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Abstract
We present FLEW, an in-house high-fidelity solver for direct numerical simulation (DNS) of turbulent compressible flows 
over arbitrary shaped geometries. FLEW solves the Navier–Stokes equations written in a generalized curvilinear coordinate 
system, in which the surface coordinates are non-orthogonal, whereas the third axis is normal to the surface. Spatial dis-
cretization relies on high-order finite-difference schemes. The convective terms are discretized using an hybrid approach, 
combining the near-zero numerical dissipation provided by central approximations with the robustness of weighted essentially 
non-oscillatory (WENO) schemes, required to capture shock waves. Central schemes are stabilized using a skew-symmetric-
like splitting of convective derivatives, endowing the solver with the energy-preserving property in the inviscid limit. The 
maximum order of accuracy is eighth for central schemes (also used for viscous terms discretization) and seventh for WENO. 
The code is oriented to modern high-performance computing (HPC) platforms thanks to message passing interface (MPI) 
parallelization and the ability to run on graphics processing unit (GPU) architectures. Reliability, accuracy and robustness of 
the code are assessed in the low-subsonic, transonic and supersonic regimes. We present the results of several benchmarks, 
namely the inviscid Taylor–Green vortex, turbulent curved channel flow, transonic laminar flow over a NACA 0012 airfoil and 
turbulent supersonic ramp flow. The results for all configurations proved to be in excellent agreement with previous studies.

Keywords  Compressible flows · Direct numerical simulation · Energy preserving · Generalized curvilinear coordinates · 
Shock wave/boundary layer interaction

1  Introduction

Compressible flows over curved surfaces are ubiquitous in 
the aerospace field, both in external (e.g., aircraft wings) 
and internal (e.g., turbomachinery) configurations. The 
dynamics of these flows involves complex phenomena, such 
as shock wave/boundary layer interactions, non-uniform 

pressure gradients and centrifugal instabilities. Common 
feature of these phenomena is the generation of a highly 
unsteady flow field. Besides requiring further fundamental 
research, these phenomena make it challenging to predict 
turbulence intensities, skin friction, wall pressure fluctua-
tions and heat transfer. Concerning technology applications, 
mispredicted flow instabilities can be detrimental to struc-
tural integrity and aerodynamic performance. A key tool in 
this context is the direct numerical simulation (DNS), whose 
predictive capabilities can aid both fundamental research 
and technological development. However, numerical algo-
rithms for compressible flows simulations are less standard-
ized then those for incompressible flows [1]. The hyperbolic 
nature of compressible Navier–Stokes equations allows for 
the presence of propagating disturbances and discontinui-
ties, which interact with the underlying turbulence. Accu-
rate simulations of such problems are challenging due to 
the contradictory requirements of numerical methods suited 
for turbulence, which must minimize any numerical dissipa-
tion that would otherwise overwhelm the small scales, and 
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shock-capturing schemes, which must introduce numerical 
dissipation to stabilize the solution across discontinuites [2].

Further complications arise from geometric complexities. 
These are typically addressed using local mesh refinement 
in Cartesian frameworks or unstructured meshes, which, in 
turn, causes high computational cost or decreased accuracy, 
respectively [3]. In recent years, the immersed boundary 
method (IBM) has gained popularity and it has been suc-
cessfully used in conjunction with turbulence models to 
simulate high-Reynolds-number flows [4]. Within DNS, 
though, the IBM struggles to provide a sufficiently accurate 
description of the boundary layer, especially in presence of 
separated flow [5]. A different approach to deal with com-
plex geometries relies on the use of body-fitted meshes in 
a generalized curvilinear coordinate framework. This tech-
nique ensures most accurate simulation of the fluid dynamics 
near the wall and straightforward implementation of high-
order finite-difference (FD) schemes.

Among FD approximations, central schemes are prefer-
able as they do not introduce any artificial dissipation, but 
require special care for their susceptibility to numerical 
instability. This non-linear instability is due to the accu-
mulation of aliasing errors resulting from discrete evalua-
tion of the convective terms [6]. To address this problem, 
Pirozzoli [7] proposed an energy-preserving formulation of 
convective terms, based on fully splitting the derivatives 
of triple products through the product rule. This technique 
allows to capture the whole range of turbulence scales with-
out needing any additional stabilization, such as artificial 
diffusivity [8], explicit filtering of physical variables [9] 
or relying solely on WENO schemes for convective terms 
discretization [10]. For years these stabilization strategies 
have set the standards for DNS of compressible flows, espe-
cially in the case of body-fitted grids, as most of the existing 
energy-preserving schemes are only formulated in Cartesian 
coordinates [11]. Another appealing property of energy-pre-
serving formulations is that they can be efficiently combined 
with shock-capturing methods, yielding hybrid schemes that 
currently represent an optimal strategy for the computation 
of shocked flows [12].

Within this framework, we developed the high-fidelity 
solver FLEW, tailored for DNS of turbulent compressible 
flows over complex geometries. The solver relies on a third-
order Runge–Kutta scheme for time integration and high-order 
FD methods for spatial discretization. Using generalized cur-
vilinear coordinates, a body-fitted grid is transformed from 
the physical space, where its cells are skewed, to the compu-
tational space, where it appears as a regular hexahedron with 
cubic cells. This process allows to approximate spatial deriv-
atives with FD methods originally developed for Cartesian 
frameworks. The switch between physical and computational 
space is carried out through the metric terms, which are com-
puted by numerically deriving the physical mesh coordinates. 

FLEW employs message passing interface (MPI) paralleliza-
tion and supports graphics processing unit (GPU) architec-
tures, essential requirements to access the latest generation of 
high-performance computing (HPC) clusters. This paper is 
organized as follows. In Sect. 2 we describe the key points of 
the implemented algorithms, providing a thorough explanation 
of how energy-preserving schemes are tailored to a curvilinear 
framework in a computationally efficient manner. In Sect. 3 
we present an extensive validation of the code, demonstrating 
its capabilities in a wide range of flow regimes and configura-
tions. Results of the inviscid Taylor–Green vortex, turbulent 
curved channel flow, transonic laminar airfoil flow and super-
sonic turbulent ramp flow are discussed.

2 � Methodology

2.1 � Balance Equations

FLEW solves the compressible Navier–Stokes equations for 
a perfect gas written in generalized curvilinear coordinates. 
The Cartesian coordinates (xi) of a body-fitted grid are trans-
formed into boundary-conforming curvilinear coordinates (�j) 
through the mapping xi(�j) , with i, j = 1, 2, 3 . Thus, the bound-
ary surface is composed of segments of coordinate surfaces 
�j = const . In such a framework, assuming a stationary grid, 
the Navier–Stokes equations read

Here and throughout the paper the repeated index convention 
is used to indicate summation. The vectors of conservative 
variables, convective and viscous fluxes are

where E = cvT + uiui∕2 is the total energy, H = E + p∕� the 
total enthalpy, ui the velocity component in the ith Cartesian 
direction, ûj = uiĴji the velocity component (normalized by 
J) in the jth curvilinear direction, with Ĵji = Jji∕J , being 
Jji = ��j∕�xi the Jacobian matrix of the transformation �j(xi) , 
and J its determinant. The constitutive equations defining the 
viscous stress tensor and heat flux vector are
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𝜌uiûj + pĴji
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where � is the dynamic viscosity and � = cp�∕Pr the ther-
mal conductivity. Due to the perfect gas assumption, the 
Prandtl number is constant and fixed to Pr = 0.72 . The 
system is completed by the equation of state p = �RT  . 
For the viscosity–temperature relationship, both the power 
law and Sutherland’s law are available. The Navier–Stokes 
equations are solved in non-dimensional form. From 
the minimal set of four independent reference variables, 
�0, T0, l0,R , the other reference quantities are derived as 
p0 = �0RT0, u0 =

√
RT0, �0 = �0u0l0, t0 = l0∕u0 , where l0 

and t0 are the reference length and time.

2.2 � Spatial Discretization

FLEW relies on high-order FD schemes designed for uni-
form stencils. By recasting the governing equations from 
Cartesian into curvilinear form (1), skewed input cells are 
stretched into cubic uniform cells, allowing the application 
of standard FD schemes. In the following, we will refer to 
the Cartesian system (xi) as ‘physical space’ and to the cur-
vilinear one (�j) as ‘computational space’.

2.2.1 � Convective Terms

The convective derivative in the jth direction (temporarily 
omitting pressure forces) can be expressed as

where � is the transported scalar quantity, i.e., 1 for the con-
tinuity equation, ui for the momentum equation, H for the 
energy equation. Convective derivatives are manipulated 
according to the work of Pirozzoli [13] who, after assessing 
several energy-preserving types of splitting, proposed the 
following as the most robust:

The numerical discretization relies on identifying a numeri-
cal flux at the intermediate nodes, such that

An approximation of convective derivatives that is locally 
conservative (and computationally efficient) is based on the 
following expression for the numerical flux:
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where

is the two-point, three-variable discrete averaging operator, 
a
�
 are the standard coefficients for central approximations 

of the first derivative, and 2L is the order of accuracy, which 
can be set by the user from second to eighth. The scaling of 
the order of accuracy was verified by Pirozzoli [13], who 
performed a grid sensitivity study using the same numerical 
scheme employed here.

2.2.2 � Metric Terms

The metric terms are the elements of the Jacobian matrix, 
Jji = ��j∕�xi , of the coordinate transformation �j(xi) . Being 
generally unknown, Jji is obtained by inverting the Jacobian 
matrix of the inverse transformation xi(�j) . That is

For the present purposes, we assume that the coordinate 
transformation is locally invertible and does not depend on 
time. The inverse matrix �xi∕��j is computed by numeri-
cally deriving the Cartesian coordinates of the mesh along 
each �j direction. A crucial aspect in evaluating metrics is to 
preserve the freestream. To address this problem, we use the 
same approximations as employed for the convective terms. 
Thus, metric terms are evaluated at each node N  as

where (xi)N  are the Cartesian coordinates of the grid node 
N  , and f̂j;1∕2 is the numerical flux taken at the intermediate 
node. The subscript j; 1/2 denotes a shift by 1/2 about N  
in the positive jth direction. Spacings in the computational 
space are set to be all unity, thus grid nodes correspond to 
integer values of �j . The numerical flux is computed as
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where the accuracy order must match that of convective 
derivatives. Using these scheme, the following metric iden-
tities are numerically satisfied:

which is necessary and sufficient condition to ensure 
freestream preservation [9].

2.2.3 � Shock Capturing

The locally conservative formulation (7) allows straightfor-
ward hybridization of central approximations with shock-cap-
turing methods, based in FLEW on Lax–Friedrichs flux vec-
tor splitting and weighted essentially non-oscillatory (WENO) 
reconstruction. To implement such schemes, the characteristic 
form of the Euler equations must be expressed in the curvilin-
ear system �j . This is possible by introducing a metric normali-
zation such that the physical velocity components projected 
along �j appear in the vectors of convective fluxes. That is

where J̃ji are the metric terms normalized by mj (e.g., 
J̃1i = J1i∕m1 ), defined as

With such normalization, ũj = uiJ̃ji is the jth component of 
the contravariant velocity, i.e., the projection of the velocity 
vector along �j . The Jacobian matrix of the normalized flux 
vector can be diagonalized as 𝜕F̃j∕𝜕Q = Rj�jLj , where Rj 
and Lj are the right and left eigenvectors matrices, and �j is 
the diagonal matrix of the eigenvalues. For each jth direc-
tion, left and right eigenvectors are evaluated at the interface 
(denoted by the subscript j; 1/2), using the Roe’s average 
for flow variables and the arithmetic mean for metric terms. 
Positive and negative flux components are projected along 
the characteristic directions using a local Lax–Friedrichs 
flux splitting:

where ||�max
|| is the maximum eigenvalue over the entire sten-

cil. First, the characteristic fluxes are consistently normal-
ized as
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interpolation polynomials on WENO sub-stencils. Finally, 
the WENO reconstructions ĝWENO±

j
 are projected back into 

physical space, obtaining the numerical flux at the interface:

The accuracy of WENO schemes reaches up to seventh 
order. The transition between energy-preserving and shock-
capturing discretization is controlled by an improved version 
of the Ducros shock sensor [14]:

where �i is the vorticity and u0 is the reference velocity. The 
sensor is designed to be � ≈ 0 in smooth flow regions and 
� ≈ 1 in the presence of shock waves. Fixed a customized 
threshold �0 , the shock-capturing scheme is locally activated 
if 𝜃 > 𝜃0.

2.2.4 � Viscous Terms

Spatial derivatives of viscous terms are approximated using 
central schemes, which are applied in the computational 
space. Our goal is to find the analytic relation to reconstruct 
derivatives from the computational into physical space. First, 
let us consider the viscous terms in Cartesian coordinates 
and expand them to Laplacian form,

to avoid odd–even decoupling phenomena. As for the energy 
equation

The relationship between the first derivative of a generic 
variable � expressed in physical ( xi ) and computational ( �j ) 
space is obtained applying the chain-rule:
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where

Equations (21) and (22) allow us to reconstruct in physical 
space derivatives that are approximated in computational 
space, where central schemes can be applied. First and sec-
ond derivatives in the jth direction are computed at the node 
N  as

where b
�
 are the coefficients for second derivatives. The 

accuracy order ranges from second to eighth.

2.3 � Characteristic Boundary Conditions

In addition to physical boundary conditions, FLEW fea-
tures dynamic conditions based on characteristic wave rela-
tions [15], namely non-reflecting for far-field boundaries and 
reflecting for no-slip walls. Considering the boundaries at 
the coordinate surface � = const , the convective derivative 
in the � direction reads

where we split the contribution of the convective flux in 
Cartesian coordinates, Fi , from that of the metric terms, Ĵ1i , 
associated to the � direction. Expanding the product deriva-
tive, we get
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where the Jacobian matrix of the flux, 𝜕F̃1∕𝜕Q , has been 
diagonalized as outlined in paragraph 2.2.3. Exploiting the 
local one-dimensional approximation, the conservative vari-
ables are updated at the boundary according to the following 
equation:

where L1 = �1L1�Q∕�� has the physical interpretation of 
wave amplitudes associated with the characteristic field. 
Analogous considerations can be made for boundaries at 
the surface � = const.

2.4 � Time Integration

Spatial discretization leads to a semi-discrete system of ordi-
nary differential equations:

where R is the vector of the residuals. The system 
is advanced in time using a three-stage, third-order 
Runge–Kutta scheme [16]:
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3 � Validation

FLEW is designed to perform DNS for various flow con-
figurations, including the curved channel, compression ramp 
and wing airfoil. In this section, we validate the solver for 
these configurations by comparing the results to experimental 
and numerical data available in the literature. In addition, we 
use the inviscid Taylor–Green vortex on a wavy mesh as a 
benchmark.

3.1 � Inviscid Taylor–Green Vortex

The energy-preserving properties of the solver are tested using 
the inviscid Taylor–Green flow, proposed by Duponcheel 
et al. [17] as time-reversibility test. The solution is computed 
in a triply periodic domain consisting of a wavy two-dimen-
sional mesh, depicted in Fig. 1, which is extruded in the third 
dimension. The mesh is generated according to the following 
mapping [8]:

where Lx = Ly = Lz = 2� and Nx = Ny = Nz = 32 . The flow 
is initialized as follows:

(33)

x(�, �) =
� − 1

N� − 1
Lx + 0.4 sin

(
2�

� − 1

N� − 1

)
,

y(�, �) =
� − 1

N� − 1
Ly + 0.2 sin

(
4�

� − 1

N� − 1

)
,

z(�) =
� − 1

N� − 1
Lz,

(34)

� = �0

u = u0 sin(x) cos(y) cos(z)

v = −u0 cos(x) sin(y) cos(z)

w = 0

p = p0 + u2
0
[cos(2x) + cos(2y)][cos(2z) + 2]∕16

where u0 = M0c0 is the reference velocity (the Mach num-
ber is M0 = 0.01 ) and c0, p0, �0 are the reference speed of 
sound, pressure and density.

Due to the lack of viscosity, from the ordered initial con-
ditions small-scale turbulence structures are rapidly formed 
with incurred growth of vorticity. The solution is advanced 
up to time t∕t0 = 8 , at which the velocity field is reversed, and 
then further advanced up to t∕t0 = 16 (the reference time and 
length are t0 = l0∕u0 and l0 = 1 ). Based on the time-revers-
ibility property of the Euler equations, the initial conditions 
should be exactly recovered.

In Fig. 2, we display a sequence of snapshots of the flow 
field, which qualitatively show that the initial coherent struc-
tures are faithfully reproduced at the end of the simulation. 
Simulation results are depicted in Fig. 3, where we report 
the time evolution of total kinetic energy and enstrophy. The 
kinetic energy is perfectly conserved over time, showing that 
no numerical dissipation is introduced. The total enstrophy 
grows markedly up to the reversal time ( t∕t0 = 8 ), at which it 
begins to decrease following a symmetrical trend, with exact 
recovery of the initial condition at the final time ( t∕t0 = 16).

3.2 � Turbulent Curved Channel Flow

We focused on validating FLEW in the presence of pressure 
gradients due to surface curvature. For this purpose, we con-
sidered the classical study by Moser & Moin [18], where pres-
sure-driven flow in a mildly-curved channel was simulated. 
The same flow configuration was recently used by Brethou-
wer [19] as benchmark.

The computational domain is bounded by sectors of concen-
tric cylinders (a scale drawing appears in Fig 4). The curvature 
parameter is �∕rc = 1∕79 , where � is the channel half-width 
and rc is the radius of curvature measured at the centreline. 
The domain has a length of 4��∕3 in the spanwise (z) direc-
tion and subtends an angle of 0.16 rad in the azimuthal ( � ) 
direction, which yields a length of 12.64� along the centreline. 
An imposed mean-pressure gradient in the azimuthal direction 
drives the flow. No-slip isothermal conditions are imposed at 
the walls, while periodic boundary conditions are enforced in 
the azimuthal and spanwise directions, so that the simulated 
flow is the fully evolved turbulent flow in a curved channel. 
The bulk Reynolds number is Reb = �bub�∕�0 = 2600 and the 
bulk Mach number is Mb = ub∕c0 = 0.1 , where �0 and c0 are 
the viscosity and speed of sound at the wall temperature. The 
bulk density and velocity are defined as

where V is the domain volume. The computation is carried 
out with N� × Nr × Nz = 216 × 72 × 144 , leading to grid 
spacings of Δz+ = 5 , r+

c
Δ� = 10 , Δr+ = 0.2 at the wall. The 

(35)�b =
1

V ∫
V

� dV, ub =
1

�bV ∫
V

�u dV,

Fig. 1   Cross section on the x, y plane of the wavy domain for the Tay-
lor–Green vortex simulation
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mesh in the redial direction is staggered such that the wall 
coincides with an intermediate node, where the convective 
fluxes are identically zero. This approach guarantees correct 
telescoping of the numerical fluxes and exact conservation 
of the total mass, with the further benefit of doubling the 
time-step [20].

The surface curvature generates centrifugal instability, 
which breaks the symmetry in wall-normal direction. Specifi-
cally, the convex curvature of the inner wall has a stabilizing 
effect, leading to turbulence attenuation and smaller wall shear 
stress. Conversely, the concave curvature of the outer wall 
has a destabilizing effect, leading to turbulence amplification 

and larger wall shear stress. This trend is confirmed by the 
local values of friction Reynolds number, which resulted 
Re�,i = 155 at the convex (inner) wall and Re�,o = 179 at the 
concave (outer) wall. The local friction velocities are com-
puted as

where u� is the mean streamwise velocity. A global friction 
velocity can be defined as follows. The mean pressure gradi-
ent in the curved channel is (dP∕d�)∕r , which must be equal 

(36)u2
�,i

= �
�u�
�r

||||ri
, u2

�,o
= �

�u�
�r

||||ro
,

Fig. 2   Flow visualization of 
the inviscid Taylor–Green 
vortex using one isosur-
face of Q-criterion. The 
snapshots are taken at time 
t∕t0 = 0.0 (a), t∕t0 = 3.2 (b), t∕t0 = 6.4 (c), 
t∕t0 = 9.6 (d), t∕t0 = 12.8 (e), t∕t0 = 16.0 (f)



	 G. Soldati et al.

to −�u2
�
∕� . From the streamwise momentum balance we 

obtain dP∕d� = −�
(
r2
i
u2
�,i

+ r2
o
u2
�,o

)
∕
(
2rc�

)
 , hence

A comparison with the results of Moser & Moin and 
Brethouwer’s is shown in Table 1, where we report the 
local and global values of friction Reynolds number. The 
flow can be visualized in Fig. 5. The instantaneous field 
of velocity magnitude (5a) is depicted alongside two wall-
parallel slices (5b), revealing a predominance of high-speed 
streaks near the concave wall and of low-speed streaks near 
the convex one.

One-point statistics are shown in Fig. 6, where we report 
the mean velocity profile in local wall units and turbulence 
intensities. The mean velocity in the log-law region is higher 

(37)u2
�,g

=
r2
i
u2
�,i
+ r2

o
u2
�,o

2r2
c

.

at the convex wall (black line in Fig. 6a) due to normaliza-
tion with the local friction velocity, which is lower at the 
convex wall (i.e., lower wall shear stress). Velocity fluc-
tuations, especially in the azimuthal direction (red line in 
Fig. 6b), highlight amplification of turbulence near the con-
cave wall due to centrifugal instability. In general, we can 
appreciate the excellent agreement of the results.

3.3 � Transonic Laminar Airfoil Flow

Laminar flows over an airfoil are commonly employed to 
assess accuracy, stability and convergence of solution algo-
rithms for the Navier–Stokes equations. In recent years, these 
flows have also served as test cases for high-order numerical 
schemes, as in the study by Swanson [21], which we refer-
ence. Our investigation involves a two-dimensional laminar 
flow over a NACA 0012 airfoil at free-stream Mach number 
M∞ = 0.8 , Reynolds number Re = 500 (based on the chord 
length, c) and angle of attack � = 10◦ . The fore part of the 
domain has a radius of curvature 20c, and the outlet is posi-
tioned 20c downstream of the trailing edge. Four different 
grid densities are considered to analyze grid sensitivity. In 
all cases, structured meshes with C-type topology are gener-
ated using the open-source program Construct2D [22]. The 
finest mesh consists of Nx × Ny = 1280 × 512 grid points, 
with 768 cells on the airfoil clustered near the leading and 
trailing edges. The number of grid points was successively 
halved in both coordinate directions, to the coarsest mesh 
consisting of Nx × Ny = 160 × 64 . Figure 7 shows the near-
field region of the 320 × 128 grid.

No-slip adiabatic conditions are applied at the airfoil sur-
face, while non-reflective boundary conditions are employed 
at the far field. The C-mesh closure generates a computa-
tional boundary in the wake region. Wake boundary con-
ditions are handled by acting only on the ghost nodes, in 
which the solution of the corresponding internal nodes is 
set. This approach ensures that the boundary cutting through 
the domain in the wake region remains perfectly transparent 
to the flow.

Inflow conditions are such that the flow accelerates suf-
ficiently to create a small supersonic region, without forming 
a shock wave. The supersonic zone of the flow is revealed 
in the Mach contours displayed in Fig. 8, where streamline 
patterns around the airfoil are also presented. We observe 
two recirculation regions with large extent both on the suc-
tion side of the airfoil and in the wake.

The comparison of the aerodynamic coefficients 
(Table 2), as well as the distribution of surface pressure 
and skin-friction (Fig. 9), reveals a very close agreement 
between our results and Swanson’s. These results also indi-
cate that reasonably good estimates of the CL and CD can be 
achieved on fairly coarse grids.

Fig. 3   Results of the Taylor–Green vortex simulation: time evolution 
of the total kinetic energy ( K∕K0 , red line), and enstrophy ( Ω∕Ω0 , 
blue line)

Fig. 4   Scale drawing of the computational domain of the turbulent 
curved channel flow. The radius of curvature, rc , is measured at the 
centreline

Table 1   Comparison of local and global values of friction Reynolds 
number

Re�,i Re�,g Re�,o

Present DNS 155 167 179
Moser and Moin [18] 155 168 180
Brethouwer [19] 154 168 180
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Fig. 5   Instantaneous field of the velocity magnitude normalized by the bulk velocity (u∕ub) for the turbulent curved channel flow (a). Wall-paral-
lel slices of u∕ub at y+ = 15 , locally computed from the concave (b, top) and convex wall (b, bottom)

Fig. 6   One-point statistics for the turbulent cuved channel flow. Mean 
velocity profile in local wall units (a): black line refers to the convex 
wall, blue line to the concave one. Root mean square of velocity fluc-

tuations (Instantaneous field of the velocity magnitude normalized by 
the bulk velocity ): red line refers to u�,rms , blue line to ur,rms , black 
line to uz,rms

Fig. 7   Near field view of the 
320 × 128 grid for laminar flow 
over a NACA 0012 airfoil
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3.4 � Supersonic Turbulent Ramp Flow

A canonical configuration to study shock wave/boundary 
layer interactions is the compression ramp. Supersonic tur-
bulent flows over a ramp has been extensively investigated 
through wind-tunnel experiments, whereas only a few 
DNS are available in the literature for this configuration.

One of the most relevant computational study is by Wu 
& Martin [23], who performed a DNS of supersonic tur-
bulent flow over a 24◦ compression ramp. Our results are 
compared to their study, as well as to the experimental work 
of Bookey et al. [24] for the same configuration. A scale 
drawing of the computational domain is presented in Fig. 10. 
Dimensions are 29� upstream and 18� downstream of the 
corner in the streamwise direction, 2.2� in the spanwise 
direction and 6� in the wall-normal direction, where � is the 
99% thickness of the incoming boundary layer. The mesh is 
generated analitically following the procedure used by Mar-
tin et al. [25], who provides full details of the mapping in 
the relevant work. The grid is clustered near the wall in the 
wall-normal direction, and a corner singularity is avoided by 
prescribing a finite curvature at the ramp corner. The DNS 
is performed with Nx × Ny × Nz = 2432 × 256 × 160 points, 
leading to grid spacings of Δx+ ≃ 5 , Δz+ ≃ 3 and Δy+ = 0.5 
at the wall. The incoming flow conditions are M∞ = 2.9 and 
Re� = 31, 500 . A recycling–rescaling method is applied to 

Fig. 8   Mach contours and 
streamlines for the laminar 
flow over a NACA 0012 airfoil 
( 1280 × 512 grid)

Table 2   Comparison of the aerodynamic coefficients for the laminar 
flow over a NACA 0012 airfoil

Study Grid CL CD Cp Cf

Present DNS 160 × 64 0.459 0.287 0.166 0.121
Present DNS 320 × 128 0.442 0.276 0.151 0.125
Present DNS 640 × 256 0.440 0.276 0.150 0.126
Present DNS 1280 × 512 0.437 0.275 0.149 0.127
Swanson [21] 1280 × 512 0.436 0.275 0.148 0.128

Fig. 9   Distribution of pressure coefficient (a) and skin-friction coefficient (b) for the laminar flow over a NACA 0012 airfoil
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feed the inflow turbulence [26], with the recycling station 
located 15� downstream of the inlet. Non-reflecting bound-
ary conditions are used at the outlet and top boundary, while 
at the wall is enforced a no-slip isothermal condition with 
reflecting treatment based on characteristic wave relations.

The approaching turbulent boundary layer is deflected at 
the corner, where the shock system originates. Turbulence 
intensity amplifies as the flow crosses the shock, resulting 
in large density and pressure fluctuations. This interaction is 
depicted in Fig. 11, where we present an instantaneous field 
of numerical Schlieren. The coherent flow structures, vis-
ible in Fig. 11, indicate the presence of an extended region 
of separated flow.

Flow separation and reattachment can be precisely 
located as the points at which the mean friction coefficient 
changes sign. In our DNS, they are respectively predicted 
at xs = −3.2� and xr = 1.3� (the ramp corner is located at 
x = 0 ). A comparison with the results of Wu & Martin and 
Bookey et al. is shown in Table 3. To asses the accuracy 

of our simulation, we compare the wall pressure distribu-
tion and mean velocity profile across the interaction. Mean 
wall-pressure distribution (Fig. 12a) is predicted within 
the experimental uncertainty of 5% [24]. Two velocity pro-
files are shown in Fig. 12b, one in the incoming boundary 
layer and the other 4� downstream of the corner. In both 
cases, the agreement is within 5%.

Fig. 10   Scale drawing of the computational domain for the turbulent ramp flow

Fig. 11   Cross-stream visualization of turbulent ramp flow in terms of instantaneous numerical Schlieren. Downstream of the corner gradients 
are steeper, showing turbulence amplification due to the interaction with the shock

Table 3   Comparison of separation and reattachment points for the 
ramp flow (the corner is located at the origin)

Separation point Reat-
tachment 
point

Present DNS −3.2� 1.3�

Wu and Martin [23] −3.2� 1.6�

Bookey et al. [24] −3.0� 1.3�
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4 � Conclusions

We presented FLEW, a high-fidelity solver for DNS of com-
pressible flows over complex geometries. The code is HPC-
oriented thanks to MPI parallelization and the ability to run 
on multi-GPU architectures. Various aspects of extending 
the energy-preserving schemes proposed by Pirozzoli [13] 
to simulate flows over curvilinear meshes are presented. In 
Sect. 2, we describe a locally conservative approximation 
of convective derivatives suitable for generalized curvilin-
ear coordinates. We also discuss how shock waves, viscous 
terms and characteristic boundary conditions are treated. 
Special attention is devoted to the metric terms, which are 
computed with the same scheme used for convective deriva-
tives, ensuring the freestream preservation.

Demonstrative examples of the efficacy of the imple-
mented algorithms are provided in Sect. 3. We started our 
assessment from the time-reversibility benchmark of the 
inviscid Taylor–Green vortex, aiming to to test the energy-
preserving capability of our solver on curvilinear meshes. 
The results demonstrate that the solver can perfectly recover 
the initial conditions, indicating the absence of any artifi-
cial dissipation. Various viscous test cases, including the 
curved channel flow, airfoil flow and ramp flow, further sub-
stantiate the accuracy and robustness of our solver across a 
wide range of flow regimes, spanning from low-subsonic, 
through transonic to supersonic conditions. Comparison of 
the results with experimental and numerical data available 
in the literature revealed excellent agreement for all tested 
configurations.

While employing the generalized curvilinear coordinates 
in two directions already allows us to address numerous sig-
nificant problems, our next goal is to remove the constraint 

that the third axis be normal to the surface. This extension 
will enable the code to handle fully arbitrary geometries.
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