrastive learning to the multi-view scenario.
Here, each graph view is regarded as an independent instance. This work maximizes the mutual
information between a graph view and other views of the same graph. Recently, a contrastive-based
GL-GNN MolCLR [84] adopts three augmentation strategies (i.e., node drops, edge drops, and
subgraph removal) for achieving benchmark results on 10 million unique molecules.
There are several ways to generate new instances for graph contrastive learning, which raises

the question of how to choose the most suitable method for the dataset one is working with. Joint
augmentation optimization (JOAO) [76] was developed to address this challenge by automating
the search for a proper graph data augmentation method. JOAO trains a probability matrix that
can be iteratively updated to select the optimal data augmentation approach. Its performance is
competitive.
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D.2 The expressivity of GL-GNNs
As the cutting-edge technology for graph-level learning, people want to explore the power of GL-
GNNs for distinguishing graphs —namely, they want to investigate the expressivity of GL-GNNs.
Practitioners generally employ a representative MPK of the 1-WL algorithm [2, 85] to evaluate the
expressivity of standard GL-GNNs (i.e., MPNNs) since MPNNs are the neural network versions of
MPKs. The intimate connection between GL-GNNs and 1-WL is exploited in the Graph Isomorphism
Network (GIN) [52]. This framework shows the upper expressivity bound of an MPNN equals the
1-WL algorithm. Several research teams have subsequently proved that MPNNs equivalent to 1-WL
can not distinguish some substructures in graphs (e.g., cycles, triangles, and Circulant Skip Links)
[55, 86, 87]. However, these indistinguishable substructures play a significant role in learning social
network and chemical compounds graphs [88]. To break the 1-WL expressivity limitation, the
expressivity of GL-GNNs has been empowered through 𝐾-WL, convolution enhancement, and
feature enrichment.

D.2.1 𝐾-WL. A complex variant of 1-WL is the 𝐾-WL algorithm, which identifies more substruc-
tures in graphs by relabeling a set of 𝐾 vertices. Morris et al. [53] employed MPNNs dealing with
𝐾-dimensional tensors to apply 𝐾-WL by neural networks, that is 𝐾-GNN. 𝐾-GNN achieved the
expressivity approximately near but slightly weaker than the 𝐾-WL, but its computational cost
increases exponentially with 𝐾 since it needs to calculate 𝐾-ranked tensors. To avoid processing
high-dimensional tensors, Provably Powerful Graph Networks (PPGN) [54] adopts a variant of
the 2-WL algorithm (i.e., 2-FWL [89]) for designing GL-GNNs and achieves the expressivity over
3-WL. Further, PPGN replaces the relabel function in 2-FWL with a matrix multiplication based on
a single quadratic operation. Similarly, Folklore Graph Neural Networks (FGNN) [56] implements
2-FWL through matrix operations on tensors, pursuing the expressive power as 3-WL. Despite these
common efforts on 𝐾-WL equivalence GL-GNNs, the majority of them theoretically exceed 1-WL
but do not empirically exceed 1-WL [90]. This weak performance by 𝐾-WL equivalent GL-GNNs is
due to two main reasons which are explained next.

D.2.2 Convolution Enhancement. One reason for the failure of the 𝐾-WL approaches is that they
break the local updates of MPNNs [91], i.e., they no longer update vertices based on neighborhood
information. In practice, GL-GNNs require local updates to preserve the inductive bias property of
the graph convolutions [91]. Therefore, some researchers have explored more powerful GL-GNNs
by upscaling the graph convolutions yet preserving the local updates. Alon and Yahav [92] noticed
that the majority of GL-GNNs do not capture the long-range interactions between nodes because the
number of convolutional layers is limited by over-smoothing issues —that is, the node embeddings
tend to be similar after multiple aggregations. However, long-range interactions can influence the
discriminativeness of graphs. For example, methylnonane is identified by the atoms posited in
the compound’s two end sides. To address this issue, these researchers appended a fully linked
adjacency matrix to the convolutional layer which aggregates the long-range information without
violating any local updates. Another powerful tool for enhancing the convolution layer is the matrix
query language (MATLANG) [93, 94]. MATLANG strengthens a GL-GNN so that it can recognize
more special substructures through its matrix operations, thereby reaching 3-WL expressivity.
Inspired by this work, Balcilar et al. [79] added MATLANG to the convolutional layer, while Greets
and Reutter [95] evaluated the expressiveness of GL-GNNs through MATLANG instead of the 1-WL
algorithm.

D.2.3 Feature Enrichment. Another reason that 𝐾-WL methods outperform 1-WL in theory but
do not achieve superior performance in experiments is that they ignore the role of node features.
As complementary information for graph structures, node features allow almost all graphs to
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be discriminated by 1-WL GL-GNNs. Some practitioners have emphasized that considering node
features can also improve the expressiveness of GL-GNNs, rather than just focusing on graph
structures. Murphy et al. [55] annotated a unique position descriptor for each node, that is, sorting
all nodes. Adopting these position descriptors as node features can help a 1-WL GL-GNN to better
handle featureless graphs and identify more structures. To maintain permutation-invariant of
graph-level learning, all permutations of node order should be enumerated and the average results
should be taken. Similarly, Colored Local Iterative Procedure (CLIP) [96] sorts the nodes in a
substructure and gives them a local position descriptor for feature enrichment. In addition, both
Sato et al. [97] and Abboud et al. [59] insert random features into nodes giving rise to stable and
powerful GL-GNNs.

D.2.4 High-order Neural Networks. Recently, researchers have tried to improve the expressivity of
GL-GNNs through algebraic topology. This is because equipping graphs as a geometric structure
can preserve more valuable properties. Cellular GL-GNNs [57, 58] perform MPNNs on cell com-
plexes, an object including hierarchical structures (e.g., vertices, edges, triangles, tetrahedra). By
replacing graphs with cell complexes, cellular GL-GNNs benefits from the better computational
fabric for larger expressivity. Furthermore, sheaf neural networks [98, 99] decorate a graph with a
geometrical structure, sheaf, which constructs vector space for each node and edge and applies
linear transformations among these spaces. A correct sheaf setting will allow an MPNN to pass
messages along a richer structure. Thus, linearly separate embeddings can be learned, which will
enhance the expressive power of GL-GNNs.

D.3 The generalizability of GL-GNNs
Real-world applications with graph data tend to involve complex scenarios, such as needing to
train a model with only a small amount of labeled data that can ultimately perform well with a
large-scale unlabeled test (i.e., size shift) or using only a few labeled training graphs to fit the bulk
of unlabeled test graphs. The ability to generalize GL-GNNs is hence a crucial aspect of dealing
with these challenges.

D.3.1 Size Generalization. Sinha et al. [100] stress the importance of generalizing GL-GNNs and
presented evaluation criteria for this. Xu et al. [101] theoretically explain that GL-GNNs have better
size generalization capabilities than MLPs and can extrapolate trained models to test data that is
different from the training set. To this end, they presented a trick for MPNNs where the graph’s
vertices are updated by minimizing the aggregated information instead of through summation. This
trick improves generalization ability by altering the learning process from one that is non-linear to
one that is linear. Yehudai et al. [102] theoretically and empirically found the generalization ability
of GL-GNNs as the discrepancies in substructures between large and small graphs grows. To solve
this problem, they forced the GL-GNN to pay more attention to the substructures that are hidden
in large unlabeled graphs but rarely appear in small labeled graphs. SizeShiftReg [103] constrains
GNNs to be robust to size-shift through a regularization approach. SizeShiftReg coarsens the input
graph and minimizes the discrepancy between the distribution of the original and coarsened graph
embeddings.

D.3.2 Few-shot Learning. In considering few-shot learning scenarios, Ma et al. [104] found that
there are also differences in the substructures between a few labeled graphs and a large number of
unlabeled graphs. This is because a statistical sample of the training data is too small to represent
the substructural distributions of the whole dataset. Thus, they paid more attention to capturing
substructures in unseen unlabeled graphs. Chauhan et al. [105] clusters graphs based on their
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spectral properties, to produce super-class graphs. Graph-level representations can be learned from
super-class graphs as they have excellent generalization.

D.4 The explainability of GL-GNNs
The black-box nature of deep neural networks limits the applicability of GL-GNNs to situations
where trust is not an absolutely crucial requirement. Making GL-GNNs explain their predictions
in a way that is more interpretable to humans is therefore of great significance to extending the
research of GL-GNNs. Studies on GL-GNNs need to shed insights into how they handle node
features and topologies when it comes to predictions. They also need to more clearly demonstrate
how the models identify significant subgraphs and features. Methods to explain GL-GNNs can be
roughly divided into two categories. One group involves methods that explain the prediction of
each input graph; the other group of methods captures common patterns in the predictions of a set
of graphs as explanations.

D.4.1 A Single Graph. There are three ways to understand GL-GNNs predictions based on a single
graph: they can be perturbation-based, model-proxy-based, or gradient-based. Perturbation-based
methods mask nodes, edges, or substructures in the input graph to generate new predictions. These
are then compared to the original input prediction to highlight the important features or structures
influencing the GL-GNNs.

For example, GNNExplainer [106] masks nodes and edges by changing the feature and adjacency
matrices, to form masked graphs. An input graph and its masked graphs are predicted by a trained
GL-GNN, while GNNExplainer aims to find the masked graphs with maximized mutual information
between its’ prediction and the input’s prediction. This foundmasked graph is the one that preserves
the most significant substructures to the GL-GNN’s given prediction. Alternatively, SubgraphX
[107] samples a group of nodes’ neighborhoods as subgraphs. A trained GL-GNN is then used to
compute Shapley values [108] for all the sampled subgraphs. These values represent each subgraph’s
contribution to the GL-GNN’s prediction. PGExplainer [109] trains an MLP to determine which
edges are valuable to a GNN’s prediction and then removes any irrelevant edges to form a new
graph. Subsequently, the original and the newly-formed graph are fed into a trained GL-GNN so as
to optimize an MLP by maximizing the mutual information between their predictions.
Model-proxy-based methods utilize a simpler surrogate model to approximate the predictions

of GL-GNNs. PGM-Explainer [110] adopts an explainable Bayesian network [111] to calculate the
relationship dependencies between nodes, so as to generate a probability graph that describes the
input graph.

Gradient-based approachesmeasure the importance of different input features by back-propagating
the gradients of the neural networks. Gradient-weighted Class Activation Mapping (Grad-CAM)
[112], for example, takes the gradient value of each node embedding in a graph classification
task as a measurement of the nodes’ significance to the GL-GNN’s prediction. Grad-CAM then
measures this subgraph’s importance to the prediction by averaging the gradient values of all node
embeddings from the subgraph.

D.4.2 A Set of Graphs. What is common to all the above methods is that they can only learn
independent explanations for each instance of a graph [106, 113]. However, often the predictions of
GL-GNNs made by GL-GNNs are based on a set of graphs. Thus, understanding the rules or graph
patterns that a GL-GNN mines from a set of graphs can provide high-level and generic insights
into the explainability of GL-GNNs. XGNN [114] employs a reinforcement learning guided graph
generator that generates a graph pattern for different graphs in the same class. The graph generator
is trained via policy gradient to maximize the certain label prediction [115]. Recently, Azzolin et
al. [116] set a kernel function between extracted subgraphs and trainable prototypes and feed the
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Table 5. Summary of Graph Pooling.

Model Year Method Venue Language Code Repository

Global-
Numeric

2020 PNA[117] NeurIPS Python-Pytorch https://github.com/lukecavabarrett/pna
2020 TextING[118] ACL Python-Tensorflow https://github.com/CRIPAC-DIG/TextING
2020 SOPOOL[119] TPAMI Python-Pytorch https://github.com/divelab/sopool

Global-
Attention 2016 Set2Set[120] ICLR Python-Pytorch https://github.com/pyg-team/pytorch_geometric

Global-
CNN

2016 PATCHYSAN[41] ICML Python https://github.com/tvayer/PSCN

2018 KCNN[44] ICANN Python-Pytorch https://github.com/giannisnik/
cnn-graph-classification

Global-
Top K

2018 SortPool[121] AAAI Python-Pytorch https://github.com/muhanzhang/pytorch_DGCNN
2020 GSAPool[122] WWW Python-Pytorch https://github.com/psp3dcg/gsapool

Hierarchical-
Clustering

2014 DLCN[123] ICLR - -
2015 GraphCNN[124] Arxiv Python-Tensorflow https://github.com/mdeff/cnn_graph
2018 DiffPool[125] NeurIPS Python-Pytorch https://github.com/RexYing/diffpool
2019 EigenPool[126] KDD Python-Pytorch https://github.com/alge24/eigenpooling
2020 StructPool[127] ICLR Python-Pytorch https://github.com/Nate1874/StructPool

2020 MinCutPool[128] ICML Python-Tensorflow https://github.com/FilippoMB/Spectral-Clustering
-with-Graph-Neural-Networks-for-Graph-Pooling

2021 GMT[129] ICLR Python-Pytorch https://github.com/JinheonBaek/GMT

Hierarchical-
Top K

2018 SHGC[130] Arxiv Python-Tensorflow https://github.com/HeapHop30/hierarchical-pooling
2019 U-Nets[131] ICML Python-Pytorch https://github.com/HongyangGao/Graph-U-Nets
2019 SAGPool[132] ICML Python-Pytorch https://github.com/inyeoplee77/SAGPool
2020 ASAP[133] AAAI Python-Pytorch https://github.com/malllabiisc/ASAP

Hierarchical-
Tree

2017 MoNet[134] CVPR Python-Pytorch https://github.com/dmlc/dgl/tree/master/examples/mxnet/monet

2019 EdgePool[135] Arxiv Python-Pytorch https://github.com/pyg-team/pytorch_geometric
/blob/master/torch_geometric/nn/pool/edge_pool.py

2022 HRN[136] IJCAL Python https://github.com/Wu-Junran/HierarchicalReporting
2022 SEP-G[137] ICML Python https://github.com/Wu-Junran/SEP

kernel value into an MLP for prediction. Finally, the trainable prototypes are assumed as the global
explanation of a set of graphs.

E GRAPH POOLING
Table 5 summarizes the graph pooling approaches introduced in this section. Moreover, we introduce
some recent investigations about the efficacy of this newly-emerging technique (see Section E.1).

E.1 The effectivity of Graph Pooling
As a downstream summarization component of GNNs, graph pooling has attracted a surge of
research interest. However, since graph pooling is so new, much work is required to investigate the
effectiveness of all the various graph pooling algorithms. Mesquita et al. [138] conducted controlled
experiments to empirically evaluate the effectiveness of clustering-based hierarchical graph pooling.
First, they adopted two opposite strategies for guiding some clustering-based hierarchical graph
pooling processes —specifically, clustering each of non-adjacent and adjacent nodes. The final
results not only show that the two strategies are comparable, they also indicate that off-the-shelf
clustering algorithms, which tend to cluster adjacent nodes, fail to improve graph pooling. As part of
the experiments, Mesquita and colleagues also replaced the learnable assignment matrix in DiffPool
[125] with an immutable probability assignment matrix: uniform, normal and Bernoulli distributions
were selected. The experimental results verify that the performance of fixed-probability-assignment-
matrix-guided graph pooling is not weaker than that of DiffPool. Overall, they concluded that the
current clustering-based hierarchical pooling may not be particularly effective and matched this
will a call for more sanity checks and ablation studies of the current graph pooling algorithms to
fairly evaluate their contributions. Another study on Pooled Architecture Search (PAS) [139] was
dedicated to investigating the effectiveness of graph pooling —this time with different datasets. The
results of the study show that the effectiveness of graph pooling algorithms is data-specific, that
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is to say, different input data needs to be handled by a suitable graph pooling algorithm. For this
reason, PAS includes a differentiable search method to select the most appropriate graph pooling
algorithm for the given input data.

F DOWNSTREAM TASKS AND APPLICATIONS
Fig. 10 summarizes some common downstream tasks and applications in graph-level learning.

Graph-level Learning

Graph Comparison

Graph Classification

Graph Regression

Graph Generation

Subgraph Discovery

Applying Complex Scenarios

Semantic Inference

Semantic Metrics

Cross-language Information Retrieval

Multi-view GL

Multi-task GL

Semi-supervised GL

Positive and Unlabeled GL

Graph Stream GL

Drug Discovery

Molecular Structure Search

Social Event Detection

Molecule Generation

Physical System Modeling

Scene Graph Generation

Program Debugging
Molecule/Protein Classification

Text Categorization

Image Recognition

Medical Diagnosis

Product Recommendation

Fake News Detection

IQ Test

Fig. 10. An overview of graph-level learning downstream tasks and their practical applications.

G FUTURE DIRECTIONS
G.1 Graph-level Fairness Learning
The bias in data can easily lead to issues with fairness, where machine learning models make
discriminatory predictions towards certain demographic groups based on sensitive attributes such
as race. One feasible solution to debiasing the data is to conduct a competitive game between a
biased and a debiased encoder. The game is won when the fairness-aware debiaser is able to cheat
its competitor [140, 141]. Other algorithms add constraints to the loss function to counterbalance
model performance with fairness [142, 143].
Opportunities: Most work on improving the fairness of models have involved node-level tasks

and single graphs [144]. However, injecting an awareness of fairness into graph-level learning
algorithms is also critical work. Some graph-level learning tasks, such as disease prediction and
fraud detection, demand fair results if they are to accurately guide people’s decision-making. One
challenge to be overcome in attempting to make graph-level learning fair is that the representative
GL-GNNs, i.e., MPNNs, will tend to produce unfair predictions in the face of data bias because the
message passing mechanisms actually spread the bias via neighborhood structures [145]. We refer
readers who are interested in this topic to [146], which gives an exhaustive introduction to fairness
learning with graph-structured data.
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