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MEMORY REPLAY FOR CONTINUAL LEARNING WITH SPIKING NEURAL NETWORKS
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ABSTRACT

Two of the most impressive features of biological neural net-
works are their high energy efficiency and their ability to
continuously adapt to varying inputs. On the contrary, the
amount of power required to train top-performing deep learn-
ing models rises as they become more complex. This is the
main reason for the increasing research interest in spiking
neural networks, which mimic the functioning of the human
brain achieving similar performances to artificial neural net-
works, but with much lower energy costs. However, even
this type of network is not provided with the ability to in-
crementally learn new tasks, with the main obstacle being
catastrophic forgetting. This paper investigates memory re-
play as a strategy to mitigate catastrophic forgetting in spiking
neural networks. Experiments are conducted on the MNIST-
split dataset in both class-incremental learning and task-free
continual learning scenarios.

Index Terms— Spiking neural networks, continual learn-
ing, memory replay

1. INTRODUCTION

In recent years, deep learning models have managed to reach
super-human performances in several domains. AlphaGo [1]
and GT-Sophy [2] managed to outperform world champions
in the respective games, while AlphaFold and its variants [3]
reached impressive accuracies in protein structure prediction.
However, these achievements come at the price of an increas-
ing amount of computational power required to train such
models, as the number of trainable parameters they contain
becomes larger [4].

This issue is addressed by spiking neural networks (SNNs)
[5], which are a special class of artificial neural networks. The
basic computational units of such models are the spiking neu-
rons, which communicate using discrete spike sequences.
Similarly to biological neurons, the output is computed by
combining the input discrete spikes and it can be either a spike
or 0, depending on whether a certain threshold is reached. In-
cluding this type of temporal dynamics makes these networks
completely event- and data-driven, and parameter updates
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are only needed when a spike is produced. These charac-
teristics make SNNs much more computationally efficient
than artificial neural networks and more suitable for real-time
applications.

Despite these advantages, SNNs are also subject to the
phenomenon of catastrophic forgetting [6] when trained se-
quentially on different tasks. This represents a major obstacle
to continual learning, which is currently an important branch
of research in AI. For this reason, several works propose ap-
proaches for mitigating catastrophic forgetting in this type
of network. Most of the existing methods are based on pa-
rameter regularization [7, 8, 9, 10] and on the optimization
process [11], while [12] uses off-line reactivation to consol-
idate memories from previous tasks. To the best of the au-
thor’s knowledge, there is no prior work using memory replay
to tackle catastrophic forgetting. Despite their high mem-
ory requirements, replay-based approaches have proved to
significantly attenuate forgetting in artificial neural networks
[13, 14, 15, 16, 17]. Consequently, it is interesting to test
whether they are effective also in the case of SNNs.

In this work, we implement a simple form of memory
replay to investigate whether it might also be a good strat-
egy in SNNs. We conduct experiments on the MNIST-split
dataset, considering both class-incremental learning and task-
free continual learning scenarios. In summary, the specific
contributions of this work are the following:

• We test the effectiveness of memory replay for address-
ing the problem of catastrophic forgetting in SNNs;

• We compare the improvement in performance obtained
through memory replay in two challenging continual
learning scenarios, namely class-incremental learning
and task-free continual learning, using different mem-
ory sizes.

2. RELATED WORK

Computer vision is currently one of the main fields of applica-
tion of SNNs [18]. Even if in most cases this type of network
is applied to relatively small datasets, such as MNIST [19],
SNNs have proved to be promising in addressing even more
complex tasks, such as ImageNet [20, 21].
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Despite the good performances achieved by SNNs, these
networks also suffer from catastrophic forgetting [6] when
trained sequentially on multiple tasks. [8] introduce modified
synaptic intelligence by adding a regularization term, called
cost per synapse, that penalizes the update of the parameters
considered important for previous tasks. The regularization
term only affects the classification part of the network, which
is non-spiking. The spiking feature extraction part, instead,
is pre-trained using STDP [22], a learning rule that changes
the strength of synaptic connections based on the temporal
correlations of spikes between the connected neurons. Sim-
ilarly, [9] develop a network consisting of two parts: a su-
pervised convolutional neural network, and an unsupervised
STDP classifier. On the contrary, [10] propose controlled for-
getting networks completely trained with STDP, inspired by
the dopamine signals in the mammalian brain that heteroge-
neously modulate synaptic plasticity. Instead of using STDP,
[7] train a convolutional SNN using backpropagation and pro-
pose to adapt the thresholds based on the spiking activity of
preceding layers.

A different approach is considered by [11], who presents
an optimizer, called GRAPES (Group Responsibility for Ad-
justing the Propagation of Error Signals), that incorporates
principles from biology, including synaptic integration, het-
erosynaptic competition [23], and synaptic scaling [24].

Finally, [12] train a multi-layer SNN with reinforcement
learning adopting a completely different strategy, inspired by
the mechanism of memory consolidation that takes place dur-
ing sleep. The basic idea is to alternate new task training and
offline reactivation to force the network synaptic state space
to remain close to the previously learned manifold while con-
verging towards the intersection of the manifolds representing
old and new tasks.

However, to the best of our knowledge, no replay-based
method has been tested on SNNs. The basic idea of mem-
ory replay is to try to approximate or recover the distributions
of old tasks by storing some kind of information about them.
Depending on what is stored, we can identify different types
of memory replay. In experience replay [13, 14], the mem-
ory buffer is filled in with raw samples from old tasks. To
avoid storing large amounts of data, resulting in high mem-
ory requirements and low scalability, another possibility is to
use generative replay [15, 16], in which samples for old tasks
are generated through a generative model. However, even
these approaches have several drawbacks, as training genera-
tive models is a non-trivial task and such models might also
be subject to catastrophic forgetting themselves. A third op-
tion is to use feature replay [17], which consists in storing
feature-level distributions.

As a starting point in the study of the effectiveness of
memory replay in the case of SNNs, we focus on experience
replay, and we study the impact of the memory size on the
overall performance on all seen tasks.

3. METHODS

3.1. Spiking neural networks

Spiking neural networks (SNNs) [5] represent the third gen-
eration of neural network models, having as main computa-
tional units spiking neurons. One of the most commonly used
neuronal models is the leaky integrate-and-fire (LIF) model
[25, 26]. In this type of neuron, the membrane is described
by a resistance R and a capacitance C, and a spike is gen-
erated at time tf if the membrane potential reaches a certain
threshold uthr. After tf , the membrane potential is reset to
the resting-state potential, urest, and for t > tf the dynamics
are described by the following equation:

τ
du(t)

dt
= u(t)− urest +Ri(t) (1)

where i(t) and u(t) are the current and voltage across the
membrane, respectively, and τ = RC is the membrane time
constant.

As explained by [27], the discrete-time approximation of
the solution to Equation 1 for a constant current input is:

U [t] = βU [t− 1] + (1− β)Iin [t] (2)

where β = e
−1
τ is the decay rate of U [t].

The coefficient (1 − β) can be replaced by a learnable
weight W and we replace WX [t] = Iin [t], in such a way
that X [t] can be considered as an input voltage (spike), that
is scaled by W (synaptic conductance) to generate a current
injection to the neuron. This results in:

U [t+ 1] = βU [t] +WX [t+ 1] (3)

At this point, we need to introduce the reset mechanism,
as when the neuron fires, the membrane potential needs to be
reset. This can be modeled as:

U [t+ 1] = βU [t] +WX [t+ 1]− S [t]Uthr (4)

As previously explained, the neuron produces an output
spike if U [t] > Uthr, while its output is 0 otherwise. This
behavior can be expressed with the Heaviside step function:

S [t] = Θ(U [t]− Uthr) (5)

In order to train an SNN made by LIF neurons, we would
need to take the derivative ∂S

∂U . Such derivative corresponds
to the Dirac Delta function, which is 0 everywhere except at
the threshold Uthr = 0, where it tends to infinity. As a con-
sequence, the gradient will be 0 most of the time and the net-
work will not be able to learn. This problem is called the dead
neuron problem. One common approach to solve this issue is
to use a surrogate gradient. This means that the Heaviside
function is kept unaltered during the forward pass, while it is
smoothed during the backward pass to make it differentiable.



Some common smoothing functions are the arctangent, the
sigmoid, and the fast sigmoid [28] functions. For brevity rea-
sons, we just report the formulas for the fast sigmoid function,
which is the one we use in our experiments and has the fol-
lowing form:

S ≈ U

1 + k |U |
∂S

∂U
=

1

(1 + k |U |)2

(6)

Finally, to compute the gradient for all timesteps, the
backpropagation through time algorithm [29, 30] is used.

3.2. Memory replay

In this paper, we implement a simple form of experience re-
play, which consists in storing a small number of raw samples
from the previous tasks that are then replayed after training on
a new task. Our purpose is to try to approximate the distribu-
tions of previously seen tasks in order to prevent a drastic drop
in performance on those tasks.

In our method, the samples are stored in our memory
buffer directly in batches. Specifically, while we iterate over
the batches of the training dataset of task i during the train-
ing phase, each batch will have a probability of 33% to be
stored in our replay buffer until we reach the maximum al-
lowed memory size (N). This avoids looping over the whole
dataset after the training of task i to choose the samples to
store in memory and it also randomizes the selection process,
instead of simply taking the first or the last N samples in the
training dataset.

Therefore, while training our network on task i, we store
samples to be replayed for task i. Then, before training on
a new task i + 1, we loop over the replay buffer, revisiting
samples from task 0 to task i− 1.

A crucial aspect in experience replay, and more generally
in memory replay, is the selection of the appropriate num-
ber of samples to not have overfitting on the old tasks. For
this reason, we make experiments with different sizes for the
memory buffer to select the most suitable one.

4. EXPERIMENTS

4.1. Experimental setup

All the code was developed in PyTorch [31], using SNNTorch
library [27]. All experiments are conducted on the MNIST
dataset [19], which is split up into five distinct binary classifi-
cation tasks, in such a way that task 1 contains digits 0 and 1,
task 2 contains digits 2 and 3, and so on. 10% of the training
dataset has been used for validation in the training phase.

The continual learning scenarios we consider are the
most challenging ones, namely class-incremental learning
and task-free continual learning. The former is characterized

by the availability of task indices at training time only. The
latter, instead, is characterized by the complete absence of
task indices at both training and testing times.

For each of the two scenarios, we developed a different
architecture, but the convolutional part is the same for both
models. In particular, we use two convolutional layers of 12
and 64 5 × 5 filters, each followed by Leaky neurons from
SNNTorch library with β parameter set to 0.99 and having as
surrogate function a fast sigmoid with slope set to 25. Then,
for the class-incremental learning scenario, we develop a dy-
namic multi-head architecture. Every time we introduce a
new task, a new linear layer with output dimension 2 is added,
followed by Leaky neurons. At training time, we return just
the output of the head added for the task we are training on,
in order to not interfere with the previously trained heads. At
validation and testing times, instead, we do not provide the
task index, so our model will return the concatenation of the
outputs of all the heads and we will perform the classifica-
tion over the total number of seen classes. For the task-free
continual learning scenario, we simply use a linear layer with
output dimension 10, followed by Leaky neurons.

In order to perform the training, we use the cross entropy
spike count loss implemented in the SNNTorch library. This
function first accumulates the spikes at each timestep and then
applies the cross entropy loss function, thus encouraging the
correct class to fire at all time steps while suppressing incor-
rect classes from firing. As optimizer, we used Adam with
learning rates 1e− 3 and 1e− 4 for the class-incremental and
task-free continual learning scenario, respectively. The batch
size is set to 16. All experiments are run 5 times to compare
different seeds.

4.2. Class-incremental learning results

In table 1, we show the results obtained in the class incre-
mental learning scenario. As a baseline, we report the accu-
racy results obtained using naive finetuning, which consists in
training the network sequentially on the different tasks with-
out any accouterments. This type of training leads to a final
average accuracy on all tasks equal to 43.9%. Then, we re-
port the results obtained by storing 10, 20, 30, 40, 50, and
100 batches of data for each task. It can be seen that without
imposing any kind of regularization, storing a larger number
of samples per task is not always beneficial. In particular,
the highest final accuracy of 51% is reached by storing 40
batches per task. Instead, by storing 100 batches per task the
performance decreases by 1.7%. Overall, using experience
replay we are able to reduce the accuracy drop by at most
7.1%, which is a significant improvement considering that it
was achieved without using any form of regularization. The
results obtained with a joint training on all tasks are reported
as an upper bound.

Figure 1 shows the evolution of the accuracy on each task
as the number of tasks grows. The performance on the last



Method Task1 Task2 Task3 Task4 Task5
Naive 99.8± 0.1 98.7± 0.4 70.8± 12 63.7± 17 43.9± 22
MR 10 99.8± 0.2 98.8± 0.1 73.2± 4.7 58.2± 6.6 47.9± 6.6
MR 20 99.8± 0.1 98.9± 0.3 73.1± 3.9 56.2± 2.7 46.9± 1.9
MR 30 99.8± 0.0 98.3± 0.8 74.8± 4.7 60.1± 5.6 50.0± 5.3
MR 40 99.8± 0.0 98.8± 0.3 75.0± 3.1 62.5± 5.7 51.0± 4.9
MR 50 99.8± 0.0 98.1± 1.1 79.5± 9.6 59.2± 6.7 46.7± 4.3
MR 100 99.8± 0.0 98.7± 0.6 73.7± 1.9 60.3± 4.5 49.3± 4.9
Joint 90.1

Table 1. Performance on MNIST-split in the class incremental learning scenario. Column Task i reports the average accuracy
over all seen tasks up to the i-th task, after training the i-th task.

(a) Result 1

Fig. 1. Example of the evolution of the accuracy on each task
in the class-incremental learning scenario.

trained task is always significantly high, close to 100%. After
training the network on task i, the accuracy on task i − 1
drops, reaching values around 50%, for i = 2, 3, 4. Instead,
after training on task 5, the accuracy on task 4 remains slightly
higher, at around 70%.

4.3. Task-free continual learning

In table 2, we report the results obtained for the task-free con-
tinual learning scenario. Again, we use as a baseline the naive
finetuning, which achieves a final average accuracy over all
the tasks of 21.9%. In this scenario, the reduction in accuracy
drop registered is more notable than in the class-incremental
learning scenario, obtaining 36% of accuracy by storing 100
batches per task, which corresponds to an improvement by
14.1% with respect to naive finetuning. In this case, using a
larger memory is more helpful in preventing forgetting. This
may be due to the higher intrinsic complexity of this sce-
nario. Nevertheless, even with half the memory (50 batches
per task), we are able to improve the accuracy by more than
10%.

5. CONCLUSIONS

In recent years, AI research has achieved successful results in
a variety of applications thanks to the development of large
models with millions of trainable parameters. However, the
great computational capabilities of such models come at the
price of an increase in the amount of power required to train
them. This issue is partially overcome by spiking neural net-
works, specifically designed to be energy-efficient by taking
inspiration from biological brains. Despite this, even such
networks do not have the ability to continuously learn new
tasks sequentially, as they are subject to catastrophic forget-
ting.

In this work, we study the effect of replaying experiences
from old tasks in order to mitigate interference from the newly
trained ones. We show that memory replay allows the reduc-
tion of the drop in performance caused by the overwriting of
old tasks. In the class-incremental learning scenario, the high-
est accuracy is obtained by storing 40 batches per task, and
increasing the size of the memory buffer does not bring fur-
ther improvements. The task-free continual learning scenario,
instead, benefits from storing a larger number of samples per
task. This difference is related to the highest difficulty intrin-
sic in this scenario, as task ids are not provided during training
or testing.

Future works might try to combine memory replay with
other types of methods, such as regularization-based ap-
proaches, to try to further improve the average performance
on all tasks. By combining different methods, it might be
sufficient to store a smaller number of samples per task to be
replayed to achieve comparable or even better performances.
Another interesting line of research would be the adaptation
of explainability methods to SNNs in order to have an in-
formed criterion to choose the examples to store in memory.
In this way, we could choose the smallest number of sam-
ples that contain the most influential information about each
task. Several works in the literature propose methods for
mitigating catastrophic forgetting in artificial neural networks
that exploit explainable AI [32, 33, 34], and they manage to
achieve comparable and, in some cases, higher performances
than other state-of-the-art approaches.



Method Task1 Task2 Task3 Task4 Task5
Naive 99.6± 0.0 49.1± 1.0 34.7± 1.6 25.6± 0.4 21.9± 1.6
MR 10 99.6± 0.2 50.4± 1.1 34.7± 1.4 28.6± 1.3 24.5± 2.7
MR 20 99.6± 0.1 50.6± 1.2 37.3± 2.8 30.0± 2.9 27.1± 2.1
MR 30 99.6± 0.4 54.8± 3.7 43.7± 4.4 36.0± 2.3 28.1± 1.5
MR 40 99.6± 0.9 55.3± 4.2 46.4± 6.3 36.0± 3.9 28.3± 5.7
MR 50 99.6± 0.0 60.8± 4.8 50.9± 8.7 39.6± 3.8 33.1± 5.6
MR 100 99.6± 0.1 63.3± 3.0 52.7± 2.6 45.7± 4.1 36.0± 9.1
Joint 90.1

Table 2. Performance on MNIST-split in the task-free continual learning scenario. Column Task i reports the average accuracy
over all seen tasks up to the i-th task, after training the i-th task.
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