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Multi-level color classification of post-consumer plastic packaging flakes by 
hyperspectral imaging for optimizing the recycling process 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Hierarchical PLS-DA for color classifi
cation of plastic flakes. 

• High-quality recycled HDPE by HSI 
working in the visible range. 

• Efficient HSI and hierarchical machine 
learning based approach for plastic 
waste color sorting. 

• Recycling-oriented classification by 
color of post-consumer HDPE flakes.  
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A B S T R A C T   

In a circular economy perspective, the development of fast and efficient sensor-based recognition strategies of 
plastic waste, not only by polymer but also by color, plays a crucial role for the production of high quality 
secondary raw materials in recycling plants. In this work, mixed colored flakes of high-density polyethylene 
(HDPE) from packaging waste were simultaneously classified by hyperspectral imaging working in the visible 
range (400–750 nm), combined with machine learning. Two classification models were built and compared: (1) 
Partial Least Square-Discriminant Analysis (PLS-DA) for 6 HDPE macro-color classes identification (i.e., white, 
blue, green, red, orange and yellow) and (2) hierarchical PLS-DA for a more accurate discrimination of the 
different HDPE color tones, providing as output 14 color classes. The obtained classification results were 
excellent for both models, with values of Recall, Specificity, Accuracy, and F-score in prediction close to 1. The 
proposed methodological approach can be utilized as sensor-based sorting logic in plastic recycling plants, tuning 
the output based on the required needs of the recycling plant, allowing to obtain a high-quality recycled HDPE of 
different colors, optimizing the plastic recycling process, in agreement with the principles of circular economy.   

1. Introduction 

The upcycling of recycled plastics as secondary raw materials, 
reducing the use of virgin polymers, is still today an open challenge. The 

way of thinking about the life cycle of plastics, from product design to 
recycling, is currently focused on converting more and more waste into 
high-quality recycled products, increasing resources efficiency and 
reducing greenhouse gas emissions [1]. In this context, the development 
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of effective, fast and robust sensor-based sorting procedures plays an 
important role for the improvement of the secondary raw material 
quality, contributing to reduce the presence of contaminants, in terms of 
quantity and types. In recycling plants, plastic waste can be separated 
not only by polymer but also by color, being characterized by different 
market values [2–7]. Sorting by polymer is essential to eliminate traces 
of impurities inside the recycled stream of a single polymer, i.e., other 
materials or other polymers, as they can create immiscibility and in
compatibility problems, in terms of rheological and mechanical char
acteristics [8–9]. Equally important is sorting by color, as the use of 
colorants in plastic packaging is a determining factor strongly inter
fering with plastic recycling processes, influencing the final aesthetic 
properties of the recycled product and its possible applications [10]. 
More in detail, polymer identification is mainly achieved using optical 
sensing technologies working in the near or short-wave infrared (NIR- 
SWIR) range [11–16]. Sorting process by color can be carried out 
manually (laborious and difficult) or by automated selection through 
different optical systems equipped with RGB cameras and LED arrays 
[15–20–21]. Such devices allow to recognize plastic waste based on 
their color, depending on the recycling plant efficiency and the market 
needs. Hyperspectral imaging (HSI) is an optical-based approach widely 
used in many sectors thanks to the advantage of combining imaging with 
spectroscopy techniques [21–26]. In the plastic recycling industry, HSI 
can help to increase the speed and efficiency of automated plastic waste 
sorting devices, reducing contamination, improving secondary raw 
materials purity and profits [27–28]. In this context, HSI working in the 
visible (VIS) range has many advantages over other imaging methods for 
color analysis, such as those based on standard RGB cameras. These 
optical technologies (i.e., RGB cameras) are cost-effective and suitable 
for rapidly characterizing objects based on their shape and color. 
However, since only three visible bands are provided, their identifica
tion ability may not be accurate enough for specific industrial online- 
sorting and quality control processes, as it is the case of post-consumer 
plastic packaging flakes. In contrast, a hyperspectral camera is actu
ally more expensive than an RGB camera but currently represents the 
most accurate imaging technique to adopt for recycling purposes, as it is 
able to acquire the spectrum, embedding materials characteristics, 
associated to each pixel of the image [29–30]. Therefore, with reference 
to colors, HSI provides a larger and more reliable number of information 
even when slight differences in tone occur [21,31–32]. In addition, 
spectroscopy combined with chemometric logics and machine learning 
techniques represents a valid and emerging tool useful to increase plastic 
recycling rates, automating the plastic sorting and increasing the quality 
of recycling processes [33]. However, the high discriminative capacity 
depends not only on the sensor but also on the use of processing ap
proaches that must allow the management of a large data flow [34]. 
Currently, among the innovative methodologies, helpful to manage a 
large flow of highly variable data, ensemble methods are used, such as 
multi-level hierarchical modeling [35]. In statistics and machine 
learning, the ensemble methods use multiple learning algorithms to 
achieve better predictive performance than those possible with an in
dividual learning algorithm. The fields of application of this methodo
logical approach are numerous, showing considerable potential 
[36–38]. 

The largest destination market for plastics is the packaging sector, 
reaching 39.1% of European demand in 2021, in which the most 
demanded polymers are polyolefins, i.e., low-density polyethylene 
(LDPE), high-density polyethylene (HDPE) and polypropylene (PP), 
followed by polyethylene terephthalate (PET) [1]. At the present time, 
post-consumer PET bottles are the recycled packaging waste with the 
highest level of purity, thanks to efficient polymer and color sorting 
procedures, necessary to meet the beverage industrial needs and the 
ambitious European recycling targets [39–40]. Following the successful 
strategy developed for PET recycling, allowing to obtain a high-purity 
recycled product both in terms of polymer and color, this work is 
focused on end-of-life HDPE packaging recycling. Due to its 

characteristics and versatility, HDPE is one of the most utilized plastics, 
reaching an annual production of 6.3 million tons, corresponding to 
12.6% of the total European plastics demand in 2021 [1]. Despite the 
widespread use of HDPE, the study of color characteristics to enhance 
the commercial quality of recycled HDPE is still not well discussed [41]. 
Thus, it is crucial to develop new and effective recycling strategies, to 
ensure successful recovery for specific applications, fully in line with the 
principles of circular economy. 

For these reasons, this study was carried out to test the potential of 
the HSI technique in the VIS range combined with machine learning, 
using an ensemble method (i.e., hierarchical model based on Partial 
Least Square-Discriminant Analysis - PLS-DA) and an individual method 
(i.e., a single model based on PLS-DA), in order to build fast and efficient 
automated color classification strategies for the production of high- 
quality recycled HDPE flakes from packaging of various colors. 

2. Materials and methods 

2.1. The studied plastic samples 

The studied plastic samples were provided by Ecosistem recycling 
plant, located at Lamezia Terme (Italy). They are representative of a 
recycled product, i.e., HDPE flakes from bottles, characterized by 
different types of color (Fig. 1a). A specific set of 180 flakes was selected 
as representative of the different types of colors and related shades 
constituting the plastic product (Fig. 1b). Six main classes of colors 
(white, blue, green, red, orange and yellow) were identified and further 
subdivided in 14 sub-classes based on color tones (i.e., two types of 
white, four types of blue, three of green, one of red, two of orange, and 
two of yellow). In order to build the classification models, plastic flakes 
were divided into a calibration and a validation dataset, constituted by 
about 70% and 30% of flakes, respectively (Fig. 1c). 

2.2. Data acquisition 

Hyperspectral images were acquired in the visible range (VIS: 
400–750 nm) by the push-broom HSI sensor ImSpector V10E (Specim 
Ltd, Oulu, Finland), equipped with a VIS-NIR (400–1000 nm) Blaser 
A312F CCD camera, with 12 mm/s acquisition velocity and 850 frames. 
Samples were placed on a conveyor belt and scanned line by line 
simulating, at laboratory scale, the continuous transport occurring at 
recycling industrial plant scale. 

2.3. Preprocessing strategies 

All the acquired hyperspectral images were processed through the 
PLS_toolbox (version 8.8 Eigenvector Research, Inc.) working in Matlab 
environment (version R2020a, The MathWorks, Inc.). 

In order to optimize the two classification models, several pre
processing strategies were adopted to reduce noise (i.e., light scattering) 
and highlight the spectral differences between the studied HDPE color 
classes, following those widely adopted in the literature [42–45]. 

2.3.1. Standard Normal Variate (SNV) 
Standard Normal Variate (SNV) pre-processing was used to lessen the 

impact of light scattering on the collected hyperspectral pictures [46]. 
SNV converts each observed spectrum into a signal with zero mean and 
unitary variance, making it one of the most widely used techniques for 
scatter correction of NIR and SWIR data [47]. This algorithm also 
modifies the data such that signal to concentration relationships are 
often more linear. 

2.3.2. Savitzky-Golay (SG) Derivative and Smoothing 
Spectral differences among the plastic colors have been emphasized 

using derivative approach. The Savitzky-Golay (SG) polynomial fitting 
algorithm was applied, due to its popularity and simplicity. Derivatives 
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have been employed in analytical spectroscopy thanks to the capability 
to reduce both additive and multiplicative influences in the spectra 
[47–48]. SG routine can be also utilized to reduce the noise in the 
spectra [49]. In this case routine can be used for smoothing/noise 
reduction, in order to avoid amplification of high-frequency noise dur
ing the derivation process, as it happens in the case of finite difference 
derivation [50]. In particular, the first derivative with different window 
points was used in this study. 

2.3.3. Mean center (MC) 
All data were preprocessed with a centering method. There are 

several additional preparation techniques, the best one relies usually on 
the type of data under investigation [51]. Mean centering (MC) was 
selected in this study, being appropriate for continuous data, such as HSI 

spectral data. In multivariate models, this technique has the effect of 
adding an adjustable intercept [52]. For example, mean centering both 
X and Y blocks in a regression model effectively allows for a non-zero 
intercept of the regression line [53]. 

2.4. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a chemometric technique for 
exploratory data analysis commonly and widely used for the treatment 
of hyperspectral data, allowing the visualization of the variability of a 
dataset with many variables (wavelengths) [49,52,54]. This visualiza
tion is achieved by transforming a set of covariates into a smaller set of 
principal components [55–57]. Considering a matrix X the PCA model is 
based on the decomposition of the dataset matrix (Equation (1)): 

X = TÂ⋅P+E (1) 

where T was the score matrix, P was the loading matrix and E was the 
residual matrix. The utilized decomposition method was Singular Value 
Decomposition (SVD) [58]. 

The first two or three PCs, produced by PCA, are generally used to 
assess the shared characteristics between samples and their grouping; in 
fact, samples with comparable spectral signatures tend to cluster in the 
scores plot of the first two or three components. Thus, the reflectance 
value at each wavelength, or PC score at each PC (in the PC space), could 
be used to describe a reflectance spectrum. Samples of the same class 
and with comparable spectra will cluster in the same place of the PCA 
scores plot, while samples with different spectral characteristics will 
cluster in other areas of this space. In this work, PCA was used to 
evaluate the spectral variance of the data and set classes for the classi
fication models. 

2.5. Partial Least Squares-Discriminant Analysis (PLS-DA) 

Partial Least Squares-Discriminant Analysis (PLS-DA) is a supervised 
technique combining Partial Least Squares (PLS) regression character
istics with classification techniques ability to Discriminant Analysis (DA) 
[59–61]. PLS-DA is based on the PLS regression algorithm, which looks 
for latent variables having a maximal correlation with the Y-variables 
(PLS1 when dealing with a single dependent Y variable and PLS2 when 
dealing with multiple dependent Y variables). The primary advantage of 
PLS-DA is that it models the relevant sources of data variability using the 
so-called Latent Variables (LVs), which are a linear combination of the 
original variables. As a result, it enables graphical visualization and 
understanding of the various data patterns and relationships by LV 
scores and loadings. Scores reflect the coordinates of samples in the LV 
projection hyperspace, whereas loadings are the coefficients of variables 
in the linear combinations that generate the LVs and are therefore 
interpretable as the influence of each variable on each LV. The chosen 
algorithm was the Nonlinear Iterative Partial Least Squares (NIPALS) 
[62]. In this case study, PLS-DA models were built starting from the class 
set in the PCA environment [49]. 

2.6. Color classification model building 

Two different PLS-DA models were built, with different levels of 
plastic color discrimination:  

• a 6 color classes PLS-DA model for identification of the main color 
types of HDPE flakes: white, blue, green, red, orange and yellow;  

• a 14 color classes hierarchical PLS-DA model for identification of the 
different shades of the 6 main identified color classes: two types of 
white, four types of blue, three of green, one of red, two of orange, 
and two of yellow. 

A hierarchical model is useful when the dataset is composed by many 

Fig. 1. HDPE recycled flakes from plastic bottles (a); source image of the 
selected HDPE flakes of different colors (b); “image map” outlining flakes 
subdivision in calibration (red) and validation (grey) datasets (c). 
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classes and some of them have similar spectral signature. In fact, with 
this method is possible to preliminarily divide objects into subsets and 
then subdivide them into further subsets, until each subset contains a 
single object [63–64]. Following this multi-level strategy, the number of 
branches of each node is defined by the number of classes defined in the 
classification model [28,65]. In this case, the adopted method for each 
rule was based on PLS-DA. 

The preprocessing algorithms selected for each rule of the 14 color 
classes Hi-PLS-DA model are shown in Table 1. The dendrogram of Hi- 
PLS-DA model, composed by 14 classes and the additional NC (Not 
Classified) branch, is reported in Fig. 2. The test sample will be assigned 
to the NC decision branch if its residuals (Q) or Hotelling’s (T2) value 
(reduced) exceeds the assigned threshold value [65]. In order to eval
uate the model complexity and to select the appropriate number of LVs, 
each PLS-DA model was cross validated using Venetian blinds method 
on calibration dataset, assuming a number of data splits equal to 10 with 
one sample per spectrum. 

2.7. Classification performance metrics 

In a pixel-based logic, the classification performances of PLS-DA and 
Hi-PLS-DA models were evaluated by the confusion matrix (where the 
diagonal and off-diagonal cells correspond to the number of correctly 
and incorrectly classified pixels, respectively), and the commonly used 
performance metrics, i.e., Recall, Specificity (Spec), Accuracy (Acc), and 
F-score defined by Eqs. (2), (3), (4), and (5). Recall (or Sensitivity in bi
nary classification) describes the model capability to correctly identify 
positive labels (classes). Specificity shows the model ability to correctly 
reject samples belonging to all the other classes. These parameters can 
assume values between 0 and 1, the latter being the ideal value for a 
prediction model. Starting from the two previous mentioned parame
ters, Accuracy can be calculated, as the ratio of the well-recognized 
samples on the total number of all samples. At last, F-score measures 
the relation between data positive labels and those given by the pre
dictor [66–67]. 

Recall =
TruePositive

(TruePositive + FalseNegative)
(2)  

Spec =
TrueNegative

(TrueNegative + FalsePositive)
(3)  

Acc =
Correctlyidentifiedsamples
Totalnumberofallsamples

(4)  

F − score =
2TruePositive

(2TruePositive + FalsePositive + FalseNegative)
(5)  

3 Results and Discussion 

3.1. Spectral signatures of HDPE samples 

The average reflectance spectra acquired in the VIS range and used 
for the calibration dataset of the 6 main classes of color (i.e., 950 spectra 
of White, 935 spectra of Blue, 960 spectra of Green, 927 spectra of Red, 
960 spectra of Orange and 950 spectra of Yellow) and 14 sub-classes of 
color tones (i.e., 150 spectra of White 1, 152 spectra of White 2, 163 
spectra of Blue 1, 152 spectra of Blue 2, 153 spectra of Blue 3, 147 
spectra of Blue 4, 144 spectra of Green 1, 154 spectra of Green 2, 160 
spectra of Green 3, 155 spectra of Red, 165 spectra of Orange 1, 169 
spectra of Orange 2, 153 spectra of Yellow 1 and 152 spectra of Yellow 
2) are shown in Fig. 3. 

Information on the minimum and maximum reflectance values and 
on the inflection points (i.e., points of the curve where the sign of the 
curvature changes [68], useful to explain the color variability of the 
studied plastic flakes) are reported in the following. 

3.2. Reflectance spectra of the 6 main color classes 

As shown in Fig. 3a, a low inflection point around 430 nm and an 
overall flat trend from 400 to 450 nm are observed in the average 
reflectance spectrum of the White class. The average reflectance spec
trum of the Blue class is characterized by two inflection points around 
500 and 700 nm. The average reflectance spectrum of Green class is 
characterized by 3 inflection points mainly localized around 500, 550 
and 620 nm, respectively. The average spectrum of the Red class is 
characterized by a continuous absorption up to 550 nm and an inflection 
point around 600 nm. Finally, the average spectra of the Orange and 
Yellow classes show a similar trend to the Red class spectrum, with 
evident inflection points around 500 and 650 nm, respectively. 

3.3. Reflectance spectra of the 14 sub-classes based on color tones 

As shown in Fig. 3b, the average reflectance spectra of the white 
classes (i.e., White 1 and White 2) have an almost similar shape trend (i. 
e., mainly horizontal), but a clear distinction in the reflectance values (i. 
e., around 0.88 for White 1 and 0.3 for White 2). Since the White 2 class 
is slightly transparent, its reflectance spectra were also influenced by the 
black background, resulting in lower reflectance values than those of the 
White 1 class. 

The average reflectance spectra of the blue classes (i.e., Blue 1, Blue 
2, Blue 3, and Blue 4) are characterized by a similar shape trend. A 
significant curve variation of the Blue 1 class spectrum, with an inflec
tion point at around 700 nm, is observed. Furthermore, a marked dif
ference in reflectance values is shown by all blue classes spectra, with 
values increasing according to the sequence: Blue 1, Blue 2, Blue 3 and 
Blue 4. 

In the average reflectance spectra of the green classes (i.e., Green1, 
Green 2, and Green 3), the Green 1 spectrum shows two inflection points 
localized around 500 and 580 nm; the Green 2 and Green 3 classes show 
similar fingerprints and spectral variations mainly localized around 480 
nm. 

Concerning the average spectrum of the Red class, its description is 
the same as previously reported, as there is a homogeneous tone of red 
color in the examined samples. 

In the average spectra of the orange classes (Orange 1 and Orange 2) 
an almost similar trend is observed. It is characterized by a continuous 

Table 1 
Preprocessing algorithms and LVs selected for the rules of the Hi-PLS-DA model.  

Rules Applied preprocessing 

Rule 1: White 1–2 vs others 
(LVs: 2) 

SNV, Smoothing (15 points), MC 

Rule 2: White 1 vs White 2 
(LVs: 2) 

SNV, 1st Derivative (order: 2, window: 33 
points), MC 

Rule 3: Blue 1–2-3–4 vs others 
(LVs: 2) 

SNV, MC 

Rule 4: Blue 1 vs Blue 2 vs Blue 3 vs 
Blue 4 
(LVs: 2) 

SNV, 1st Derivative (order: 2, window: 15 
points), MC 

Rule 5: Green 1–2-3 vs others 
(LVs: 3) 

1st Derivative (order: 2, window: 15 points), 
MC 

Rule 6: Green 1 vs Green 2 vs Green 
3 
(LVs: 2) 

SNV, 1st Derivative (order: 2, window: 15 
points), MC 

Rule 7: Red vs others 
(LVs: 2) 

1st Derivative (order: 2, window: 15 points), 
MC 

Rule 8: Orange 1–2 vs Yellow 1–2 
(LVs: 2) 

1st Derivative (order: 2, window: 15 point), 
MC 

Rule 9: Orange 1 vs Orange 2 
(LVs: 2) 

1st Derivative (order: 2, window: 15 point), 
MC 

Rule 10: Yellow 1 vs Yellow 2 
(LVs: 2) 

SNV, MC  
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Fig. 2. Dendrogram of Hi-PLS-DA model built for the classification of 14 HDPE color classes: White 1, White 2, Blue 1, Blue 2, Blue 3, Blue 4, Green 1, Green 2, Green 
3, Red, Orange 1, Orange 2, Yellow 1 and Yellow 2. 

Fig. 3. Average raw reflectance spectra acquired in the VIS range (400-750 nm) of the 6 main color classes (a) and 14 color sub-classes (b) of studied HDPE flakes.  
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absorption up to 570 nm and two different inflection points at 500 nm 
and 570 nm for the Orange 2 and for the Orange 1, respectively. 

A similar trend was observed in the average spectra of the yellow 
classes (Yellow 1 and Yellow 2) with variations mainly concentrated 
around 500 nm and in the reflectance values of spectral regions from 
400 to 450 nm and from 550 to 750 nm. 

3.4. Spectra preprocessing and Principal Component Analysis of 6 color 
classes 

The preprocessed spectra and the corresponding PCA score and 
loadings plots are reported in Fig. 4. The preprocessed spectra, derived 
from the combination of SNV, Smoothing (15 points) and MC algo
rithms, are reported in Fig. 4a. 

The PCA scores plot showed that most of the variance was captured 
by the first two PCs, where PC1 and PC2 explained 72.82% and 22.29% 
of the total variance, respectively. As shown in the PCA scores plot 
(Fig. 4b), the spectral data of the 6 color class samples are clustered into 
6 distinct groups according to their spectral signatures, i.e., Blue, Green, 
Orange, Red, White, and Yellow. In detail, White class scores cloud 
shows high variability and is distributed in a fairly central area of the 
plot, especially in the first and second quadrants. Green class scores 
cloud is mainly localized in the first quadrant and a small part in the 
second. Yellow class scores cloud is identified in the second quadrant. 
The scores clouds of Orange and Red classes are located in the third 
quadrant and, finally, the Blue scores cloud is located in the fourth 
quadrant. The loadings plot of the first 2 PCs (Fig. 4c) highlighted the 
main spectral regions contributing to the identification of spectral 

differences between the examined classes. More in detail, the loadings of 
PC1 were mainly given, for positive values, by the wavelengths from 450 
to 530 nm and for negative values by the wavelengths from 600 to 650 
nm. The loadings of PC2 were mainly influenced for positive values by 
wavelengths around 550 nm and for negative values by wavelengths 
around 450 and 650 nm. 

3.5. Spectra preprocessing and Principal Component Analysis of 14 color 
classes 

The results obtained for the different preprocessing combinations 
and the corresponding PCA, selected for the definition of the hierar
chical PLS-DA rules, are presented and discussed in the following. 

Concerning the 14 color classes Hi-PLS-DA model, PCA scores plot 
shown in Fig. 4 was useful to build Rule 1 of the hierarchical classifier, 
considering two clusters of pixels: a first group related to the white 
flakes and a second one to the other color classes. As a consequence, Rule 
1 separates two classes: white flakes and colored flakes. 

The preprocessed reflectance spectra, PCA scores plots and loadings 
plots related to the Rules from 2 to 10 are reported in Fig. 5. In order to 
distinguish White 1 from White 2 color classes, Rule 2 was created. The 
corresponding PCA scores plot (Fig. 5a) shows that the first two PCs are 
useful to separate the White classes, with PC1 and PC2 representing 
71.40% and 16.87% of the total variance, respectively. Moreover, White 
1 and White 2 scores (respectively second and fourth quadrants) appear 
quite distinct in two clouds. The loadings plot, shown in Fig. 5a, high
lights as PC1 variance was mainly given for positive values by the 
wavelengths around 410 nm and for negative values by the wavelengths 

Fig. 4. Average preprocessed spectra of investigated HDPE flakes resulting from the sequential application of SNV, Smoothing (15 points) and MC (a) algorithms. 
PC1-PC2 scores plot of the 6 HDPE color class spectral signatures (b), and PCs loadings plot of macro-color classes (c) for the calibration dataset. 

P. Cucuzza et al.                                                                                                                                                                                                                                



Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 302 (2023) 123157

7

Fig. 5. Preprocessed average spectra, PCA scores plots, where the studied color classes are highlighted with colored circles, and PCs loadings plots for Rule 2 (a), Rule 
3 (b), Rule 4 (c), Rule 5 (d), Rule 6 (e), Rule 7 (f), Rule 8 (g), Rule 9 (h) and Rule 10 (i). 
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Fig. 5. (continued). 
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around 750 nm. PC2 was mostly marked for positive values by wave
lengths around 400 nm and for negative values by wavelengths from 600 
and 660 nm. 

Rule 3 allows to distinguish the macro-group of blue (Blue 1–2-3–4) 
from the other classes (Green 1–2-3, Red, Orange 1–2 and Yellow 1–2). 
The PCA scores plot of the first two PCs is shown in Fig. 5b, where PC1 
and PC2 explained 57.93% and 36.00% of the total variance, respec
tively. A significant separation of Blue macro-color class from the other 
classes in the fourth quadrant is obtained. The loadings plot, shown in 
Fig. 5b, highlights as PC1 variance was mainly given for positive values 
by the wavelengths around 530 nm and for negative values by the 
wavelengths around 410 and 750 nm. PC2 was mostly marked for pos
itive values by wavelengths around 420 and 590 nm and for negative 
values by wavelengths around 475 and 700 nm. 

The spectral separation between HDPE flakes, characterized by 
different tones of blue, is achieved by Rule 4. The scores plot of the first 
two PCs is shown in Fig. 5c, in which PC1 and PC2 explained 55.63% 
and 34.56% of the variance, respectively. As shown in PCA scores plot, a 
good separation between the four clusters is achieved. In more detail, 
Blue 1 is placed among the first and the second quadrants, Blue 2 and 
Blue 3 are located in the third and fourth quadrants, respectively, and 
Blue 4 is placed in the central zone of the scores plot with a main cluster 
in the fourth quadrant. The loadings plot, shown in Fig. 5c, highlights as 
PC1 variance was mainly given for positive values by the wavelengths 
around 525 nm and for negative values by the wavelengths around 425, 
645 and 750 nm. PC2 was mostly marked for positive values by wave
lengths around 405 and 690 nm and for negative values by wavelengths 
around 445 and 750 nm. 

The separation between Green 1–2-3 macro-color class from other 
classes (Red, Orange 1–2 and Yellow 1–2) is obtained by Rule 5. PC1 and 
PC2 explained 67.29% and 21.99% of the total variance, respectively, as 
shown in Fig. 5d. PCA scores plot shows that a separation between the 
HDPE color classes involved in this rule can be easily performed. In fact, 
Orange1-2 cloud is located in the first quadrant, Yellow 1–2 cloud in the 
second quadrant, Green 1–2-3 cloud in the third quadrant and Red cloud 
in the fourth quadrant. The loadings plot, shown in Fig. 5d, highlights as 
PC1 variance was mainly given for positive values by the wavelengths 
around 575 nm and for negative values by the wavelengths around 500, 
660 and 750 nm. PC2 was mostly marked for positive values by wave
lengths around 550 nm and for negative values by wavelengths around 
610 and 750 nm. 

Rule 6 was created to classify the 3 different green color classes The 
first three PCs obtained by PCA are the most significant in order to 
perform the separation between green classes. PC1-PC3 scores plot is 
shown in Fig. 5e, explaining 68.44% and 7.30% of the total variance, 
respectively. Green 1 scores are well isolated in the first and fourth 
quadrants of the plot, Green 2 scores are located in the second quadrant, 
while Green 3 scores showed a more central and larger distribution 
between the second and third quadrants. The loadings plot, shown in 
Fig. 5e, highlights as PC1 variance was mainly given for positive values 
by the wavelengths around 460, 550, and 675 nm and for negative 
values by the wavelengths around 510 and 600 nm. PC2 was mostly 
marked for positive values by wavelengths around 545, 655, and 750 nm 
and for negative values by wavelengths around 425 and 600 nm. PC3 
variance was mainly given for positive values by the wavelengths 
around 410, 525 and 585 nm and for negative values by the wavelengths 
around 475 and 750 nm. 

Rule 7 was built in order to discriminate Red color class from other 
classes (Orange 1–2 and Yellow 1–2). PCA shows how the first two PCs 
are enough to obtain an efficient separation of the color classes, with 
PC1 and PC2 representing 75.99% and 18.75% of the captured variance, 
respectively. The scores plot (Fig. 5f) shows Red cloud located in the 
third quadrant, Orange 1–2 cloud in the second quadrant, Yellow 1–2 
cloud in the first and fourth quadrant. The loadings plot, shown in 
Fig. 5f, highlights as PC1 variance was mainly given for positive values 
by the wavelengths around 515 nm and for negative values by the 

wavelengths around 590 nm. PC2 was mostly marked for positive values 
by wavelengths around 555 nm and for negative values by wavelengths 
around 500 and 610 nm. 

The separation between Orange 1–2 and Yellow 1–2 classes is ach
ieved by Rule 8. The scores plot of the first two PCs is shown in Fig. 5g, 
where PC1 and PC2 explained 73.13% and 22.01% of the total variance, 
respectively. The PCA scores plot shows a considerable separation of 
Orange and Yellow macro-color classes, in which Yellow 1–2 scores are 
mainly located among the first and the second quadrants, while Orange 
1–2 scores among the third and fourth quadrant. The loadings plot, 
shown in Fig. 5g, highlights as PC1 variance was mainly given for pos
itive values by the wavelengths around 545 nm. PC2 was mostly marked 
for positive values by wavelengths around 540 nm and for negative 
values by wavelengths from 600 to 750 nm. 

Rule 9 was built to obtain separation between Orange 1 and Orange 2 
color classes. The scores plot of the first two PCs is shown in Fig. 5h, 
where PC1 and PC2 explained 59.02% and 29.77% of the captured 
variance, respectively. Orange 1 cloud shows a larger variability, and it 
is located in the central plot area among the first, third and fourth 
quadrants, while Orange 2 cloud is mostly located in the second quad
rant. The loadings plot shown in Fig. 5h, highlights as PC1 variance was 
mainly given for positive values by the wavelengths around 580 nm and 
for negative values by the wavelengths around 525 and 650 nm. PC2 
was mostly marked for positive values by wavelengths around 550 nm 
and for negative values by wavelengths around 600 nm. 

Finally, Rule 10 is applied for the identification of Yellow 1 and 
Yellow 2 color classes. PC1-PC2 scores plot is shown in Fig. 5i, in which 
PC1 and PC2 describe 92.45%, 3.74% of the total captured variance, 
respectively. Yellow classes show a wide distribution in the scores plot, 
in particular Yellow 1 scores are mainly located among the first and 
fourth quadrants, while Yellow 2 scores are mainly concentrated be
tween the second and third quadrants. The loadings plot, shown in 
Fig. 5i, highlights as PC1 variance was mainly given for positive values 
by the wavelengths from 550 to 750 nm. PC2 was mostly marked for 
positive values by wavelengths around 500 nm and for negative values 
by wavelengths around 750 nm. PC3 was mostly marked for positive 

Fig. 6. HDPE macro-color classes prediction image (in false colors) of the 
validation dataset resulting from PLS-DA modelling (a); confusion matrix of 
true and predicted HDPE macro-color classes resulting from the application of 
the PLS-DA model to the validation dataset (number LVs: 3) (b). 
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values by wavelengths around 520 nm and for negative values by 
wavelengths around 460 and 750 nm. 

3.6. Classification results of HDPE color typologies 

3.6.1. 6 Color classes PLS-DA model 
Fig. 6a shows the prediction results for the 6 HDPE macro-color 

classes of the validation dataset. An excellent classification is reached 
for all classes, except for some pixels of Red flakes incorrectly assigned 
to the Orange class and few incorrectly classified pixels related to 
“border effect”, as also shown in the confusion matrix (Fig. 6b). How
ever, these few misclassified pixels do not substantially affect the overall 
recognition of color classes. Recall and Specificity values in calibration 
(Cal), and cross-validation (CV) phases are shown in Table 2, while 
Recall, Specificity, Accuracy and F-score values in prediction (Pred) phase 
are shown in Table 3. The results indicate that the model has excellent 
classification performance metrics, ranging from 0.95 to 1.00 for all the 
measured parameters. 

3.6.2. 14-classes hierarchical PLS-DA model 
The prediction results obtained by the application of the 14 classes 

Hi-PLS-DA model to the HDPE flakes validation dataset are shown in 
Fig. 7a. An efficient classification is achieved for each color tone, with 
the exception of some pixels incorrectly assigned. These few pixels are 
mainly due to residual “border effect” or light reflectance from the 
preprocessing phase. However, even in this case, these incorrectly 
classified pixels do not damage the overall detection of color classes. The 
excellent classification results are confirmed by the confusion matrix 
(Fig. 7b), and by the model performance parameters values in calibra
tion, cross-validation (Table 4) and in prediction phases (Table 5), 
showing values higher than 0.90 in all cases. 

4. Economic impact considerations 

Effective solutions are needed to improve the recovery and recycling 
of plastic waste enabling to obtain high-quality products, and to 
dramatically reduce the amount of waste ending up in landfills or in
cinerators. Better recycling practices would allow to decrease the de
mand for virgin plastics, with both industrial and environmental 
benefits, according to the principles of circular economy and AGENDA 
2030 Sustainable Development Goals (SDGs), with particular reference 
to SDG12 on efficient use of resources. The proposed automated color 
sorting of HDPE packaging waste, based on HSI combined with machine 
learning approach, can support promising solutions to achieve highly 
efficient labor savings and an increase value of recycled plastics. Further 
developments and investments in advanced recycling technologies are 
fundamental to meet the high-quality requirements of industry. More
over, in contrast to traditional RGB imaging, HSI allows to acquire and 
handle for each pixel a larger number of information (i.e., spectra 
related to the investigated wavelength range, instead of the common 
RGB components. Thanks to these spectral signatures, different mate
rials, including plastics, can be more efficiently characterized. There
fore, HSI can sort materials quickly and effectively, reducing time and 
costs of sorting architectures and allowing a more accurate material 
identification, thus reducing contamination and increasing, at the same 

time, the purity of recycled materials and profit [28,30]. 

5. Conclusions 

Two classification models were developed to obtain efficient plastic 
color sorting strategies using HSI in the VIS range combined with ma
chine learning logics:  

• PLS-DA model for the macro-colors identification;  
• Hierarchical PLS-DA (Hi-PLS-DA) model able to detect different 

shades of the same color. 

The results showed high prediction accuracy for both models, 
highlighting the possibility to apply the proposed methodological ap
proaches for automated color recognition, to increase the quality and 
quantity of recycled plastic packaging, i.e., HDPE flakes from bottles. 

The described approaches can represent attractive and flexible so
lutions for a sorting system that meets the challenges of a dynamic 
market scenario, such as plastic packaging recycling, according to a 
sustainable use of resources. 

In conclusion, the hierarchical approach could be used to modulate 
the output results based on the needs of the plastic market (i.e., greater 
or lesser variety of colors) compared to a single classification model. 

Table 2 
Classification performances of the 6 color PLS-DA model in the calibration and 
cross-validation phases.  

Class Recall (Cal) Spec (Cal) Recall (CV) Spec (CV) 

White  1.00  0.99  1.00  0.99 
Blue  1.00  1.00  1.00  1.00 
Green  0.99  1.00  0.99  1.00 
Red  0.99  0.99  0.99  0.99 
Orange  0.99  0.95  0.99  0.95 
Yellow  0.99  0.99  0.99  0.99  

Table 3 
Classification performances of the 6 color PLS-DA model in the prediction phase.  

Class Recall (Pred) Spec (Pred) Acc (Pred) F-score (Pred) 

White  1.00  0.99  0.99  0.99 
Blue  0.99  1.00  0.99  1.00 
Green  1.00  1.00  1.00  0.99 
Red  0.99  1.00  0.99  0.99 
Orange  0.98  0.98  0.98  0.99 
Yellow  1.00  0.99  0.99  1.00  

Fig. 7. HDPE 14 color classes prediction image (in false colors) of the valida
tion dataset obtained by the application of the Hi-PLS-DA model (a); confusion 
matrix of true and predicted HDPE 14 color classes resulting from the appli
cation of the Hi-PLS-DA model to the validation dataset (b). 
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Future studies may focus on combining the ensemble classification 
approach with multi-sensor data. 
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