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Abstract

The problem treated in this paper is the optimal electromechanical setting of energy harvesters
working with vibrations of random nature. We consider a simple system composed of two parts; one
electrical circuit with a mechanical single-degree-of-freedom system, coupled to a piezoelectric
element. The electric circuit is modeled as a simple one, composed of a resistance and a capacity only,
while a linear viscoelastic model is used for the mechanical element. The only joint electro and
mechanical element is the piezoelectric device, which is controlled by both the mechanical velocity
and the electrical tension. This scheme is treated as dimensionless using the random vibration theory
since the base excitation is considered as a stationary white noise Gaussian process. To consider the
non-uniform frequency content, that characterizes many real vibration phenomena, the inputis
properly colored using simple linear filters. System response statistics is evaluated by covariance
approach, producing both covariance matrix of system parameters and mean value of electric power
under different filters and systems configurations. The optimal ratio between the periods of the
mechanical and electric systems is thus defined maximizing the mean power value. This ratio is
obtained numerically for some test cases in a graphic representation to evaluate the sensitivity
response to selected parameters.

1. Introduction

Energy harvesting is the term used to describe processes of capturing and storing energy that derives from
external environmental sources such as thermal energy, solar power, salinity gradients, wind energy, and kinetic
energy. Despite that they provide weak power for low-energy electronics, they are still effective sources for some
specific technologies such as small wireless autonomous devices like the ones used in wearable electronics and
wireless sensor networks. This is because the energy source for energy harvesters is present as free ambient
background. Environmental vibrations comprise a a very promising class among all the different possible
ambient energy sources. Examples of environmental vibrations include earthquake ground shaking, pressure of
wind or sea waves, aircraft or automotive vibrations; just to cite a few. Preliminary work on this type of energy
harvesting has dealt with deterministic excitations, which have been the subject of extensive research over the
last decade (Erturk and Inman 2011 is a complete and comprehensive state of the art in this field).

The design of energy harvesting devices (EHD) should be tailored to real environmental vibrations in order
to maximize the energy efficiency. In some cases, the input should be assumed as a single frequency signal, so
that most studies have designed resonant harvesting devices for pure sinusoidal excitations such as constant
rotational regime machinery. In addition, these EHD have to be tuned to the main excitation frequency
especially if they are strongly sensitive to input variations in such cases. On the other hand, there are many real
cases where the ambient energy has a random and broadband nature. Thus, the design of the harvester must
account for this excitation characteristic since the hypothesis of assuming a harmonic excitation input is
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sometime too restrictive. Such examples include the mechanical vibration of trains or cars, machinery with
variable rotation regime, and traffic-induced vibrations. For instance, the conversion of vibrations into electrical
energy in civil structures under normal loading conditions has been addressed in several studies. (Elvin et al
2006, Alietal 2011, Galchev et al 2011, Peigney and Siegert 2013, McCullagh et al 2014, Zhang et al 2014,
Maruccio etal 2016).

The inner nature of vibrations in all the mentioned cases is a random one. Hence, the use of the random
vibration theory is necessary for an accurate study. Previous work on vibration energy harvesting due to random
excitations considered the Gaussian broadband excitation of linear and nonlinear harvesters (Gammaitoni et al
2009, Dagaq 2010, Litak et al 2010, Khovanova and Khovanov 2011, Halvorsen 2013, Zhao and Erturk 2013,
Green et al 2013). This approximation is widely used in many stochastic problems and focuses on using a stack
configuration and on harvesting broadband vibration energy, which is a more practically available ambient
source. It assumes that the ambient base excitation is stationary Gaussian white noise, which has a constant
power-spectral density across the considered frequency range.

Subsequently, several publications proposed analytical, numerical, and optimization approaches for energy
harvesters with random excitations (Adhikari et al 2009, Dagaq 2011, Daqaq 2012, Adhikari et al 2016). Most of
these studies consider the ensemble average properties of the quantity of interests, such as the voltage or
harvested power. In this field, the system response in two simple but relevant cases has recently been evaluated
considering a white noise input (Adhikari ef al 2009, Adhikari et al 2016). The two cases have involved the
harvesting circuit with and without an inductor. The authors have also evaluated the mean power acquired from
a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory
of random vibrations. Considering the input as a white noise is not able to present an accurate description of the
actual frequency content of the vibration input. This in turn reduces the efficiency of the design of piezoelectric
energy harvesters that strongly depends on the realistic representation of the excitation. The importance of
properly-described spectral content and evolutionary nature is related to the dependency of the power absorbed
by alinear oscillator upon excitation by a pure white noise base acceleration on the mass of the oscillator and the
spectral density of the base motion only. Under this observation, there is an upper bound on the energy that can
be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the
damping factor. This work shows that the same result (upper limit to the energy harvested by a mechanical
system) is valid to any multi-degree-of-freedom nonlinear system subjected to a white noise base acceleration.
The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous
value of the state vector.

Moreover, this aspect is fundamental for designing such piezoelectric energy harvesters. This is because the
total power absorbed by both a linear or nonlinear multi-degree-of-freedom electromechanical system
subjected to a white noise base acceleration exclusively depends on the spectral density of the base acceleration
and the total mass of the system. Hence, the improvement of performance of a broadband EHD is very limited in
terms of design. Introducing nonlinear components or additional degrees of freedom will be effective only to the
extent to which the mass of the system will change.

Nevertheless, all the reported studies are based on the hypotheses that the excitation is a white noise process,
and the actual absorbed power is sensitive to the actual bandwidth of the excitation. The evaluation of the
stochastic response of a piezoelectric mechanical system is of interest in the present study, for which a stochastic
model of base motion must be employed. An ideal model should reasonably reflect the salient characteristics of
the recorded motions pertaining to a real vibration phenomenon in different environmental situations. The
most important characteristic that must be included is the variation in the frequency contents. In this paper, the
base acceleration is modeled by means of a second-order linear filter, differently from what has been reported
until now, in order to overcome the main limitation of simple white noise that presents the same energy for all
frequency range.

This study upgrades the white noise model used for input vibrations considering the input as a filtered
process that has specific frequency content instead of broadband white noise. This is done to preserve the real
frequency content in real random vibrations.

The method of filtered white noise input is used to describe the response of a simple but relevant case,
namely the piezoelectric harvesting circuit without an inductor coupled with a linear single mechanical system.
The described system is a coupled electromechanical system with one-degree-of-freedom system where a
mechanical system is coupled with an electric circuit. The coupling element is a piezoelectric device that
transforms mechanical vibrations into tension and vice versa. The electromechanical system is modelled by two
coupled differential equations and the random vibration analysis is performed using the covariance approach in
time domain. The white noise hypothesis is thus relaxed adopting a double linear second order pre-filtered
model of input. The Lyapunov covariance equation is formulated in a dimensionless way, obtaining system
response statistics (covariance matrix) and mean value of harvested power.
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Figure 1. Scheme of SDOF linearly connected to a vibration base equipped with a piezoelectric device.

The optimal ratio between mechanical/electric time ratios is thus defined as the value that is able to
maximize the dimensionless performance of the piezoelectric vibration-based energy harvesters. This ratio will
provide the basic design guidelines for different conditions of vibration energy harvesters. Using this approach,
the optimal ratio is thus obtained for some frequency content conditions by using a standard genetic algorithm.
The results are presented for different dimensionless electromechanical coupling coefficients and structural
damping. Results, posed in a graphical way, demonstrate the effectiveness of the proposed method to maximize
the output power and efficiency of vibration energy harvesters in a wide number of real applications where
detailed information of input frequency content are available. Furthermore, they demonstrate results that
contribute strongly to environmental sustainability.

2. Piezoelectric electro-mechanical coupled model

In this paragraph, we consider a stack-type piezoelectric harvesting circuit. The mechanical and electric scheme
of the circuit is depicted in figure 1. We consider the simplest type of electrical circuits (without inductor), and
energy is harvested through base excitations, while piezoelectric device is operated in vertical direction. A simple
single-degree-of-freedom model is used for the mechanical motion of the harvester, without losing the
generality of analysis that should be extended to single-degree-of-freedom model that accounts for distributed
mass effects.

This work only considers a linear model of the piezoelectric material along the vertical direction, which
allows the application of the linear random vibration theory.

Various types of piezoelectric harvesting devices are available, integrating stack or patch transducers. The
single-degree-of-freedom system chosen is this work can represent such mechanical behavior. The electric
circuits coupled to the piezoelectric device is the simplest system considered in the literature, specifically
consisting only of a resistor and a capacitor without inductors, as shown in figure 2.

The 0 quantity is the electromechanical coupling coefficient. Assuming a piezoelectric system that is
operating in the {33} mode, it is expressed by the following:

0= -4 cm M
tp
where e33 is the piezoelectric constant in the {33} direction, Apand fp are the piezoelectric cross-sectional area
and thickness, respectively.
The considered system is a generic piezoelectric vibration energy harvester that can be modeled as a base-
excited SDOF system coupled to a capacitive energy harvesting circuit, as reported in equations (2) and (3).

mi 4+ cx + kx — dv = —mi, 2)
GJ.C—FCP’V—F%V:O 3)

X and X, are the mass and base displacement in equation (2), respectively. The dynamic force balance is
formulated considering also a piezoelectric force f,,. The standard nomenclature is used for mass 71, damping c,
and elastic stiffness k; while ¥/ is the electromechanical coupling. The piezoelectric mechanical force is modeled
as proportional to the voltage across the piezoelectric device f, e = Ov (t), where v(¢) is the tension acting at the
ends of piezoelectric device in the electrical circuit. It is modeled by equation (3), where the tension v,,, measured
across the equivalent resistive load; R arises from the mechanical strain through the electromechanical coupling

3
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Figure 2. Electric energy harvesting circuit without an inductor.

¥ as v,, = 0x; and finally C, is the capacitance of the piezoelectric element (Adhikari et al 2009, Erturk and
Inman 2011, Adhikari et al 2016).

A common stochastic model used to describe the system base excitation Xj, is the broadband Gaussian white
noise. However, in many real cases, the vibration phenomena of interest presents a well-defined frequency
content, far from being considered as a constant one.

A consolidated and simple stochastic model for stationary signals with non-uniform frequency contents is
achieved by filtering a white noise one, such as the well known Kanai-Tajimi model (Kanai 1957, Tajimi 1960). It
uses a second-order linear single filter whose equation that describes the base EHD acceleration is expressed in
equation (4):

X=X, + w(t) = —2§gngg — w?e X, (4)

where the capitol letter is used for stochastic processes instead of deterministic time signals. The second order
linear filter X, + 28, we Xy + w?y X, = w(t)isapplied to an ideal stationary white noise process w(t). X, isthe
filtered input process; wgand &, are the two filters parameters. An upgrade to this model, developed to eliminate
the quasi-static frequency content, has later been proposed by Clough and Penzien (Cloug consideringa linear
fourth-order filter forced by a modulated white noise. Therefore, the base acceleration X, () is given by the
following two differential equations:

X, = _prWPXP - whX, + 2§gngg + w? X, (5)
X, (1) 4 26,w, X, (1) + w?p X, (1) = X, (1) + w(r) (6)

where a new second-order filter is applied with w, and fp as parameters. The stochastic system that describes the
filtered input is:
Xp(1) = Xp(1) = —w?p Xp(1) — 26,0, X (1) + W Xy + 26w X, (1)
Xp(t) + wZPXp(t) + prprp(t) = Xg(t) + w(t) = wngg + 2§gngg(t) 7)
Xg(t) + ngngg(t) + ngXg = —w(t)

Stationary gaussian white noise process is characterized by bilateral Power Spectral Density energy So. Several
expressions that relate the Peak Acceleration (PA) to Sy have been proposed in the literature, However, Sy is
considered a scattering variable of the problem in our case.

Thus, the spectral density for stationary condition is:

1+ 4522f(;ff)2 (:})2 N
-G -] -le)

Eight different cases are reported in figure 3 as examples where only 1/,, varies obtaining different spectral
configurations.

PSD(w) = So
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Figure 3. Clough Penzien spectra for different values of frequency ratio ¢);,. The main system period is assumed as 1 s
(wo = 27 (rad/ sec)) while ¢, = 0.5 and & =02 and §=07.

Finally, using equation (7), the equations of the electromechanical system and input filter is:
(

X(@) = —26,w X (1) — w2X (1) — %V — w?, X, (1) + ZEPwPXp(t) + w?e X, + 2§gngg(t)

Xp (1) = —w?pXp(1) = 28,wp X, (1) + w?e Xy + 26 we X, (1)

3 .. . 5 9)
Xq(t) = 72§gngg(t) — w e Xy — w(t)
V= iX — LV
L Cp CpR
Assuming the state vector Z () = [X X, X, V X X, Xg]T,thedynamicequationdescribingthe
coupled system is
Z (@) =AZ®#) + F(t) (10)
wherethe7 x 1 forcingvectoris F(t) =0 0 0 0 0 0 w(t)]",and the system matrix Ais:
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
o o o - 2 0 0
A= L e e (11)
—wot —w, twp —2§pwo —28wp +2&we
0 —wj +w; 0 0 —28,wp +2€,wy
0 0 —w; 0 0 0 —26w,

The equation set obtained here can be posed in a non-dimensional form adopting the following transformations
(see for instance, Adhikari et al 2009, Gammaitoni et al 2009, Daqaq 2010, Litak er al 2010, Daqaq 2011,
Khovanova and Khovanov 2011, Daqaq 2012, Halvorsen 2013, Zhao and Erturk 2013, Green et al 2013).

e
_ e 12
v OZCV (12)
x=2 (13)
le

— — |k
twaTf\/:T (14)

where I, which has the dimension of a length, is defined as the ratio between the area of the equivalent
piezoelectric capacitor and the distance between its armors; parameter w,, is the natural frequency of the
mechanical system (w, = 27 /T, where T}, is the natural period of the structure).

5
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In case of dimensionless expression, the complete set of equations of (11) (dealing with processes, so that
random vibration expressions) representing the filter plus electromechanical system equations are then written
as:

>R

X = —20X — X — 13V — 93X, — 26,9,X, + 20,1 X + V3 X,
(1) = —1/12551) - ZEP%XP + 2Cg¢ng + 7/’25(3
X, = _Zngngg - w?g)?g — w()

[V =X — AV

2

(15)

2

2

2
where ¢ = ﬁ is the mechanical damping factor; x? = % is the dimensionless electromechanical coupling
Wn P MWy
coefficient; and finally A = % = RCI —is the ratio between the mechanical and electrical time constants of the
pWn
harvester. The dimensionless parameter « is the ratio between the time constants of the first-order electrical
system and mechanical system frequency (Adhikari et al 2009).
Regarding the parameters of the filters, the indices are the ratios between the frequencies of the filters and

that of the mechanical system as expressed by equations (16) and (17):

“p

= ¥p (16)
Whn
w
— =t (17)
Wy
System (15) takes the following compact form:
2 =KZ @) + E@) (18)
where the dimensionless state vector is:
= R e o O
Z(t) = [X X, X, V X X, Xg] (19)

and the system matrix for the filtered RC circuit is:

o 0 0 0 1
0o 0 0 0 0
0o 0 0 0 0
0 0 0 -—X 1 0 0

=1 =y, vy =R =28 26,0 +260
0~ Y2 0 0 26,4, +26U

0 0 —¢; 0 0 0 =264

o~ O

0
0
1

>
|

(20)

as the dimensionless state space system matrix.

Mechanical systems driven by random processes, as the case treated here, have been discussed by many
authors in many well-known books within the scope of random vibration theory (see for example, Lin 1967,
Nigam 1983, Bolotin 1984, Newland 1989, Roberts and Spanos 1990). In this case, starting from the state
equation (18), the covariance analysis is then performed in dimensionless state space by solving the Lyapunov
matrix differential equation in the following form:

R(t) = AR() + ROK" + B() Q1)

matrix differential algebraic problem in cases respectively, usually known as Lyuapunov equations. In

equation (21), R(t) = <2 4 T) is the covariance matrix (the operator (o) is the mathematical average), while
B(t) contains all elements equal to zero except the last one that holds 27S,, where Sy is the intensity of the white
noise.

Equation (21) is the general dimensionless solution for the electromechanical-coupled problem; it is written
for non-stationary problems, and it should be simplified for stationary condition as an algebraic one:

AR+RA' +B=0 (22)

The relative mechanical displacement variance is 02}? = R(1, 1), whereas the one for tension is 0"27 = R4, 4).
The latter represents the variation of the tension generated by the piezoelectric device as represented in
figure 1. Tension V and displacement X are Gaussian stochastic stationary processes, with zero mean and
variance 0‘27. This information is extremely important for predicting electrical potential applications of these
energy-harvesting systems.




10P Publishing

J. Phys. Commun. 3 (2019) 025008 G C Marano etal

Table 1. Different filter configurations.

Spectral characteristics a b c d
& 0.2 0.2 0.2 0.2
& 0.7 0.7 0.7 1.0
Ve 0.50 1.00 2.00 5.00
by 0.5 0.5 0.5 0.5

Following (Adhikari et al 2009, Adhikari et al 2016), the electrical energy is herein considered instead of the
electrical power because the loading event (i.e., the seismic event) lasts for a finite time length. By making the
time dependence explicit through the introduction of the time variable t, the energy harvested within a time
window [0,T] is calculated as follows (Elvin et al 2006, Adhikari et al 2009):

e = ifT Vv2(1)dt (23)
R Jo
The first-order moment of the harvested energy is:
1,7 1 T
p(T) = (D)) = — [ (@)de = — [ ohwr (24)
RJo R Jo
In case of stationary response, the integral (24) becomes
Toy
pe(T) = —+ (25)
and the energy harvesting is the electrical net mean power:
2
o
Hp = - (26)

R

The dimensionless main quantity of interest in the energy harvesting is the electrical net mean power that has the
following expression (Bobryk and Yurchenko 2015)

wp = )\/izaé 27

3. Numerical analysis

In this paragraph, the method proposed is numerically implemented to evaluate the efficiency and sensitivity of
results of average harvested energy under different input frequency contents. The main objective is to show the
difference in the average harvested energy considering a filtered instead of a simple white noise Gaussian input.
Different four spectral configurations (the four dimensionless parameters) are used. For each input spectral
configuration, we have calculated the value of 115 and compared it to 15 at the same configuration in the case of
pure white noise. The parameters of the spectral configurations are reported in table 1. The values are obtained
for different values of structural damping £, and ratios of mechanical-electric time constants a.. It must be
stressed that the parameter « plays a key role representing the connection between the oscillation frequencies of
the electrical system and the mechanical one. For each spectral configuration (set of filter parameters), we have
considered three different values of structural damping (as representative of common mechanical situations)
and have measured the maximum values of the obtained dimensionless power and the related « values for which
this condition occurs.

In case of white noise input, the optimal value of & has been derived analytically from the equation (Adhikari
etal2009):

(1 — k¥ =1 (28)
for which the optimal value of the ratio is afg\l (where WN signifies white noise) is:
1
azlt\] TN (29)

Itis worth noting that am\] only depends on the dimensionless electromechanical coupling coefficient x. In
contrast with the case of filtered input, the optimal value of the power (on average) not only varies considerably
but also is obtained for different values than ozgfj. Figures 4(a)—(d) displays the plots of the dimensionless value
of ;15 as a function of , for four filter configurations. Continuous lines represent the filtered case, while dotted
ones denote the simple white noise input. Different colors are used for the three different values of structural

damping &, Itis evident that the input spectral content causes differences in the energy efficiency 115 and

7
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Figure 4. Energy efficiency assuming white noise (dotted lines) and filtered white noise (continuous lines) for different damping ratios
and for different filter configurations. Maxima are reported with blue circles (white noise) and red circles (filtered input).

corresponding optimal value of o in both cases, (blue circles for white noise input, and red circles for filtered
input).

Observing the four filter configurations, we can notice that the mean value of the non-dimensional power is
greatly influenced by the characteristics of the filters, Furthermore, the optimum value of the alpha parameter
(the ratio between the periods of the mechanical system and electrical circuit) can vary by departing from the one
related to the subject system with the white noise only.

The optimal value for the ratio a(‘;ft\] in case of white noise input is independent of structural damping and
dependent on parameter « only. In addition, figures 4(a)—(d) clearly shows that there is a strong dependency on
the optimal value and the structural damping.

For this reason, a comparison between azg]t\’ and the optimal value obtained in the case of colored white
noise afpct is numerically obtained for different values of structural damping &,,. The range of the variation of this
mechanical parameter is within the interval [0;0.5], covering a wide range of real cases using different materials
and additional damping devices. The index RC s for the electric characteristic of the circuit.

Figures 5-8 report the optimal values of aﬁ}? for different structural damping and values of dimensionless
electromechanical coupling coefficient , which represents the efficiency of piezoelectric material, subject to the

input spectral conditions cases of table 1.

The optimal values of aﬁpct are obtained using a genetic algorithm that must maximize the dimensionless

mean value of energy power obtained by the energy harvesting device modeled as described in the previous
chapter. Once the values of  and &, are defined, the maximization problem deals with a single variable .

The problem is relatively simple from computational point of view. The standard GA solver in MATLAB is
sufficient to solve the problem without needing large number of populations or generations. This is definitely an
advantage inferring that this strategy can be used in a wide number of cases as a design support for this type of
devices.

Figures 4—7 illustrate the optimal values of afpct (continuous lines), which are sensitive to £, versus the
optimal values of a‘,f\;t\’ obtained in the case of simplified white noise in equation (29), which are represented by

dotted lines and are insensitive to damping.
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Figure 5. Optimal value of o assuming white noise (dotted lines) and filtered white noise (continuous lines) for different damping
ratios; Spectral configuration (a).
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Figure 6. Optimal value of o assuming white noise (dotted lines) and filtered white noise (continuous lines) for different damping
ratios; Spectral configuration (b).

The four colors are related to different values of k parameter, which are assumed to be equal to 0.2, 0.4, 0.6,

and 0.8, based on recent references from the literature.
It becomes more evident after analyzing the figures that the environmental conditions (frequency contents)

play a fundamental role in defining the optimal agpct values. Indeed, there is no single trend as compared to the
values of am\] .

4, Conclusion

An approach for piezoelectric energy harvester subject to random vibrations is presented. This approach is
differently from the previously reported methods in considering the input frequency contents adopting a
vibration source described as a filtered white noise.

Covariance approach has been implemented showing differences with varied degree of significane between
the two cases (white noise and filtered) in terms of dimensionless mean value of produced power. It has also been
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Figure 7. Optimal value of o assuming white noise (dotted lines) and filtered white noise (continuous lines) for different damping
ratios; Spectral configuration (¢).
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Figure 8. Optimal value of a assuming white noise (dotted lines) and filtered white noise (continuous lines) for different damping
ratios; Spectral configuration (d).

observed that the optimal ratio between mechanical and electrical time constants («) is dependent on structural
damping. This dependency on « differs from the case of white noise where the analytical formulation deals only
with the piezoelectric device efficiency. Numerical evaluation of optimal values of «v in case of filtered input has
been plotted for different frequency contents and environmental conditions, demonstrating this approach as an
effective tool for designing piezoelectric devices to maximize energy efficiency under different input spectral
configurations.
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